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Summary Reaction mechanisms in chemistry are often indicated by arrows in Lewis

structures. While these arrows account for changes in the electronic structure from reactant

to product, they do not represent the time-dependent electron rearrangement. Such a

time-dependent reaction mechanism can be obtained by calculation of an electronic flux

density, but for reactions in the electronic ground state the Born-Oppenheimer separation

prohibits straightforward calculation of this quantity.

In this work, the concept of the electronic flux density is reviewed and analyzed within

the framework of the Born-Oppenheimer approximation. Then, time-dependent reaction

mechanisms are determined for cyclic electron rearrangements by using electron fluxes into or

out of suitably defined bond sectors. The investigated models, tunneling in cyclooctatetraene,

motion of benzene along the Kekulé mode, proton tunneling in malonaldehyde and double

proton tunneling in the formic acid dimer, yield interesting insights regarding questions like:

How many electrons move from bond to bond? In which direction? Do electrons of different

chemical type (like π-electrons) behave differently? It becomes apparent that already a lot

can be learned from the simple model systems, but also that a lot still needs to be done until

time-dependent reaction mechanisms can be routinely calculated.

Zusammenfassung Chemische Reaktionsmechanismen werden häufig mit Pfeilen in

Lewisstrukturen dargestellt. Diese Pfeile repräsentieren Änderungen in der elektronischen

Struktur von Reaktanden zu Produkten, aber sie geben nicht den zeitabhänigen Mechanismus

wieder. Solch ein zeitlicher Reaktionsmechanismus könnte durch Berechnung der elektron-

ischen Flussdichte erhalten werden, aber für Reaktionen im elektronischen Grundzustand

verhindert die Born-Oppenheimer-Näherung eine einfache Berechung dieser Größe.

In dieser Arbeit wird das Konzept der elektronischen Flussdichte erläutert und in Hinblick

auf die Born-Oppenheimer-Näherung analysiert. Weiterhin werden zeitabhänige Reaktions-

mechanismen für zyklische Elektronenumlagerungen mittels elektronischer Flüsse in oder

aus geeignet definierten Bindungssektoren bestimmt. Die betrachteten Modelle, Tunneln

in Cyclooctatetraen, die Bewegung von Benzol entlang der Kekulé-Mode, Protonentunneln

in Malonaldehyd und Doppelprotonentunneln im Ameisensäuredimer, bringen interessante

Ergebnisse zu Tage bezüglich Fragen wie: Wieviele Elektronen fließen von Bindung zu

Bindung? In welche Richtung fließen die Elektronen? Verhalten sich Elektronen ver-

schiedenen chemischen Typs (z.B. π-Elektronen im Vergleich zu anderen Valenzelektronen)

unterschiedlich? Es wird deutlich, dass viel von diesen einfachen Modellsystemen gelernt

werden kann, aber dass bis zur standardmäßigen Berechnung von Reaktionsmechanismen

noch ein weiter Weg zurückgelegt werden muss.
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4.2.2 The Kekulé mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 A model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Proton tunneling in the formic acid dimer and in malonaldehyde . . . . . . . 85

4.3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2 The missing flux parameter . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Average angular flux and the angular velocity operator . . . . . . . . 87

4.3.4 Model systems formic acid dimer and malonaldehyde . . . . . . . . . . 94

4.3.5 Results I: Fluxes from the density and the resulting mechanisms . . . 98

4.3.6 Cluster analysis of the electron density . . . . . . . . . . . . . . . . . . 110

4.3.7 Results II: Cluster analysis and the resulting mechanisms . . . . . . . 116

5 Conclusion 121

A Notational conventions 125

B A brief introduction to differential forms 127

C Kinetic energy operators from symmetry-adapted curvilinear coordinates133

C.1 The kinetic energy operator in general coordinates . . . . . . . . . . . . . . . 135

C.2 Vibration of a diatomic molecule . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.3 Double bond shift of cyclobutadiene . . . . . . . . . . . . . . . . . . . . . . . 137
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in cyclooctatetraene (made with Inkscape [3]) . . . . . . . . . . . . . . . . . . 87

4.21 Cylinder containing the electron density (made with Inkscape [3]) . . . . . . . 89

4.22 Flux through a box (made with Inkscape [3]) . . . . . . . . . . . . . . . . . . 90

4.23 Possible mechanisms for proton tunneling in malonaldehyde and in the formic

acid dimer (made with Inkscape [3]) . . . . . . . . . . . . . . . . . . . . . . . 95

4.24 Nuclear configurations for proton tunneling of malonaldehyde and the formic

acid dimer (made with Inkscape [3] and Matlab [4]) . . . . . . . . . . . . . . 97

4.25 Orbitals for the π-electron density of the formic acid dimer (made with

Inkscape [3] and Molden [5]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.26 Orbitals for the π-electron density of malonaldehyde (made with Inkscape [3]

and Molden [5]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.27 Angular densities and fluxes for proton tunneling in the formic acid dimer

(made with Inkscape [3] and Matlab [4]) . . . . . . . . . . . . . . . . . . . . . 100

4.28 Angular densities and fluxes for proton tunneling in malonaldehyde (made

with Inkscape [3] and Matlab [4]) . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.29 Zero-flux surfaces for zero average angular flux, for proton tunneling in the

formic acid dimer (made with Inkscape [3] and Matlab [4]) . . . . . . . . . . 104

4.30 Zero-flux surfaces for non-zero average angular flux, for proton tunneling in

the formic acid dimer (made with Inkscape [3] and Matlab [4]) . . . . . . . . 105

4.31 Mechanism of proton tunneling in the formic acid dimer (made with Inkscape [3])106

4.32 Zero-flux surfaces for zero average angular flux, for proton tunneling in mal-

onaldehyde (made with Inkscape [3] and Matlab [4]) . . . . . . . . . . . . . . 108

4.33 Mechanism of proton tunneling in malonaldehyde (made with Inkscape [3]) . 109

4.34 Zero-flux surfaces from cluster analysis of the electron density for proton

tunneling in malonaldehyde and in the formic acid dimer (made with Inkscape

[3] and Matlab [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.35 Nuclear densities and fluxes for tunneling in ammonia (made with Inkscape [3]

and Matlab [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.36 Schematic nuclear and electron density for a diatomic (made with Inkscape [3])120

C.1 Jacobi coordinates for cyclobutadiene (made with Inkscape [3]) . . . . . . . . 138

C.2 Jacobi coordinates for benzene (made with Inkscape [3]) . . . . . . . . . . . . 140

C.3 Jacobi coordinates for cyclootatetraene (made with Inkscape [3]) . . . . . . . 142

D.1 Orbital occupation in cyclooctatetraene (made with Inkscape [3]) . . . . . . . 145

iv



Foreword and

acknowledgements

The monograph at hand addresses the concept of the mechanism of a chemical reaction.

This concept is one of the pillars on which the field of chemistry rests, and it is used with

self-evidence to predict or rationalize the outcome of reactions. Yet, from the quantum

dynamicist’s point of view the theoretical foundation of this pillar is surprisingly little

developed: A lot of research aims at following the motion of nuclei during chemical reactions,

but little is done regarding the motion of the electrons. The situation is in sharp contrast to

the typical view of chemical reactions as rearrangements of the electronic structure. Thus, a

lot can still be explored in this field, and some new aspects will be discovered in this text.

But before diving into the field of electron dynamics during chemical reactions, let me first

make a general remark regarding the text.

Please note the following: Whenever I will speak about “the chemist” and “the chemist’s

view”, I am referring to my personal view of the current situation in chemistry. This view

was shaped by my own experience during my chemistry studies as well as by discussion

with colleagues and friends from organic and inorganic chemistry. The question of what a

chemical reaction or what a chemical bond is can be answered in many different ways, and I

am trying to adhere to the mainstream view. Nevertheless, I fully acknowledge that there are

other views, and that the situation I will describe in the following is much simplified. Also, I

will implicitly stay within the realm of organic chemistry, i.e. I will focus on hydrocarbon

compounds. The periodic table is rich, and for other elements other concepts are used. Those

will, however, not be discussed here.

This work would not have been possible without a number of people, and it is a pleasure

to name them here and to say thank you!

First and foremost, I want to thank my supervisors Jörn Manz and Beate Paulus for

their continuous support and help in a variety of ways. Both left me the freedom to work

independently, but they always had an open ear for questions and problems, as well as

stimulating advice.

I am grateful to Jörn Manz for his commitment, and for sharing his experience and

foresight. I learned a lot from him, not only in the area of quantum dynamics, but also in

areas such as teaching, scientific working, and professional interaction with students and

colleagues. Also, not only working with him was a pleasure, but also taking part in the

recreational activities that he initialized or co-organized.

I am grateful to Beate Paulus for her guidance and her skill to inspire successful scientific

work. She managed to establish and maintain a work group such that being part of it was a

joyful experience. Her organizational talent and her care for the well-being of the people

working for and with her impressed me. Discussions with her on various, not necessarily

work-related topics have always been a delight. Thus, I am glad that I decided to make

my doctoral studies under the supervision of Jörn Manz and Beate Paulus, and that they

v



decided to supervise me.

Next, I thank my mother Beate Schild as well as Stefanie and Nikola Stričević for there
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Chapter 1

Introduction

1.1 The static and the dynamic view of a chemical re-

action

In 2007, a special issue of the Journal of Computational Chemistry with the conspicuous

title “90 Years of Chemical Bonding” was published [77]. Part of this issue were nine

essays [19,78,84,114,132,165,187,192,213] about the chemical bond which, starting from

the article “The Atom and the Molecule” from Lewis [122], discuss aspects of the idea of

a chemical bond. The topics covered include theories like atoms in molecules [19], valence

bond theory [213] and its relation to molecular orbital theory [132], the molecular orbital

theory of Hückel [114] and the valence shell electron repulsion model [84].

Lewis introduced empirical rules which are still one of the foundations of chemistry

today. In practice, chemists think in terms of bonds and electron pairs, and use the chemical

structures similar to those introduced by Lewis (and thus still called Lewis structures) to

derive “reaction mechanims”. The quotes indicate that these “reaction mechanims” have a

very particular meaning different from what a layperson might expect, and this discrepancy

is to be discussed below. After Lewis published his approach to chemical reactions, a

number of theories were developed over the course of the years. These were influenced

heavily by the development of quantum mechanics, and especially by the introduction of a

versatile quantum mechanical formalism in 1926 by Schrödinger [185], which proved to be

well applicable to chemistry. It was noted that an understanding of the successful empirical

concepts of chemistry have to be related to quantum mechanical principles applied to a set of

nuclei and electrons. An important step in this development was the publication of the first

quantum mechanical description of covalent bonding in the dihydrogen molecule by Heitler

and London in 1927 [99], and further steps soon followed.

Despite the knowledge that theories of chemical reactions should be based on quantum

mechanics, there are a large number of empirical concepts found in chemistry which are

introduced by experience rather than by derivation from first principles. Frenking and Krapp

coined the term “unicorn” for these concepts, as a mythical but useful “creature which brings

law and order [. . . ] in an otherwise chaotic and disordered world” [78]. If you look at any

publication in chemistry you almost certainly see some unicorns jumping around. They

cause colorful rainbows which may leave the reader stunned as she tries to catch or tame

the unicorn. Like Frenking and Krapp state: “Chemists had become so intimate with their

unicorns [. . . ]. This made it very difficult until today to introduce new concepts which do

not agree with the unicorn world” [78].

Next to the chemical bond as a prototypical unicorn, it may even be asked to what extent

1



Chapter 1. Introduction

the idea of the molecule itself is a unicorn. The emergence of molecular structure from the

complete molecular Hamiltonian is a difficult topic, which has already been addressed some

years ago, see e.g. [49,129,202,227–230]. An interesting article by Sutcliffe and Woolley [203]

discusses to what extent the notion of molecular structure is influenced by time-independent

calculations with clamped nuclei (see also [200,201] for some déjà vu experience). Recently,

numerical studies on three, four, and five particle systems were performed by Mátyus and

coworkers [139–141] for particles with different masses, in order to see how the molecular

structure emerges from the all-particle wave function.

It is, with our present mathematical understanding of quantum mechanics, impossible to

solve any system which is more complex than the hydrogen atom analytically in the sense of

Schrödinger’s quantum theory. Slightly larger systems may be solved to numerical accuracy,

but there is no hope to obtain the complete wave function for a chemically relevant molecule.

The problem of solving the quantum mechanical description of a number of interacting

particles, known as the many-body problem [72, 138], has stimulated the development of

a number of general approximation techniques. Studies of molecular systems inspired by

the unicorns of chemistry have led to various models for chemical bonding. Based on these

models, “reaction mechanisms” are used to rationalize the course of a chemical reaction. But

there is one striking deficiency of the devised “reaction mechanisms”: They are a bookkeeper’s

method of counting and shifting electrons, but they do usually not represent the way how

electrons move during the chemical reaction. Thus, they are a static concept and do not

represent the dynamic mechanism of a reaction.

Figure 1.1: Schematic representation of a general Diels-Alder reaction using Lewis structures.
Arrows indicate a possible “reaction mechanism”.

The discrepancy can best be explained by an example: Fig. 1.1 depicts the chemical

reaction of ethene and butadiene to form cyclohexene. In fact, this reaction does not really

happen, and this finding is often explained by invoking appropriate unicorns. Nevertheless,

there are a number of reactions of molecules which are considered to proceed in the way

indicated by Fig. 1.1. These reactions, known by the names of Otto Diels and Kurt

Alder [65,164], have in common that a diene (like butadiene) reacts with a so-called dienophile

(like a substituted ethene) in a ring-closing reaction.

In Fig. 1.1, the molecules of the prototype reaction are represented as Lewis structures.

A number of steps need to be done to arrive at this representation:

• In Schrödinger’s formulation of quantum mechanics, the molecular system is described

by one complex field (the wave function) of both the electronic and nuclear coordinates.

This field has to be divided approximately into two fields, one for the electrons (the

electronic wave function) and one for the nuclei (the nuclear wave function). The division

is accomplished by the Born-Oppenheimer approximation [36], which is discussed below

extensively. Nuclei and electrons are treated completely differently in chemistry, and

one has to account for that.

• The nuclei need to be localized somehow. The chemist’s molecule is a geometric

structure or a three-dimensional network, for which each corner represents a specific
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1.1. The static and the dynamic view of a chemical reaction

nucleus. Often, the nuclei are considered as essentially classical entities: points or very

small regions with definite location and velocity in three-dimensional space. Moreover,

chemists also tend to think in terms of interacting atoms. Instead of localizing only the

nuclei, most electrons are also attributed to a specific nucleus, and some are considered

shared between the nuclei. In calculations this thinking is reflected by the basis set

used to construct the electronic wave function: This basis is generally a set of functions

inspired by the eigenfunctions of the hydrogen atom and centered at the position of

clamped nuclei.

• The electrons have to be divided into different groups with different chemical meaning.

This chemical division also directly influences how calculations for the electronic wave

function are performed: The wave function is determined in a way which is inspired

by the chemical unicorns, and thus exhibits a mathematical structure that makes the

partition possible. The form of the electronic wave function is thus discussed in detail

in section 3.3.

What does Fig. 1.1 stand for? In Fig. 1.2, the left-hand side of Fig. 1.1 is shown in a different

way, with more information. The corners in Fig. 1.1 correspond to the position of carbon

nuclei (C), and there are also 10 hydrogen nuclei (H) which were not even indicated in Fig.

1.1. Note that Fig. 1.2 does not fully represent the way in which a chemist would think of

this reaction: He would never imagine the hydrogen atoms in ethane and at the CH2 groups

in butadiene to be in the plane of the carbon atoms, but more or less perpendicular to this

plane. Also, he would not expect the reaction itself to proceed in a plane.

C

C

C

C
C

C

H

H

H

HH

H

HH

HH

Figure 1.2: Another representation of the left-hand side of Fig. 1.1, with carbon and hydrogen
atoms indicated explicitly.

Thus, in order to speak of a molecule first the nuclei have to be localized in space, e.g.

by considering only the energetically most stable configuration of the nuclei (the equilibrium

structure). Next, the nuclear locations are connected by lines as shown in Fig. 1.1 and Fig.

1.2, which represent the interesting parts of the electrons. The electrons are divided into

two classes, core and valence electrons. Only the latter are considered to change during a

chemical reaction, and only these are drawn. The former are thought of as spectators during

the reaction, and may move with the nuclear position but do not change otherwise. Each line

between two nuclei represents a chemical bond, which in turn is thought of as being formed

by two valence electrons. In a way, there are atoms (a nucleus and, for an electronically

neutral molecule, as many electrons as there would be in a free atom) which are attached

to each other by sharing some electrons. There are different types of these chemical bonds:

The bonds between C and H are of no interest for the reaction and are omitted in Fig. 1.1.

Between the carbon nuclei there are two types of bonds: single bonds and double bonds.

3



Chapter 1. Introduction

These are qualitatively different and behave differently in chemical reactions: The former

are so-called σ-bonds which are thought of as being along the nucleus-nucleus connection

line. Of the latter, one bond is a so-called π-bond, for which the respective electron has zero

probability to be found along the nucleus-nucleus connection line.

Bonds only make sense if a chemical reaction is considered. They are useful to classify

and draw single molecules, but in a chemical reaction bonds are being formed or being

broken, and this dynamical view is the strength of the bond concept. A chemist seeing a

chemical structure does usually associate certain attributes with parts of the structure which

are related to chemical reactivity in different environments. In this way, a chemical bond is

an intrinsically dynamical concept.

Figure 1.3: Three possible “reaction mechanisms” of the reaction of Fig. 1.1.

Fig. 1.1 shows the “reaction mechanism” in form of the arrows. These arrows indicate how

the bonds have to be rearranged in order to get from the reactants (ethene and butadiene) to

the product (cyclohexene). Generally, many different ways are possible to draw these arrows.

There are sometimes also different arrows used with different meanings, e.g. the usual curved

arrow for the shift of two electrons (a bond) and a fishhook arrow (with only half of the

arrow head) for the shift of one electron only. Some possibilities for the example reaction

are given in Fig. 1.3. For a throughout account on the usage of arrows in chemistry see [11].

As practical as these arrows may be, there is an important problem: The arrows represent

the net change from one molecular structure to the other, but they do not represent the

dynamics of the chemical reaction. That is, they do not represent how the electrons really

move, and thus they do not represent the reaction mechanism (without quotation marks).

This situation might be improved by finding reaction intermediates or by excluding certain

mechanisms based on experience with other chemical reactions. Nevertheless, especially on

the theoretical side there was little done until now to adapt a completely dynamical picture.

The special issue on chemical bonding [77] does reflect this situation very well: Although

Truhlar in [213] emphasizes that chemical bonds are related to processes, this essay is the only

article of the issue (with 9 essays and 28 research articles) which at least touches the topic

of chemical dynamics. The well developed and well developing field of quantum chemistry

is concerned with solution of the electronic structure for fixed nuclei. Statements about

reaction mechanisms are often based solely on the shape of the potential energy surface, and

it is customary to look at the energetically most favorable part connecting reactants and

products (the minimum-energy reaction path) [220], although it is long known that this can

be problematic [93].

1.2 Three types of electron rearrangements

Chemical reactions may be divided into two classes: Reactions in the electronic ground state,

and reactions involving electronically excited states (called excited state reactions). It is only

sensible to talk about electronic states in terms of the Born-Oppenheimer approximation

which separates nuclear and electron dynamics on the basis of different time scales on which
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1.2. Three types of electron rearrangements

the particles move. Fig. 1.4 shows schematically the form of possible electronic states in a

diatomic. An electronic state is a function of the internuclear coordinates, and in the case of

a diatomic of the internuclear distance. It constitutes a potential for the nuclear motion. In

principle, for molecules other than diatomics these states may cross at conical intersections

and may have complicated shapes. A ground state reaction is a reaction for which the

nuclear dynamics during the whole reaction can be well described by considering only the

energetically lowest electronic state. These reactions happen at energies corresponding to

temperatures between zero Kelvin and ambient temperature, or are induced by moderate

heating. In contrast, excited state reactions involve one or more electronically excited states

at some point during the reaction. Thus, for the correct description of the nuclear dynamics

several electronic states have to be taken into account. The energies needed for such reactions

are usually in the range of a few electron volts, and the reaction is often induced by visible

or UV light irradiation.

internuclear distance

en
er

gy

electronic
states

Figure 1.4: Schematic representation of the electronic states of a diatomic.

A remarkable difference between the two types of reactions is the amount of electrons

flowing per time unit. For excited state dynamics, the electronic motion may happen on the

time scale of attoseconds (10−18 s) [110]. Thus, in calculations the nuclei are often considered

frozen because nuclear vibrational motion is much slower than the electronic motion in such

cases. The nuclear wave function may then be approximated by only one nuclear configuration.

Consequently, for a given set of nuclear positions the dynamics is described by a superposition

of electronic wave functions of different electronic states. Only for longer time scales nuclear

motion has to be taken into account, and then it may happen that the nuclear wave packet

comes close to a conical intersection. In such cases, the electronic rearrangement happens on

a similar time scale as the nuclear rearrangement, and the Born-Oppenheimer approximation

is not applicable. [121,233]. Usually, there is a strong electron flux involved in excited state

reactions and the electronic structure changes qualitatively and rapidly. For example, a

simulation of Ulusoy and Nest showed that the electronic character of benzene can completely

vary on the attosecond time scale if appropriate electronic states are excited [214]. Another

example is the laser induced ring current in magnesium porphyrin [28]: By excitation with a

circularly polarized UV laser Barth, Manz, Shigeta and Yagi showed that it is possible to

induce a (direct) current of 84.6×10−6 A, i.e. a circulation of 0.528 electrons per femtosecond.

However, in the gas phase these ring currents decay quickly due to translational motion [23].

Most of practical chemistry happens in the electronic ground state, and in this work only

such reactions are considered. The typical time scale of ground state reactions is that of the
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Chapter 1. Introduction

nuclear motion, i.e. femtoseconds (10−15 s). As I personally learned, there are scientists who

would say that there cannot be electron dynamics in the electronic ground state, because

staying in only one electronic state means that the electronic wave functions are always

stationary. However, for lots of chemical reactions the approximation that the molecules stay

in the electronic ground state while the reaction takes place is appropriate for the nuclear

dynamics. As discussed below, this nuclear dynamics induces a time-dependent electron

density and thus an electron flux. The electron flux in this approximation is in principle an

effective flux, because there are two time-scales involved: A fast electronic time scale, and a

comparably slow nuclear time scale. The idea of these two time scales can be understood

best in a classical picture, where there is only one definite nuclear configuration present at a

certain time. Thus, either the time variable or the path of the nuclear configuration may be

used to parametrize the electronic part of the problem. In this case, under the assumption

that the time-dependence of the nuclear configuration is slow compared to the electronic

motion, the adiabatic theorem [108] may be used. In the limit of infinitely slow change of the

nuclear configuration, the electronic wave function will be restricted to only one potential

energy surface for the complete motion, cf. [124]. While the quantum mechanical picture

is certainly more difficult, applicability of the restriction to only one electronic state was

studied in a similar spirit by the method of multiple scales in [88], see also [89]. Nevertheless,

if the approximation that the reaction happens in only one electronic state is applicable, the

effective electron flux should also be a very good approximation to the true electron flux,

see [69].

During the effective electronic motion very few electrons actually move, as will be seen in

the applications. The values of the model system benzene in section 4.2.4 shall be used for

comparison. For the dynamics of Benzene along the Kekulé mode, 0.199 of the π-electrons

and 0.134 of the other valence electrons move (in opposite directions). The electron density

oscillates and thus gives rise to an alternating, periodic current. This is in contrast to

the direct current induced in magnesium porphyrin mentioned above, where the electron

dynamics is circular in one direction. The motion of Benzene along the Kekulé mode is

periodic with a period of about 24 fs, and thus there is a total alternating current of about

(0.199 − 0.134)/24 = 0.0027 electrons per femtosecond or a π-electron current of about

0.199/24 = 0.0083 electrons per femtosecond.

There is third type of electron rearrangements which is routinely accessed experimentally,

and which may be distinguish in terms of the strength of the induced electron flux. Static

magnetic fields induce electronic currents in molecules. A particularly famous example is

the ring current induced in benzene, which has an effect on the nuclear magnetic resonance

(NMR) spectrum and is sometimes used to define the unicorn aromaticity [71, 145,197–199].

The static magnetic field induces an electron current such that the magnetic field induced by

this current compensates the effect of the external field as well as possible. In benzene and

other aromatic molecules there is a static, oriented ring current which can be attributed to

electrons in π-orbitals [199]. These ring currents have effects on the NMR spectrum, because

the induced magnetic field amplifies or weakens the effect of the static magnetic field on the

hydrogen or carbon atoms. However, the induced current is very small: In [104], Johansson,

Jusélius and Sundholm give a value of about 12×10−9 A/T for the total current. A typical

magnetic field in an NMR experiment has a strength of about 10 T and thus induces a ring

current of 12×10−8 A, or 0.00075 electrons per femtosecond. In this context, see also the

discussion in [28] on the strength of electronic ring currents in magnetic fields and in suitably

chosen laser fields.
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1.3. Simulation methods for chemical reactions

1.3 Simulation methods for chemical reactions

In order to find the mechanism of a chemical reaction, it is necessary to know both the

dynamics of the nuclei and that of the electrons. In particular, it is not enough to look only

at how the nuclear and the electron density change with time, i.e. to look at where the nuclei

and electrons are at a certain instant of time. Information about speed and direction of the

particles would be missing. For the nuclei this is usually of minor importance, because they

are either treated classically and their classical velocities are known, or because the complete

time-dependent wave function and thus information about the velocity of the motion is

available. For the electrons, on the other hand, it is not yet possible in practice to simulate

the fast dynamics together with the dynamics of the nuclei: The simulation would have to

use a very small time step, and the dimensionality of the problem at hand is prohibitively

large. So far, there is a complete quantum mechanical simulation of both nuclei and the

electron for the dihydrogen cation [25], and there is the multi-configuration electron-nuclear

dynamics method [163,215] which was applied to diatomics like lithium hydride [97,216].

The positions of the nuclei are thus usually known from a dynamics simulation. The

arrows indicating the reaction mechanism are unknown, however, because the time-dependent

electronic wave function would be necessary. Specifically, the vector field which shows the

reaction mechanism is the electronic flux density (also called electronic probability current),

and from this field the reaction mechanism could be directly read off. As explained in the

next chapter, the flux density is a bit capricious and difficult to obtain. But before starting

the exposition of the current research status in the theoretical determination of reaction

mechanisms, the different ways of how dynamics in molecular systems is calculated are

reviewed.

Currently, there are a number of different approaches to investigate chemical reaction

dynamics, which operate on different levels of complexity and have different applicability. For

large molecular systems, molecular dynamics simulations are used which solve the classical

equations of motion for the nuclei using effective force fields [118]. These forces are often

only working between two nuclei of the system, or even only between static fragments of

the molecule. While such dynamics simulations are certainly useful to investigate complex

problems as the dynamics of protein folding (see e.g. [217]), they cannot give information

about the arrows or the reaction mechanism because electrons are not considered explicitly

at all. However, with such techniques it is possible to identify dynamical molecular structures

which are most important for the process of interest, and these can then be analyzed in detail

using other methods. For smaller systems, it is possible to simulate the dynamics with ab

initio molecular dynamics [135,136]. In such simulations, the nuclei are still point particles,

but for a given nuclear configuration the electronic problem is solved with computationally

cheap quantum chemical methods like Hartree-Fock theory [204] or applied density functional

theory [112]. The quantum chemistry calculation yields an electronic wave function and an

electronic density. Thus, it is possible to describe chemical reactions, albeit in a comparably

crude way. One may employ the method of Patchkovskii [172] to obtain an electron flux

density along the classical nuclear paths. Alternatively, one may partition the density into

parts which are attributed to a given atom and simply use the nuclear velocity to obtain

a flux density, compare e.g. with [67]. There are several methods to partition the density

sensibly. For an overview of different real space partitions of the one-electron density that

could in principle be used, see [173]. To the best of my knowledge, however, there have not

been any attempts to calculate electronic flux densities of an ab initio molecular dynamics

simulation.

At the most basic level, both nuclei and electrons are described at a quantum mechanical
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level. This approach may be termed quantum reaction dynamics, although there are different

meanings for this term in the literature. For such a quantum mechanical simulation, there is

usually no hope to describe all possible degrees of freedom: The nuclear dynamics has to be

solved in many dimensions which becomes costly quickly. Additionally, quantum chemistry

calculations may become the bottleneck because the nuclear wave function might explore

large parts of the potential energy surface. Thus, the electronic problem has to be solved

for many nuclear configurations. Especially because calculations for structures close to the

transition state of a reaction are often demanding (they exhibit multireference character,

see [205]), high-level quantum chemical methods may be needed for which many calculations

are not feasible. One then often works with model systems in reduced dimensionality, which

only include what is expected to be the relevant degrees of freedom. The approach is often

applied for gas phase reactions at the ideal situation of zero temperature.

Finally, there is the possibility to treat the chemically important part by quantum

dynamics, and to include effects of the molecular environment by e.g. appropriate construction

of a system-bath density matrix. The dynamics of open quantum systems is a theoretical

framework were such an approach is possible. For an introduction and some applications

see [46,142].

1.4 Current status of the dynamical view of a chemical

reaction

Practically all dynamics simulations of molecular systems aim at a mechanistic understanding

of the processes in the system. The main interest here, however, is the mechanism in terms

of the electron dynamics during a chemical reaction, and there is comparably little literature

about this subject in the theory of chemistry. In fact, the development and usage of the

electronic flux density and electron fluxes is still only beginning, and thus it is possible to

give a comprehensive overview of the field. Only studies which somehow include both nuclear

and electron dynamics are presented, as only these are reaction mechanism studies in the

sense of this work.

For ab initio molecular dynamics simulations, there is the possibility to calculate electron

fluxes, and approximate electronic flux densities. The nuclei are treated classically, but

for the electrons an electronic wave function is available. The dynamics happens usually

in the electronic ground state, and in the next chapter it will be explained that it is not

straightforward to obtain the electronic flux density in such a situation. There is one approach

in the literature which is derived from the current density obtained from Nafie’s complete

adiabatic wave function [155]. While in the original formulation of Nafie the current density

is calculated via electronically excited states, there is a reformulation by Patchkovskii [172],

which expresses the flux density as third-order response of the ground-state electronic energy.

This method was applied by Patchkovskii e.g. for an artificial model dynamics (not a dynamics

simulation) of the proton transfer in 7-azaindole. Another possibility to calculate an electronic

flux density in ab initio molecular dynamics is to use the empirical time shift flux introduced

by Okuyama and Takatsuka [167]. Both possibilities have drawbacks that will be discussed

in section 2.4.

A different approach is to describe electron dynamics by explicit inclusion of electronically

excited states. Takatsuka and his group contributed a lot in this field (for an overview,

see [207,234]). Their calculations are of specific interest in this context because of several

studies relating to reaction mechanisms: Using their semiclassical Ehrenfest theory, the

double proton transfer reaction in the formic acid dimer [168], the gas phase and the water-
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assisted proton transfer in formamide [159] as well as the excited-state proton-electron

transfer of phenol with an ammonia cluster [160] could be simulated. The results from these

dynamics simulations show how important it is to analyze the electron dynamics, in contrast

to the traditional static view: In case of the proton transfer in the formic acid dimer it

was found that the proton carries significant electron density during the transfer. Also, the

compensating electron dynamics happens within the monomers, from one oxygen to the

other [168]. For formamide, the simulations yield that the process is a proton transfer (in

contrast to a hydrogen atom migration), and that proton motion induces an electron flux

in opposite direction to the proton motion [159]. In case of the simulation of photoinduced

proton-electron transfer of phenol to ammonia clusters it was found that the proton transfers

without compensating electronic motion, and that the electron moves from phenol to the

ammonia cluster on a different pathway [160]. Also, developments of a non-Born-Oppenheimer

semiclassical wave packet theory for both electrons and nuclei seems a good candidate to

investigate chemical reactions, see [206,236]

In 2009, Barth, Hege, Ikeda, Kenfack, Koppitz, Manz, Marquardt and Paramonov

solved the (non-relativistic) coupled nuclear and electron dynamics of the dihydrogen cation

exactly [25] and were able to calculate not only electron fluxes but also the electronic flux

density. They showed that the exact electron fluxes into or out of a region are in very

good agreement with the fluxes calculated from an appropriately defined time-dependent

electron density. All applications in this monograph will use these fluxes, and in the next

chapter the theory of these fluxes is discussed. Subsequently, some chemical rearrangements

were analyzed in terms of these fluxes: The Cope rearrangement of semibullvalene both

in the tunneling regime and with energies above the reaction barrier [12,45], vibrations in

ethane, ethene and ethine contrasting the behavior of single, double and triple bonds [42],

tunneling dynamics of cyclooctatetraene [98], and finally motion of benzene along the Kekulé

vibrational mode [182]. The last two examples will be discussed at length in Chapter 4.

Last, there is the effort to find an approximate electronic flux density for ground state

reactions. Diestler developed the coupled-channels theory for the hydrogen atom and

dihydrogen cation [66], with first numerical results in [68] and further development in [69].

The road to a generalization of the theory for other molecules was started to be paved in [67].

1.5 Contents of this monograph

The direct quantum mechanical analogue of the arrows indicating reaction mechanisms is

the electronic flux density. In Chapter 2 this concept is reviewed, first as general idea in

continuum mechanics and then in quantum mechanics. Special emphasis is on the flux

density in the Born-Oppenheimer approximation: Because the fast electronic motion is being

averaged over, it is difficult to find an electronic flux density in this approximation. However,

less information than the flux density provides is necessary to find the reaction mechanism:

Often, it may be enough to know electron fluxes in to or out of certain volumes. These fluxes

can be calculated, and they will be used to analyze model reaction mechanisms.

In Chapter 3, it will be seen how the time-dependent electron density is calculated that

is needed to find the electronic fluxes. The structure of this density is important, because to

make statements about chemical reaction mechanisms the electrons have to be partitioned

chemically. Luckily, due to the quantum chemical methods which are used the electronic wave

function readily exhibits a “chemical structure”. For example, core and valence electrons

may be separated easily, and it is possible to distinguish between single and double bonds or

between σ- and π-electrons.
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Chapter 4 contains three applications of the electron fluxes to find details about reaction

mechanisms. The examples are so-called pericyclic electron rearrangements: These are

rearrangements for which the electrons are considered to flow in circles. Fig. 1.1 shows such

a pericyclic mechanism. This type of reactions is particularly easy to analyze because the

mechanism is effectively one dimensional, at least for one ring structure. The interesting

electron dynamics can be analyzed using only one angular coordinate, and investigation of

such systems yields new insights about a variety of reactions.

A first application is the tunneling dynamics in cyclooctatetraene. In this molecule,

two processes happen simultaneously: inversion of the tub-shaped molecule, and shifting

of the double bonds. After setting up an appropriate tunneling model, the electron flux is

calculated and analyzed.The number of electrons which move effectively and the reaction

mechanism will be determined. The second application is a dynamics of benzene prepared

as a Kekulé structure. A nuclear quantum dynamics along the Kekulé vibrational mode is

simulated and the induced electron dynamics is observed. In this model, further dynamical

statements can be made regarding the way in which different chemical types of electrons

move. Last, an important problem for the application of electron fluxes to yield reaction

mechanisms is addressed: As the flux is defined only with respect to a closed volume, part of

the information about the flux direction is not available. This information would also be

needed to construct a flux density on basis of the fluxes. The consequences of the missing

information, a time-dependent parameter for the fluxes, is investigated for proton tunneling

in malonaldehyde and double proton tunneling in the formic acid dimer.
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Chapter 2

Theory

2.1 Abstract

Models of chemical reactions mechanisms rely on assumptions of how the nuclei and electrons

move during the course of a chemical reaction. In molecular quantum mechanics, the concepts

which can be used to describe the movement of nuclei and electrons are probability densities

and the corresponding flux (or probability current) densities: The former are scalar fields

representing the probability to find the respective particles in a given volume. The latter

are vector fields representing the velocity of the corresponding probability density. Hence,

probability densities show where the particles are, and flux densities show what they are

doing.

Probability densities are a very well known and often used quantity [191]. Most quantum

chemistry programs can calculate one-electron densities, e.g. for analysis and visualization

of the results. In density functional theory [112] the basic quantity is the electron density

instead of the electronic wave function, and there are numerous applications in the realm of

electronic structure calculations [112]. In nuclear dynamics simulations, the change of the

nuclear density with time is used to illustrate the dynamics and to study and interpret the

dynamical processes.

In contrast, the usage of flux densities is comparably rare in chemistry. There is a

current density functional theory developed to describe the effect of magnetic fields on

electronic structure [219], and there are examples of nuclear flux densities used to study

nuclear dynamics, e.g. [10,41,143]. Flux densities were used to study laser-induced electronic

ring currents in atoms [27] and molecules [28]. Also, flux densities were used for the study

of vibrational transitions [155, 157, 158]. However, application of electronic flux densities

for the analysis of chemical reactions are new and few, and the theory in this field is only

beginning to develop. Electronic flux densities for the motion of the dihydrogen molecule

cation were calculated to numerical accuracy [25] and using the scaled coupled channels

theory [69]. Semi-classical Ehrenfest theory was used to determine electronic fluxes for

chemical reactions [159, 160, 167, 168], also including laser fields [207] and to characterize

chemical bonding [235]. There is also a model application of an electronic flux density to a

molecular dynamics simulation [172]. Nevertheless, compared to the vast literature about

chemical reactions these few applications are only the first shoots of the orchid of knowledge,

which still has to grow and to bud. This situation is unfortunate, because chemists use models

to predict reaction outcomes based on assumed motion of electrons, and more theoretical

understanding to test the empirical intellectual edifice should be welcomed.

In this chapter the idea of densities and flux densities is discussed. Because the concept of

a flux density is so little used in chemistry, it will be investigated in detail. First, in section
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2.2, the general idea of a flux density is discussed, which can be found in any continuum

mechanics. It will seen that a density gives rise to a flux density and that the two are related

by an important mathematical identity, the continuity equation. In section 2.3, the focus is

on the flux density in quantum mechanics. After deriving the quantum mechanical expression

for a flux density, its relation to the momentum and angular momentum expectation value

will be studied.

For almost all quantum chemistry and quantum dynamics methods the Born-Oppenheimer

approximation (BOA) [36] developed in 1927 is used. This approximation is an example of

an adiabatic approximation, because the electrons are considered to be much faster than the

nuclei. Consequently, the electrons are considered to follow the nuclei adiabatically: The

nuclei are not fast enough to induce changes of the electronic structure by their motion,

but only by their instantaneous position. It is important to study how this approximation

influences the form of both the nuclear and the electronic flux density. In section 2.4,

an expansion of the wave function in terms of the electronic eigenstates, called the Born-

Oppenheimer expansion (BOE), is reviewed. Using this expansion, the BOA can easily be

applied. It will be illuminating to see the mathematical structure of time-dependent electron

densities and flux densities when the wave function is written as a BOE. Especially, it will

be seen that restriction to only one electronic state will make nuclear and electron dynamics

impossible.

This situation is of course completely unsatisfying, because for most chemical reactions

of interest, and all chemical reactions discussed in this work, the approximation that the

reaction happens in only one electronic state is justified. Luckily, if the BOA is invoked, the

time-dependence of the electron density is regained. Notwithstanding, the corresponding

electronic flux density is not as easy to obtain. Thus, section 2.4 closes with a discussion of

literature-known approaches to calculate the electronic flux density in the BOA.

Finally, in section 2.5 it will seen how the problem of the tricky electronic flux density

in the BOA may be circumvented: For chemical reactions mechanisms it is in general not

necessary to know how the electrons move at each point in space. Instead, it might be enough

to know the flux of the electrons through observer planes. This approach will be discussed in

section 2.5 in detail. All applications in chapter 4 will use only electronic fluxes, and not

electronic flux densities, to analyze the dynamics of chemical model reactions.

2.2 The flux density concept

2.2.1 Flux densities in continuum mechanics

In classical particle mechanics [85, 115] the state of a system consisting of a number of point

particles at time t is completely specified by the positions q(t) and velocities ∂tq = q̇(t)

of the constituting particles: All measurable quantities, the observables, can be calculated

from q and q̇. Given the dynamical equations, e.g. Newton’s equations, the positions and

velocities of the particles at any time can be calculated if q(t0) and q̇(t0) are known for some

time t0. The dynamics of the system is also easy to visualize. The time evolution of the

particle positions in the three-dimensional space (3-space, for short) of the coordinates of the

individual particles can be used to find out what happens in the system. Also, a vector can

be attached to each position showing direction and magnitude of the instantaneous particle

velocity. In this way it is straightforward to analyze the details of the system dynamics.

Although in (non-relativistic particle) quantum mechanics [146] point particles are

considered, the properties of the system are not given by functions localized at points

in space. Instead, the system is, at least in the formalism that will be used here, described

12



2.2. The flux density concept

by complex-valued functions defined over the whole configuration space (the space of the

vectors q). This formalism, known as Schrödinger’s wave mechanics, is the formalism which

is generally used in theoretical chemistry. The system is specified by a wave function φ(t,q),

from which all observables can be calculated. Similarly to classical particle mechanics, the

wave function at some time t0 together with the dynamical equations, e.g. the Schrödinger

equation [185], completely determines the fate of the system. However, positions and velocities

of the particles can only be determined by measurement, and all that is known in advance

are distributions giving the probability of a certain measurement outcome.

It may nevertheless be desirable to analyze the dynamics of the system in a similar fashion

as can be done in classical mechanics. The closest equivalent to the position of the particles

in classical mechanics is the quantum mechanical probability density ρ(t,q) = |φ(t,q)|2,

which represents the probability of finding the particles in a volume dq. Although ρ is a field

over the whole configuration space, this function may be visualized in 3-space by integrating

over all but the coordinates of one of the particles. The equivalent to the classical velocities

can either be a velocity density or, more appropriately, the flux density.

On one hand, the concept of a flux density is widely used in continuum mechanics [154]

as well as in scattering theory [54], and to analyze electron currents induced by stationary

magnetic fields [29, 96, 195]. On the other hand, there are few recent examples showing

the utility of flux densities and fluxes to analyze electron dynamics in ground and excited

state chemical reactions, see [12,25, 45,66,68,98,134,159,160,167,168,172,182,207]. In this

section, the idea of a flux density is introduced in a general way, applicable to any kind of

continuum theory. To make the discussion more intuitive, the exposition of [17] is followed

closely. The terminology is tailored to fluid dynamics, but there is no restriction imposed

and the treatment can be translated to the language of quantum mechanics.

Before reading this part and the following parts of this chapter, it may be worthwhile to

have a look at Appendix A to learn how the notation is designed.

As it is custom in fluid dynamics, the discussion is constrained to real 3-space throughout

this section. Hence, all vectors occurring for now will be in R3. The picture to start from is

the following: Instead of looking at single particles, a continuous distribution of generalized

particles is considered. This distribution will in the following be called particles, for simplicity.

However, as these particles are not discrete nor countable, any quantity derived from the

continuous particle distribution can only be observed if it is averaged over a region of

space, which may in principle be arbitrarily small. The position x of a particle at time t is

determined by the dynamical equations (which will not be specified here) as well as by the

position y = x(0) of the particle at time t = 0,

x = x(t,y). (2.1)

The x-coordinates are also called the spatial coordinates. These can be thought of as a

continuous reference grid, and functions of x can be thought of as describing the system by

an observer fixed in space. The requirement that a particle is uniquely defined at all times is

expressed by the non-vanishing determinant of the Jacobian matrix

J = det
∂xi
∂yj

. (2.2)

Because J 6= 0, eqn. 2.1 can be inverted,

y = y(t,x). (2.3)

13



Chapter 2. Theory

The y-coordinates are called the material or particle coordinates. Functions of y keep track

of the particles. That means, a set of numbers for y can be thought of as labeling a certain

particle, and in these coordinates the system is viewed by an observer following the particles.

Any function F (x) depending on the spatial coordinates can also be viewed as a function of

the particle y via F (x(y)) = F̃ (y), and vice versa. Connected with these two views are two

derivatives,

∂t = (∂t)x, the spatial (space-fixed) derivative and (2.4)

Dt = (∂t)y, the material (particle-fixed) derivative. (2.5)

The subscript of the bracket means that this variable is kept fixed when differentiating. In

this section, ∂t will from now on always mean the time derivative keeping x constant.

The action of Dt on a function F (t,x(t,y)) shall now be calculated. For the derivative

Dt the independent variable is y, and the chain rule for derivatives is applied to F to find

DtF (t,x(t,y)) =
∑
i

∂F

∂xi
Dtxi + ∂tF. (2.6)

The quantity x(t,y) is the position of particle y, and Dt is the time derivative keeping the

particle constant. Consequently, Dtxi is the ith component of the particle velocity v, and

DtF (t,x(t,y)) = (v · ∂x)F + ∂tF. (2.7)

Eqn. 2.7 connects the spatial and material derivative. Note that the spatial gradient is

denoted by ∂x, cf. Appendix A.

Ω(0) = Ω Ω(t)~

Figure 2.1: Volume Ω containig a fixed number of particles, which changes its shape during
the system dynamics (left at time 0, right at time t).

Consider a volume Ω in position space (i.e., in x-space) consisting of the same particles y

at all times, as shown schematically in Fig. 2.1. It should be kept in mind, however, that the

particles are distributed continuously. Let F (t,x) be a function defined within this volume.

The main object in the following is to calculate the change in time of some F (t,x), averaged

over the well-defined particles in Ω. That is,

Dt

y

Ω

F (t,x)dx (2.8)

is to be calculated. Note that in this section the triple integral is used explicitly to show

that the integration is performed over 3-space. This is in principle also encoded in the form

dx, and later the explicit notation for multiple integrals will be dropped. If a differential

form dq is a vector, it is understood that the integration is performed over a volume of the

same dimensionality as the vector. Thus, dx is short for dx = dx1dx2dx3, cf. Appendix A.
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2.2. The flux density concept

As the particle positions change, the volume Ω = Ω(t) will in general change with time,

because it consists of the same particles y and the spatial region covered by these particles

will vary with time. Thus, the order of integration and differentiation in eqn. 2.8 cannot be

exchanged. But the transformation to particle coordinates is possible, dx = Jdy, and then

the (fixed) volume of the particles Ω̃ at t = 0 can be used instead. This yields

Dt

y

Ω

F (t,x)dx = Dt

y

Ω̃

F (t,x)Jdy

=
y

Ω̃

(FDtJ + JDtF )dy

=
y

Ω̃

(FDtJ + J((v · ∂x)F + ∂tF ))dy. (2.9)

To make further progress, DtJ is calculated. The calculation for three dimensions is lengthy

but straightforward, and can be found in [17]. What happens can already be observed in

two dimensions, for the determinant of the Jacobian matrix

J =

∣∣∣∣∣∂x1

∂y1
∂x1

∂y2
∂x2

∂y1
∂x2

∂y2

∣∣∣∣∣ =
∂x1

∂y1

∂x2

∂y2
− ∂x1

∂y2

∂x2

∂y1
. (2.10)

The derivative Dt operates for fixed y, thus the order of the derivatives can be changed and

the particle velocities can be identified:

Dt
∂xi
∂yj

=
∂

∂yj
(Dtxi) =

∂vi
∂yj

. (2.11)

Because vi = vi(y(x)), the chain rule is applied to find

Dt
∂xi
∂yj

=
∑
k

∂vi
∂xk

∂xk
∂yj

. (2.12)

Then, by direct calculation follows that

DtJ = Dt

(
∂x1

∂y1

∂x2

∂y2
− ∂x1

∂y2

∂x2

∂y1

)
=

∂x1

∂y1
Dt
∂x2

∂y2
− ∂x1

∂y2
Dt
∂x2

∂y1
+
∂x2

∂y2
Dt
∂x1

∂y1
− ∂x2

∂y1
Dt
∂x1

∂y2

=
∂x1

∂y1

(
∂v2

∂x1

∂x1

∂y2
+
∂v2

∂x2

∂x2

∂y2

)
− ∂x1

∂y2

(
∂v2

∂x1

∂x1

∂y1
+
∂v2

∂x2

∂x2

∂y1

)
+
∂x2

∂y2

(
∂v1

∂x1

∂x1

∂y1
+
∂v1

∂x2

∂x2

∂y1

)
− ∂x2

∂y1

(
∂v1

∂x1

∂x1

∂y2
+
∂v1

∂x2

∂x2

∂y2

)
=

(
∂v1

∂x1
+
∂v2

∂x2

)(
∂x1

∂y1

∂x2

∂y2
− ∂x1

∂y2

∂x2

∂y1

)
=

(
∂v1

∂x1
+
∂v2

∂x2

)
J (2.13)

In general, it holds that DtJ = (∂q · v)J for arbitrary dimensionality of the vectors q and v,

as can be seen from the way the calculation is performed in [17].

The calculation of Dt acting on a function F (t,x) averaged over a volume of constant

particles Ω can now be continued, using the relation DtJ = (∂x ·v)J . From eqn. 2.9 it follows
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that

Dt

y

Ω

F (t,x)dx =
y

Ω̃

(F∂x · v + (v · ∂x)F + ∂tF )Jdy

=
y

Ω

(∂tF + ∂x · (Fv))dx. (2.14)

The vector field F (t,x)v is the velocity field of the particles weighted by the quantity F .

Eqn. 2.14 is the topic of the next section. F is interpreted as being some kind of density:

A mass density describing the distribution of mass in space, a charge density describing the

distribution of charges, or a probability density describing the probability of finding some

particles in space. Then j = F (t,x)v is called the associated flux density, or simply the

flux density. In general, j is more interesting than v, especially if F is a particle density: v

will give the velocity field independent of the amount of particles at a given place, even in

regions where no particles are located at all. In contrast, j represents the dynamic situation

by showing how the particles are moving at a certain instant of time.

2.2.2 The continuity equation

In eqn. 2.14, the time derivative of F averaged over a volume Ω consisting of a fixed amount

of particles is taken, keeping the particles themselves constant. If F is the particle density,

the quantity

Dt

y

Ω

F (t,x)dx = 0 (2.15)

for any such volume Ω means that there are no sources or drains for the particles in the

system, so that particles cannot be created or destroyed. This is equivalent to stating that

the density is locally conserved. In many systems, and especially for the systems of interest

in the following, this is the case. Because eqn. 2.15 holds for any Ω, it follows from eqn. 2.14

that

∂tF + ∂x · (Fv) = 0. (2.16)

Eqn. 2.16 is known as the continuity equation and will be subject of this section, as it relates

the density to the flux density in the most general way. For derivation of this equation

very few assumptions were needed, but until now the discussion is restricted to 3-space.

There is no particular reason for this restriction, and the equation shall now be formulated

in a dimension independent way which is useful for quantum mechanics. It will also be

investigated what can be learned about the flux density from this relation alone. In order to

achieve these goals, both vector notation and differential forms are used. Note, however, that

the two are equivalent, and that it is not necessary but only convenient to use the algebra of

differential forms. In Appendix B there is a short summary about the aspects of differential

forms used in this text.

A K-dimensional vector space with variables q = (q1, . . . , qK) and a K-form

ρ̌ = ρ(t,q)dq1 . . . qK (2.17)

are given. The variable t parametrizes the evolution of the system and is thus called the time.

ρ should be a density, e.g. it might represent a mass density or the probability of finding a

particle in a given volume Ω. Thus ρ ≥ 0 and
∫
ρ̌ is finite and constant. The density ρ is

conserved locally.

The latter requirement is equivalent to stating that given a volume Ω, the change of ρ in

Ω with time is the flow through the bounding surface of the volume, ∂Ω. Let the flow of ρ
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2.2. The flux density concept

be given by the 1-form ǰ(t,q), the flux density. Then, the statement of local conservation is

∂t

∫
Ω

ρ̌ = −
∫
∂Ω

∗ǰ. (2.18)

It is assumed that in the considered space Stoke’s theorem eqn. B.22 holds. Application of

this theorem yields

∂t

∫
Ω

ρ̌ = −
∫

Ω

d ∗ ǰ. (2.19)

This equation is valid for arbitrary volumes Ω, hence

∂tρ̌+ d ∗ ǰ = 0. (2.20)

Eqn. 2.20 is the general form of the continuity equation. It should nevertheless be kept in

mind that ǰ is a product of the density ρ and a velocity field, cf. the arguments leading to

eqn. 2.16.

If the 1-form ǰ = j1dq1 + · · ·+ jKdqK is identified with the vector j = (j1, . . . , jK), eqn.

2.18 becomes

∂t

∫
Ω

ρ(t,q)dV = −
∫
∂Ω

j · n̂dA, (2.21)

with n̂ the outward oriented unit normal to the (K−1)-dimensional surface ∂Ω. The notation

dV and dA denote integration over the K-dimensional volume and (K − 1)-dimensional

surface, respectively. Note that when working with differential forms the orientation is

encoded in the algebra of the forms, thus such rather awkward notations are not necessary.

The vector form of eqn. 2.20 is

∂tρ(t,q) + ∂q · j(t,q) = 0. (2.22)

In the context of electron densities in the Born-Oppenheimer approximation the density

ρ is easily accessible. However, the corresponding flux density ǰ is difficult to obtain. The

questions is: How much information can be extracted from the local conservation requirement

alone, i.e. can eqn. 2.20 be solved for ǰ (or for the functions j1(t,q), . . . , jK(t,q))?

The calculations in [186] for 3-space give the answer. The general solution of the continuity

equation for K-dimensions, expressed in vector notation, is a sum of two components,

j(t,q) = j‖(t,q) + j⊥(t,q). (2.23)

The first component can explicitly be given as

j‖(t,q) =
1

AK

∫
∂tρ(t,q′)

q′ − q

|q′ − q|K
dq′. (2.24)

In eqn. 2.24, the integration over dq′ = dq′1 . . . dq
′
K is performed over the whole space, and

the constant AK is the surface of the unit K-sphere,

AK =
2πK/2

Γ(K/2)
. (2.25)

The Gamma function is defined the usual way [47], Γ(x) =
∫∞

0
yx−1 exp(−y)dy. As will be

shown below, for the component j‖

∂q · j‖ = −∂tρ. (2.26)
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The second component j⊥ is constrained only by

∂q · j⊥(t,q) = 0, (2.27)

but is otherwise arbitrary. Thus, given only the continuity equation there is a gauge freedom

for j, expressed by the possibility to add any j⊥ which fulfills eqn. 2.27. Below, this gauge

freedom will be further investigated.

It will now be shown that the divergence of eqn. 2.24 indeed is given by eqn. 2.26, and

thus that j‖ solves the continuity equation. The argument of [186] is repeated in the following.

It will first be shown that whenever q 6= q′, the divergence ∂q · j‖ is zero. Thus, the only

interesting region for the integration is where q = q′. Close to this point, the integral of eqn.

2.24 can be performed for a small ball around q = q′. Within the small ball, the smooth

density ρ varies negligibly and can be taken outside the integral. Finally, explicit calculation

shows that the remaining integral is just the surface of the unit K-sphere, and thus cancels

with the constant 1/AK .

If q 6= q′, direct calculation yields

AK∂q · j‖ = ∂q ·
∫
∂tρ(t,q′)

q′ − q

|q′ − q|K
dq′

=

∫
∂tρ(t,q′)

(
(q′ − q) ·

(
∂q

1

|q′ − q|K

)
+

1

|q′ − q|K
∂q · (q′ − q)

)
dq′

=

∫
∂tρ(t,q′)

(
(q′ − q) · K(q′ − q)

|q′ − q|K+2
− K

|q− q′|K

)
= 0. (2.28)

In the region around q = q′, the integration may be performed over a small K-dimensional

ball Bq centered around q. In this region, ∂tρ(t,q) is a constant and can be taken out of the

integral. Then

AK∂q · j‖ = ∂tρ(t,q)

∫
Bq

∂q ·
q′ − q

|q′ − q|K
dq′. (2.29)

The operator ∂q can be replaced by −∂q′ , which does not change the result of the differen-

tiation. Because the differentiation as well as the integral are then with respect to q′, the

special form of Stoke’s theorem known as the divergence theorem or Gauss’s theorem can be

used to replace the integral over Bq′ by an integral over the surface ∂Bq of the ball:

AK∂q · j‖ = −∂tρ(t,q)

∫
Bq

∂q′ ·
q′ − q

|q′ − q|K
dq′

= ∂tρ(t,q)

∫
∂Bq

q′ − q

|q− q′|K
· q− q′

|q′ − q|
dq′

= −∂tρ(t,q)

∫
∂Bq

1

|q′ − q|K−1
dq′. (2.30)

The integral in eqn. 2.30 is the surface of the unit K-sphere AK . Thus, it follows that

∂q · j‖ = −∂tρ(t,q), (2.31)

or that eqn. 2.24 indeed solves the continuity equation. The integral of eqn. 2.30 is also

performed in more detail in Appendix B.

The gauge freedom of the solution of the continuity equation for j shall now be further

investigated. In the language of differential forms, the solution to the continuity equation
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2.3. The flux density in quantum mechanics

has the form

ǰ(t,q) = ǰ‖(t,q) + ǰ⊥(t,q) (2.32)

with known ǰ‖, and with the arbitrary 1-form ǰ⊥ satisfying

d ∗ ǰ⊥(t,q) = 0. (2.33)

The decomposition eqn. 2.32 resembles the general decomposition of a vector field in a

divergence-free part j⊥ and a rotation-free part j‖ (Helmholtz or Hodge decomposition, see

e.g. [60]). Poincaré’s lemma eqn. B.21 can be used to find that

∗ǰ⊥(t,q) = dˇj(t,q) (2.34)

for a (K − 2)-form ˇj. Consequently, as ˇjhas
(
K
2

)
basis vectors, the equation of continuity

determines ˇjonly up to
(
K
2

)
functions of t and q, if K > 1.

For K = 2, for example, the flux density is the 1-form ǰ = j1dq1 + j2dq2, and

∗ǰ = j1dq2 − j2dq1, (2.35)

with

d ∗ ǰ =

(
∂j1
∂q1

+
∂j2
∂q2

)
dq1dq2 = 0. (2.36)

By Poincare’s lemma, there exists a 0-form β̌(t, q1, q2) such that dβ̌ = ∗ǰ. Also, for any

0-form f(t, q1, q2),

d

(
∂f

∂q1
dq1 +

∂f

∂q2
dq2

)
=

∂2f

∂q1∂q2
dq2dq1 +

∂2f

∂q1∂q2
dq1dq2 = 0. (2.37)

It follows that if the transformation j1 → j1 + ∂q1f, j2 → j2 − ∂q2f is made in eqn. 2.35,

eqn. 2.36 will be unaltered. In vector form, j = (j1, j2) is determined up to one function

f(t, q1, q2), with the unknown component of j being j⊥ = (∂q1f,−∂q2f).

For K = 3, the solution to the continuity equation is specified only up to three functions

of t, q1, q2, q3. Similar reasoning shows that these can be written as a 3-vector A, such that

j⊥ = curl A. Interestingly, for higher dimensions there are even more undetermined functions

from eqn. 2.34 than there are elements of j⊥.

The one-dimensional continuity equation is special: In a one dimensional vector space

ˇjis a constant with respect to q. Thus, the flux density j = j1 may be determined up to

a time-dependent constant c(t). For higher dimensionality, K > 1, as was just shown, one

(K = 2) or at least K functions of all variables are needed to specify the complete solution.

2.3 The flux density in quantum mechanics

2.3.1 Flux density from the Schrödinger equation

Already in his seminal paper “Quantisierung als Eigenwertproblem” (quantisation as eigen-

value problem) [185] from 1926, Schrödinger gave an expression for the quantum mechanical

flux density satisfying the continuity equation for the probability density. In the follow-

ing, this expression is introduced in two ways: First, from the continuity equation, using

Schrödinger’s wave equation as the connected dynamics description. And second, as expec-

tation value of the operator obtained from the classical expression of the flux density by

the correspondence principle. Several aspects of the flux density are discussed, and another

operator closely related to the flux density is related to the expectation values of linear and
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angular momentum. However, the extension of the flux density to include effects of the

interaction with (classical) electromagnetic fields is not discussed, as these interactions are of

no concern in this work. The electromagnetic fields would modify the (conjugate) momentum

operator such that a vector potential occurs in the flux density, cf. [56, 127].

Note that another interesting derivation of the form of the flux density can be found

in [194]. In this article, Skála and Kapsa derive the flux density and then also the Schrödinger

equation from general properties of mean values. There is also a derivation of the general

flux density operator without reference to a particular representation of the wave function

in [100].

The first derivation starts from the continuity equation

∂tρ+ ∂q · j = 0. (2.38)

Here, ρ is a density and the equation is interpreted as a constraint for j. The calculations

are performed in the configuration space containing the vectors q, where q describes all

possible configurations of the particles. The dynamical description of the system can be used

to derive an explicit expression for j, like it can be done in classical fluid dynamics [221]. In

the case of quantum mechanics, the dynamics of the system is described by the Schrödinger

equations

0 =

(
− ~2

2m
∂2
q + V (q)− i~∂t

)
φ(t,q)

0 =

(
− ~2

2m
∂2
q + V (q) + i~∂t

)
φ∗(t,q) (2.39)

for φ and its complex conjugate φ∗, respectively. The scalar field V (q) is called the potential,

and the constant m is the mass corresponding to the coordinate q. The mass may in principle

be different for each component of q. This will be ignored for the moment, as different

constants mi would not yield deeper insights but only more complicated equations. Moreover,

each component of q may always be scaled so as to make the constants all equal, at expense

of a transformation of V (q).

The density is defined as ρ := φ∗φ. Now

∂tρ = φ∗∂tφ+ φ∂tφ
∗

= − ~
2im

(
φ∗∂2

qφ− φ∂2
qφ
∗)

!
= −∂q · j (2.40)

by the continuity equation, such that

j =
~

2im
(φ∗∂qφ− φ∂qφ∗) ≡

~
m

Im (φ∗∂qφ) . (2.41)

As will be seen below, the same result is obtained by the correspondence principle, if the

classical expression j = ρv = ρp/m is replaced by the quantum mechanical operators.

The approach based on the continuity equation has an advantage: It is apparent how the

underlying dynamics equations determine the flux density directly. Hence, if a flux density is

calculated using expression eqn. 2.41 and it is found that it does not satisfy the continuity

equation for the given ρ, it follows that either the dynamical equations are not suited or that

the flux density corresponds to another density ρ.

In [37], Boykin criticizes the approach to start from the change in time of the density,

and to identify the continuity equation and the flux density. Boykin proposes to “construct
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2.3. The flux density in quantum mechanics

local quantum operators ĵr and ∇ · ĵr, with the continuity equation following from the

latter” [37]. However, this approach is conceptually even worse: The continuity equation is a

mathematical requirement which follows from the properties that the probability density

should have. Thus, a derivation which assumes the continuity equation in first place should

be preferred.

2.3.2 Flux density via the correspondence principle

The second derivation starts with the classical flux density. Let q′ be the configuration of

the classical particles. Consequently, the particle density is δ(q− q′), so that any function

averaged by this density can only contribute to the average at points where particles are

actually located. The classical flux density is thus the particle density multiplied by the

particle velocity ∂tq,

jcl(q) = (∂tq)δ(q− q′). (2.42)

For eqn. 2.42 to become a quantum mechanical operator, the velocity ∂tq is written as

momentum p divided by the mass m. Thus, the momentum operator p̂ = −i~∂q can be

used to find

ĵ(q) =
1

2

(
p̂

m
δ(q− q′) + δ(q− q′)

p̂

m

)
=

~
2im

(∂qδ(q− q′) + δ(q− q′)∂q) . (2.43)

A symmetrization of the operator had to be made, as p̂ and δ(q) do not commute and the

operator would otherwise not be hermitian. The flux density can be obtained by taking the

expectation value of ĵ with respect to some wave function φ(q),

j(q′) =

∫
φ∗(q)̂j(q)φ(q)dq

=
~

2im

(∫
φ∗δ(q− q′)∂qφdq +

∫
φ∗∂q (δ(q− q′)φ) dq

)
=

~
2im

(∫
φ∗δ(q− q′)∂qφdq−

∫
φδ(q− q′)∂qφ

∗dq

)
=

~
2im

(φ∗(q′)∂q′φ(q′)− φ(q′)∂q′φ
∗(q′)) . (2.44)

In the third line partial integration and the condition on φ that φ → 0 for q → ±∞ was

used. Thus, the same expression for the flux density is obtained as from the Schrödinger

equation, eqn. 2.41.

2.3.3 Flux density as product of a density and a velocity field

From eqn. 2.16 it is known that the flux density is a product of the density and a velocity

field. The two derivations just presented seem to obscure this relation. It is of course always

possible to factor out the density, but, after the discussion of section 2.2, this decomposition

can be expected to arise naturally. This objective is readily met if a formalism well known in

quantum hydrodynamics [131,231] is followed. All that needs to be done is to consider the

polar representation of the complex number φ(t,q),

φ(t,q) = A(t,q) exp

(
i
S(t,q)

~

)
, (2.45)
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with both A,S being real. The parameter t is included to emphasize the possible time

dependence. It follows that

j(t,q) =
~

2mi

(
Ae−iS/~∂q

(
AeiS/~

)
−AeiS/~∂q

(
Ae−iS/~

))
= A2 1

m
∂qS

= ρ(t,q)v(t,q) (2.46)

with ρ = φ∗φ ≡ A2 and the velocity field v := ∂qS/m. Consequently, features of the density

can be found in the flux density as well, if the action S varies slow enough with position.

This effect can, for example, be seen in [44], while for a tunneling dynamics v is often the

decisive part for the shape of j, see e.g. [43, 86] .

2.3.4 Relation to momentum and angular momentum expectation

values

The decomposition of the flux density into a density and a velocity field motivates the

following relations between the flux density and the expectation value of linear and angular

momentum. By multiplying ρ with the mass m a mass density is obtained, thus the product

mj should be a momentum density. Explicitly, by partial integration [150]∫
mj(q)dq = − i~

2

(∫
φ∗∂qφdq−

∫
φ∂qφ

∗dq

)
(2.47)

= −i~
∫
φ∗∂qφdq ≡ 〈p̂〉. (2.48)

Following [150], a new operator ĵ is introduced by the relation

j = φ∗ĵφ. (2.49)

This operator is defined as
ĵ =

~
2im

(∂q− ∂q), (2.50)

with the derivative operating to the left ∂x

f(x) ∂x g(x) := g(x)∂xf(x). (2.51)

Thus, eqn. 2.48 can be written as

〈mĵ〉 = 〈p〉, (2.52)

and in this sense, the expectation value 〈̂j〉 is the average velocity.

Analogously, a connection between the flux density and the angular momentum can be

found. For simplicity, the discussion is restricted to 3-space with coordinates x, and the

derivatives are abbreviated as ∂xi
= ∂i and ∂xi

= ∂i. Then mx× j is an angular momentum

density. Using the operator eqn. 2.50, the respective operator is

λ̂ = mx̂× ĵ
= − i~

2

 x2(∂3− ∂3)− x3(∂2− ∂2)

x3(∂1− ∂1)− x1(∂3− ∂3)

x1(∂2− ∂2)− x2(∂1− ∂1)

 . (2.53)

The expectation value of λ̂ is found to be the same as the expectation value of the angular
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momentum: For example, for the first element of λ̂,

〈λ̂1〉 = − i~
2

(∫
φ∗(x2∂3 − x3∂2)φdx−

∫
φ(x2∂3 − x3∂2)φ∗dx

)
= −i~

∫
φ∗(x2∂3 − x3∂2)φdx

≡ 〈l̂1〉. (2.54)

The operator l̂1 is first component of the angular momentum operator l̂. Thus,

〈̂l〉 = 〈mx̂× ĵ〉 ≡
∫
mx× jdx. (2.55)

It seems like this relation is hitherto not known in the literature. However, in [134], Manz

and Yamamoto established a connection between the a component of the flux density in

cylindrical coordinates with the expectation value of the angular momentum along the z-axis.

As the model electron dynamics examples to be discussed are cyclic rearrangements, the

choice of cylindrical coordinates comes natural and thus the relation found by Manz and

Yamamoto shall be discussed here further.

The cylindrical coordinates to be used are

x1 = r cosϕ x2 = r sinϕ x3 = z

r =
√
x2

1 + x2
2 ϕ = arctan(x2/x1) z = x3 (2.56)

with volume element dx = rdrdϕdz. The derivatives with respect to the coordinates transform

as

∂1 = (∂1r)∂r + (∂1ϕ)∂ϕ + (∂1z)∂z = (cosϕ)∂r −
sinϕ

r
∂ϕ

∂2 = (∂2r)∂r + (∂2ϕ)∂ϕ + (∂2z)∂z = (sinϕ)∂r +
cosϕ

r
∂ϕ

∂3 = (∂3r)∂r + (∂3ϕ)∂ϕ + (∂3z)∂z = ∂z. (2.57)

Application of these formulae to the expectation value of the z-component of the angular

momentum operator yields

〈l̂z〉 = 〈l̂3〉

=
~
i

∫
φ∗(x1∂2 − x2∂1)φdx

=
~
i

∫
φ∗∂ϕφrdrdϕdz = −~

i

∫
φ∂ϕφ

∗rdrdϕdz

=
~
2i

∫
(φ∗∂ϕφ− φ∂ϕφ∗)rdrdϕdz. (2.58)

The gradient ∂x in cylindrical coordinates is given by

∂x = e1∂1 + e2∂2 + e3∂3 = er∂r + eϕ
1

r
∂ϕ + ez∂z, (2.59)

where e1, e2, e3 denote the unit vectors in x1, x2, x3-directions and er, eϕ, ez denote the unit

vectors in r, ϕ, z-directions. Thus, the flux density in cylindrical coordinates is given by

j =
~

2mi
(φ∗∂xφ− φ∂xφ∗)

= jrer + jϕeϕ + jzez (2.60)
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with the components

jr =
~

2mi
(φ∗∂rφ− φ∂rφ∗)

jϕ =
~

2mi

1

r
(φ∗∂ϕφ− φ∂ϕφ∗)

jz =
~

2mi
(φ∗∂zφ− φ∂zφ∗). (2.61)

Note the additional 1/r in the definition of jϕ. The expectation value of the angular

momentum along z-direction is just

〈l̂z〉 = m

∫
jϕr

2drdϕdz, (2.62)

which is the relation found by Manz and Yamamoto in [134].

2.4 Flux densities and the Born-Oppenheimer approxi-

mation

2.4.1 Flux densities in the Born-Oppenheimer approximation

The Born-Oppenheimer approximation (BOA) [36] is the foundation of almost all quantum

chemical methods for the calculation of atomic and molecular properties, see e.g. [204] or any

other standard textbook on quantum chemistry. While there are different definitions of the

BOA in the literature, they all encompass the idea that electrons and nuclei can be separated

by a dynamical argument: Due to the much larger mass of the protons as compared to the

mass of the electrons, the electrons are considered to move much faster than the nuclei. Thus,

the complete problem can be adiabatically separated into an electronic and a nuclear part.

From the point of view of the fast electrons, the slow nuclei are almost frozen. In line

with this picture, the electronic problem is solved separately for each nuclear configuration of

interest, i.e. the stationary state of the system for fixed nuclei is determined. This procedure

is what is generally understood as a quantum chemical calculation. Such a calculation yields

electronic eigenfunctions and eigenvalues for a nuclear configuration. The eigenfunctions

constitute in principle a complete basis for the nuclear configuration. The eigenvalues,

which vary continuously with the nuclear coordinates, are called potential energy surfaces or

electronic states and cause forces acting on the nuclei. In general, for a reliable representation

of the dynamics of the system only few electronic states have to be taken into account.

Sometimes, the BOA is defined as the case where only one electronic state needs to be taken

into account to describe the process at hand. In this work, however, a more general definition

is used: In the BOA, the nuclear problem is solved for each electronic state separately, and

it is assumed that different electronic states do not interact. This definition includes the

case where only one state needs to be considered. It also includes cases where the dynamics

happens in several states, but in regions with small couplings between the states. In the

jargon of reaction dynamics, it may be said that no transitions between electronic states take

place.

From quantum chemical calculations it is straightforward to obtain the electron density

for a given nuclear configuration and electronic state. Given the potential energy surfaces

from quantum chemical calculations, the nuclear dynamics can be solved by numerically

propagating nuclear wave packets on the surfaces. In turn, with this time-dependent

wave packets the time-dependent electron densities can be determined, as explained below.
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2.4. Flux densities and the Born-Oppenheimer approximation

Consequently, there are time-dependent nuclear densities and flux densities, and time-

dependent electron densities in the BOA. The electrons move effectively on the time scale

of the nuclear motion. However, as explained below, it is not as straightforward to obtain

electronic flux densities in the BOA. The usual definition of the flux density, eqn. 2.41, is not

applicable for the electrons: It is based on the time-dependent Schrödinger equation, but in

the BOA such an equation only exists for the nuclei, but not for the electrons. It would yield

zero electron fluxes, as the electronic wave function is determined using a time-independent

Schrödinger equation. Unfortunately, from the BOA no useful expression for the electronic

flux density follows (but see [66–69,172]), and thus it is difficult to analyze the details of the

electron dynamics in the BOA. The situation is understandable in terms of the picture of

the BOA: Because the electrons are so much faster than the nuclei, details of their dynamics

are lost by an averaging. Only a net electronic movement survives the averaging and effort is

needed to reconstruct some of the details of the dynamics.

In the following discussion, first the BOA is reviewed following, for example, [20, 51]. It

is of utmost importance for the exposition of the ideas to clearly distinguish between the

assumed form of the complete wave function (the Born-Oppenheimer expansion, BOE) and

the approximation itself. First, expressions for the nuclear and electronic flux densities using

the BOE are derived, and subsequently the BOA is applied. It will be found that without

the BOA, it is not possible to have a dynamics which is only restricted to one electronic

state. In the limit of the BOA such a situation is possible, and there are electronic fluxes

and an electronic flux density. However, the mathematical form of the electronic flux density

is not readily available. Finally, literature-known approaches to extract an electronic flux

density in the BOA are discussed.

Especially in the mathematically oriented literature there is sometimes made a distinction

between a stationary BOA and a dynamic BOA, see [89] and references therein. Specifically,

Hagedorn and Joye state in [89] that the time-dependent BOA was developed by Fritz London

in [126], and that this article is little known and little cited. However, “its ideas are the

basis for almost everything that is known about molecular dynamics” [89]. A possible reason

for this state of affairs might be that the article [126] is rather difficult to obtain. In this

work, the mathematical formalism of the time-dependent BOA will not be discussed in detail,

but the inclined reader might want to take a look at [87, 170]. There are also the works

of Cederbaum [52] and Abedi, Maitra and Gross [9], which extend the idea of separating

electronic and nuclear wave functions to time-dependent processes beyond the usual BOA.

The Born-Oppenheimer approximation

The aim of this section is to review a way to solve the Schrödinger equation of a molecular

system consisting of a number of nuclei and electrons,

(H − i~∂t)Ψ(t,Q,q) = 0, (2.63)

where t is the time parameter, and where Q and q are the nuclear and electronic coordinates,

respectively. A direct solution is computationally not viable, and thus the problem has to be

approached in a way which allows to make sensible approximations. In order to simplify the

equations, the coordinates Q are taken to be the mass-weighted Cartesian coordinates of the

nuclei, Q = (
√
M1X1,

√
M2X2, . . . ). The Hamiltonian H of eqn. 2.63 is the usual molecular

conservative (i.e. time-independent) Hamiltonian,

H = −~2

2
∂2
Q +H0(Q) = −~2

2
∂2
Q −

~2

2me
∂2
q + V (Q,q) (2.64)
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with the nuclear kinetic energy operator −~2

2 ∂
2
Q, the electronic kinetic energy operator

− ~2

2me
∂2
q and the scalar potential V (Q,q) containing electron-electron, electron-nucleus

and nucleus-nucleus Coulomb interactions. The electronic Hamiltonian H0(Q) consists of

this potential and the electronic kinetic energy operator. Its dependence on the nuclear

configuration Q is emphasized, because the operator will later on be applied for fixed Q.

The electronic mass me is kept explicitly.

The BOA was introduced by Born and Oppenheimer in 1927 as expansion in terms of the

ratio of electronic to nuclear mass to the power of 1/4 [36]. Born and Oppenheimer noticed

that, due to the large mass difference of electronic and nuclear masses, the electrons can

often be considered as moving much faster than the nuclei. Thus, it should be possible to

separate the movements, solving the electronic problem for fixed nuclear coordinates, with

little error in many situations. The original derivation will not be followed, but the BOA

will be derived in terms of the Born-Oppenheimer expansion instead. However, this obscures

to a certain extent the idea of the perturbation expansion of the wave function in terms

of the mass ratio. This mass ratio will occur again in the proposed remedies known in the

literature.

Eqn. 2.63 implies that a general state |Ψ(t)〉 is expressed in the basis of position eigenvec-

tors |Q,q〉, such that

Ψ(t,Q,q) = 〈Q,q|Ψ(t)〉, (2.65)

where the scalar product of the bra-ket notation 〈·〉 means integration over both Q and q.

Instead of using these position eigenvectors, the first step towards the Born-Oppenheimer

approximation is to transform to a basis

|Q, φi(Q)〉 = |Q〉 ⊗ |φi(Q)〉, (2.66)

where the states |Q〉 are the eigenvectors of the nuclear position operator, and where |φi(Q)〉
are energy eigenstates of the Hamiltonian H0(Q). For a general discussion about this

transformation, see [35].

To simplify the notation and to avoid ambiguity, in the following the scalar product 〈·〉 is

only taken with respect to q, such that the bra-ket notation is only used for the eigenstates

of the electronic Hamiltonian H0. Thus, the electronic coordinates q are suppressed for the

moment, but will be reintroduced later explicitly.

First, it is assume that an orthogonal, normalized (with respect to integration over q)

basis of the Hilbert space of the problem is available for all nuclear configurations separately.

These basis sets are obtained by solving the time-independent electronic problem for each Q,

(H0(Q)− Ei(Q))|φi(Q)〉 = 0

〈φi(Q)|φj(Q)〉 = δij . (2.67)

The φi are the eigenfunctions of H0 and constitute a complete basis for a given nuclear

configuration Q. The Ei are the respective eigenvalues for the electronic state i. Thus, Q is

used as a fixed parameter for the electronic problem. It has to be noted that in principle the

|φi(Q)〉 are rays, i.e. they are only defined up to an arbitrary phase. The transformation

|φi(Q)〉 → exp(iϕi)|φi(Q)〉 gives another valid solution of eqn. 2.67, and thus a set of ϕi

needs to be chosen. This choice is called a phase convention, and the phases ϕi may depend

on both t and Q. Thus, it is for now assumed that the |φi(Q)〉 are not rays but vectors

with some phase convention. In practice, the |φi(Q)〉 obtained from a quantum chemical

calculation will be real functions and an additional phase will not be introduced. Note,

however, that the phase convention may sometimes be important, see [20].
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2.4. Flux densities and the Born-Oppenheimer approximation

Eqn. 2.63, now written as

(H − i~∂t)|Ψ(t,Q)〉 = 0, (2.68)

is solved by

|Ψ(t,Q)〉 =
∑
i

χi(t,Q)|φi(Q)〉 (2.69)

where the time- and Q-dependent coefficients χi are called the nuclear wave functions, which

depend on the phase convention. Eqn. 2.69 is the Born-Oppenheimer expansion (BOE).

So far, no approximation is involved, but the wave function is represented in a particular

basis. As already indicated, for molecular systems only few electronic states Ei(Q) are

usually sufficient to calculate the dynamics. For moderate temperatures, a molecule is in its

electronic ground state E0 and no other states need to be considered to describe the nuclear

dynamics. However, if enough energy is acquired by the system, e.g. by UV radiation, more

electronic states might be needed to describe the system. It is then said that electronic

transitions took place and that some population is found in excited states. Often, the

electronic states with significant population are only few and the summation over i in eqn.

2.69 can be truncated early. Nevertheless, the following calculations are performed for the

exact expansion. Considering only a subset of states is straightforward.

By comparing eqn. 2.63 with

〈φj(Q)|i~∂t|Ψ(t,Q)〉 = i~∂tχj(t,Q) (2.70)

and

〈φj(Q)|H|Ψ(t,Q)〉 =

(
−~2

2
∂2
Q + Ej(Q)

)
χj(t,Q)

− ~2

2

∑
i

(
2(∂Qχi(t,Q))〈φj(Q)|∂Q|φi(Q)〉+ χi(t,Q)〈φj(Q)|∂2

Q|φi(Q)〉
)
, (2.71)

it follows that the BOE leads to a set of coupled time-dependent Schrödinger equations

for the nuclear wave functions. In the BOA it is assumed that the terms 〈φj |∂Q|φi〉 and

〈φj |∂2
Q|φi〉 are small and thus can be set to zero,

〈φj |∂Q|φi〉 = 〈φj |∂2
Q|φi〉

!
= 0. (2.72)

As these terms are the only terms that couple the different electronic states, Schrödinger

equations are obtained for each nuclear wave functions separately,

i~∂tχi(t,Q) =

(
−~2

2
∂2
Q + Ei(Q)

)
χi(t,Q). (2.73)

Thus, in the BOA the χi are non-interacting wave functions.

Even if excited states are populated, it might be possible to use the BOA to propagate

the nuclear wave functions independently. However, often transitions between electronic

states are not negligible, especially if two electronic states are close in energy or even become

degenerate (at so-called conical intersections, see [20,121]) for some Q. In such cases it is

necessary to solve the coupled equations in eqn. 2.71 for the relevant subset of electronic

sates.

Before summarizing the results of this section for further applications, a note about the

literature on the BOA shall be made: Often, the BOA is considered to be a product of an
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electronic and a nuclear wave function. As Abedi, Maitra and Gross pointed out in [9], the

exact wave function can always be written as such a product,

Ψ(t,Q,q) = χ̃(t,Q)φ̃(t,q,Q), (2.74)

with the nuclear wave function being

χ̃(t,Q) := exp(iϕ̃(t,Q))

√∫
|Ψ(t,Q,q)|2dq (2.75)

for some real ϕ̃, and with the electronic wave function

φ̃(t,q,Q) := Ψ(t,Q,q)/χ̃(t,Q). (2.76)

However, in contrast to the view of the BOA the electronic wave functions φ̃ are in general

time-dependent. Nevertheless, as shown above the assumption of a product of a time-

dependent nuclear wave function and a time-independent electronic wave function is not the

decisive step in the BOA, but rather the expansion in terms of electronic eigenstates as well

as eqn. 2.72.

In the following sections some of the just discussed equations are needed, and these are

now given in a suitable form for reference. Electronic coordinates are introduced explicitly

by projecting eqn. 2.69 onto the electronic coordinates,

〈q|Ψ(Q, t)〉 ≡ Ψ(t,Q,q). (2.77)

In this representation, the equations of interest are as follows:

• The BOE is

Ψ(t,Q,q) =
∑
i

χi(t,Q)φi(q,Q). (2.78)

• The electronic wave functions are defined by the time-independent equation

∂2
qφi(q,Q) =

2me

~2
(V − Ei(Q))φi(q,Q). (2.79)

• The complete problem to be solved is

∂tΨ(t,Q,q) =

(
− ~

2i
∂2
Q −

~
2ime

∂2
q +

V

i~

)
Ψ(t,Q,q). (2.80)

• In the BOE of the wave function, eqn. 2.80 becomes

∑
i

φi(q,Q)∂tχi(t,Q) =
∑
i

(
− ~

2i
∂2
Q −

~
2ime

∂2
q +

V

i~

)
(χi(t,Q)φi(q,Q)). (2.81)

• If the BOA is invoked, eqn. 2.80 is not applicable for the dynamics anymore. Instead,

the equations to be solved to determine the dynamics are

∂tχi(t,Q) =

(
− ~

2i
∂2
Q +

Ei(Q)

i~

)
χi(t,Q). (2.82)

In this section, care has been taken to always denote the independent variables of

the functions which are of importance. In the next sections these dependencies are often
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2.4. Flux densities and the Born-Oppenheimer approximation

not denoted explicitly anymore, because otherwise the equations become difficult to read.

Dependencies of the functions as in eqns. 2.79-2.82 are always implied.

The electronic flux density from the time-dependent Schrödinger equation and

the Born-Oppenheimer approximation

In the BOA, there is a time-dependent Schrödinger equation for the nuclei, but none for the

electrons. Consequently, the usual definition of the flux density based on the time-dependent

Schrödinger equation, eqn. 2.41, cannot be used for the electrons. If, for example, a wave

function of the (non-degenerate) electronic ground state in the BOA is considered, it has the

form

Ψ(t,Q,q) = χ(t,Q)φ(q,Q), (2.83)

where φ = φ0 is the solution of eqn. 2.79 to the smallest eigenvalue E(Q) = E0(Q), and

χ = χ0 is the solution of eqn. 2.82. Using eqn. 2.41 with respect to the electronic coordinates

gives for the electronic part of the flux density

j =
~

2ime
|χ2|(φ∗∂qφ− φ∂qφ∗). (2.84)

However, because φ(q,Q) is a solution of the time-independent Schrödinger equation, eqn.

2.79, it can always be chosen to be real. Consequently, the electronic part of the flux density

is zero,

j = 0, (2.85)

for this definition of the flux density.

However, there is a time-dependent electron density in the BOA, and thus there has to

be an electronic flux density. Below, the continuity equation and the evolution equations

in case of a wave function in the BOE and in the BOA are used to try to find the correct

equation for the electronic flux density in the BOA, albeit with little success. The procedure

that is followed is the same as the procedure used to find the flux density for wave functions

obeying the time-dependent Schrödinger equation, eqn. 2.41.

Flux densities for the Born-Oppenheimer expansion I: The complete density

Before the derivation of the different flux densities in the BOE and BOA is pursued, a short

comment is in order: In principle, for N nuclei and n electrons the flux densities are vectors

in R3N and R3n, respectively. These flux densities will not be all too helpful for the analysis

of chemical reactions, because they are difficult to visualize. Much more useful are the

reduced quantities in 3-space.

The coordinates are Q = (X̃1, . . . , X̃N ) with X̃i =
√
MiXi and q = (x1, . . . ,xn), and

the 3-space vector fields

Ji(t,X) =

∫ ∫
~ Im

(
Ψ∗(t,Q,q)∂X̃i

Ψ(t,Q,q)
)
dqd{Q \ X̃i}

∣∣∣∣
X̃i=X

(2.86)

ji(t,x) =

∫ ∫
~
me

Im (Ψ∗(t,Q,q)∂xi
Ψ(t,Q,q)) dQd{q \ xi}

∣∣∣∣
xi=x

. (2.87)

are given. The integral over d{Q\X̃i} stands for integration over all Q except the coordinate
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X̃i, which is thereafter set to X. Complete flux densities can be calculated as

J(t,X) =
∑
i

Ji(t,X) (2.88)

j(t,x) =
∑
i

ji(t,x). (2.89)

Note that the corresponding densities composed of single particle densities,

ρ(t,X) =
∑
i

ρi(t,X) (2.90)

ρ(t,x) =
∑
i

ρi(t,x), (2.91)

are normalized to the number of particles included in the sum, if Ψ is normalized to unity.

Thus, the flux densities eqn. 2.88 and eqn. 2.89 are valid for this normalization.

These two flux densities are rather easy to visualize and to interpret, as they are both

in R3. For the electrons, no information is lost as all electrons are indistinguishable, and

thus ji = jj ∀ i, j. For different types of nuclei different flux densities can be defined, for

each type separately. If electron and nuclear spin have to be taken into account, spin flux

densities may be defined in analogy to the definition of spin densities, see e.g. [34, 179].

The expressions for the reduced quantities were given to emphasize that the discussion

that follows does also apply to the reduced flux densities. However, from now on definitions

of the flux densities as vectors having either the dimension of q (= 3n) or Q (= 3N) are

used to keep the equations as simple as possible.

The nuclear and electronic flux densities are derived under the assumption that the

wave function is represented as a BOE. From section 2.3.1 the expression for the quantum

mechanical flux density eqn. 2.41 is known. However, it is necessary to find separate nuclear

and electronic flux densities for chemical applications, and it will soon be clear that eqn. 2.41

cannot be applied directly. Instead, the procedure from section 2.3.1 is followed and the flux

density is calculated via the continuity equation.

The continuity equation equates the time derivative of the density with the negative

divergence of the flux density. It cannot be assumed that from the Schrödinger equation

there are separate flux densities for electrons and nuclei, and this has to be investigated

first. Thus, starting point for the following discussion is the time-dependence of the complete

density |Ψ|2. This time-dependence is determined by eqn. 2.80 as

∂t|Ψ|2 = Ψ∗
(
−~2

2i
∂2
Q −

~2

2ime
∂2
q

)
Ψ−Ψ

(
−~2

2i
∂2
Q −

~2

2ime
∂2
q

)
Ψ∗. (2.92)

The form of the wave function in the BOE, eqn. 2.78, is inserted to yield

∂t|Ψ|2 =
∑
i,j

φiφ
∗
j (χ
∗
j∂tχi + χi∂tχ

∗
j )

=
∑
i,j

[
− ~

2i
(φ∗jχ

∗
j∂

2
Q(φiχi)− φiχi∂2

Q(φ∗jχ
∗
j ))−

~
2ime

(χiχ
∗
j (φ
∗
j∂

2
qφi − φi∂2

qφ
∗
j ))

]
=

∑
i,j

[−∂Q ·Kij − χiχ∗j∂q · jij ]. (2.93)

In the last line, the combined electronic-nuclear flux densities

Kij =
~
2i

(φ∗jχ
∗
j∂Q(φiχi)− φiχi∂Q(φ∗jχ

∗
j )) (2.94)
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and the electronic flux densities

jij =
~

2ime
(φ∗j∂

2
qφi − φi∂2

qφ
∗
j ) (2.95)

are used. With eqn. 2.93 a separation of the flux density vector in two parts is achieved: an

electronic flux density, which has the same number of components as there are electronic

coordinates, and a mixed electronic-nuclear part, which has the same number of components

as there are nuclear coordinates. Nevertheless, it is not possible to find nuclear and electronic

flux densities which depend on the nuclear and electronic wave functions alone, respectively.

Eqn. 2.93 can be brought into different forms. On one hand, eqn. 2.79 can be used to

find

∂t|Ψ|2 =
∑
i,j

[
−∂Q ·Kij +

Ei − Ej
i~

χiχ
∗
jφiφ

∗
j

]
. (2.96)

The electronic flux density is written here in terms of the electronic transition densities φiφ
∗
j

and the energy difference between the states. On the other hand, ∂Q ·Kij can be separated

further, because

∂2
Q(φiχi) = φi∂

2
Qχi + 2(∂Qφi)(∂Qχi) + χi∂

2
Qφi. (2.97)

It follows that

∂t|Ψ|2 =∑
i,j

[
−φiφ∗j∂Q · Jij − χiχ∗j (me∂Q + ∂q) · jij −

~
i

((φ∗j∂Qφi)(χ
∗
j∂Qχi)− (φi∂Qφ

∗
j )(χi∂Qχ

∗
j ))

]
,

(2.98)

where the nuclear flux densities

Jij =
~
2i

(χ∗j∂Qχi − χi∂Qχ∗j ) (2.99)

are separated. However, this separation comes at the price of new nuclear-electronic terms,

which are not easy to interpret.

Flux densities for the Born-Oppenheimer expansion II: The electron density

From the density |Ψ|2 the time-dependent electron density

ρ(t,q) =

∫
|Ψ(t,Q,q)|2dQ (2.100)

is obtained, which is studied further in section 2.5. For now, note that the one-electron

density

ρ̃(t,x) =

∫
ρ(t,q)d{q \ x}, (2.101)

follows, which is a very useful quantity both for visualization purposes and for analysis of

the reaction mechanism.

It is now assumed that the dynamics of the system of interest can be described by

considering only one electronic state. For example, Fig. 2.2 shows the ground state potential

energy surface of a diatomic. The other electronic states should be energetically far enough

away from the ground state in the region of interest, so that the BOA holds between the

ground and all excited states. Thus, in practice only this one electronic state should be needed

to calculate the dynamics. Given a nuclear wave packet of Gaussian shape at time t1 as

shown in the figure, and given a potential that is almost harmonic, the nuclear density can be
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expected to have a similar shape a short time later (t2), at larger internuclear distance [208].

The one-electron density depends on the internuclear distance, and for a Gaussian wave

packet the electron density can be approximated by the electron density for the center

of the nuclear wave packet. Consequently, from eqn. 2.100 it is apparent that there is a

time-dependent electron density. In the limit of a Gaussian wave packet in a harmonic

oscillator, along the internuclear distance a one-electron density would be found that expands

and contracts periodically.

internuclear distance

en
er

gy

t1 t2

electron densities for center 
of nuclear wavepacket

nuclear densities at 
two different times

Figure 2.2: Ground state potential energy surface of a diatomic, nuclear densities at two
different times t1 and t2, and cut through a contour of the one-electron densities along the
internuclear distance for the nuclear configurations corresponding to the center of the wave
packets at the different times.

How is this picture represented in the BOE? Or, in other words, how does the time-

dependence of the electron density eqn. 2.100 looks if the complete wave function as BOE is

used? The beauty of eqn. 2.100 is that ∂2
Q is hermitian with respect to integration over Q.

Thus ∫
Ψ∗∂2

QΨdQ−
∫

Ψ∂2
QΨ∗dQ = 0. (2.102)

Consequently, ∂Q ·Kij vanishes and

∂tρ(t,q) = −
∑
i,j

∫
χiχ
∗
j∂q · jijdQ =

∑
i,j

∫
Ei − Ej
i~

χiχ
∗
jφiφ

∗
jdQ. (2.103)

Evidently, only the electronic (transition) flux density contributes to the change in time of

the density.

It is not possible to use only one electronic state in the BOE, because the coupling of the

states in eqn. 2.81 introduces population in other electronic states an infinitesimal time step

later. Thus, the situation described in Fig. 2.2 is not well-described in the BOE: It is not

possible to confine dynamics to only one electronic state. Application of the BOA, however,

changes this situation.

Flux densities in the Born-Oppenheimer approximation

In the limit of the BOA, there is an important aspect that needs to be considered: Without

the BOA, the time-dependent Schrödinger equation is valid for the complete wave function

(eqn. 2.80). Thus, the usual form of the quantum mechanical flux density derived from

the time-dependent Schrödinger equation is valid if the complete wave function is used. In
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2.4. Flux densities and the Born-Oppenheimer approximation

contrast, in the limit of the BOA there is no time-dependent Schrödinger equation for the

full wave function. Instead, there are only time-dependent Schrödinger equations for the

nuclear wave functions, cf. eqn. 2.82. Thus, the usual form of the quantum mechanical flux

density can only be used for the nuclear wave function. Specifically, from eqn. 2.82 it follows

that the time derivative of χiχ
∗
j is

∂t(χiχ
∗
j ) = −∂Q · Jij (2.104)

in the BOA. This equation is a continuity equation for the nuclear densities only. However,

as there are no electrons created or destroyed, there has to be also an independent continuity

equation for the time-dependent electron density alone.

The time dependence of the total wave function in the BOA (i.e. many non-interacting

nuclear wave functions) is calculated first. Thus, ∂t|Ψ|2 is determined, but using eqn. 2.82

instead of eqn. 2.80 to apply the BOA. The result is

∂t|Ψ|2 =
∑
i,j

φiφ
∗
j (χi∂tχ

∗
j + χ∗j∂tχi)

=
∑
i,j

[
−φiφ∗j∂Q · Jij +

Ei − Ej
i~

φiφ
∗
jχiχ

∗
j

]
(2.105)

=
∑
i,j

[
−φiφ∗j∂Q · Jij − χiχ∗j∂q · jij

]
. (2.106)

A partition of the complete flux density into a nuclear and an electronic part is readily

achieved. Although the single nuclear wave functions are not coupled, there are transition

flux densities Jij and jij for i 6= j. These flux densities occur because the total density is not

the sum of individual densities of the electronic states, but the absolute square of the sum of

the wave functions.

At first sight, these transition flux densities seem strange, because in the BOA independent

nuclear dynamics on the states takes place. The the sum of the nuclear densities on each

state should add up to the total nuclear density, and fluxes should only happen in the states,

but not between the states.

As soon as the BOE is used, the total nuclear density is the sum of the individual nuclear

densities by virtue of the orthogonormality of the electronic states with respect to integration

over q:

%(t,Q) =

∫
|Ψ|2dq

=

∫ ∑
i,j

φiφ
∗
jχiχ

∗
jdq

=
∑
i

|χi|2. (2.107)

This results holds with and without the BOA, but in the BOA also the nuclear flux densities

are a sum of the individual flux densities. From eqn. 2.105 follows that

∂t%(t,Q) =

∫
∂t|Ψ|2dq

=
∑
i,j

∫ [
−φiφ∗j∂Q · Jij +

Ei − Ej
i~

φiφ
∗
jχiχ

∗
j

]
dq (2.108)

= −
∑
i

∂Q · Jii =
∑
i

∂t|χi|2. (2.109)

33



Chapter 2. Theory

By eqn. 2.104, this relation is valid for each state i separately,

−∂Q · Jii = ∂t|χi|2, (2.110)

so that there is no interaction of the nuclear wave packets on different electronic states. The

result is completely in line with the picture of the decoupled time evolution of the nuclear

wave packets.

For the time-dependent electron density ρ of eqn. 2.100, the BOA yields

∂tρ =
∑
i,j

∫ [
−φiφ∗j∂Q · Jij − χiχ∗j∂q · jij

]
dQ

=
∑
i,j

∫ [
∂Q(φiφ

∗
j ) · Jij − χiχ∗j∂q · jij

]
dQ. (2.111)

How is the situation of Fig. 2.2 described now? That is, what happens if only one state is

taken into account for the nuclear dynamics?

Only the state k is kept, with φ = φk, χ = χk, E = Ek and J = Jkk. In accord with the

discussion of Fig. 2.2, the time-dependent electron density is

∂tρ =

∫
|φ|2∂t|χ|2dQ = −

∫
|φ|2∂Q · JdQ. (2.112)

It follows that in the limit of the BOA there is a well-defined time-dependent electron density.

Consequently, there are electronic fluxes and thus there also has to be an electronic flux

density.

Despite the time-dependence of ρ which follows from eqn. 2.112, it is not straightforward

to find an expression for the electronic flux density in this case: The right-hand side of eqn.

2.112 cannot be written as the divergence with respect to q of some vector field j(t,q) in a

unique way. Due to this problem, a few approaches to extract an electronic flux density in

the BOA were developed. These are discussed below, and their advantages and disadvantages

are shown.

Finally, there is the possibility to not neglect all of the terms 〈φj |∂Q|φi〉 and 〈φj |∂2
Q|φi〉

of eqn. 2.71 as is done in the BOA, but only those coupling different electronic states. For

the nuclear wave functions, the Schrödinger equations would then be

∂tχi =

(
− ~

2i
∂2
Q −

2〈φi|∂Q|φi〉
i~

∂Q +
Ei − 〈φi|∂2

Q|φi〉
i~

)
χi (2.113)

∂tχ
∗
i =

(
~
2i
∂2
Q +

2〈φi|∂Q|φi〉∗

i~
∂Q −

Ei − 〈φi|∂2
Q|φi〉∗

i~

)
χ∗i . (2.114)

In this case, the time-dependence of the complete wave function is determined by

∂t|Ψ|2 =
∑
i,j

[
−φiφ∗j∂Q · Jij −

2

i~
φiφ
∗
j

(
〈φi|∂Q|φi〉χ∗j∂Qχi − 〈φj |∂Q|φj〉∗χi∂Qχ∗j

)]

+
∑
i,j

[
Ei − 〈φi|∂2

Q|φi〉 − Ej + 〈φj |∂2
Q|φj〉∗

i~
φiφ
∗
jχiχ

∗
j

]
. (2.115)

The discussion is again restricted to only one electronic state. To calculate the time-

dependent one-electron density, an integration is performed over Q. The quantities 〈φi|∂Q|φi〉
and 〈φi|∂2

Q|φi〉 are anti-hermitian and hermitian with respect to integration over Q, hence it
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2.4. Flux densities and the Born-Oppenheimer approximation

follows that

∂tρ = −
∫
|φ|2

(
∂Q · J +

∂Q〈φ|φ〉
~2

· J
)
dQ (2.116)

= −
∫
|φ|2∂Q · JdQ (2.117)

(note that 〈φ|φ〉 = 1 for all Q). This is the same result as eqn. 2.112. Consequently, the

diagonal Born-Oppenheimer corrections for the nuclear wavefunction do not contribute to

the time-dependence of the electronic density.

The exact electronic flux density

Before reviewing calculations of electronic flux densities in the BOA, it should be remarked

again that there is one calculation of the electronic flux density during nuclear motion

without the BOA. Barth, Hege, Ikeda, Kenfack, Koppitz, Manz, Marquardt and Paramonov

calculated the electronic flux density for a quantum dynamics simulation of the dihydrogen

cation [25], and Diestler, Kenfack, Manz, Paulus, Jhon Fredy Pérez-Torres and Vincent

Pohl improved this calculation significantly [69]. Results of both simulations are in good

agreement with the scaled coupled-channels flux density [69], see below.

Laser induced electronic ring currents

Laser induced electronic flux densities in the BOA were studied by Barth and Manz for

atoms [27], and by Barth, Manz, Shigeta and Yagi for magnesium porphyrin [28]. The

electron dynamics is induced by excitation of degenerate atomic or molecular orbitals with

circularly polarized light and it was found that strong currents and magnetic fields can be

produced. However, in both cases the nuclei were kept frozen.

Okuyama’s and Takatsuka’s time-shift flux density

Okuyama and Takatsuka note in [167] the deficiency of the BOA to produce a non-zero

electronic flux density for the quantum mechanical definition of the electronic flux density.

However, in their semiclassical Ehrenfest approach to electron dynamics they are able to

calculate electronic flux densities directly. They proposed to use a time shift flux density

in the BOA, which when tested against the definition of the flux density seemed to give

qualitatively good results. This quantity is discussed now.

Consider the time shift flux density

j(t,∆t) =
~

2im
(φ∗(t−∆t/2)∂qφ(t+ ∆t/2)− φ(t+ ∆t/2)∂qφ

∗(t−∆t/2)) (2.118)

with some unspecified time difference ∆t. Given a Schrödinger equation(
i~∂t +

~2

2m
∂2
q − V (q)

)
φ = (i~∂t −H)φ = 0 (2.119)

and the equation of continuity, ∂tρ+ ∂q · j = 0, the time shift flux density corresponds to a

density ρ = φ∗(t−∆t/2)φ(t+ ∆t/2), i.e. the overlap between the time-shifted wave functions.

Thus, for a given volume, j gives the change of overlap between the time-shifted functions.

As Okuyama and Takatsuka explained in [167], j can be interpreted as deformation direction

of the wave function, and it is always imaginary in case the shifted wave functions are both

real.
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The time shift flux density is interesting. The complex conjugate of eqn. 2.119 for

time-independent H is

0 = (i~∂t +H)φ∗(t)

= (i~∂t +H)φ(−t), (2.120)

and taking the complex conjugate of this equations yields

0 = (i~∂t −H)φ∗(−t). (2.121)

By applying the Schrödinger equations eqn. 2.119 and eqn. 2.121 repeatedly in the Taylor

series expansion of φ(t+ ∆t/2) and φ∗(t−∆t/2) around t it is found that

φ(t+ ∆t/2) = Uφ(t) (2.122)

φ∗(t−∆t/2) = Uφ(t)∗ (2.123)

with the same time-evolution operator for both quantities,

U(∆t) = 1 +
H

i~
∆t

2
− H2

~2

(
∆t

2

)2

+ · · · = exp

(
∆tH

2i~

)
. (2.124)

Consequently, φ(t0 + ∆t) = φ∗(t0 −∆t) if φ(t0) is real, reflecting the fact that the evolution

of an initially real φ forward in time equals the evolution of φ∗ backward in time [146]. Thus,

the time-shift flux density for a real wave function φ(t) is zero if this wave function is the

solution of the Schrödinger equation. Note also that if there is a point in time t0 when the

wave function is real, φ(t0) = φ∗(t0), then due to the Schrödinger equation the wave function

will be complex an infinitesimal time step dt later.

The wave function that Okuyama and Takatsuka study is not a solution of the time-

dependent Schrödinger equation. Instead, the nuclear motion is determined semiclassically

and the electronic wave function is the stationary wave function of the respective nuclear

configuration.

The time shift flux of Okuyama and Takatsuka might be an interesting quantity to

calculate, and it can in principle be used in the BOA. However, it might be difficult to

interpret because of the just mentioned puzzling relation with respect to the correct wave

function and because of the undetermined parameter ∆t. Also, so far it was only used for

processes that involved diabatic transitions between electronic states, and was never applied

nor tested for chemical reactions in the electronic ground state.

Diestler’s coupled-channels flux density

A promising approach for extracting a flux density completely within the framework of

the BOA was proposed by Diestler [66], with numerical results [68] and solution of the

dihydrogen cation [69]. In [66], Diestler derives a flux density based on a suitable coordinate

transformation of electronic and nuclear coordinates. The transformation is done in such a

way that the ratio of electronic and nuclear masses occurs, and that terms proportional to

this ratio can be dropped. Diestler derives the expressions first for the hydrogen atom and

compares these to the exact solution. The treatment is then extended to the dihydrogen

cation. The basic ideas of Diestler’s approach shall now be reviewed.

Starting point is the flux density operator ĵ defined in eqn. 2.43, in 3-space written as

ĵ =
~

2im
(∂xδ(x− x′) + δ(x− x′)∂x) . (2.125)

36



2.4. Flux densities and the Born-Oppenheimer approximation

The expectation value of this operator with respect to a wave function Ψ(t,Q,x) depending

on the coordinates of one electron x and on the coordinates of all nuclei Q may be evaluated.

This procedure is similar to eqn. 2.44, but with an extra integration over Q. However, in [66]

the final integrations are not performed, but:

j(t,x′) =
x

δ(x′ − x)(Ψ∗∂xΨ−Ψ∂xΨ∗)dQdx (2.126)

is kept. Note that x′ is used for the spacial coordinates and x for the position of the electrons,

but these will finally be identified. The BOA and the form of the wave function

Ψ(t,x,Q) = χ(t,Q)φ(x,Q) (2.127)

is assumed, as well as that φ is real. Thus, this wave function will give zero flux density in

eqn. 2.126.

By analyzing the exact solution of the hydrogen atom (with Q = X, as there is only one

nucleus), Diestler found that a switch from x,X to coordinates

y = x−X (2.128)

Y = εx +
MP

M
X (2.129)

is helpful. Here, M = MP +me is the mass of the system, i.e. the sum of the proton (MP)

and electron mass (me), and ε = me

M . For the hydrogen atom only the distance from the one

proton matters for φ, so that φ(x,Q) = φ̃(y). The mass ratio ε is small. After performing

the transformation and neglecting terms which are smaller than or of order ε, it is found

from eqn. 2.126 that

j(t,x′) =
~
me

x
δ(x′ −Y − y)|χ(t,Y)|2 Im

[
φ̃∗(y)∂yφ̃(y)

]
dYdy

+
~
MP

x
δ(x′ −Y − y)|φ̃(y)|2 Im [χ∗(t,Y)∂Yχ(t,Y)] dYdy

=

∫
|φ(x′ −Y)|2J(t,Y)dY (2.130)

with the proton flux density J defined analogously to the electronic flux density. For ε ≈ 0

and MP

M ≈ 1, it follows that Y ≈ X, and that the electron is simply dragged along by the

proton. This is of course expected on physical grounds and compares well with the exact

treatment of the problem [66]. Diestler extends the procedure from the hydrogen atom to

the dihydrogen cation. The 3-space position vectors of the two protons are denoted by X1

and X2, respectively, and the total mass of the system is M = 2MP + me. Two sets of

coordinates are introduced: The “channel 2” Jacobi coordinates

y2 = x−X2

Y2 =
MPX2 +mex

MP +me
−X1 ≈ X2 −X1

Z =
MP(X1 + X2) +mex

M
(2.131)
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and the “channel 1” Jacobi coordinates

y1 = x−X1

Y1 =
MPX1 +mex

MP +me
−X2 ≈ X1 −X2

Z =
MP(X1 + X2) +mex

M
. (2.132)

The center of mass of the complete system is Z. The picture is inspired by scattering theory:

In each of the two channels, the coordinates Yi are the distances between an effective particle,

consisting of a proton together with an electron, and the other proton. An important step in

the following is the approximate identification of the center of mass of the effective particle

with the position of the proton, as indicated in the equations for Yi. This is justified by the

smallness of the electron mass compared to the proton mass.

Next, it is assumed that the Born-Oppenheimer electronic wave function can be separated

into two parts, each belonging to either X1 or X2,

φ(x,X1 −X2) = φ1(y1,Y1) + φ2(y2,Y2), (2.133)

where the two parts are expressed in terms of the respective channel coordinates. Note

that the fact that φ only depends on the relative distance of the two protons but not on

the position of the center of mass is already included in this formulas. The decomposition

of the electronic wave function into two parts carries over to the electronic fluxes so that

contributions are obtained from each of the two channels.

Diestler always derives the approximate electronic flux density relative to a certain

reference point. For example, he defines the classical electronic flux relative to the position

of the electron with respect to one of the protons, e.g. the proton at X1, to obtain

j1(t, x′) = δ(x′ − y2)∂ty1, (2.134)

or with respect to the nuclear center of mass Xcm = X1+X2

2 ,

jcm(t, x′) = δ(x′ − (x−Xcm))∂t(x−Xcm). (2.135)

The final expression for the electronic flux densities of the two channels depends on the

chosen reference point. Before it is possible to obtain the expectation values of the operators

corresponding to eqn. 2.134 and eqn. 2.135, respectively, it is necessary to drop terms of the

order me

MP
. For example, the fact that Y1,Y2 are approximately equal to the inter-proton

distance is used; in other words, in the “collision” of the proton with the atom, the center of

mass of the atom is approximated by the center of mass of its nucleus.

Diestler’s electronic flux density has the advantage that it only needs the ground state

electronic wave function. Also, the extension and calculations of the dihydrogen cation in [69]

show that the exact electronic flux density and the electronic flux density obtained from

this ansatz are in very good agreement. However, the artificial (albeit for H+
2 seemingly

unimportant) dependence on a reference might be a problem. Also, it is not yet known how

the expression of the electron density corresponding to the coupled-channels electron flux

density via the continuity equation looks like.

The extension of Diestler’s flux to molecules other than diatomics and inclusion of more

than one electron are interesting problems that will hopefully be tackled in the future. First

steps towards the generalization to more than two nuclei were already taken in [67].
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2.4. Flux densities and the Born-Oppenheimer approximation

Nafie’s complete adiabatic flux density

In 1983, Nafie [155] proposed the “complete adiabatic” (CA) wave function: In the adiabatic

approximation, the ground state wave function Ψ(t,Q,q) is a product of the ground state

electronic wave function φ0(q,Q) and the ground state nuclear wave function χ(t,Q). Nafie

searched for a similar product form,

Ψ(t,Q,q) = φCA
0 (q,Q)χ(t,Q), (2.136)

with the same χ but with φCA
0 containing as much information as possible, including also

contributions from electronically excited states. A possible derivation of φCA is reviewed in

the following.

The Hamiltonian for the problem at hand is again eqn. 2.64,

H =
P2

2
+H0(Q) = −~2

2
∂2
Q +H0(Q), (2.137)

with the nuclear momentum P and the electronic Hamiltonian H0. Note that mass scaled

nuclear coordinates Q are used.

The eigenfunctions of H0 are given by

(H0 − Ek(Q))φk = 0. (2.138)

Operation of the complete Hamiltonian H on the product φCA
0 χ yields

H(φCA
0 χ) = φCA

0 (Tnu + E0)χ− ~2

(
(∂Qχ) · (∂Qφ0) +

1

2
χ∂2

Qφ0

)
. (2.139)

If only the first term is kept for the determination of the dynamics, the situation would

be equivalent to the BOA: The nuclear wave function χ is time-dependent, and thus the

electronic wave function would not contribute to the dynamics (it factors to both sides of

the time-dependent Schrödinger equation). However, instead of neglecting the second term

of eqn. 2.139, this term is treated as perturbation.

The electronic wave functions φCA
k are defined to be eigenfunctions of the complete

Hamiltonian for fixed nuclear positions and momenta,

(H − ECA
k (Q,P))φCA

k (q,Q,P) = 0. (2.140)

Note the additional appearance of the (classical) nuclear momentum as dependent variable

for φCA
k . However, in the end the momentum operator P = −i~∂Q will be used, and the

φCA
k themselves will become operators.

The functions φk are used as basis, and φCA
0 is to first order in the perturbation T = P2

M

given by

φCA
0 = φ0 +

∑
k>0

φk
E0 − Ek

〈
φk

∣∣∣∣P2

2

∣∣∣∣φ0

〉
. (2.141)

Note that, again, the bra-ket notation 〈·〉 indicates integration over the electronic coordinates

q only. The complete wave function eqn. 2.136 is a product of the nuclear wave function χ and

φCA
0 . In order to find the quantum mechanical expression for φCA

0 , the nuclear momentum
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operator has to be used, and this operator also acts on χ. Thus,

φCA
0 χ = φ0χ+

~2

2

∑
k>0

φk
Ek − E0

(
〈φk|∂2

Q|φ0〉χ+ 2〈φk|∂Qφ0〉 · ∂Qχ+ 〈φk|φ0〉∂2
Qχ
)

=

(
φ0 +

~2

2

∑
k>0

φk
〈φk|∂2

Q|φ0〉+ 2〈φk|∂Qφ0〉 · ∂Q
Ek − E0

)
χ (2.142)

or

φCA
0 = φ0 +

~2

2

∑
k>0

φk
〈φk|∂2

Q|φ0〉+ 2〈φk|∂Qφ0〉 · ∂Q
Ek − E0

. (2.143)

There are two ways how φCA
0 can be used: If the classical nuclear momentum is used in eqn.

2.141, this function is a number. It can be used as an improved electronic wave function in a

molecular dynamics simulation in which the nuclei are treated classically. If the quantum

mechanical nuclear momentum is used, φCA
0 is the operator of eqn. 2.143. In both cases,

calculation of the function is difficult because excited electronic states are needed.

Nafie calls φCA
0 the “complete adiabatic wave function” because φCA

0 “contains the entire

factorable part of the molecular wave function” [155]. As was just seen, this view is peculiar

because of the operator nature of φCA
0 . Also, “adiabatic” may refer to the property that

information from only one electronic state is needed, which is in conflict with the occurrence

of excited states due to the perturbation expansion.

It is straightforward to calculate an electronic flux density for the wave function eqn.

2.136 as follows:

j(t,q,Q) =
~

2ime
(Ψ∗∂qΨ−Ψ∂qΨ∗)

=
~

2ime

(
(φCA

0 χ)∗∂q(φCA
0 χ)− (φCA

0 χ)∂q(φCA
0 χ)∗

)
. (2.144)

To simplify the following equations, abbreviations for the matrix elements

ak0(Q) := 〈φk|∂Qφ0〉 (2.145)

and

2bk0(Q) := 〈φk|∂2
Qφ0〉 (2.146)

are useful. With these definitions, the full wave function eqn. 2.142 and its gradient with

respect to the electronic coordinates can be written as

Ψ = χφ0 + ~2
∑
k>0

1

Ek − E0
(ak0∂Qχ+ bk0χ)φk,

∂qΨ = χ∂qφ0 + ~2
∑
k>0

1

Ek − E0
(ak0∂Qχ+ bk0χ)∂qφk (2.147)

and the electronic flux density becomes

j(t,q,Q) ≈ ~
2ime

(φ∗0∂qφ0 − φ0∂qφ
∗
0) |χ|2

+
~

2ime
~2
∑
k>0

1

Ek − E0
([a∗k0χ∂Qχ

∗ + b∗k0|χ|2][φ∗k∂qφ0 − φ0∂qφ
∗
k])

+
~

2ime
~2
∑
k>0

1

Ek − E0
([ak0χ

∗∂Qχ+ bk0|χ|2][φ∗0∂qφk − φk∂qφ∗0]).(2.148)

Terms quadratic in the first-order perturbation correction are neglected.
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2.5. Fluxes in the Born-Oppenheimer approximation

It is handy to define the (transition) flux densities

jkl :=
~

2ime
(φ∗l ∂qφk − φk∂qφ∗l ) = j∗lk (2.149)

and the nuclear density % := |χ|2. Then, eqn. 2.148 becomes

j(t,q,Q) ≈ ρj00 + ~2
∑
k>0

1

Ek − E0
([a∗k0χ∂Qχ

∗ + b∗k0|χ|2]jk0 + [ak0χ
∗∂Qχ+ bk0|χ|2]jk0)

= ρj00 + 2
∑
k>0

~2

Ek − E0
Re ([ak0χ

∗∂Qχ+ bk0ρ]jk0)

= ρj00 + 2
∑
k>0

~2

Ek − E0
Re
(
[〈φk|∂Qφ0〉χ∗∂Qχ+ 〈φk|∂2

Qφ0〉ρ]jk0

)
(2.150)

In general, the basis functions φk are real or can be chosen to be real (in case of degenerate

eigenvalues). If the φk are assumed to be real, the transition flux densities jk0 are completely

imaginary and the flux density j00 is zero. Moreover, 〈φk|∂2
Qφ0〉 is real and ρ is always real.

Thus, Re(〈φk|∂2
Qφ0〉ρjk0) = 0 in this case and eqn. 2.150 simplifies to

j(t,q,Q) ≈
∑
k>0

~2 〈φk|∂Qφ0〉
Ek − E0

· (χ∗∂Qχ+ χ∂Qχ
∗) j0k. (2.151)

The complete adiabatic wave function formalism was first developed by Nafie [155] (but

see also [158]) and later used in the theory of vibrational circular dichroism [156]. It was also

used with special emphasis on the transition current densities for vibronic and vibrational

transitions in molecules [75,76,157]. In 2012, Patchkovskii derived the complete adiabatic

wave function and eqn. 2.151 in a different manner than presented here, with a similar form

of eqn. 2.150 [172]. Additionally, he proposed to calculate j via double perturbation theory

as third-order response of the ground state energy (for comparison, see [18,102]). However,

Patchkovskii’s calculation method is so far restricted to molecular dynamics simulations, i.e.

for (semi-)classical treatment of the nuclei.

2.5 Fluxes in the Born-Oppenheimer approximation

Goal of this work is to improve the understanding of chemical reaction mechanisms, and

especially of the arrows drawn typically in Lewis structures to indicate the course of a reaction

in the electronic ground state. Applications will be focused on pericyclic reactions like the

reaction shown in Fig. 2.3, known from the introduction. In this figure, the Diels-Alder

reaction of butadiene with ethene is represented by Lewis structures. Arrows indicate the

rearrangement of the electron pairs from product to reactant. This “reaction mechanism”

should in general not be understood as the time-dependent course of the reaction, but only

as effective changes from the static structures of the reactants to those of the products.

Figure 2.3: Lewis structures and reaction mechanism (arrows) for the schematic Diels-Alder
reaction of ethane and butadiene to cyclohexene.
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The quest is, however, to give these arrows a time-dependent meaning, so that the

quotation marks from “reaction mechanism” may be removed. Analysis of the time-dependent

flux density is surely the best method to achieve this goal. However, it is preferable to work

in the framework of the BOA, because almost all quantum-chemical methods rely on this

simplification. As seen in the previous part, especially for a quantum mechanical description

of both the nuclei and the electrons the electronic flux density is difficult or impossible to

obtain. Luckily, the time-dependent electron density is immediately available, and thus it

is desirable to work with this quantity. The question is: Does the electron density contain

enough information to solve the quest?

The flux density provides a lot of information about the motion of the particles. If a

chemical reaction is considered, the arrows drawn indicate the qualitative change of the

electron bonds or the electronic structure. Thus, they provide much less information than

could be obtained from the complete flux density, which gives velocity vectors at each point

in space. To give the arrows in Lewis structures time-dependent quantitative meaning, what

is needed is the net flow of the electrons with time out of, or into specified regions of space.

This flow can (almost completely) be determined by an electron density alone, if this density

mirrors the effective dynamics of the electrons.

If such a time-dependent electron density is used, two points have to be taken care of:

Sensible assumptions about what the Lewis structures mean have to be made, and the regions

of space for which the flow is calculated have to be defined. This regions should represent

the chemical bonds. Hence, it is necessary to include the quantum chemical methods in the

discussion of the electron density to be able to sensibly divide the density into the different

“types” of electrons and bonds (like σ-bonds or π-electrons) a chemist likes to think of.

An appropriate time-dependent electron density can be defined according to [25] as (cf.

eqn. 2.101)

ρ(t,x) :=

∫
ρQC(x,Q)|χ(t,Q)|2dQ. (2.152)

The density ρQC is a time-independent one-electron density. In practice, this density will

be obtained from a quantum chemical calculation for a fixed nuclear configuration Q,

and calculations have to be performed for all necessary Q. In section 3.3 there are more

information on how these densities are obtained.

The time-dependence is introduced via the nuclear wave function χ, which is the solution

of the time-dependent Schrödinger equation in the BOA for the potential of the respective

electronic state. In this work, only ground-state chemical reactions are considered. Note also

that the quantity ρ can be viewed as the expectation value of the operator ρQC with respect

to the nuclear coordinates.

The procedure in [25] will now be followed: The time-dependent one-electron density is

used to calculate fluxes into or out of observer volumes which should correspond to certain

bonds in the Lewis structures. From eqn. 2.21 it is known that the electron flux F (t,Ω) out

of an observer volume Ω is given by

F (t,Ω) = ∂t

∫
Ω

ρ(t,x)dx. (2.153)

Equally useful is the time-integrated electronic flux, the so-called electronic yield

Y (t,Ω) =

∫ t

0

F (t′,Ω)dt′

=

∫
Ω

(ρ(t,x)dx− ρ(0,x))dx. (2.154)

42



2.5. Fluxes in the Born-Oppenheimer approximation

This yield represents the difference of the number of electrons in the sector Ω at time t

with respect to the reference number at time 0. Closely related to the electron yield is the

time-dependent electron number N(t,Ω), which is just the number of electrons in the sector

Ω. Both quantities differ just in a time-independent constant. Conceptually, the electron

number, electron flux and electron yield may be ordered as N(t,Ω) → F (t,Ω) → Y (t,Ω).

The arrows indicate that the quantity at the arrow head follows from the other quantity. In

section 4.1, the model system cyclooctatetraene will be discussed in terms of electronic fluxes

and yields. Thereafter, in section 4.2, the model system benzene will be discussed in terms

of electron numbers and fluxes. It shall be left to the reader to decide which approach is

better suited.

In [25], F and Y were tested against the corresponding fluxes and yields for the full

non-Born-Oppenheimer solution of the dihydrogen cation. It was shown that the fluxes in

the BOA and the exact results are in very good agreement. In general, it may be expected

that this is the case whenever the BOA is applicable to the dynamics of the system.

All applications presented here will be studies on cyclic electron rearrangements, i.e.

pericyclic reactions in simple ring-shaped molecules. Consequently, it will be of interest

in which direction the electrons flow along an angular coordinate ϕ as well as how many

electrons actually flow. To this end, cylindrical coordinates r, ϕ, z are used and the volume is

partitioned into sectors along the angular coordinate. The sectors represent a given carbon-

carbon bond in the Lewis structure. The electron density in this sectors is summed up, so

that electron numbers are obtained for the sectors. Hence, in practice only one-dimensional

electronic fluxes are of interest. In the paragraph after eqn. 2.34 it was noted already that

the one-dimensional continuity equation determines the flux density up to a time-dependent

parameter. This parameter will not play a role in the applications of Section 4.1 and 4.2 due

to the symmetry of the processes discussed there, but it will be important for the examples

discussed in Section 4.3.
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Practice

3.1 Abstract

In the previous chapter, while discussing the flux densities efforts were made to stay within

the realm of the Born-Oppenheimer approximation. The main reason for this confinement

is the enormous intellectual edifice known as electronic structure methods. During the

last century, methods for the solution of the electronic problem, i.e. the solution of the

time-independent Schrödinger Equation for clamped nuclei, were developed to the point were

energies and properties could be calculated to chemical accuracy: Exact enough to compare

different, but maybe very similar molecular structures. For information about the history of

quantum chemistry and for some recent developments in this field, see e.g. the Quantum

Chemistry 2012 issue of Chemical Reviews [177,178].

In this chapter, first the basic concepts of quantum chemistry are reviewed. After

introduction of the Hartree-Fock method and its practical application, the multi-configuration

self-consistent field method is discussed, as well as the closely connected complete active

space self-consistent field method. Subsequently, details about the form of the electronic

wave function are presented.

Next to the potential energy needed for the motion of the nuclei, the electron density is

the main ingredient needed below to investigate the chemical model reactions. It is vital to

know how the density is obtained and what its mathematical structure looks like. Thus, the

chapter continues with a discussion on how the electron density is constructed in practice

from the results of a quantum chemical calculation. Finally, problems and solutions for the

usage of the electron density to calculate electronic fluxes is discussed.

Information about the general quantum chemical topics discussed in the following sections

can be found in [111, 180, 204, 223], or in any introductory quantum chemistry text. Note

that the following discussion is based on molecular orbital theory, where the wave function is

a product of molecular orbitals, that are themselves linear combinations of atomic orbitals.

There is also valence bond theory [188], where the wave function is a linear combination

orbitals, which themselves are products of atomic orbitals. The latter method is much less

used but gained importance recently as generalized valence bond theory, or for analysis of a

molecular orbital quantum chemical calculation.
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3.2 A brief introduction to quantum chemistry

The object of a quantum chemical calculation is to solve the time-independent electronic

Schrödinger equation

H0(Q)φi(q,Q) =

(
−~2

2me
∂2
q + V (Q,q)

)
φi(q,Q) = Ei(Q)φi(q,Q). (3.1)

The eigenfunctions φi and eigenvalues Ei are to be determined for a given nuclear structure Q,

and V is the molecular potential for this structure including nucleus-nucleus, nucleus-electron

and electron-electron Coulomb interaction. In the following, only the ground state electronic

wave function with φ := φ0, E := E0 is considered. Because all calculations need to be done

for fixed Q, the dependence on this parameter is dropped in the notation. Electron spin

is not included explicitly, because there is no spin-dependent term in the Hamiltonian. In

principle, a spin function needs to be included, which is separable due to the structure of H0.

In practice, two electrons can be assigned to one of the spacial orbitals described below, for

the two different possible spin states.

3.2.1 The Hartree-Fock method

The first step for the solution of the electronic problem with fixed nuclei is usually a Hartree

Fock (HF) calculation. The following procedure is applied:

• Ansatz for the electronic wave function with n electrons is an anti-symmetric product

of single electron functions, called the molecular orbitals (MO) or simply the orbitals,

φHF(q) = Â

n∏
i

φMO
i (xi), (3.2)

where Â is the anti-symmetrization operator. This wave function can be written as the

so-called Slater determinant

φHF =
1√
n!

det(φMO
i (xj)), (3.3)

where the factor 1√
n!

ensures normalization of the wave function. The anti-symmetry

of the wave function with respect to the interchange of two electronic coordinates has

to be included explicitly, as the determining equations do not enforce this symmetry.

• A solution to the molecular Hamiltonian with fixed nuclei is sought in the form of eqn.

3.2 by minimization of the energy. If the Hamiltonian for a nuclear structure Q is

H0(Q),

minE0(Q) = min〈φHF|H0|φHF〉 (3.4)

is sought. Again, the scalar product 〈·〉 is taken with respect to the electronic coordi-

nates, and Q is a parameter. The search space is the space of all possible molecular

orbitals φMO
i , but with the orthogonality constraint 〈φMO

i |φMO
i 〉 = δij . Application of

a variational procedure yields the eigenvalue equation

F (j)φMO
i (xj) = εiφ

MO
i (xj) (3.5)
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with the Fock operator

F (j) =
−~2

2me
∂2
xj

+ UHF(xj)−
N∑
i

Zi
|xj −Xi|

. (3.6)

This operator is composed of the electronic kinetic energy, the Hartree-Fock potential

and the Coulomb interaction of the electron with all nuclei. The Hartree-Fock potential

is given by

UHF(x1) =
∑
i 6=j

∫ |φMO
j (x2)|2

|x1 − x2|
dx2φ

MO
i (x1) (Coulomb term)

+
∑
i 6=j

∫
φMO
j (x2)∗φMO

i (x2)

|x1 − x2|
dx2φ

MO
j (x1) (exchange term). (3.7)

Consequently, it depends itself on the molecular orbitals, and eqn. 3.6 has to be solved

for εi and φMO
i in a self-consistent way. The Hartree-Fock potential is also a one-particle

potential. Thus, the Hartree-Fock method may be viewed as the best possible solution

of the electronic problem, if the electron-electron interaction is replaced by an effective

single-electron potential.

• The MOs are parametrized and an initial guess for the parameters is made. From

this guess, the energy and parameters are optimized using a variational principle and

a set of Ui is obtained. This is called the HF method. From the set of independent

potentials, new MOs can be calculated. The procedure is repeated until convergence.

Because of the repetition until the solutions do not change within a certain error, the

method is also called self-consistent field method.

• To be able to solve the HF equations in practice, the MOs are assumed to be linear

combinations of atomic orbitals. These atomic orbitals are inspired by the solution of

the time-independent Schrödinger equation for the hydrogen atom. They are the basis

sets, to be discussed below. The coefficients of the linear combination are optimized

during the self-consistent calculation, and the system of equations to be solved is called

the Roothaan-Hall equations.

After a HF calculation, optimized MOs φMO
i and eigenvalues εi are obtained. The solution

of eqn. 3.1 is the anti-symmetric product of the φMO
i with the smallest eigenvalues. If there

are n electrons with n being even, the first n/2 MOs are included (occupied) and two electrons

are assigned to each MO (one electron for each of the two possible electron spin directions).

If n is odd, there is one electron occupying the MO number (n+ 1)/2.

In principle, for a complete electronic basis the possible products of the solutions to

the HF equations span the whole electronic space. Thus, a correction to the HF solution

can be obtained by considering more than just one anti-symmetric product of the MOs.

Electrons are assigned to some φMO
i with higher eigenvalues εi. A given assignment is called

a configuration, and a product which is not the HF ground state product is called an excited

configuration. Such calculations are thus termed configuration interaction calculations (CI).

The possible products of HF MOs are used as basis functions and a new solution is sought

as linear combination of the configurations. Specifically, the new ansatz for the electronic

wave function is

φCI = φHF +

a∑
i

cai φ
a
i +

a,b∑
i,j

cabij φ
ab
ij + . . . , (3.8)
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with φai , φ
ab
ij etc. being other anti-symmetric products of the MOs than φHF. The subscripts

denote MOs that do not occur in the product anymore, while the superscripts denote MOs

that are included instead. The coefficients of the configurations, cai , c
ab
ij , are optimized. In

practice, the basis is neither complete nor are all possible excited configurations considered.

A typical example is the configuration interaction singles and doubles (CISD) method, for

which all singly and doubly excited configurations are taken into account.

3.2.2 The multi-configuration self-consistent field method

The minimum of a region of the potential energy surface which corresponds to a certain

chemical structure is called the equilibrium structure. This nuclear structure is often well

approximated by a single Slater determinant. During a reaction, it happens that the order

of the MO eigenvalues changes, or that two MO eigenvalues become equal (degenerate). If

the degenerate MOs are those corresponding to the highest eigenvalue of the occupied MOs

and those to the lowest eigenvalue of the unoccupied MOs, it is not sensible to use only

one Slater determinant. Such so-called multireference cases occur often at transition states,

i.e. at the nuclear structure corresponding to the maximum of the path of minimal energy

connecting reactants and product. An example for a multireference case is the transition

state of the double bond shift in clyclooctatetraene, discussed in section 4.1.

The method of choice in such situations is the multi-configuration self-consistent field

(MCSCF) method. In an MCSCF calculation the wave function is a linear combination of

different configurations,

φMCSCF =
∑
I

cIφI , (3.9)

where the (multi-)index I denotes the set of configurations. The expansion coefficients cI are

similar to the expansion coefficients cai , c
ab
ij , . . . of eqn. 3.8 for a CI calculation. Both denote

the coefficients for a superposition of selected configurations, and both are optimized during

the calculation. While for the CI calculation the coefficients are constructed systematically

by excited configurations, the choice of the configurations I for an MCSCF calculation is

guided by intuition or testing. However, in contrast to a CI calculation, for an MCSCF

calculation not only the expansion coefficients cI are optimized, but also the coefficients eij

(introduced below) from which the φMO
i are constructed.

If the number of included configurations is restricted (the active space), the calculation is

also called a complete active space self-consistent field (CASSCF) calculation. Within the

active space, all possible excitations are calculated, and thus the configuration interaction

calculation in this subspace is complete.

The MOs included in the active space are treated differently from the other MOs. It

may be necessary to improve the results further by inclusion of excitations from some or all

(valence) MOs, in order to achieve a balanced description of the system. Thus, subsequently

a configuration interaction calculation may be performed (multireference configuration

interaction, MRCI). Recent developments in the field of multireference methods can be found

in [205].

3.2.3 Electronic basis sets

The basis sets which are used to built the φMO
i are linear combinations of atomic orbitals. For

these atomic orbitals (AO) there are two common choices: Slater-type orbitals (STOs) and

Gaussian-type orbitals (GTOs). While interest in STOs (or rather Slater-type geminals) is

revived due to their superior performance in R12/F12-methods [211], GTOs are still mainly

used. In the following, only GTOs are considered, because all calculations presented in the
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next chapter are performed using those functions. However, the general statements hold for

STOs, too. More about basis functions and their use in quantum chemistry can be found

in [103] or in the documentation of quantum chemistry program packages, like Molpro [225].

The components of the basis set, the AOs φAO
j , are functions centered at a given nucleus.

They are itself composed of several functions, and their functional form is inspired by the

analytically known non-relativistic quantum mechanical solution of the hydrogen atom. It

is common to use the functions expressed in either a spherical or a Cartesian coordinate

system. In the former, the basis functions are products of a radial part and the spherical

harmonics. Thus, for a given angular momentum quantum number to be included there is

one s-type AO and there are 3 p-type, 5 d-type and 7 f-type AOs, etc.

In the latter, the AOs are built as

φAO
j (x) =

∑
k

xak1 xbk2 x
ck
3 exp(−dk(x2

1 + x2
2 + x2

3)) (3.10)

where the exponents ak, bk, ck ≥ 0 are chosen according to the angular quantum number the

respective φAO
j should represent. The possible ranges of the exponents are determined by

ak + bk + ck = 0 for s-type functions,

ak + bk + ck = 1 for p-type functions,

ak + bk + ck = 2 for d-type functions, (3.11)

etc. Thus, there is 1 s-type function, and there are 3 p-type, 6 d-type, 10 f-type, etc. functions.

Compared to the basis set in spherical coordinates there is a redundancy starting with d-type

basis functions. If this basis sets were used in the calculation, it would effectively result

in further s-type basis functions (see [103] for an explanation). Although typically (e.g. in

Molpro) by default the basis set in spherical coordinates is used for the calculations, the

output is often given in the basis set in Cartesian coordinates. Note that for the exponents

ak, bk, ck, dk, the index j was not given explicitly. These exponents are usually the same for

a given type of nucleus, but differ from nucleus to nucleus and should thus in principle also

carry the index j. The MOs φMO
i are linear combinations of the AOs,

φMO
i (x) =

∑
j

eijφ
AO
j (x−Xj). (3.12)

Here, Xj are the Cartesian coordinates of the respective nucleus around which the functions

are centered.

While the coefficients ak, bk, ck and the exponents dk are fixed, the coefficients eij are

varied in the determination of the MOs in a HF or a CASSCF calculation.

3.3 The static electron density in quantum chemistry

A one-electron density can be calculated from the complete electronic wave function as

ρ(x) =

∫
φ(q)φ(q)∗dx2 . . . dxn

∣∣∣∣
x1=x

. (3.13)

The selection of the coordinates x1 of the first electron is arbitrary. However, as the electrons

are indistinguishable, the result will be the same independent of the chosen electron. This

property is ensured by the anti-symmetry of the electronic wave function.

A nice way to calculate the density from the electron orbitals is given by the transformation
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to natural orbitals. These were introduced by Löwdin [128] and have desirable properties for

quantum chemistry calculations [61]. However, the reason they are discussed here is because

of their advantages in terms of the chemical interpretation of orbitals, and because of the

simple structure of the electron density in terms of natural orbitals.

In order to defined natural orbitals, first the density matrix ρ̃(x1,x2) is introduced. It is

given in terms of the MOs as

ρ̃(x1,x2) =
∑
i,j

fijφi(x1)φ∗j (x2). (3.14)

The matrix of the coefficients fij are the density matrix in the basis of the MOs. From the

density matrix the one-electron density is obtained as

ρ(x) = ρ̃(x,x). (3.15)

For a single determinant wave function eqn. 3.2, for example,

ρHF(x) =
1

n!

∫
det(φMO

i (xj)) det((φMO
i (xj))

∗)dx2 . . . dxn

∣∣∣∣
x1=x

=
1

n!

∫
det

(∑
k

φMO
i (xk)(φMO

k (xj))
∗

)
dx2 . . . dxn

∣∣∣∣∣
x1=x

=
1

n

n∑
i

φMO
i (x)(φMO

i (x))∗ (3.16)

by orthonormality of the MOs. Note that ρHF(x) is this case is normalized to 1, but more

common is the normalization to the number of particles,∫
ρ(x)dx = n, (3.17)

which for the HF wave function gives

ρHF(x) =

n∑
i

φMO
i (x)(φMO

i (x))∗. (3.18)

The HF density eqn. 3.18 is special, because the matrix fij in eqn. 3.14 is diagonal.

Consequently, the numbers fii are one if the orbital is included in the Slater determinant,

or zero if it is not. If the electronic wave function is a superposition of several Slater

determinants, like in the case of a CI calculation, fij is not diagonal anymore and the

interpretation of the diagonal entries is lost. However, fij may be diagonalized. This results

in the diagonal matrix gij and transformed orbitals φNO
i , such that

ρ(x) =
∑
i

giiφ
NO
i (x)(φNO

i (x))∗. (3.19)

The orbitals φNO
i are called natural orbitals and the numbers gii are called occupation

numbers. Note that the occupation numbers may be any number between 0 and 1, and the

sum in eqn. 3.19 in general includes all orbitals, not only the orbitals that were occupied

after a HF calculation.

If the electron density shall be used for analysis of chemical reactions, it is desirable

to have an electron density for each of the different types of electrons (e.g. core electrons,

valence electrons, or π-electrons). For this partitioning it is helpful if the density matrix

is diagonal, as otherwise mixed orbital contributions occur. Thus, natural orbitals are a
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sensible choice for calculations of the different densities. But there is an ambiguity: Because

in principle all natural orbitals have a non-zero occupation number, it may be difficult to

assign the orbitals to one of the chosen densities.

This problem does not occur if only a HF calculation is performed, but it does luckily also

not occur in a severe way for a CASSCF calculation. In the latter, only excitations within

the active space are considered. Thus, natural orbitals will have an occupation number of 0

or 1 for the inactive space, and only within the active space fractional occupation numbers

occur. Also, the active space is usually selected on basis of chemical reasoning, and these

electrons should usually be treated together anyway. Examples will be seen below, were the

active space was chosen to include all π-orbitals of carbon-carbon bonds in cyclooctatetraene

and benzene. Consequently, using all active space orbitals to define a partitioned electron

density is a sound choice.

Note that the electron density is a rather robust quantity. Although the energy and

equilibrium structure of a molecule may change drastically if corrections to the HF method

are included, it was found that the HF one-electron density (for the corrected structure) is

in very good agreement with the density obtained from the corrected wave function.

3.4 Time-dependent electron density and time-dependent

electron numbers

In the following, a one-electron density obtained from a quantum chemical calculation

performed at a nuclear configuration Q is denoted by ρQC(x,Q). The time-dependent

one-electron density in the Born-Oppenheimer approximation, for a ground state reaction

with nuclear wave function χ(t,Q), is defined as

ρ(t,x) =

∫
ρQC(x,Q)|χ(t,Q)|2dQ (3.20)

From the quantum chemical calculations for a set of values Q, the potential V (Q) and

the density ρQC(x,Q) are obtained. The potential is needed for the quantum dynamics

simulation which calculates χ.

Quantum chemical calculations may be computationally expensive. For the determination

of the time-dependent electron density, this gives rise to two issues:

• The nuclear quantum dynamics simulation is performed for a model with reduced

degrees of freedom Q. Because the potential V (Q) is a continuous function, in general

only few points Qi are needed for the nuclear dynamics. If necessary, further points

may be interpolated. However, the electron density ρQC(x,Qi) is only given at these

points, and depending on the form of χ more points might be necessary to obtain a

reliable time-dependent electron density, especially for multi-dimensional simulations.

• Quantum chemistry programs normally give ρQC on a user-defined grid, and thus ρ(t,x)

is necessarily given on the same grid. For integration of the density in a sector many

points might be necessary, and to check the convergence more than one grid size needs

to be stored. This storage demands quickly become too costly to be handled.

Consequently, it is desirable not to rely on the quantum chemistry program to calculate

the one-electron densities, but rather to have a tool which can built or integrate the electron

densities from the basis set coefficients. A set of Python [6] functions, the Magic Density

Creator, was written to satisfy this need. This tool was subsequently further developed by

Gunter Hermann and Vincent Pohl (Freie Universiät Berlin).
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The first issue, the interpolation of the densities, is still work in progress. All applications

presented later are effectively only one-dimensional, and thus the interpolation problem does

not occur. Consequently, this issue will not be further discussed here.

However, integration of the electron density in bonding sectors (sectors representing a

given chemical bond) have to be performed. All bonding sectors for the pericyclic reactions

to be discussed are “cake slices” as shown in Fig. 3.1. In this figure, a nuclear configuration

of benzene is indicated schematically, as well as the integration sector and the rectangular

grid. The integration sector Ω is defined such that its boundaries are perpendicular to the

molecular plane, pass through adjacent carbon atoms and cross at the nuclear center of mass.

For further analysis, the cylindrical coordinates r, ϕ, z are introduced as

x1 = r cosϕ

x2 = r sinϕ

x3 = z (3.21)

with z = 0 defined as the plane containing all nuclei.

φ

x1

x2

Figure 3.1: Representation of the equilibrium nuclear configuration of benzene (light blue
lines: bonds; dark blue dots: carbon atoms) with integration sector (yellow) indicated. Light
brown dots represent the grid on which the electron density is given, and the dark brown
square represents the volume the respective point represents.

The one-electron densities may be calculated on a grid in cylindrical coordinates. However,

for consistent representation of the density the number of points along the angular coordinate

ϕ has to increase with the value of the radial coordinate r, and a regular grid might be more

desirable. Thus, for all calculations a Cartesian grid along x is used. Such a grid is shown in

Fig. 3.1, and there are two issues which make integration on such a grid problematic:

1. Points close to the boundary of the bond sector may be counted as inside or outside of

the sector, but the volume they represent may be cut by the sector. In Fig. 3.1, such a

situation is shown with the dark brown square. The value of the electron density near

the nuclei is large, and the integration error due to this effect is significant. For a bond

sector this problem always occurs, because the sector boundaries pass right through

the center of one of the carbon atoms.

2. For a small sector with opening angle dϕ, the number of points included in this sector

52



3.4. Time-dependent electron density and time-dependent electron numbers

changes drastically along ϕ, as exemplified below.

Suitably chosen grids can solve the first issue in some cases, and in the cases discussed in

the following. If the boundary passes through a nucleus, it is enough to distribute the grid

symmetrical around the nucleus. For arbitrary nuclear configurations, an equidistant grid

may be symmetric around two of the nuclei, but in general not more. In the cases discussed

below, it is enough to center the grid around the two carbon nuclei at the boundaries to

obtain converged results. This is, however, only possible because the hydrogen atoms (two of

which are at the or close to the sector boundaries) have comparably little electron density.

Thus, the only general satisfying solution would be to use symmetry-adapted grids or more

sophisticated integration methods.

The second issue is best illustrated with an example. In the following, the calculations for

benzene in section 4.2 will serve as this example. There, a time-dependent one-dimensional

electron density

n(t, ϕ) =

∫ π/6

−π/6
|χ(t,Θ)|2

∫ ∞
0

∫ ∞
−∞

ρQC(x,Θ)rdzdrdΘ (3.22)

is used to analyze the electron dynamics. Note that x is given in Cartesian coordinates. The

angle Θ represents an effective nuclear coordinate, and is defined in section 4.2.2 (but of not

much interest for the present discussion). The n(t, ϕ) is obtained as follows:

• First the number of electrons in a sector ϕ ∈ [0, ϕ̃],

N(ϕ̃,Θ) =

∫ ϕ̃

0

∫ ∞
0

∫ ∞
−∞

ρQC(x,Θ)rdzdrdϕ (3.23)

was calculated numerically on some grid in ϕ̃, Θ and x. Ignoring the grid for x for the

moment, the number of electrons N was calculated for selected configurations Θj , and

integrated up to selected angles ϕ̃i. Consequently, for each nuclear structure Θj and

each upper bound ϕ̃i of the angular integration over the electron density, there is an

electron number

Nij =

∫ ϕ̃i

0

∫ ∞
0

∫ ∞
−∞

ρQC(x,Θj)rdzdrdϕ. (3.24)

• The ratio of number of electrons up to an angle ϕ̃i with the size of the angular space

ϕ̃i, that is Nij/ϕ̃i, is an approximation to the number of electrons for a given Θj in

the sector from ϕ̃i −∆ϕ̃/2 to ϕ̃i + ∆ϕ̃/2. The spacing ∆ϕ̃ is the (equidistant) spacing

of the electronic angular variable ϕ̃. Thus, the density of electrons at some angle ϕ̃ for

the nuclear structure Θj is∫ ∞
0

∫ ∞
−∞

ρQC(r, ϕ̃, z,Θj)rdzdr ≈
Nij
ϕ̃i

. (3.25)

• To obtain the discrete analog of n(t, ϕ), these numbers have to be weighted by the

probability to find the nuclear structure Θj . Using eqn. 3.25, the discrete analogue of

eqn. 3.22 is

n(t, ϕi) =: ni(t) =
∑
j

Nij
ϕi
|χ(t,Θj)|2∆Θj . (3.26)

The electron numbers Nij were computed on a different grid for each Θj , chosen such

that the grid x of ρQC(x,Θj) is symmetric around one (and by symmetry automatically

around a second) carbon atom. For the grid Cartesian coordinates x = (x1, x2, x3) were

used. The x3-range was fixed to xmin
3 = 0, xmax

3 = 8 a0, while the x1- and x2-range was
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varied within the approximate intervals xmin
1 ∈ [−8,−10] a0, xmax

1 ∈ [8, 10] a0 and xmin
2 ≈ 0,

xmax
2 ∈ [10, 8] a0. The number of points in the x1-, x2- and x3-range was 600, 275 and 275,

respectively. Thus, for each Θj the density was calculated in 45.375.00 grid points. The

deviation of the total number of electrons
∫
ρQC(x,Θj)dx from the number of electrons in

benzene (42 electrons, of which 30 are valence electrons, and six of these are π-electrons) is

less than 0.0003 electrons.

φ

n 
 π

0 π/4 π/2
0.4

0.8

1.2

1.6

3π/4 π 5π/4 3π/2 7π/4 2π

φ
x1

x2

Figure 3.2: The one-dimensional π-electron density n(0, ϕ) for the simulation of benzene,
described in section 4.2.4. The molecule has a nuclear structure like in shown to the left.
Orange line is a fit of the data using a Fourier series, while dark brown line (mostly covered
by the orange line) are the original data obtained from numerical integration.

Figure 3.2 shows n(t, φ) for t = 0, and for the π-electrons only. Due to the large number

of points and the suitably chosen grid there is little problem at the positions of the carbon

atoms (the maxima of the underlying smooth function). However, figure 3.2 shows that close

to ϕ = π/4 and 5π/4 there is a problem in the integration. While the original data (dark

brown) is mostly beneath the smoothed function, at this values the data is discontinuous.

Close inspection reveals that similar, but smaller deviations can be found at ϕ = 3π/4 and

7π/4.

po
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 / 

φ
 

0 π/212

26

φ

x 10000

Figure 3.3: Distribution of points per angle ϕ for a two-dimensional rectangular grid with
500× 500 points in the positive quadrant (i.e. the integral of this curve gives 250.000 points).

This behavior can be rationalized by taking into account the number of points which

belong to a sector ϕ ∈ [0, ϕ̃]. For example, in two dimensions the number of points up to

angle ϕ̃ can be estimated as

NPts(ϕ̃) = Floor

(
(xmax

1 )2 tan(ϕ̃)/2

∆x1∆x2

)
(3.27)

for ϕ̃ ≤ π/4 and

NPts(ϕ̃) = Floor

(
xmax

1 xmax
2 − (xmax

2 )2/ tan(ϕ̃)/2

∆x1∆x2

)
(3.28)
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for π/4 ≤ φ ≤ π/2. The function Floor(x) returns the closest integer smaller than x. Fig.

3.3 shows the change of the number of points with the angle, ∂ϕNPts(ϕ), for a grid with

500 points in both positive x1- and x2-direction (i.e. 250.000 points in the quadrant). This

function is periodic with period π/2. From the figure can be seen that there is a rise of

the number of points per angle up to ϕ = π/4, where the function has a cusp, and drops

thereafter. Thus, the integration can be expected to become instable close to this cusp, as

the number of points in this region of ϕ strongly depends on the value of ϕ.

This problem is illustrated in the calculated data of Fig. 3.2. The discontinuities are

expected to be the stronger the larger the difference between neighboring discrete values ϕi

is. Hence, at ϕ = π/4 and 5π/4 there are strong discontinuities because the slope of the

curve is strong, while at ϕ = 3π/4 and 7π/4 there are small discontinuities as the curve has

local minima there.

One remedy for this type of integration problems in the angular coordinate is to approx-

imate the function by a Fourier series. This can be done as the function is periodic in ϕ,

and because most of the points have a very good accuracy. The advantage of approximation

by a Fourier series is that this will approximate the function in the mean [62], and hence

deviations of the function in small regions will not affect the fit. As is the case in this

example, most points are of high quality and consequently the fit will yield a reliable result.

Also, the result is an analytical function, which can be handled easily. Figure 3.2 shows such

a fit of the points of figure 3.2 with a Fourier series of 70th order (orange line), obtained

using the Matlab [4] toolbox “Simple real Fourier series approximation” [210].

Another remedy, used for malonaldehyde and the formic acid dimer in chapter 4.3, is

an angular average: The numerical instabilities occur at certain angles ϕ in the electronic

coordinate space. Consequently, if the whole molecule is rotated by an angle ξ relative to the

space-fixed electronic coordinate system, the instabilities will be at the same angles ϕ, but

the graph of the one-dimensional electron density will be slightly shifted. By shifting the one-

dimensional electron density n by ξ, but in opposite direction to the rotation of the molecule,

the original electron density and the electron density obtained with the rotated molecule

should have the same graph. However, the region of numerical instability is effectively shifted

by the angle ξ. By performing the calculation of n for several different ξ and averaging the

results, the quality of the angular electron density n may be improved significantly.

For malonaldehyde and the formic acid dimer, it was necessary to make this angular

average with 20 calculations in the range ξ ∈ [0, π], and to fit the resulting one-dimensional

density to a Fourier series in order to obtain converged values for the fluxes.
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Chapter 4

Applications

4.1 Tunneling in cyclooctatetraene

4.1.1 Abstract

The first pericyclic model reaction to be investigated is the double bond shift in cyclooctate-

traene, in the tunneling limit. The reaction is shown schematically in Fig. 4.1. In the figure,

a top view of the molecule represented by the Lewis structures of the reactant (R) and the

product (P) configuration is depicted. Reactants and products have the same molecular

shape, but different orientation relative to a space-fixed coordinate system. They may be

distinguished by partial deuteration. The figure contains arrows indicating the possible

mechanisms that lead from R to P. It will be investigated what the arrows might represent

in a time-dependent picture using electronic fluxes.

R P

Figure 4.1: Lewis structures of the double bond shift in cyclooctatetraene from the reactant
(R) to the product (P) structure. The arrows in the R structures indicate the possible
mechanisms for electron rearrangement. Four colored triangles represent the sectors atributed
to carbon-carbon bonds. A border of one of the triangles starts in the nuclear center of
mass, passes through the respective carbon atom and continues to infinity. The sector itself
continues to infinity above and below the paper plane. Note that cyclooctatetraene is not
planar, and this is only a top view of the system.

Fig. 4.1 shows four equivalent sectors, which are attributed to the corresponding carbon-

carbon bonds. Initially, configuration R with carbon-carbon double bonds in the sectors is

assumed. After the rearrangement, the sectors will contain carbon-carbon single bonds. The

flux of electrons into or out of this sector represents the net electronic motion during the

reaction and can be used to interpret and quantify the arrows. It is especially interesting
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to partition the electron density chemically into pericyclic and other valence electrons, as

well as in core electrons, and to investigate how the different types of electrons behave. It

will be apparent that the pericyclic and the valence electrons move effectively into opposite

directions, with the pericyclic electrons following the central mechanism of Fig. 4.1. Moreover,

it will be shown that in total only very few electrons move during the reaction, in contrast

to the four times two electrons shifting as suggested by the Lewis structures.

4.1.2 The model cyclooctatetraene

Cyclooctatetraene with its eight π-like electrons is the prototypical anti-aromatical molecule

[188]. It has a tub-shaped equilibrium structure with D2d point group symmetry, depicted

schematically in Fig. 4.2. In the following, this molecule is used as a model system to

investigate the electronic motion indicated in Fig. 4.1, i.e., the interconversion of single and

double bonds in the Lewis structures. Specifically, the goal is to answer the questions: Which

of the mechanisms of Fig. 4.1 is correct? How much electrons flow? How do the different

chemical types of electrons (core, π-like/pericyclic and the other valence electrons) behave?

For the reaction shown in Fig. 4.1 to happen, the nuclear configuration should best be

close to planar. Experimentally, it is possible to prepare the cyclooctatetraene anion, which

is planar and has D4h point group symmetry [148]. Thus, if the anion is photoionized, the

molecule is prepared with a nuclear structure which corresponds to the left-hand side of

Fig. 4.1. The photoionization experiment of Wenthold et. al. [224], e.g. shows that the

corresponding mode is indeed active for some time before the molecule starts to distort back

to the equilibrium configuration. These findings are supported by calculations of the ground

state energy surface close to the respective D4h structure: Towards the D2d minima, the

potential surface close to the D4h ring inversion transition state (which is close to the nuclear

structure of the anion) is very shallow. For more information about the quantum chemical

calculations, see appendix D and [183].

Instead of simulating the dynamics after photoionization of its anion, tunneling dynamics

of cyclooctatetraene in the limit of zero temperature will be addressed. The advantage of

the tunneling model developed in the next section is that the results are mostly analytical,

and that it can already answer very well the questions posed above. The disadvantage is

that the kind of nuclear tunneling which will be considered happens on a time scale that is

far too long to be observed experimentally. However, the procedure can be applied to other

systems with observable proton tunneling as well, see [45].

First, the shape of the ground state potential energy surface of cyclooctatetraene needs to

be discussed. Only the qualitative features of the potential will be presented here. Appendix

D and [183] contain details of the quantum chemical calculations, and especially of the

determination of reliable barrier heights for the tunneling processes.

Fig. 4.2 shows the qualitative features of the ground state potential energy surface of

cyclooctatetraene that are of interest for the discussion. The potential is a symmetric

quadruple minimum potential which supports four equivalent equilibrium structures of

D2d nuclear point group symmetry. The two structures R1, R2 contribute both to the

R-configuration of Fig. 4.1, while the two structures P1, P2 contribute to the P-configuration.

The structures R1 and R2 as well as the structures P1 and P2 are connected by a ring

inversion coordinate, while transition from an R to a P structure happens, for energies close

to the barrier, along a double bond shift coordinate.

However, the dynamics in the tunneling regime will be subject of this part, for energies

sufficiently far below the barriers of ring inversion or double bond shift. The coherent

tunneling is described by the lowest four vibrational eigenstates of the potential, which are
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double bond shift
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Figure 4.2: Schematic representation of the ground state potential energy surface of cyclooc-
tatetraene along the coordinates of interest. The four equivalent minima correspond to the
structures R1, R2, P1 and P2 with D2d point group symmetry, respectively. The pairs R1,
R2 and P1, P2 are each connected by a ring inversion coordinate with transitions states
TSRRI and TSPRI of point group symmetry D4h, respectively. For the double bond shift
coordinate, the transition state TSDBS has D8h point group symmetry. There are two valley
ridge inflection points between TSDBS and TSRRI/TSPRI (not shown).
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delocalized over the four minima. Because of the large energy gap between the ground and

first excited state (ca. 386 kJ/mol [80]), it can be expected that the nuclear wave functions

are well described within the Born-Oppenheimer approximation.

4.1.3 A theory for coherent tunneling

For cyclooctatetraene, tunneling happens in a quadruple well potential, thus a tunneling

theory analogous to that of a double well potential (e.g. that of the ammonia inversion,

cf. [55]) shall be developed. Note that there is also a discussion about tunneling in a quadruple

minimum potential in [39]. To develop the tunneling theory for the quadruple well potential,

first the theory for the potential V (Q) being a symmetric double well is reviewed. Only

one reactant R and product P will be needed, which may be distinguished e.g. by spatial

symmetry breaking due to isotopic substitution. The situation of tunneling in a double well

will again be encountered in section 4.3.4, where the tunneling dynamics of the formic acid

dimer and malonaldehyde will be described by the same model.

Given is a symmetric double well potential V (Q). The lowest two nuclear eigenfunctions

χ+ and χ− of the potential V shall constitute a tunneling doublet with eigenvalues E+ and

E−. That means, the two states are almost degenerate bound states with different symmetry.

The function χ+ shall be gerade, while χ− denotes the ungerade eigenfunction with respect to

the symmetry of the potential. The localized reactant (χR) and product (χP) wave functions

are thus

χR(Q) =
1√
2

(χ+(Q) + χ−(Q))

χP(Q) =
1√
2

(χ+(Q)− χ−(Q)) (4.1)

with the same mean energy

Ē =
1

2
(E+ + E−) (4.2)

and with tunneling splitting

∆E = E− − E+. (4.3)

Consequently, the time-dependent wave functions are

χR(t,Q) =
1√
2

(χ+(Q)e−iE+t/~ + χ−(Q)e−iE−t/~)

χP(t,Q) =
1√
2

(χ+(Q)e−iE+t/~ − χ−(Q)e−iE−t/~) (4.4)

and the probability of finding configuration R at time t, given configuration R at time 0, is

PR(t) = |〈χR(0)|χR(t)〉|2 = cos2(∆Et/(2~)). (4.5)

Accordingly, starting with R at time 0, configuration P is observed at time t with probability

PP(t) = |〈χR(0)|χP(t)〉|2 = sin2(∆Et/(2~)). (4.6)

These probabilities oscillate with the tunneling time τ = ~/(2π∆E).

The time-dependent one-electron density in the Born-Oppenheimer approximation needs

to be determined, which can in principle be calculated from the one-electron densities

ρQC(x,Q) for each nuclear configuration Q as

ρ(t,x) =
x

ρQC(x,Q)|χR(t,Q)|2dQ, (4.7)

60



4.1. Tunneling in cyclooctatetraene

cf. section 2.5. However, calculation of the nuclear wave function χ shall be avoided. Thus,

instead of using eqn. 4.7, the time-dependent electron density is approximated by a sum of the

one-electron density at the reactant configuration, ρR, and that of the product configuration,

ρP, using the probabilities of finding the respective nuclear configuration. Specifically,

ρ(t,x) ≈ ρR(x)PR(t) + ρP(x)PP(t). (4.8)

The subscript QC for the static densities ρR and ρP is dropped, but these are the one-

electron densities obtained from a quantum chemical calculation at the respective nuclear

configuration.
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Figure 4.3: Schematic representation of the delocalized nuclear wave functions
χ++, χ+−, χ−+, χ−− (the eigenstates of the potential) and the localized nuclear wave func-
tions χR1, χR2, χP1, χP2. Each dot represents a local maximum in the nuclear density. For
the delocalized wave functions, the signs of the wave function are indicated by the orange
and blue color of the dots. Each of these plots consists of 16 dots in one plane and 16 dots in
a plane below. Single and double bonds are only used as guides for the structures. For the
localized wave functions, the dots at the broad end of the triangles are in one plane, while
those at the narrow end are in a plane beneath.

For cyclooctatetraene the situation is analogous, but four minima have to be taken into

account and two different tunneling processes (ring inversion and double bond shifting). One

of the minima is chosen as reactant configuration R1, and the other minimum, which is

obtained via ring inversion, is R2. The other two minima connected to these via double

bond shift are the product structures P1 and P2, respectively. There is a tunneling quartet

given by the lowest four nuclear eigenfunctions χ++ and χ+−, χ−+, χ−−, with eigenvalues

E++ < E+− < E−+ < E−−. The first subscript indicates gerade (+) or ungerade (-)

symmetry with respect to ring inversion, and the second subscript indicates that symmetry
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with respect to double bond shifting. The localized nuclear states are given by

χR1(Q) =
1

2
(χ++(Q) + χ+−(Q) + χ−+(Q) + χ−−(Q))

χR2(Q) =
1

2
(χ++(Q) + χ+−(Q)− χ−+(Q)− χ−−(Q))

χP1(Q) =
1

2
(χ++(Q)− χ+−(Q)− χ−+(Q) + χ−−(Q))

χP2(Q) =
1

2
(χ++(Q)− χ+−(Q) + χ−+(Q)− χ−−(Q)) (4.9)

with mean energy

Ē =
1

4
(E++ + E+− + E−+ + E−−). (4.10)

There is a tunneling splitting ∆EDBS and tunneling time τDBS for double bond shifting given

by

∆EDBS = E+− − E++ ≈ E−− − E−+ = ~/(2πτDBS), (4.11)

and another tunneling splitting ∆ERI and tunneling time τRI for ring inversion, given by

∆ERI = E−+ − E++ ≈ E−− − E+− = ~/(2πτRI). (4.12)

The small difference in the splitting of the first two and the second two states is neglected.

From the relation

∆VDBS > ∆VRI (4.13)

between the barriers for the respective processes, it is inferred that

∆EDBS � ∆ERI

τDBS � τRI. (4.14)

Following the same procedure as for the double well potential, the probabilities for finding

configuration R1 or R2,P1,P2 at time t, given there was configuration R1 at time 0, are

PR1(t) = |〈χR1(0)|χR1(t)〉|2 = cos2(2∆EDBSt/~) cos2(∆ERIt/(2~))

PR2(t) = |〈χR1(0)|χR2(t)〉|2 = cos2(2∆EDBSt/~) sin2(∆ERIt/(2~))

PP1(t) = |〈χR1(0)|χP1(t)〉|2 = sin2(2∆EDBSt/~) cos2(∆ERIt/(2~))

PP2(t) = |〈χR1(0)|χP2(t)〉|2 = sin2(2∆EDBSt/~) sin2(∆ERIt/(2~)), (4.15)

respectively. The probability of finding any of the two reactant or product configurations is

PR(t) = PR1(t) + PR2(t) = cos2(∆EDBSt/(2~))

PP(t) = PP1(t) + PP2(t) = sin2(∆EDBSt/(2~)). (4.16)

Note that the sums of these probabilities add up to one, i.e. one of the configurations will

definitively be found during a measurement. The average probability of finding any of the

four equivalent structures is 1/4.

The time-dependent one-electron density is again assumed to be well-described by a

superposition of the individual one-electron densities of the localized nuclear configurations,

weighted by the probability of finding these configurations, i.e.

ρ(t,x) ≈ ρR1(x)PR1(t) + ρR2(x)PR2(t) + ρP1(x)PP1(t) + ρP2(x)PP2(t). (4.17)
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4.1. Tunneling in cyclooctatetraene

Again, the one-electron densities ρR1 and ρR2, ρP1, ρP2 are related by symmetry transforma-

tions and may be obtained from quantum chemical calculations for the respective nuclear

configurations.

4.1.4 Fluxes during coherent tunneling

The electronic flux

F (t,Ω) = ∂t

∫
Ω

ρ(t,x)dx (4.18)

is the electron flow through the boundary of an observer volume Ω. The observer volumes for

the investigation of the reaction are shown in Fig. 4.1. They shall represent a carbon-carbon

bond, and are defined as follows: One D2d equilibrium structure is considered, and the plane

containing the centers of all carbon-carbon single bonds is the x1, x2-plane for the rectangular

coordinates x = (x1, x2, x3). The origin x is set to be the center of mass of the nuclei (and

also of the whole molecule, due to symmetry). Then the sector boundaries of the bond

sectors originate in (0, 0, x3), pass through the x1, x2-coordinates of one of the carbon atoms

and continue to infinity, for all values of x3. These “cake slices” are called bond sectors, as

they contain essentially one carbon-carbon bond (initially a double bond).

Using eqn. 4.17, the flux can be partitioned into a reactant and a product contribution,

F (t,Ω) = FR(t,Ω) + FP(t,Ω). (4.19)

As Fig. 4.1 shows, the bond to be monitored is a double bond for the reactants. Thus, the

observer volume is the bond sector Ω = ΩDB containing the double bond. The corresponding

flux for this volume is

FDB,R(t) = ∂t

(
PR1(t)

∫
ΩDB

ρR1(x)dx + PR2(t)

∫
ΩDB

ρR2(x)dx

)
= ∂t(PR1(t)NDB,R1 + PR2(t)NDB,R2). (4.20)

The NDB,R1, NDB,R2 are the numbers of electrons in the bond sector if the nuclear configura-

tion is R1 or R2, respectively. However, because ring inversion between R1 and R2 does not

change the number of electrons in the bond sector, NDB,R1 = NDB,R2 =: NDB,R, and hence

FDB,R(t) = NDB,R∂tPR(t)

= −NDB,R

2
(∆EDBS/~) sin(∆EDBSt/~). (4.21)

Following the definition of the sectors as in Fig. 4.1, there will be single bond in the observer

volume of the product. Thus, the bond sector for the product is Ω = ΩSB , and the respective

flux is

FSB,P(t) = NSB,P∂tPP(t)

=
NSB,P

2
(∆EDBS/~) sin(∆EDBSt/~) (4.22)

with the number of electrons in this sector,

NSB,P =

∫
ΩSB

ρP1(x)dx =

∫
ΩSB

ρP2(x)dx. (4.23)

To obtain the total flux, according to eqn. 4.19 the two contributions eqn. 4.21 and eqn. 4.22
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need to be added. Thus,

F (t,Ω) =
NSB,P −NDB,P

2
∆EDBS/~ sin(∆EDBSt/~). (4.24)

The electron yield is obtained by summation of the fluxes up to time t,

Y (t,Ω) =

∫ t

0

F (t′,Ω)dt′ =
NSB,P −NDB,P

2
(1− cos(∆EDBSt/~)). (4.25)

After half of the tunnel time of the double bond shift, the yield is

Y (τDBS/2,Ω) = NSB,P −NDB,P. (4.26)

This result is easily understood: At time τDBS/2, the initial R-configurations changes to

P-configurations. Thus, the number of electrons to move until then into or out of the bonding

sector has to equal the difference of the number of electrons in the initial and final bond

sector, NSB,P −NDB,P. Note that ring inversions do not play a role in the expressions for

the fluxes and yields from R to P, and back. However, these processes are of importance if

the population of a specific reactant or product R1 or R2, P1, P2, is observed.

4.1.5 Technical details

The one-electron densities are obtained using the program package Molpro [225]. A

CASSCF(8,8) calculation with an active space of eight π-like electrons in eight π-like orbitals

was performed. For this calculations, cc-pVTZ basis set [70] was used, and the reference

nuclear structure was optimized using an MRCI calculation with Davidson correction [116].

However, for the electron densities the CASSCF wave function calculated at the optimized

nuclear structure is used because then the density can be partitioned further, cf. section

3.3. With the optimized structure parameters the opening angle of a single bond sector is

0.753, and the opening angle of a double bond sector is 0.818. Consequently, the volume

of a single bond sector is 0.920 times the volume of a double bond sector. This seems

counterintuitive, as it might be expected that the single bond sector is larger than the double

bond sector, because the single bond length is larger (by a factor of 1.103) than the double

bond length. However, cyclooctatetraene is not planar: The double bond is perpendicular to

the x3-direction and thus to the sector boundaries, whereas the single bond is not. Thus, if a

top view of the system is drawn, the single bonds would look shorter than the double bonds.

Natural orbitals are used to partition the density into three groups: There are eight

carbon 1s core orbitals (“core”), eight carbon π-like orbitals (pericyclic orbitals, “peri”) and

16 other valence orbitals (“oval”), which include the carbon-carbon single bonds and the

hydrogen-carbon bonds. Thus, the total density is

ρR1(x) = ρcore
R1 (x) + ρoval

R1 (x) + ρperi
R1 (x). (4.27)

The fluxes due to the pericyclic density are expected to reproduce the shift of the double bonds

in the Lewis structures. For the calculation of the electron densities, a standard Cartesian

grid of 440× 440× 440 points with grid spacing of 2.6 pm was used. The decomposition of

the electron densities carries over to the electron numbers, and consequently to the fluxes

and yields.

The tunneling splittings for cyclooctatetraene are very small and thus difficult to obtain

numerically. However, they can be estimated using the semi-classical tunneling theory

of Miller [149] for double well potentials. Fig. 4.4 shows a sketch of a symmetric one-
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x1

E0
E

xx2 x3 x4

Figure 4.4: A generic one-dimensional double well potential V (x) as model for tunneling.
The energy E0 is the approximate energy of the first two eigenstates. These two states are
almost degenerate, and the tunnel splitting is the difference in energy between the two states,
centered around E0. x1, x2, x3 and x4 are the positions along the reaction coordinate x where
V (x) = E0.

dimensional double well potential V (x). The energy E0 corresponds to the unsplit eigenvalue,

and V (x1) = V (x2) = V (x3) = V (x4) = E0. The equation for the tunnel splitting ∆E is

eqn. 17 of [149],

∆E =
exp(−θ)
πn′(E0)

, (4.28)

with

θ =

∫ x3

x2

√
2µ(V (x)− E0)dx. (4.29)

The parameter µ is the mass of the (effective) particle. As E0 − V (x) is the kinetic energy

of the particle,
√

2µ(V (x)− E0) for V (x) > E0 is the imaginary momentum of a particle

passing from x2 to x3. Hence, eqn. 4.29 is the imaginary action integral for this motion. The

number n′(E0) is the first derivative of the integer n with respect to the energy, evaluated at

E0, where n is determined by the action from x1 to x2,(
n+

1

2

)
π =

∫ x2

x1

√
2µ(E0 − V (x))dx. (4.30)

For the tunnel splittings of ring inversion and double bond shift in cyclooctatetraene, the

tunneling potential is estimated by the forth-order polynomial function

V (x) = ax4 − bx2 (4.31)

for a, b > 0. The reduced mass to be used is µ = 2(mC + mH) in both cases, as there are

four CH-fragments moving against four CH-fragments. The distance traveled along the

coordinate x from the D2d equilibrium structure to the D4h transition state for ring inversion

is approximated as follows: The position of the carbon and hydrogen atoms is interpolated

linearly between the two structures along spherical coordinates. Then, for each configuration,

the position of the center of mass of the CH-group is calculated. This distance, 0.94 a0,

is taken as good approximation for the distance along x. For the distance from the D2d

equilibrium structure to the D8h transition state for double bond shift, the same value is used:

The distance traveled by the center of mass of the CH-groups would be a little bit smaller

than for ring inversion. However, there is a valley ridge inflection point (bifurcation) along

the intrinsic reaction coordinate [50]: Starting from the D8h double bond shift transition
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state, the structure of the molecule initially distorts towards the D4h ring inversion transition

state until the bifurcation point, see Fig. 4.2. Consequently, the distance for double bond

shift is a bit larger than that for ring inversion. However, in total the difference between the

D4h ring inversion transition state and the D8h double bond shift transition state is very

small, and thus this effect is neglected.

With these values and with the barrier heights the parameters for eqn. 4.31 can be

determined unambiguously. The stationary Schrödinger equation for this potentials is solved

by approximating the second derivative in the kinetic energy operator as (cf. [90])

∂2
xf(x) ≈ f(x+ ε)− 2f(x) + f(x− ε)

ε2
+O(ε2), (4.32)

and by diagonalizing the resulting kinetic and potential energy matrices using GNU Octave [1].

This gives the unsplit eigenvalue E0. Subsequently, the derivative of n with respect to E0,

n′(E0), is calculated approximately by using eqn. 4.30 with E0, and with the slightly shifted

value E0 + ε, as

n′(E0) ≈ n(E0 + ε)− n(E0)

ε
. (4.33)

The determination of the barrier heights is explained in appendix D. If the values of [80],

δERI = 12.4 kcal/mol and δEDBS = 13.2 kcal/mol, were used, the ratio of the tunneling times

would be
τDBS

τRI
= 5.3 (4.34)

with tunneling times τDBS = 7.0× 108 s and τRI = 1.3× 108 s. However, more accurate values

were calculated for the barrier heights than those previously known in the literature. With

these values, δERI = 10.5 kcal/mol and δEDBS = 17.19 kcal/mol, the ratio of the tunneling

times is
τDBS

τRI
= 8.1× 105 (4.35)

with τDBS = 1.6× 1012 s and τRI = 1.9× 106 s. Consequently, nuclear tunneling in cyclooc-

tatetraene for temperatures close to zero Kelvin is experimentally not observable. Also, the

tunneling time for ring inversion is orders of magnitude smaller than that for double bond

shifting (20 days vs. 52000 years).

It should be noted that the values for the tunneling times depend strongly on the chosen

distance that needs to be traveled: In [98], 1.7 a0 were used (in contrast to the 2× 0.94 a0

used here), and it was found with δEDBS = 13.2 kcal/mol a tunneling time for double bond

shift of τDBS = 1.9× 106 s. On one hand, for accurate tunneling times more sophisticated

methods need to be used, see e.g. [58,222]. On the other hand, the ratio of the two tunneling

times shows only little changes, because the effective distances traveled in both processes are

very similar. Nevertheless, the conclusion that this kind of tunneling cannot be observed

experimentally remains unchallenged.

Tunneling processes in chemistry are common, although often neglected [123]. In the

case of cyclooctatetraene, tunneling of the lowest quadruplet cannot be observed, but it may

be possible to observe tunneling of higher quadruplets. Also, the insights presented in the

next section are similar for other systems. For illustrative purposes, the ratio of tunneling

times of eqn. 4.34 is adapted. It should be kept in mind, though, that tunneling due to ring

inversion should be much faster than tunneling due to double bond shifting.
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4.1. Tunneling in cyclooctatetraene

4.1.6 Results

From the three possible mechanisms shown in Fig. 4.1 only the central mechanisms is possible:

The electron rearrangement happens in the electronic ground state, and thus the electronic

angular momentum expectation value is zero (see [134]). Consequently, the electrons have to

move in equal amounts through the two boundary surfaces of the bond sector. In this way

the effective number of electrons moving during the reaction can be easily determined. Note

also that there are eight half planes with zero net flux. The union of these planes corresponds

to the two times two mirror planes in the D4h symmetry perpendicular to the molecular

plane. The other two mechanisms of Fig. 4.1 are possible in excited electronic states, see

e.g. [26, 28,106,107].

t / τ DBS
0 0.5 1.0 1.5

0

1
0

1
0

1
0
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P P
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P R
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P P
1
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Figure 4.5: Brown, fast oscillating curve: Probabilities PR1 and PR2, PP1, PP2 that the
reactants R1,R2 or products P1,P2 (both converted into each other via ring inversion) are
observed given the initial state is R1. Orange, slow oscillating envelope: Corresponding
probabilities PR, PP to observe reactants or products of double bond shift, independent of
ring inversion. This picture is for ratio of the tunneling times τDBS/τRI = 5.3. Actually,
the ratio is in the order of 106, as explained in the text. The correct oscillation due to ring
inversion is much faster than that of double bond shift and could not be resolved in the
figure.

As a first step, the probabilities of finding the different configurations with the ratio of

the tunneling times eqn. 4.34 shall be analyzed. In Fig. 4.5, both the results of eqn. 4.15 and

eqn. 4.16 are shown. The probabilities PR and PP to find the reactants and products show

oscillations which correspond to the interconversion of the reactant to product and back,

R→ P→ R→ . . . . The probabilities to find the individual configurations, PR1, PR2, PP1, PP2,

have the same amplitude envelope but a faster oscillation period. This represents the ring

inversion process of both the reactants and products, i.e. R1 → R2 → R1 → . . . and

P1→ P2→ P1→ . . . , respectively. For the correct ratio of tunneling times, eqn. 4.35, the

oscillation due to ring inversion would be so fast compared to double bond shifting that the

whole double bond shift envelope would essentially be filled.

Next to the time-dependent probabilities of finding a particular nuclear configuration,

the second ingredient for the recipe to determine the reaction mechanism is the one-electron
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Figure 4.6: Isosurface plots of the electron densities of the pericyclic orbitals (orange/red,
with isosurface values 0.04/0.4 a−3

0 ), all valence orbitals (blue/green, with isosurface values
0.27/0.53 a−3

0 ) and all electrons (gray, with isosurface value 0.05 a−3
0 ). In green, the nuclear

configuration is also drawn for the reactants R1 and R2 (perspective and top view) intercon-
verted via ring inversion RIR and the products P1 and P2 (only top view) interconverted via
ring inversion RIP. Rearrangement from reactant to product takes place via double bond
shift. The bond sectors are indicated for R1 and P1.

density of the four configurations. These are depicted in Fig. 4.6 as transparent isosurface

plots for the different configurations. Each of those pictures shows an isosurface of all

electrons, one of the valence electrons and one of the pericyclic electrons. On the left side of

the figure, the reactants R1 and R2 are shown both as perspective side view and as top view.

In the side view, the effect of ring inversion can clearly be seen. The densities for the top

views look the same, which is in accord with the notion that for double bond shift the two

reactant Lewis structures do not differ. Thus, the bond sectors are equal, and consequently

also the electron numbers in this sector. The right side of Fig. 4.6 shows the top view of the

product structures P1 and P2. They also look the same, and their bond sector as well as

their electron number in the bond sector are the same.

It is interesting to look closely at the electron density isosurfaces. Clearly, there is more

electron density between carbon nuclei if there is a double bond in between them than if

there is a single bond. The pericyclic orbitals have both significant values at the carbon

atoms and between the carbon atoms connected by a double bond. Note also that the

hydrogens of a CH-group are not at the boundary of the bond sector, but that they are

mostly within the sector belonging to a single bond. Thus, when the density changes from

R to P, the electron density around these hydrogens will move inside the observer volume.

This should be observable in the electronic flux of the valence electrons. Note that it is not

straightforward to separate a CH-bond density from the other-valence density, because the

molecular orbitals cannot be easily separated.

Neutral cyclooctatetraene has 56 electrons in total, 16 of which occupy the eight carbon

1s core orbitals. Thus, there are 40 valence electrons, of which eight are the pericyclic (π-like)

electrons and 32 are other valence electrons. It holds for the electron numbers in the bond
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Figure 4.7: Electronic fluxes and yields for double bond shift during tunneling in cyclooc-
tatetraene for core electrons (“core”), pericyclic electrons (“peri”) and all valence electrons
except the pericyclic electrons (“oval”).

sectors that

4(NDB,R +NSB,P) = 56

4(N core
DB,R +N core

SB,P) = 16

4(Noval
DB,R +Noval

SB,P) = 32

4(Nperi
DB,R +Nperi

SB,P) = 8.

Integration of the density in the sectors gives

NDB,R −NSB,P = 2NDB,R − 56/4 = −0.47

N core
DB,R −N core

SB,P = 2N core
DB,R − 16/4 = 0.02

Noval
DB,R −Noval

SB,P = 2Noval
DB,R − 32/4 = −0.86

Nperi
DB,R −N

peri
SB,P = 2Nperi

DB,R − 8/4 = 0.37

From these numbers the electronic yields and fluxes may be calculated.

Fig. 4.7 shows the fluxes and yields for double bond shift of cyclooctatetraene. After half

the tunneling time, τDBS/2, there is net yield of -0.37 pericyclic electrons in the observer

volume of Fig. 4.6, i.e. there are 0.37 pericyclic electrons less in the volume. This is

qualitatively in accord with the picture of the reaction in terms of the Lewis structures,

because initially the volume contains a double bond, and finally it contains a single bond.

Thus, there are electrons moving out of the observer volume. As the mechanism is known by

symmetry, it can be concluded that there are 0.37/2 pericyclic electrons to be assigned to

one of the fishhook arrows for the central mechanism shown in Fig. 4.1. This is in contrast to

what the Lewis structures suggest: Instead of a total pericyclic movement of 4× 2 electrons,

only 4 × 0.37 = 1.48 electrons move. The reason for this small number is the delocalized

nature of the density. As can be seen in Fig. 4.6, there is significant pericyclic density also in

the sectors belonging to single bonds.
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The flux of the core electrons is negligible, as these are well localized at the carbon

atoms and have an almost spherical shape, which distorts little during the rearrangement.

Interestingly, the other valence electrons move into the opposite direction than the pericyclic

electrons. After τDBS/2, 0.86 other valence electrons have flown into the sector which morphed

from a double bond to a single bond. Thus, in total 0.47 electrons moved into the sector,

which seems to contradict the mechanistic view of the reaction so far.

This behavior of the other valence electrons can partly be explained by the fact that

density which may be assigned to the CH-bond is in the observer volume of the products,

but not in the observer volume of the reactants, cf. Fig. 4.6. But this is not the only effect,

as will be seen in the example of benzene in the next section: The other valence electrons

of the carbon-carbon bonds move indeed into opposite direction to those of the pericyclic

electrons. This effect is an interplay of the nuclear dynamics, which induces the electron

motion, and quantum chemistry, which partitions the electrons into classes depending on the

current nuclear configuration. In the example of the dynamics of benzene in chapter 4.2 this

is further discussed.

R P0.
18

0.
43

Figure 4.8: Mechanism for the double bond shift of cyclooctatetraene: Two possible mecha-
nisms are ruled out by symmetry and zero angular momentum constraint of the electronic
ground state. For the allowed mechanism, 0.37 π electrons flow out of the bond sector, while
0.86 other valence electrons flow into the bond sector. The figure shows the flow through one
of the boundaries of the sector. Note that the flow into the bond sector is not only due to
the carbon-carbon bonds but also due to the carbon-hydrogen bond.

Fig. 4.8 shows a summary of the results of the example of tunneling in cyclooctatetraene,

with respect to the questions posed in the introduction. Firstly, unidirectional reaction

mechanisms may be ruled out by the zero angular momentum constraint in the electronic

ground state. Secondly, it was found that only few electrons flow effectively, in contrast to

the number of electrons shifting as suggested by the Lewis structures. Thirdly, it was found

that the pericyclic electrons move as indicated by the reaction mechanism, but the other

valence electrons move into opposite direction.
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4.2 Dynamics along the Kekulé mode of benzene

4.2.1 Abstract

The second pericyclic model reaction to be investigated is a certain dynamics of the benzene

molecule, shown schematically in Fig. 4.9. An initial nuclear configuration is prepared which

resembles a Kekulé structure of benzene, i.e. a structure with alternating single and double

bonds. This structure is a non-equilibrium structure and thus there will be a time-dependent

nuclear and electronic density. The dynamics is expected to be initially as shown in Fig. 4.9,

i.e. one Kekulé structure will be converted to the other, and vice versa. This dynamics is to

be monitored and mechanistic details of the reaction mechanism are to be investigated.

Specifically, the motion of benzene along the Kekulé vibrational mode (the mode that

interconverts the two Kekulé structures) will be simulated using a quantum dynamics simu-

lation. Thus, first a model of reduced dimensionality needs to be set up, which can describe

this dynamics appropriately. The model yields a one-dimensional effective Hamiltonian that

describes the process. With this Hamiltonian, the time-dependent Schrödinger equation for

an initial state like the one shown in Fig. 4.9 can be solved and the time-dependent electron

density can be obtained.

Figure 4.9: Lewis structures of the dynamics of benzene along the Kekulé mode. The arrows
indicate the mechanism for electron rearrangement during the dynamics. Three colored
triangles represent the sectors attributed to carbon-carbon bonds, defined analogously to the
bond sectors used for cyclooctatetraene in section 4.1.1.

In Fig. 4.9, observer volumes are shown which indicate the bond sectors that are to be

monitored. However, because there is a nuclear wave packet, the time-dependent electron

density is a superposition of electron densities for different nuclear configurations. For each

nuclear configuration the bond sector is different, and consequently the total bond sector can

be thought of as being fuzzy (i.e. it has no sharp boundaries). Note that in Fig. 4.9 only one

reaction mechanism is shown: Again, as for cyclooctatetraene, other possible (uni-directional)

reaction mechanisms are ruled out from the beginning by the constraint of zero electronic

angular momentum in the electronic ground state.

Like for cyclooctatetraene in the previous section, the electron densities will be divided

into π- and other valence electrons in order to compare with the mechanism in terms of

Lewis structures. Because of the simplicity of the model new insights can be obtained. The

issue of different direction of the flux due to the pericyclic and the other valence electrons

can be illuminated further. It is possible to make dynamical statements, and it will be seen

that the electrons move effectively with different speed. The π-electrons are faster than the

sector boundary, while the other valence electrons are slower. Consequently, the net flux into

or out of the observer volume can be interpreted in terms of these dynamical phenomena.
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4.2.2 The Kekulé mode

In contrast to cyclooctatetraene as anti-aromatic system, benzene is the prototypical aromatic

molecule. Thus, instead of a low symmetry equilibrium structure with localized alternating

single and double bonds, in the equilibrium structure of benzene the carbon (and the hydrogen)

nuclei constitute a regular hexagon. Nevertheless, a process similar to the double bond shift

in cyclooctatetraene is to be investigated, which will be initialized by a non-equilibrium

initial condition. In contrast to the tunneling model in the previous section there is thus

dynamics with an energy which is significantly above the ground state energy.

Fig. 4.9 shows the process to be studied in terms of Lewis structures. Benzene is to be

prepared in a situation describable by a Kekulé structure, that is, with alternating single

and double carbon-carbon bonds. There are two conceptually different ways of realizing

this Kekulé structure of benzene: On one hand, a Kekulé structure may be prepared by a

superposition of sensibly chosen electronic states, such that the electronic structure resembles

the electronic structure indicated by the Lewis structures. Ulusoy and Nest describe such a

possibility in [214], for a case where the nuclei can be considered to stay at the equilibrium

configuration (at least for a short time). On the other hand, benzene may be forced into a

Kekulé structure by the position of the nuclei. Specifically, a non-equilibrium nuclear wave

packet may be prepared along the Kekulé vibrational mode, realizing the indicated single and

double bonds via the distance of the carbon atoms from each other. As shown below, indeed

for such a nuclear configuration the π-orbitals will show a depletion if the carbon atoms are

farther away from each other and an accumulation if the carbon atoms come closer together.

It is this dynamics that will be the topic of the current chapter, as electron dynamics induced

by nuclear dynamics in the electronic ground state. However, later the model will also be

compared with the excited state dynamics as simulated by Ulusoy and Nest.

Before even starting to model the system, one peculiarity of the quantum description of

the process shall be brought to attention: Initially, the dynamics of the nuclear wave packet

along the Kekulé mode will represent the interconversion from one of the two possible Kekulé

structures with point group symmetry D3h to the other Kekulé structure via a configuration

with equal bond lengths of D6h symmetry. However, the nuclear dynamics is described

quantum mechanically and the nuclear potential along the considered mode is not exactly

harmonic, as shown below. The D3h symmetry elements will always stay intact, as each

possible nuclear configuration along the coordinate has this symmetry elements. But the

nuclear wave function of the molecule will never have D6h symmetry, because the nuclear

wave function will never by symmetric with respect to the equilibrium configuration (the

position expectation value, though, will at some time have D6h symmetry again). The more

the nuclear density differs in shape from a Gaussian, the less will the Lewis structures be an

appropriate representation of the process. Especially for longer time scales, the dynamics

will become more complicated and more difficult to analyze in terms of these simple pictures.

It would also be not adequate to use a one-dimensional model anymore, because other

vibrational modes would start to become important.

4.2.3 A model Hamiltonian

At first, a model Hamiltonian needs to be set up which can be used with the time-dependent

Schrödinger equation for the propagation of the nuclear wave packet. The distortion of one

Kekué structure into the other needs to be described and an appropriate coordinate is needed.

A suitable choice is the angle Θ shown in Fig. 4.10. This angle represents the displacement

of all carbon atoms from their equilibrium position (Θ = 0, brown structure), and it shall

be counted positive in the indicated direction. For later convenience, the absolute value
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4.2. Dynamics along the Kekulé mode of benzene

of Θ is defined to be twice the displacement of one of the carbon atoms from equilibrium,

indicated as the yellow area in the figure. There is another such angle for the hydrogen

atoms. However, in the model to be used the angle Θ for the carbon nuclei and that for

the hydrogen nuclei will be set equal, such that the origin, each carbon nucleus and its

corresponding hydrogen nucleus are on a straight line.

Figure 4.10: Angle Θ parameterizing the Kekulé mode. A change in Θ corresponds to the
indicated collective motion of the carbon and hydrogen atoms relative to their equilibrium
position (brown structure, Θ = 0). Θ is positive if the motion is directed as indicated, and
negative if the motion is in opposite direction relative to the equilibrium structure. The
value of Θ corresponds to twice the displacement of one CH-group (indicated by the yellow
areas), and Θ ∈ (−π/3, π/3).

The model Hamiltonian is derived as follows: First, the potential is expanded to second

order in the displacement of the nuclei along Θ. This expansion automatically incorporates

the symmetry implied by motion along the Kekulé mode. Subsequently, the potential matrix

will be diagonalized, which will keep the kinetic energy matrix also diagonal. This method

resembles vibrational normal mode analysis, with the difference that the resulting coordinate

is not rectilinear (as normal modes generally are) but curvilinear (an angle). While this

approach is straightforward, extension of the model to include further degrees of freedom is

rather difficult due to the intuitive, but unsystematic nature of the approach. Additionally,

the other modes which are neglected are unknown.

Thus, in Appendix C another method is presented which can be used to obtain curvilinear

coordinates tailored to constrained, highly symmetric molecular systems, like benzene or

also cyclooctatetraene. The route followed in Appendix C is to explicitly set up Jacobian

coordinates, express them in terms of spherical coordinates and combine the angles and

distances in a symmetry-adapted way. The kinetic energy operator of this section is also

derived in Appendix C, and possible extensions of the model are immediately apparent.

In the model at hand, the carbon nuclei are constrained to move along a circle with fixed

radius around the nuclear center of mass. The displacement of the carbon atoms from their

equilibrium position at the corners of a regular hexagon is measured by an angle Θi for

carbon i, with Θi = 0 being the equilibrium position. All Θi are counted positive in the

same direction, say, counter-clockwise. The hydrogen atoms are constrained to another circle

with larger (fixed) radius and the hydrogens have the same Θi as the corresponding carbon

nucleus they are attached to. Thus, it is assumed that the light hydrogens adopt to the

motion of the heavy carbon nuclei quickly and that vibrations of the carbon-hydrogen bonds

73



Chapter 4. Applications

are fast.

The displacements of the CH-groups from their equilibrium positions Θi for group i can

be written as a vector Θ = (Θ1, . . . ,Θ6). Expansion of V at the minimum to second order

in the angles yields

V (Θ) =
k

2

(
(Θ2 −Θ1)2 + (Θ3 −Θ2)2 + (Θ4 −Θ3)2

+ (Θ5 −Θ4)2 + (Θ6 −Θ5)2 + (Θ1 −Θ6)2
)

=
k

2
ΘMΘT (4.36)

with the matrix M defined as

M =



2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2


(4.37)

and with ΘT denoting the transpose of the row vector Θ, i.e., the respective column vector.

The constant k is the same for all angles due to the symmetry along the mode. The next

step is to make the similarity transformation

ΘMΘT = ΘKTKMKTKΘT = ΘKTΛKΘT = Θ̃ΛΘ̃T, (4.38)

where Λ = diag(0, 1, 1, 3, 3, 4) is the diagonal matrix of the eigenvalues of M , and where

the rows of the matrix K are the eigenvectors of M to the respective eigenvalues. Thus

KKT = KTK = 1. For the two doubly-degenerate eigenvalues there is some freedom in

choosing the independent eigenvectors. The choice taken here is

K =



a a a a a a

b −b −c −b b c

1/2 1/2 0 −1/2 −1/2 0

−1/2 1/2 0 −1/2 1/2 0

−b −b c −b −b c

−a a −a a −a a


(4.39)

with a = 1/
√

6, b = 1/(2
√

3) and c = 1/
√

3. For the symmetry implied by the Kekulé

mode, the absolute value of all the Θi is the same, but the signs differ. Specifically,

Θ1 = Θ3 = Θ5 = −Θ2 = −Θ4 = −Θ6 =: Θ/2. Using this symmetry, the new angles Θ̃

become

Θ̃ = ΘKT = (0, 0, 0, 0, 0,
√

3/2Θ). (4.40)

The potential V takes the form

V = 6
k

2
Θ2. (4.41)

Consequently, for the Kekulé mode the potential is six times a harmonic oscillator potential

with force constant k.

The new coordinates Θ̃ diagonalize the potential energy and they also keep the kinetic
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energy diagonal. The expression for the kinetic energy operator in the old coordinates,

T = − ~2

2mCHr2
CH

∑
i

∂2
Θi
, (4.42)

needs to be transformed to the new coordinates Θ̃k. Here, mCH denotes the mass of a

CH-group, and rCH is the distance from the origin to the center of mass of the CH-group.

Application of the chain rule for the derivative yields (see [100])

T = − ~2

2mCHr2
CH

∑
i

∂2
Θi

= − ~2

2mCHr2
CH

∑
i,k,l

(
∂Θ̃k

∂Θi

∂

∂Θ̃k

)(
∂Θ̃l

∂Θi

∂

∂Θ̃l

)

= − ~2

2mCHr2
CH

∑
i,k,l

Kik
∂

∂Θ̃k

Kil
∂

∂Θ̃l

= − ~2

2mCHr2
CH

∑
k,l

(∑
i

KikKil

)
∂

∂Θ̃k

∂

∂Θ̃l

= − ~2

2mCHr2
CH

∑
k,l

δkl
∂

∂Θ̃k

∂

∂Θ̃l

= − ~2

2mCHr2
CH

∑
k

∂2

∂Θ̃k

. (4.43)

For the symmetry constraints of the Kekulé mode, the kinetic energy operator simplifies to

T = − ~2

2µr2
CH

∂2

∂Θ2
(4.44)

with µ = 3mCH/2, the reduced mass of three times two masses moving against each other.

The model Hamiltonian for the Kekulé mode thus reads

H = − ~2

2µr2
CH

∂2

∂Θ2
+
k

2
6Θ2. (4.45)

In the following, however, instead of the harmonic potential the potential V obtained by

quantum chemical calculations will be used. Note that this approach is essentially the same

as followed by normal mode analysis, although it was chosen to work with angles instead

of rectilinear coordinates. Thus, the definition of the Kekulé mode here is the same as

the Kekulé normal mode for small displacements. Also, if the model is treated as being

only one-dimensional, coupling to other modes is assumed to be unimportant and is thus

neglected.

For the potential V along Θ complete-active space self-consistent field calculations with

six electrons in six π-orbitals (CASSCF(6,6)) were performed using the program package

MOLPRO [225], with a cc-pVTZ basis set [70]. Although V (Θ) is also well described with

single-reference methods like CCSD(T) [91], using CASSCF(6,6) makes the partition of the

electron densities in core, π- and other valence electron densities possible, as explained in

section 3.2. Fig. 4.11 shows a comparison of the CASSCF(6,6) result, the CCSD(T) potential

and a harmonic fit around the minimum of the CASSCF(6,6) curve. The density of the

initial nuclear wave packet is also shown, which is centered around Θ = −5 ◦. During the

nuclear dynamics, the density of the wave packet will be negligible for |Θ| > 10 ◦. Thus, Fig.

4.11 shows that the potentials do not differ much in the region the wave packet explores,

but for values of |Θ| ≈ 10 ◦ there is already a notable deviation of the quantum chemical
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potential from the harmonic fit. The effect of the anharmonicity of the potential will become

apparent in the nuclear wave packet dynamics, c.f. Fig. 4.14. The harmonic fit corresponds

to a vibrational period of 25.5 fs, which compares reasonably well with the vibrational

period of the corresponding normal mode, ca. 28 fs (obtained with a CASSCF(6,6)/cc-pVTZ

calculation).

h
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0.1

0.2
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Figure 4.11: CASSCF(6,6) (yellow) and CCSD(T) (brown) potential energy surface V along
the Kekulé mode defined in the text, for a cc-pVTZ basis set, and harmonic fit of V around
the minimum (blue). The black curve shows the initial wave packet, shifted on the energy
scale to its initial total (= potential) energy expectation value. Lewis structures denote
schematically the nuclear configurations belonging to Θ = ±5 ◦, respectively.

The time-independent and time-dependent solutions of the Schrödinger equation with

the one-dimensional model Hamiltonian were calculated numerically with the Matlab [4]

program package WavePacket [184]. For determination of the ground state of V (Θ), the

Fourier grid Hamiltonian method was used, while the propagation was performed with the

split-operator method, both as implemented in WavePacket.

4.2.4 Results

In the following, first the time-independent one-electron densities along the Kekulé mode

are investigated. Thereafter, the nuclear wave packet dynamics is analyzed. From these two

ingredients, the time-dependent one-electron density is constructed. Finally, the electron

rearrangement is discussed using the number of electrons in the bond sector, the electronic

fluxes and a reduced one-dimensional electron density along an angular coordinate.

As initial nuclear wave packet χ(0,Θ) a shifted ground-state wave function was chosen.

Due to the almost harmonic nature close to the minimum the ground-state wave function

of the potential V (Θ) has the shape of a Gaussian. This function is shifted such that its

center (as well as its initial position expectation value) is located at Θ = -5 ◦. The initial

nuclear density |χ(0,Θ)|2 is shown in Fig. 4.11. At the equilibrium structure, benzene has a

carbon-carbon bond length of 139.5 pm. At Θ = -5 ◦, the carbon-carbon bonds have bond

lengths of 128.9 pm and 150.0 pm, respectively.

Like in the case of cyclooctatetraene, the total electron density is partitioned into core,

pericyclic and other valence electrons. Because the pericyclic electrons are the π-electrons,
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4.2. Dynamics along the Kekulé mode of benzene

Figure 4.12: Perspective view on the one-electron densities belonging to Θ = -5 ◦ and 5 ◦.
Violet transparent surface is an isosurface for the valence electron density ρval

QC, while the
light orange surface is an isosurface for the π-electron density ρπQC (both with an isosurface

value of 0.05 a−3
0 ).

instead of the label “pericyclic” the superscript π is used. For the static one-electron densities

obtained from a quantum chemical calculation at the nuclear configuration Θ

ρQC(x,Θ) = ρcore
QC (x,Θ) + ρπQC(x,Θ) + ρoval

QC (x,Θ). (4.46)

The valence electron density is thus

ρval
QC(x,Θ) = ρπQC(x,Θ) + ρoval

QC (x,Θ). (4.47)

There are 42 electrons in total, of which 12 are core electrons (the carbon 1s electrons), 6 are

π electrons and 24 are other valence electrons.

In Fig. 4.12 isosufaces of the π- and valence electron densities, ρπQC and ρval
QC, are shown

for Θ = ±5 ◦, i.e. for the nuclear structure representing the center of the initial nuclear

wave packet and for the corresponding symmetry-equivalent structure. As can be seen from

the figure, the respective Lewis structures for these configurations are indeed the Kekulé

structures with alternating single and double bonds. There is a build-up of π-electron density

between every second carbon-carbon bond. As shown below, the amount of π-electrons in

the region between two carbon atoms is, however, only about 0.2 electrons larger for a double

bond sector compared to a single bond sector. This is understandable, as on one hand there

is significant electron density distributed symmetrically around the carbon nuclei, and on

the other hand the electron density is also rather delocalized.

Figure 4.13: For left to right: Top views of the π-electron density ρπQC at Θ = 5 ◦ for

isosurface values 0.01, 0.05 and 0.10 a−3
0 , and side view for the isosurface value 0.10 a−3

0 . In
the top views, the nuclear configuration is indicated by hexagons.

Both effects are illustrated in Fig. 4.13. In the figure, top views on the π-electron density

are shown for different isosurface values together with the position of the nuclei. Also, a side
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view is shown for the largest isosurface value. As can be seen from the top views, for small

isosurface values it becomes apparent that the density is distributed around the whole ring.

For large isosurface values, it can be seen that there is significant electron density localized

close to the nuclear positions. This density seems to be distributed almost spherically around

the carbon nuclei. However, the side view shows that there are two such balls for each carbon

nucleus, one above the nuclear position and one below. The fact that significant π-electron

density is localized close to the nuclei will also be seen later, when an integrated one-electron

density is used along ϕ for the electronic coordinates expressed in cylindrical coordinates,

x = r, ϕ, z.
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Figure 4.14: Time evolution of the nuclear density |χ(t,Θ)|2.

The time evolution of the nuclear density |χ|2 for the first 60 fs is depicted in Fig. 4.14.

If the potential was perfectly harmonic, a wave packet with initially Gaussian shape would

stay Gaussian, and the expectation value 〈χ(t)|Θ|χ(t)〉 would follow the trajectory of a

classical particle in the same harmonic potential [208]. The initial wave packet is almost of

Gaussian shape, and the potential is also similar to a harmonic potential, cf. Fig. 4.11. From

Fig. 4.14 can be seen that during the considered time interval the shape of the wave packet

does not distort much from the initial Gaussian shape, and that the expectation value of

Θ oscillates back and forth between the two values Θ = −5 ◦ and Θ = +5 ◦, with a period

of about 24 fs. Nevertheless, effects of the anharmonicity of the potential are apparent in

the density. For example, a Gaussian density in a harmonic potential with initially zero

momentum expectation value would have its maximal amplitude either at the turning points

or at the center of reflection of the potential, or it would keep its shape. In the first case,

the width of the Gaussian is larger than the lowest eigenstate of the potential, while in

the second case it is smaller. The third case happens whenever the Gaussian has the same

parameters as the lowest eigenstate. As can be seen from Fig. 4.14, the density of the shifted

ground state of the wave packet has its maximal amplitude 2-3 fs after the beginning of the

propagation. Also, the approximate symmetry of the wave packet with respect to Θ = 0

is little pronounced. For longer propagation times, stronger shape changes away from the

Gaussian shape happen, as can be seen already at about 50 fs, where additional structure

appears in the density. However, for longer times coupling to other vibrational degrees of

freedom would become increasingly important, and the one-dimensional model would be

inappropriate. For the considered time interval, Kekulé structures can still represent the

nuclear configurations at the turning points of the nuclear wave packet. These structures

are shown at the top of Fig. 4.14. Thus, the dynamics up to about 60 fs indeed represents

interconversion of the Kekulé structures.
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The time-dependent one-electron density is obtained as

ρ(t,x) =

∫
|χ(t,Θ)|2ρqc(x,Θ)dΘ. (4.48)

Via eqn. 4.46 and eqn. 4.47, this density is also composed of densities for core, π-, and other

valence electrons as

ρ(t,x) = ρcore(t,x) + ρval(t,x) = ρcore(t,x) + ρπ(t,x) + ρoval(t,x). (4.49)

For analysis of the electron density it is suitable to use cylindrical coordinates x = (r, ϕ, z).

The definition of the angular coordinate ϕ ∈ (−π, π] is shown in Fig. 4.15.

φ <0
0

φ > 0
1

φ=0

Figure 4.15: Definition of the angle ϕ and the bond sector (yellow), extending from ϕ0 to ϕ1.
As shown in brown, ϕ = 0 corresponds to one of the mirror planes of the molecule.

For the analysis of the electron dynamics two routes will be followed: the complete time

evolution along the angle ϕ will be investigated, and the space x will be partitioned into bond

sectors for which electronic fluxes can be calculated. As the interesting part of the dynamics,

i.e. the part that determines the reaction mechanism, is along the angular coordinate ϕ, the

one-electron density is integrated over r and z. The time-independent electron number in a

sector from ϕ0 to ϕ1, for a given nuclear configuration Θ, is given by

Ñ(ϕ1, ϕ0,Θ) =

∫ ϕ1

ϕ0

∫ ∞
0

∫ ∞
−∞

rρQC(r, ϕ, z,Θ)dzdrdϕ. (4.50)

A bond sector is a sector which starts at the angle ϕ0 being the angle belonging to one

carbon atom and ends at the angle ϕ1 belonging to the adjacent carbon atom. Such a bond

sector is shown in Fig. 4.15, and it is called a static bond sector.

The static bond sector is defined for a given nuclear configuration Θ, because the opening

angle between two adjacent carbon atoms changes with Θ, cf. Fig. 4.10. The sector boundaries

are thus functions of Θ, i.e. ϕ0 = ϕ0(Θ) and ϕ1 = ϕ1(Θ), if ϕ0 and ϕ1 are the boundaries of

the static bond sectors. The time-dependent electron density eqn. 4.48 is a superposition of

the static electron densities for all possible configurations Θ weighted by the probability of

finding the respective configuration |χ(t,Θ)|2. For the time-dependent electron density a

(dynamic, time-dependent) bond sector is thus also the superposition of all possible static

bond sectors, weighted by the probability of finding the respective nuclear configuration.

Thus, a time-dependent electron number for such a bond sector can be defined as (see

also [12])

N(t) =

∫ π/3

−π/3
|χ(t,Θ)|2Ñ(ϕ1(Θ), ϕ0(Θ),Θ)dΘ. (4.51)

The functions ϕ1(Θ) and ϕ0(Θ) are defined such that Ñ(ϕ1(Θ), ϕ0(Θ),Θ) is the number of

electrons in the static bond sector for the given nuclear configuration Θ. One may also think of

N(t) as being obtained from a sector defined for the time-dependent electron density, but with
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smooth boundaries determined by the nuclear density. Of course, due to the decomposition

of the electron densities in core and valence (i.e. π- and other valence) electrons, there are

separate time-independent electron numbers Ñ core and Ñval = Ñπ + Ñoval, and thus also

separate time-dependent electron numbers N core and Nval = Nπ +Noval.

Because the electronic rearrangement is cyclic, it is reasonable to define a reduced time-

dependent one-electron density along the angle ϕ only. This density, n(t, ϕ), can be obtained

either from the time-dependent electron numbers Ñ or from the static electron densities as

n(t, ϕ) =

∫ π/3

−π/3
|χ(t,Θ)|2 ∂Ñ(ϕ̃, ϕ,Θ)

∂ϕ̃

∣∣∣∣∣
ϕ̃=ϕ

dΘ

=

∫ π/3

−π/3
|χ(t,Θ)|2

∫ ∞
0

∫ ∞
−∞

ρQC(r, ϕ, z,Θ)rdzdrdΘ. (4.52)

Again, due to the decomposition of the electron densities there exists different reduced

electron densities for the different types of electrons, i.e. ncore and nval = nπ + noval. Note

that the time-dependent electron numbers N cannot be obtained from the reduced densities

n, because the integral over Θ is already performed in eqn. 4.52, but the angles ϕ were kept

independent from Θ.
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Figure 4.16: Deviation of the time-dependent electron numbers N(t) in the bond sector for
valence, π and other valence electrons, relative to their values at equilibrium.

At the equilibrium configuration Θ = 0 of benzene, the electron density ρQC(x, 0) in the

bond sector amounts to seven electrons in total. Two of those electrons are core electrons,

while one of those electrons is a π electron. This statement is also true for the electron

density ρ(x, t) corresponding to the ground-state nuclear wave function, because the nuclear

density has mirror symmetry with respect to Θ = 0. Consequently, at equilibrium there is

Nval = 5, Nova = 4 and Nπ = 1.

Fig. 4.16 shows the calculated time-dependent electron numbers Nval, Nova and Nπ of

the bond sector for the nuclear dynamics of Fig. 4.14. The electron numbers oscillate around

their equilibrium values. Core electrons are not shown, as these do not move with respect to

the sector boundaries but follow the motions of the carbon atoms closely, and thus N core = 2

all the time during the propagation. From the graph of Nval the behavior anticipated from

the description of the process in terms of Lewis structures can be found: Initially, the bond

sector contains a double bond, hence electrons leave the sector until the nuclear wave packet

reaches its turning point, at t ≈ 12 fs. Then electron density returns back inside the bond

sector, until it reaches its initial value of 0.033. Thus, in total 4× (2× 0.033) = 0.264 valence

electrons move within the first 12 fs for the three equivalent bond sectors.

However, during the first half of a period of oscillation 0.199 π electrons move out of the
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double bond sector into the nascent double bond sectors. Thus, the other valence electrons

have to compensate, moving effectively into the direction opposite to those of the π-electrons.

The effect is apparent form figure 4.16, where it can be seen that the other valence electrons

move into the section of the nascent single bonds. As discussed before, similar effects are

found for cyclooctatetraene and also for semibullvalene, see [12], but were in both cases

originally attributed to hydrogen atoms moving into the nascent single bond sectors. However,

as already indicated in the discussion of cyclooctatetraene, this is not the only effect. In the

benzene model, the hydrogen atoms are constrained to the sector boundaries, and thus they

do not move into or out of the bond sector during the time evolution.

It shall be remarked that the oscillations of Nval and Nπ, Noval closely follow the

oscillations of the nuclear wave packet, cf. Fig. 4.14. However, effects of the anharmonicity

of the potential are negligible for the electron numbers, at least within the considered time

interval.
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Figure 4.17: Electronic fluxes F (t) into or out of the bond sector for valence, π and other
valence electrons.

Electronic fluxes may be calculated from the time-dependent electron numbers. While

both quantities have in principle the same information content, the fluxes show more details

about the electronic motion. Specifically, the fluxes into or out of the bond sector are

calculated as

F (t) = ∂tN(t). (4.53)

These are shown in Fig. 4.17. Interestingly, the π-electrons behave differently than the other

valence electrons: While for the π electrons there is an approximately linear increase of the

absolute value of the flux up to the maximum, a sharp peak and then linear decrease of

the absolute value of the fluxes again, for the other valence electrons the change in slope

is smoother. Thus, for the other valence electrons, the curvature close to the maximum is

not as strong. This behavior is also visible in the fluxes of all valence electrons. Initially,

there is not much flux as the contributions of π and other valence electrons approximately

cancel each other. However, the π electron flux eventually dominates and the slope of the

flux changes strongly. Note also that the electronic fluxes show a small but notable decrease

in amplitude during the time evolution due to the anharmonicity of the potential and the

corresponding dispersion of the nuclear wave packet.

Another tool to monitor the progress of the electron rearrangement is the reduced electron

density n(t, ϕ) along ϕ. This function is shown for the π- and the other valence electrons in
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Fig. 4.18, where both nπ(t, ϕ) and nova(t, ϕ) are plotted. The functions n are periodic in

ϕ with a period of 2π/3, and only one period is depicted. The motion of the nuclear wave

packet can also be found in Fig. 4.18, if the maximum of the densities close to ϕ = 0,±π/3 is

followed. It is possible to identify the change in the electronic coordinates ϕ with the angle

Θ describing the nuclear configuration. For this purpose, ϕ has to be identified with 2Θ,

because a change in Θ changes the opening angle of the sector by displacing the two C-H

groups at the boundaries by the same amount, in opposite directions. Detailed inspection

shows that the maxima of |χ(t,Θ)|2 and n(t, ϕ) are very similar. This is reasonable, as most

of the electron density is localized close to the position of the nuclei, and the maximum of

|χ(t,Θ)|2 corresponds almost to the expectation value of the nuclear wave packet along Θ.
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Figure 4.18: Contour plots of the reduced electron density n(t, ϕ) for π-electrons (top panel)
and for the other valence electrons (bottom panel), for the first 60 fs of the propagation along
the Kekulé mode. Above the graphs, Lewis structures representing the nuclear configuration
at the respective times are drawn, cf. Fig. 4.14. The functions nπ and noval are periodic
along ϕ with a period of 2π/3, and only one period is shown.

In Fig. 4.18, the location of the single and double bonds can easily be identified. Initially,

there is significant electron density around ϕ = π/6 but little at ϕ = −π/6. After ca. 12 fs,

the situation is reversed. Details about the direction of the electronic motion are not directly
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apparent from the plot. However, because the D3h symmetry is kept during the process,

and because of the the constraint of zero angular momentum in the electronic ground state,

the electronic motion has to be symmetric with respect to the angle defining the center of

the carbon-carbon bonds. Consequently, the electron density being initially in the region

around ϕ = π/6 has to move symmetrically towards smaller and larger values of ϕ, whereas

the region around ϕ = −π/6 gains electrons symmetrically from smaller and larger ϕ values.

In contrast to the time evolution of Nval(t), Nova(t) and Nπ(t), all one-dimensional

electron densities nval, nova, and nπ show the same qualitative behavior, and thus all

electrons move in the same direction. This is understandable, because the motion is induced

by the nuclei: As long as the nuclear wave packet moves completely into one direction, the

electron densities cannot move in the opposite direction, at least in the Born-Oppenheimer

approximation. At first sight, this seems to be in contradiction to the fact that the time-

dependent electron numbers Nπ and Nova move into opposite directions. However, taking

the two results together, it must be concluded that the π-electrons move faster into or out of

the bond region than the other valence electrons. Moreover, the π-electrons should move

faster than the average boundaries of the bond sector, while the other valence electrons

should move slower.

This conclusion can be quantified by calculating the corresponding velocities of the

motions. The bond sector is determined by the nuclear wave packet χ, and the average

velocity of the sector boundaries of a bond sector is thus given by the average velocity of the

expectation value of χ along Θ. Specifically, the average velocity of one of the two sector

boundaries

vnuc(t) =
1

2
∂t

∫ π/6

−π/6
Θ|χ(t,Θ)|2dΘ, (4.54)

where the factor 1/2 is due to the fact that a change in Θ moves the two sector boundaries

by an equal amount into opposite directions. For the electrons, average velocities can be

defined by taking the expectation value of the electron densities n(t, ϕ) along ϕ in some part

of the total angular space. A suitable definition is

v(t) = ∂t

∫ π/6−π/6 ϕn(t, ϕ)dϕ∫ π/6
−π/6 n(t, ϕ)dϕ

 , (4.55)

which results in velocities vπ, voval, etc. for the different electron densities. The integration

boundaries ±π/6 are defined such that the velocity represents the time derivative of the

average value of ϕ with respect to n for the region of one CH-group. This is the group at

the sector boundary that is to be monitored. The denominator is needed for normalization,

as the densities n are normalized to the number of electrons of the respective type and the

velocities would otherwise not be comparable.
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Figure 4.19: Velocity of the expectation value of the sector boundary vnuc, average velocity
of the π-electrons vπ, and average velocity of the other valence electrons voval.
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In Fig. 4.19 the velocities are shown. In line with the results presented above, the π

electrons are faster than the sector boundary, and the other valence electrons are slower.

The maximum velocity for the π electrons is 0.98 ◦/fs, as compared to the maximum velocity

of the sector boundary of 0.58 ◦/fs and that of the other valence electrons, 0.39 ◦/fs.

The underlying dynamics is the same for all the different types of electrons, i.e. the

dynamics of the nuclei. Consequently, the different behavior of the π- and the other valence

electrons is due to the way how the electronic problem is solved. As the static structure of

the electron density changes from one nuclear configuration to the other, the same nuclear

dynamics yields different electron dynamics for the different types of electrons.

Finally, the ground state electron dynamics study presented in this section shall be

compared with a similar electron dynamics describing the interconversion of the Kekulé

structures of benzene by means of a superposition of excited states. This interesting electron

dynamics study was performed by Ulusoy and Nest [214]: They used optimal control theory

to prepare superpositions of the S0 and S1 as well as of the S0 and S2 electronic state

of benzene. The former is a state of alternating bond order of the carbon-carbon bonds,

while the latter is a state of alternating Mulliken charges at the carbon atoms. Ulusoy and

Nest used time-dependent configuration interaction theory to monitor the time evolution

of the electronic states for fixed nuclear positions. They found that the resulting electronic

superposition states oscillate on an attosecond time scale between the symmetry equivalent

structures.

The process studied by Ulusoy and Nest is rather different from what is studied in this

work: Due to the superposition of electronic states the electrons move rapidly, while here

the electronic motion induced by the nuclear motion is studied, which is thus much slower.

The S0-S1 superposition is a realization of one Kekulé structure of benzene for the nuclei

fixed at equilibrium position. This is in contrast to the dynamics performed here, where the

nuclei are allowed to move. Direct comparison of the two scenarios would be very interesting:

One would need the time-dependent one-electron density of the S0-S1 superposition. The

construction of this density yields further problems, which are beyond the scope of this work

but may be studied in the future.
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4.3 Proton tunneling in the formic acid dimer and in

malonaldehyde

4.3.1 Abstract

In the examples discussed so far, the mechanism of the electron rearrangement was determined

by the symmetry of the process and the requirement of zero expectation value of the electronic

angular momentum. Knowledge of the qualitative mechanism made quantitative analysis

in terms of the electronic fluxes possible: The amount of moving electrons as well as their

speed could be determined for different electron densities, and it could be distinguished how

π- and the other valence electrons move during the process.

For a general cyclic electron rearrangement the reaction mechanism is not known by

symmetry and needs first to be determined. The electron flux representing the reaction

mechanism may be determined from the time-dependent electron density. However, already

for the one-dimensional problem of determining the angular fluxes of the cyclic reaction

there is a problem: Fluxes into or out of a volume are easily calculated, but fluxes through a

surface at some angle are only known up to a parameter c(t). This parameter is the same for

all angles, but it may change with time. Without further information c(t) is undetermined,

but its value is important for the reaction mechanism.

In principle, changing the value of c(t) can completely alter the reaction mechanism from

mainly clockwise to mainly counter-clockwise, with all possibilities in between. In practice,

its influence depends on the shape of the angular flux. The purpose of this chapter is to

investigate the unknown parameter formally, and to test the dependence of the reaction

mechanism on the value of c(t) in two model systems.

The value of the unknown flux parameter c(t) is equivalent to the average angular flux at

time t. Thus, using the connection of the flux density and the angular momentum operator,

a new operator is found whose expectation value provides the average angular flux. This

operator is the quantum mechanical analogue of the angular velocity. The time dependence

of the expectation value of the angular velocity operator is studied using Ehrenfest’s theorem,

in order to investigate the time-dependence of c(t). It is found that the value of c(t) for

cyclic reactions cannot be inferred from linear or angular momentum conservation, and that

the average angular flux and thus c(t) has no simple time-evolution. Its time-dependence is

determined by the details of the angular and radial flux densities.

Two model systems are used to study the effect of the unknown flux parameter on reaction

mechanisms of pericyclic reactions: Coherent proton tunneling in malonaldehyde and coherent

double proton tunneling in the formic acid dimer. First, the fluxes are determined via the

continuity equation, but the systems is constrained to zero average angular flux at all times.

In this case the flux is fixed, and especially the angles where the flux is zero are known. From

these, the reaction mechanism can be read off, and the number electrons moving from the

region of one bond to the region of another can directly be calculated. Then, the influence

of a time-dependent average angular flux is investigated qualitatively by focusing on the

location of the zero-flux planes. Finally, the assumption that the electron flux is determined

by how much the density changes locally from point to point is made, and zero-flux surfaces

are calculated for this case.

It is found that already a lot about the reaction mechanism can be learned without the

knowledge of c(t). Specifically, it is found that the reaction mechanism for proton tunneling

in malonaldehyde is similar to the previous examples of cyclooctatetraene and benzene, while

the mechanism of double proton transfer in the formic acid dimer is surprising, as the net

flux does not follow any of the typically attributed mechanisms.
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The assumption that the flux can be obtained from the local change of density turns out

to be equivalent to zero average angular flux, if the electron density exhibits a behavior that

is similar to classical particle dynamics. It thus gives sensible results for regions of the heavy

nuclei, but fails to describe proton tunneling appropriately.

After explanation of the problem in section 4.3.2, the average angular flux is discussed in

section 4.3.3. Details about the model systems formic acid dimer and malonaldehyde are

given in section 4.3.4. Thereafter, in section 4.3.5 the electron fluxes are analyzed, and the

dependence of the reaction mechanism on the time-dependence of the average angular flux is

investigated. Section 4.3.6 contains details about how zero-flux planes can be determined

from the assumption that the flux is determined from the local change in electron density,

and in section 4.3.7 the mechanisms resulting from these assumptions are compared with the

results from section 4.3.5.

4.3.2 The missing flux parameter

As shown in the previous examples, in pericyclic reactions it may be possible to decide

for a reaction mechanisms by analyzing the dynamics of a one-dimensional time-dependent

electron density n(t, ϕ) along an angular coordinate ϕ. This density may be obtained from

the one-electron density ρ(t,x), with cylindrical coordinates x = (r, ϕ, z), as

n(t, ϕ) =
x

ρ(t,x)rdrdz. (4.56)

Being a proper density, the angular electron density is locally conserved, and the corresponding

continuity equation

∂tn(t, ϕ) + ∂ϕj(t, ϕ) = 0 (4.57)

may be solved for the flux density j,

j(t, ϕ) = −
∫ ϕ

ϕ0

∂tn(t, ϕ′)dϕ′ + j(t, ϕ0), (4.58)

where j(t, ϕ0) is the flux density at ϕ0, the (possibly time-dependent) start of the integration.

Thus, the angular flux density and thus the reaction mechanism is determined by the electron

density n, if j is known along a curve ϕ0(t).

If j was sought for a Cartesian coordinate, e.g. j(t, x), it would always be possible to

determine j unambiguously, because the density and thus the flux density decay to zero for

|x| → ∞. It would be enough to start the integration at values x = x0 small enough to be

sure that j(t, x0) = 0. However, the flux density depends on the angle ϕ, and no points ϕ0

exist where j(t, ϕ0) is known already. In particular, it is not known where j(t, ϕ) = 0, and

thus where the flux changes direction. This piece of information is of course very relevant for

the reaction mechanism.

In the following, the start of the integration ϕ0 will be fixed fixed by some condition, and

the missing integration constant of eqn. 4.58 is the time-dependent, but angle-independent

parameter

c(t) = j(t, ϕ0). (4.59)

This parameter is called the flux parameter, and it is an important entity in this chapter.

For the example reactions of the molecules of the previous sections, cyclooctatetraene and

benzene, an unknown time-dependent parameter does not occur. The considered reactions

happen in the electronic ground state and under assumption of zero electronic angular

momentum. Consequently, as explained below there is no unidirectional flux possible, and
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Figure 4.20: Planes of zero net electron flux with respect to the processes described in the
previous examples for benzene and cyclooctatetraene. Each of those half planes continues to
infinity above and below the paper plane.

the symmetry of the molecules forces the net fluxes through some planes at some angles

ϕ to be zero. Because this symmetry does not break during the process, these planes do

not change with time and the parameter c may be easily determined. Fig. 4.20 shows these

zero-flux planes for the two molecules.

In general, however, such symmetries do not need to exist, and thus it may be asked

if there are other ways to determine the complete angular flux density. If appropriately

defined by a suitable choice of the start of integration in eqn. 4.58, a flux parameter of

zero, c(t) = 0, may mean that there is zero average angular flux (called G in the following),

and the value of c(t) can be related to the average angular flux. It is tempting to look for

a connection between the average angular flux and the expectation value of the angular

momentum operator l̂z around the z-axis perpendicular to the molecular plane. These two

quantities are related but they are not the same, and instead the average angular momentum

represents the expectation value of a new operator, the angular velocity operator ω̂z. In the

next section, the relation between G, 〈l̂z〉 and 〈ω̂z〉 is explored, and the time-dependence of

〈ω̂z〉 is studied in order to learn something about the time-dependence of the flux parameter

c(t).

It will be found that there is no simple time-dependence of 〈ω̂z〉, and hence also not for

c(t). The problem will be discussed further in section 4.3.5, where the reference case c(t) = 0

will be defined such that c(t) represents the average angular flux. There, it will be argued

that due to the connection between the average angular flux and the expectation value of the

angular momentum, and due to the shape of the electron density and its known behavior,

c(t) can be expected to be approximately zero for all times.

4.3.3 Average angular flux and the angular velocity operator

As known from section 2.3.4, there is a relationship between the flux density operator and

the expectation value of the angular momentum operator. It might be tempting to try to

find the missing flux parameter c(t) = j(t, ϕ0) of eqn. 4.58 by comparison of the expectation

value of the angular momentum with the average angular flux. Below, it is shown that this

comparison has only limited value, and the average angular flux is thus further analyzed.

In section 2.3.4, a general connection between the integral of the flux density operator

and the expectation value of the angular momentum operator l̂ was derived. The relation, in

3-space, is

〈̂l〉 =

∫
mx× jdx. (4.60)

87



Chapter 4. Applications

Using cylindrical coordinates x1 = r cosϕ, x2 = r sinϕ, x3 = z, and with j = jrer+jϕeϕ+jzez

the relation

〈l̂z〉 = m

∫
jϕr

2drdϕdz (4.61)

was deduced for the expectation value of the angular momentum operator in z-direction.

Note that the ϕ-component of the gradient and thus also of the flux density has an additional

factor 1/r,

jϕ =
~

2mi

1

r
(φ∗∂ϕφ− φ∂ϕφ∗), (4.62)

as in contrast e.g. to the r-component

jr =
~

2mi
(φ∗∂rφ− φ∂rφ∗). (4.63)

Eqn. 4.61 was already obtained by Manz and Yamamoto in [134]. The significance of

this equation stems from the following property: Due to the decoupling of electronic and

nuclear momenta in the Born-Oppenheimer approximation, the expectation value of the

electronic angular momentum alone (as well as the expectation value of the nuclear angular

momentum) is conserved. This expectation value is zero for a reaction in a non-degenerate

electronic ground state. Consequently, when reading the above equations as equations for

the electrons, setting 〈l̂z〉 to zero tells something about the flux along ϕ. Because the interest

here is in the mechanism of pericyclic reactions along the angle ϕ only, the constraint of zero

electronic angular momentum tells something about the desired reaction mechanism. Can

the unknown parameter for the solution of the continuity equation be determined from the

requirement of zero electronic angular momentum?

In [134], Manz and Yamamoto show that zero expectation value of the electronic angular

momentum does not help directly. With the additional assumption that
∫
jϕdz is not

changing sign along r, eqn. 4.61 can only become zero when there is a change of sign of∫
jϕr

2dzdr along ϕ. In consequence, as r is always positive and real, the fluxes through a

half plane at an angle ϕ given by
∫
jϕdzdr (see below) must change sign somewhere along

ϕ. Manz and Yamamoto conclude that in order to fulfill the constraint of zero electronic

angular momentum the reaction must not be unidirectional. However, it may be enough to

have an arbitrary small flux opposite to the main flux direction in order to make eqn. 4.61

zero, although the corresponding flux density is rather difficult to envision, cf. section 4.3.5.

Thus, albeit important in principle, in practice the selection rule found in [134] has only

limited value.

In the following, the idea of [134] to investigate fluxes through half planes at an angle

ϕ in terms of the flux density in cylindrical coordinates will be extended. These fluxes are

exactly the fluxes investigated so far, and these are the fluxes that can be obtained from the

density alone, up to an integration constant. The total flux through all such planes will be

related to the expectation value of an operator, and the time dependence of this operator

will be studied using Ehrenfest’s theorem.

Fig. 4.21 shows a sketch of a cylinder. This cylinder shall extend in both the radial

direction r and in the height z to infinity (in practice is has to be large enough to contain

all non-negligible parts of the electron density). The center of the cylinder at r = 0, z = 0

represents the nuclear center of mass. At some angle ϕ1 there is a half plane consisting of

the points {r ∈ (0,∞), z ∈ (−∞,∞), ϕ = ϕ1}, and the flux through this plane is F (ϕ1).

The flux through any surface S is given by∫
S

j · ndS, (4.64)
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φ
F(φ )

1

1

Figure 4.21: This cylinder shall contain the electron density. At angle ϕ1, there is a half
plane. The flux through this half plane is F (ϕ1)

where dS denotes the surface element and n is the unit normal vector of the surface. For

the half plane above, n = eϕ, the unit vector in ϕ-direction. The surface at ϕ1 is just a flat

Cartesian surface with surface element dS = drdz, such that

F (ϕ1) =

∫
jϕ(r, ϕ1, z)drdz. (4.65)

Thus, to determine the flux F (ϕ) the component of the flux density in ϕ-direction is needed.

Note that in contrast to the angular momentum expectation value given in eqn. 4.61, the

integration of jϕ over r to determine the flux through such a surface is not weighted by a

factor r2.

The sum of the fluxes through all the half planes in some sector with boundaries ϕ1, ϕ2,

weighted by the size of the sector, is

G(ϕ1, ϕ2) =
1

ϕ2 − ϕ1

∫ ϕ2

ϕ1

F (ϕ)dϕ

=
1

ϕ2 − ϕ1

∫ ϕ2

ϕ1

∫ ∞
−∞

∫ ∞
0

jϕ(r, ϕ, z)drdzdϕ

=
1

ϕ2 − ϕ1

∫ ϕ2

ϕ1

∫ ∞
−∞

∫ ∞
0

jϕ(r, ϕ, z)

r
rdrdzdϕ. (4.66)

This integral is not a volume integral over jϕ but over jϕ/r, as the volume element in

cylindrical coordinates is rdrdzdϕ. However, regarding the flux density jϕ the volume

element in eqn. 4.66 is a Cartesian volume element, although with periodic boundary

condition for ϕ. The volume for G(ϕ1, ϕ2) defined by the boundaries at ϕ1, ϕ2 may be

thought of as a box, as shown in Fig. 4.22. From the six faces of the box four are closed,

because the integration is performed over all r and z (the face at r = 0 may be thought of

as a face at r = ε, with ε > 0 small). Thus, there can only be a flow into or out of the box

through two opposite faces.

The left-hand side of Fig. 4.22 shows a situation where density inside the box decreases,

and there is flow out of the box through both surfaces. The total outflow is given by the sum

of the flows through the two surfaces. However, the orientation along ϕ is such that the flux

at ϕ2 is positive, while the flux at ϕ1 is negative, and the total outflow is F (ϕ2)− F (ϕ1).

This is just the respective continuity equation,∫ ϕ2

ϕ1

∂tρ(ϕ)dϕ+ F (ϕ2)− F (ϕ1) = 0. (4.67)
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Figure 4.22: Illustration of the angular flux through a box. The surfaces ϕ = ϕ1, r ∈ (0,∞),
z ∈ (−∞,∞) and ϕ = ϕ2, r ∈ (0,∞), z ∈ (−∞,∞) are open, while all other surfaces are
closed. Arrows indicate the flux direction relative to the open surfaces.

In contrast, G(ϕ1, ϕ2) is related to the difference between the flux through the surfaces out

of the box, because the integral of eqn. 4.66 may be approximated for small ϕ2 − ϕ1 by the

product of average flux and box width,

G(ϕ1, ϕ2) ≈ 1

ϕ2 − ϕ1

1

2
(F (ϕ1) + F (ϕ2))(ϕ2 − ϕ1) (4.68)

=
1

2
(F (ϕ1) + F (ϕ2)). (4.69)

Again, note that due to the induced directionality the sum of F (ϕ1) and F (ϕ2) is just the

difference of the fluxes out of the volume. For the case shown in the left-hand side of Fig.

4.22, G(ϕ1, ϕ2) tells how much more (or less) is flowing through the plane at ϕ2 than is

flowing through the plane at ϕ1.

If the volume becomes smaller, the left-hand side of Fig. 4.22 represents a very special

case: it may only happen that density flows out of a volume through both sides for situations

where there is a plane of zero flux between ϕ2 and ϕ1. Thus, in the limit dϕ = ϕ2 − ϕ1 → 0,

this may only happen at single points and does not contribute to the integral.

The right-hand side of Fig. 4.22 shows one of the two generic cases for small volumes,

where there is some flow into the volume at ϕ1 and some flow out of the volume at ϕ2. The

second possible case is when the flow is in the reverse direction, and one of the two situations

is present whenever the volume is in between two zero net flux surfaces. Consequently,

G(ϕ1, ϕ2) is the average flux through the box. The sum of all those fluxes,

G = G(−π, π) =
1

2π

∫
jϕ(r, ϕ, z)drdϕdz, (4.70)

can be seen as the sum of infinitely many G(ϕi, ϕi+1) for neighboring boxes,

G ≈
∑
i

G(ϕi, ϕi+1) (4.71)
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with −π ≤ ϕi < ϕi+1 ≤ π. These fluxes may either be in positive or negative ϕ-direction (or

zero). Consequently, G represents the average flux along ϕ.

If ϕ was not an angular variable but a Cartesian variable x and if the density becomes

zero for |x| → ∞ (i.e., if the density is confined within some finite box), a G > 0 represents a

net flux of the system towards positive x-direction, together with a net motion of the system,

and a shift of the center of mass as well as a net linear momentum in positive x-direction.

By the requirement of conservation of linear momentum, and for a system of zero initial

linear momentum along x, G = 0 for all times. Similarly, for the angular variable ϕ a G > 0

represents a net flux of the system along positive ϕ-direction. However, this net flux is not

necessarily connected with an angular momentum expectation value different from zero:

Eqn. 4.61 and eqn. 4.70 differ by a factor of r2, and thus the integral over r in general gives

different results for G than for 〈l̂z〉.

A comparison of eqn. 4.61 (and its derivation in section 2.3.4) with eqn. 4.70 shows that

the average angular flux G is essentially the expectation value of an operator ω̂z,

2πG = 〈ω̂z〉 =
1

m

〈
l̂z
r2

〉
=

〈
l̂z

x2
1 + x2

2

〉
. (4.72)

The operator ω̂z is the angular momentum operator divided by the operator for the moment

of inertia around the z-axis, mr2. Thus, it is the quantum mechanical analogue of the

z-component of the classical angular velocity vector

ω =
x× v

|x|2
=

x× p

m|x|2
. (4.73)

The eigenfunctions of ω̂z are similar to the known eigenfunctions of l̂z, and are given by

Γn(r, ϕ, z) = f(r, z)r2 exp

(
inr2

a2
0

ϕ

)
(4.74)

with some undetermined function f(r, z) and with the Bohr radius a0. The Bohr radius is

used here only for convenience: More appropriately, the fundamental constants ~, me (the

electron mass), ε0 (the permittivity of vacuum) and e (the elementary charge) could be used

via [94]

a0 =
4πε0~2

mee2
. (4.75)

The quantum number n is an integer, n = 0,±1,±2, . . . , and the eigenvalues of ω̂z are

determined by operation of ω̂z on Γn as

ω̂zΓn =
n~
ma2

0

Γn. (4.76)

Although ω̂z is Hermitian and commutes with l̂z, it does neither commute with the square

of the total angular momentum operator nor with the Hamiltonian (see below). Thus, its

observable is not a constant of motion, and there is no apparent reason why the expectation

value of ω̂z should have any particular value for pericyclic reactions in the electronic ground

state, even though it might be tempting to assume it to be zero. In the following, it shall be

investigated how 〈ωz〉 changes with time and what the dynamics of this expectation value

depends on.

The time dependence of 〈ωz〉 can be calculated using Ehrenfest’s theorem [146],

∂t〈ω̂z〉 =
1

i~
〈[ω̂z, H]〉. (4.77)
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To evaluate the commutator, the one-particle Hamiltonian

H = − ~2

2m
∂2
x + V (x) (4.78)

in cylindrical coordinates will be used. The Laplacian ∂2
x is then

∂2
x =

1

r
∂rr∂r +

1

r2
∂2
ϕ + ∂2

z , (4.79)

and thus

H = − ~2

2m
∂2
z −

~2

2mr
∂rr∂r +

l̂2z
2mr2

+ V. (4.80)

Because ω̂z commutes with l̂z and ∂2
z , the commutator of eqn. 4.77 reduces to

[ω̂z, H] =
l̂z~2

2m2r

(
∂rr∂r

1

r2
− 1

r2
∂rr∂r

)
+

~∂ϕV
imr2

. (4.81)

The potential term ~∂ϕV/(imr2) is entirely complex for real potentials and will not contribute

to the time dependence of G, as shown below. Straightforward calculations for the other

terms of eqn. 4.81 give

∂rr∂r
1

r2
= ∂r

(
∂r
r
− 2

r2

)
=

1

r2

(
r∂2
r − 3∂r +

4

r

)
(4.82)

for the first term in the brackets and

1

r2
∂rr∂r =

1

r2
(∂r + r∂2

r ) (4.83)

for the second one. The second derivatives cancel and the commutator between the angular

velocity operator and the Hamiltonian is

[ω̂z, H] =
2l̂z~2

m2r3

(
1

r
− ∂r

)
+

~∂ϕV
imr2

. (4.84)

Next, this expression is inserted in eqn. 4.77 and l̂z = −i~∂ϕ is used. The expectation value

is taken with respect to an arbitrary wave function φ,

∂t〈ω̂z〉 =
1

i~

∫
φ∗[ω̂z, H]φrdrdϕdz

=
2~2

m2

∫ (
φ∗

1

r2
∂ϕ∂rφ−

φ∗∂ϕφ

r3

)
drdϕdz. (4.85)

In the second line it was already used that∫
~∂ϕV
imr2

dϕ =
~

imr2
(V (π)− V (−π)) = 0 (4.86)

by the periodic boundary conditions. The potential does not influence ∂tG directly, but via

the wave functions which are used to compute the expectation value at a given time.

A number of partial integrations will now be applied to eqn. 4.85 in order to investigate

the meaning of this equation. The first term in the brackets is split in two equal parts which
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may be written as∫
φ∗

1

r2
∂ϕ∂rφdr =

1

2

∫ (
φ∗

1

r2
∂ϕ∂rφ+ φ∗

1

r2
∂ϕ∂rφ

)
dr

=
1

2

∫
φ∗

1

r2
∂ϕ∂rφdr −

1

2

∫
(∂ϕφ)∂r

φ∗

r2
dr

=
1

2

∫
φ∗

1

r2
∂ϕ∂rφdr −

1

2

∫
(∂ϕφ)

1

r2
∂rφ
∗dr +

∫
φ∗∂ϕφ

r3
dr. (4.87)

From the first to the second line, a partial integration was performed for r and the result

was evaluated in the third line. Using eqn. 4.87 with eqn. 4.85 will remove the second term

in the brackets of eqn. 4.85, giving

∂t〈ω̂z〉 =
~2

m2

∫
1

r2
(φ∗∂ϕ∂rφ− (∂ϕφ)(∂rφ

∗)) drdϕdz. (4.88)

The integration over ϕ can be used to identify∫
1

r2
(∂ϕφ)(∂rφ

∗)dϕ = −
∫

1

r2
φ∂ϕ∂rφ

∗dϕ, (4.89)

so that

∂t〈ω̂z〉 = − ~2

m2

∫
1

r2
((∂ϕφ)(∂rφ

∗) + (∂ϕφ
∗)(∂rφ)) drdϕdz

=
~2

m2

∫
1

r2
(φ∂ϕ∂rφ

∗ + φ∗∂ϕ∂rφ) drdϕdz

= − 2

m
Re 〈ω̂z p̂r〉 (4.90)

with the linear momentum operator in r-direction,

p̂r =
~
i

1

r
∂r. (4.91)

The factor 1/r was included in the definition of p̂r to make the operator hermitian. Note,

however, that although both ω̂z and p̂r are hermitian, their product is not, and taking the

real part of 〈ω̂z p̂r〉 in eqn. 4.90 is necessary.

Eqn. 4.90 shows that the time dependence of the average angular velocity, and thus of

the average angular flux G, depends on both the change of the wave function along r and

along ϕ. To proceed a bit further, in analogy to the discussion of section 2.3.3 the polar

representation φ = A exp(iS/~) with A,S ∈ R will be used together with the first line of eqn.

4.90. Then

(∂ϕφ
∗)(∂rφ) =

(
∂rA+

i

~
A∂rS

)(
∂ϕA−

i

~
A∂ϕS

)
(4.92)

and

(∂ϕφ
∗)(∂rφ) + (∂ϕφ)(∂rφ

∗) = 2(∂rA)(∂ϕA) +
2

~2
A2(∂rS)(∂ϕS). (4.93)

Inserting this result into eqn. 4.90, it follows that

∂t〈ω̂z〉 = −2~2

m2

∫
(∂rA)(∂ϕA)

r2
drdϕdz − 2

∫
A2

r2
(∂rS)(∂ϕS)drdϕdz. (4.94)

In cylindrical coordinates, the components of the velocity field v = ∂qS/m of 2.3.3 are

vr =
1

m
∂rS (4.95)
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in r-direction and

vϕ =
1

m

1

r
∂ϕS (4.96)

in ϕ-direction. Also, A2 = φφ∗, and thus the second term of eqn. 4.94 can be written as∫
A2

r2
(∂rS)(∂ϕS)drdϕdz =

∫
A2

r2
vrvϕdrdϕdz

=

∫
1

r2
jrvϕdrdϕdz =

∫
1

r2
vrjϕdrdϕdz. (4.97)

While the first term of eqn. 4.94 represents the product of the changes of the length

of φ with respect to both ϕ and r, the second term shows that the change in 〈ω̂z〉 with

time depends on the flux density in both ϕ- and r-direction. Note that the flux density in

z-direction (which has to conserve linear momentum in this direction) does not play a role.

To summarize, the preceding calculations showed that G = 〈ω̂z〉/(2π), the average flux in

ϕ-direction, is neither directly related to the expectation value of the angular momentum in

ϕ-direction nor does it have a simple time dependence. Although this average flux depends

only on the flux density in ϕ-direction, its time dependence is both related to the dynamics

in ϕ- and r-direction. Nevertheless, there has to be a change of the flux direction along ϕ,

and in the following it will be investigated how much the reaction mechanism depends on

the exact location of the change of direction.

4.3.4 Model systems formic acid dimer and malonaldehyde

The systems to be investigated are proton transfer in malonaldehyde and double proton

transfer in the formic acid dimer, in the coherent tunneling regime. In both systems there

is a mirror symmetry for the nuclei at certain times, but not during the whole reaction.

In consequence, there are no symmetry-enforced zero-flux surfaces, and the fluxes are not

completely known for both reactions.

Fig. 4.23 shows Lewis structures of the reactions as well as some possible reaction

mechanisms. As in the previous cases, for both of these reactions at least three mechanisms

can be drawn, as indicated in the figure. These mechanisms may be called hydride transfer

(M1/F1), hydrogen atom transfer (M2/F2) and proton transfer (M3/F3), depending on the

direction of motion of the electron density close to the transferred proton: In the case of

hydride transfer, both the proton and the electron density in the vicinity of the proton move

in the same direction. For atom transfer, electron density moves only partly in the direction

of the proton motion, while for proton transfer, the electron density and the proton move

into opposite directions. For the discussion both processes will be called proton transfer, but

after investigation of the reaction mechanism the terminology (hydride transfer vs. hydrogen

atom transfer vs. proton transfer) will be reconsidered.

Due to the missing mirror symmetry compared to the previous processes in benzene and

cyclooctatetraene, the unidirectional processes M1/F1 and M3/F3 may not be excluded:

Although a process that is only unidirectional must be excluded due to the constraint of zero

electronic angular momentum, it is still possible that the process is mainly unidirectional

and thus well represented by the first and third mechanism.

The time-dependent electron densities for these model systems were obtained by using

the coherent tunneling theory for a double well as explained in section 4.1.3. Tunneling times

and tunneling splittings were not calculated, because they are not necessary in this model:

For the analysis the time-dependent electron density is needed. The tunneling period only

changes the time scale on which the tunneling happens, but not the time-evolution of the

electron density relative to the tunneling period. Specifically, the time-dependent electron
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Figure 4.23: Lewis structures for the proton transfer in malonaldehyde (left) and the double
proton transfer in the formic acid dimer (right). Different possible reaction mechanisms (M1,
M2, M3 and F1, F2, F3) are indicated by arrows.

density is given by

n(t, ϕ) = nR(ϕ) cos2(∆Et/(2~)) + nP(ϕ) sin2(∆Et/(2~)) (4.98)

for the one-electron density of the reactant configuration nR and that of the product

configuration nP. The tunneling time is τ = ~/(2π∆E). Below, all times in units of the

tunneling time, and thus the graph of n is the same for all tunneling times.

The initial one-electron densities ρR(x,Q) for construction of nR(ϕ)were obtained with a

Hartree-Fock structure optimization employing a cc-pVTZ basis set [70], using the program

MOLPRO [225]. Note that accurate energies of the structures were not needed. Also,

previous experience showed that the electronic fluxes as well as the electron densities are

rather robust with respect to the details of the nuclear structure. The equilibrium structure

of the two molecules is already well enough described with the Hartree-Fock calculation for

the purposes here, see Appendix E.

The product structure was determined from the reactant structure by the constraint of

zero nuclear angular momentum during the reaction. To find the product structure, the

nuclei were first reflected at some plane perpendicular to the molecular plane. Thereafter,

the nuclei of the reflected molecule were assigned to the nuclei of the reactant molecule by

minimizing the distance between each pair of nuclei of the same type. Finally, the reflected

structure was obtained from momentum conservation by assuming a linear reaction path

from reactants to products. The classical angular momenta along the axis perpendicular to

the molecular plane are

LZ =
∑
i

Mi(Xi∂tYi − Yi∂tXi), (4.99)

with the masses Mi and coordinates in the molecular plane, Xi(t) and Yi(t), of the nuclei

i. Initially, at t = 0, the reactant structure XR
i , Y

R
i is present, while after quarter of the

tunneling time, t = τ/4, the product structure XP
i , Y

P
i is present. For intermediate times,

t ∈ [0, τ/4], the nuclear coordinates are approximated as

Xi(t) =
4

τ

(
tXP

i +
(τ

4
− t
)
XR
i

)
Yi(t) =

4

τ

(
tY P
i +

(τ
4
− t
)
Y R
i

)
. (4.100)
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The sum of the classical angular momenta along the path from reactants to products shall

be zero, ∫
LZdt

!
= 0. (4.101)

Consequently, by inserting ∂tXi and ∂tYi from eqn. 4.100,

0 =

∫ τ/4

0

∑
i

Mi(Xi∂tYi − Yi∂tXi)dt

=

∫ τ/4

0

∑
i

4Mi

τ

(
Xi(Y

P
i − Y R

i )− Yi(XP
i −XR

i )
)
dt (4.102)

follows. Next, Xi and Yi from eqn. 4.100 are inserted. The individual contributions to eqn.

4.102 are

Xi(Y
P
i − Y R

i ) =
4

τ

(
tXP

i +
(τ

4
− t
)
XR
i

)
(Y P
i − Y R

i )

= XR
i Y

P
i −XR

i Y
R
i +

4t

τ
(XP

i Y
P
i −XP

i Y
R
i −XR

i Y
P
i +XR

i Y
R
i ) (4.103)

and

Yi(X
P
i −XR

i ) =
4

τ

(
tY P
i +

(τ
4
− t
)
Y R
i

)
(XP

i −XR
i )

= XP
i Y

R
i −XR

i Y
R
i +

4t

τ
(XP

i Y
P
i −XP

i Y
R
i −XR

i Y
P
i +XR

i Y
R
i ), (4.104)

which differ only in the first terms, XR
i Y

P
i and XP

i Y
R
i , respectively. Thus, eqn. 4.102 becomes

0 =

∫ τ/4

0

∑
i

Mi
4

τ

(
XR
i Y

P
i −XP

i Y
R
i

)
dt

=
∑
i

Mi(X
R
i Y

P
i − Y R

i X
P
i ) (4.105)

is obtained from which the product structure can be determined.

Fig. 4.24 illustrates the change of the nuclear positions from reactants to products. It is

found that for malonaldehyde there is very little change from reactants to products for all

nuclei but the tunneling proton. In the case of the formic acid dimer, next to the motion

of the tunneling protons also the oxygen nuclei move, but directed radially out- or inwards.

This motion is not expected to affect the angular electron density much, because the angles

at which the oxygen nuclei are located do almost not change.

Proton tunneling in malonaldehyde and in the formic acid dimer have been investigated

a number of times, see e.g. [22, 32, 59, 130, 137, 190, 209, 218, 222, 232]. These studies show

that in order to describe tunneling in both molecules correctly, several nuclear coordinates

need to be taken into account. This is because the process described is a transfer of a

light nucleus between two heavies nuclei, and for such systems the intrinsic reaction path

(path of steepest descent between reactant and product) is strongly curved [100,232]. For

malonaldehyde, in [232] a full-dimensional potential energy surface was constructed. During

this construction is was found that to describe tunneling correctly, a three-dimensional

space around the intrinsic reaction path, spanned by a ring deformation coordinate, an

OH-stretching coordinate and a bond alternation coordinates, needs to be used. For the

formic acid dimer, in [137] it was found that again the space around the intrinsic reaction

path is three-dimensional, spanned by an asymmetric hydrogen-transfer mode as well as a

symmetric and an anti-symmetric ring deformation mode. Also, it was found that inclusion of
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Figure 4.24: Position of the nuclei for the reactants (blue dots) and products (yel-
low/orange/brown dots) for proton tunneling in malonaldehyde (left) and double proton
tunneling in the formic acid dimer (right). The motion of the tunneling protons is indicated
by arrows. The angle ϕ ∈ (−π, π] of the cylindrical coordinates for the electrons is also
shown, counted positive in the indicated direction.

another two modes describing the dissociative motion of the dimer did influence the tunneling

dynamics. However, in the current work only the circular electron dynamics along an angle is

of importance. Thus, to investigate the reaction mechanism the proposed coherent tunneling

model should suffice to capture the effective dynamics. It would nevertheless be interesting

to compare with a dynamics simulation using the spaces spanning the intrinsic reaction path.

The static one-dimensional electron density nR(ϕ) is obtained from ρR(x) with cylindrical

coordinates x = (r, ϕ, z), with z = 0 being the molecular plane and ϕ as indicated in Fig.

4.24, as

nR(ϕ) =
x

ρR(x)rdrdz. (4.106)

nP(ϕ) is determined analogously. For this integration, the density ρR was not calculated

using cylindrical coordinates x = (r, ϕ, z), but represented on Cartesian grids x = (x1, x2, x3),

as explained in section 3.4. For both molecules, 600 × 600 × 300 points were used. Only

half of these points were calculated because the mirror symmetry in x3-direction could be

exploited. The space covered is x1, x2 ∈ [-11,11 ]a0 and x3 ∈ [-5.5,5.5 ]a0. However, although

the grid spacing was as small as 0.037 a0, spherical averaging as explained in section 3.4 was

needed to obtain data smooth enough for computation of the fluxes. Thus, the molecule

was rotated in 20 steps from 0 to π around the z-axis and the electron density obtained

from these calculation was averaged. Last, fitting of the density using a Fourier series was

performed as explained in section 3.4.

Time-dependent one-dimensional electron densities n(t, ϕ) were calculated for valence

and π-electrons, for both molecules. Fig. 4.25 and Fig. 4.26 show the molecular orbitals

included in the π-electron densities.

For the formic acid dimer, there are four π-molecular orbitals. Two of them extend

from one oxygen of a formic acid molecule to the other oxygen of the molecule, but with

larger electron density at the position of the carbon-oxygen double bond. The other two are

localized at the two carbon atoms of each formic acid dimer and have a nodal plane which

passes close to the position of the carbon atom.
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Figure 4.25: Orbitals included in the π-electron density for the formic acid dimer, obtained
from a Hartree-Fock calculation with cc-pVTZ basis set, using the program Molpro [225].

Figure 4.26: Orbitals included in the π-electron density for malonaldehyde, obtained from a
Hartree-Fock calculation with cc-pVTZ basis set, using the program Molpro [225].

For malonaldehyde, there are three π-molecular orbitals. Two of them (the central and

right part of Fig. 4.26) are located at the position of the two double bonds, but with some

density also at the position of the oxygen(s). The third one is mainly located at the position

of the oxygen of the hydroxyl group, but with some density also at the nearby carbon as

well as at the other oxygen.

Consequently, the π-orbitals included in the π-density consist of the double bonds of

the molecules as well as of the π-orbitals at the oxygen nuclei. If only the time dependence

of the double bonds is of interest, one might apply an orbital localization scheme like that

of Boys [38] or Pipek-Mezey [175]. However, also after such a localization it might be

questionable to look at only part of the π-orbitals and draw conclusions. Hence, in the

following only the well-defined π-density including all the π-orbitals will be discussed.

The final one-dimensional electron densities n(t, ϕ) are each represented on a grid with

200 points for the time from zero to one tunneling period, and with 2000 point for the angular

variable from −π to π.

4.3.5 Results I: Fluxes from the density and the resulting mecha-

nisms

The time-dependent electron densities and the fluxes obtained from the continuity equation

will be discussed. For analysis of the reaction mechanism, the electron density is partitioned

into core and valence electrons. As seen in the previous examples, the core electrons can be
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expected to stay at the positions of the nuclei and their motions are not of interest for the

reaction mechanism. For the valence electrons, especially the behavior of the π-electrons is

of interest, and thus the valence electrons are separated into π- and other valence electrons.

This decomposition gives rise to separate fluxes for each of those sets of electrons. Thus,

there are also separate time-dependent flux parameters. For the discussion, a flux parameter

cπ(t) for the π-electrons and a flux parameter coval(t) for the other valence electrons is used.

The flux parameter for the valence electrons is cval(t) = cπ(t) + coval(t).

For analysis of the reaction mechanisms with respect to the behavior of the flux parameter,

the following steps are taken:

• At first, the parameters are chosen such that the average flux along ϕ is zero. In

this reference situation there is no net flux in one direction. The initial value of the

integration of the continuity equation is chosen such that in this case coval(t) = cπ(t) =

cval(t) = 0 for all times. The resulting mechanisms are discussed for both molecules.

• Next, it is discussed how stable the qualitative mechanism is with respect to the specific

choice of the flux parameters and to what degree the position of the zero-flux surfaces

may vary.

• Finally, the quantitative mechanism is determined for the reference case, i.e. bond

sectors are defined and fluxes into or out of the bond sectors are calculated.

General statements about the densities and fluxes for both molecules

Snapshots of the time-dependent one-electron densities nπ, noval and nval as well as of the

corresponding π-, other valence and valence electron fluxes Fπ, F oval and F val for the proton

tunneling are shown for the formic acid dimer in Fig. 4.27 and for malonaldehyde in Fig.

4.28. The fluxes were calculated as

Fπ(t, ϕ) = −
∫ ϕ

ϕ0

∂tn
π(t, ϕ′)dϕ′ + cπ(t), (4.107)

and

F val(t, ϕ) = −
∫ ϕ

ϕ0

∂tn
val(t, ϕ′)dϕ′ + cval(t), (4.108)

respectively. Note that the integration starts from ϕ0 6= −π, and that for ϕ < ϕ0 the cyclic

boundary conditions are used. The parameters cπ and cval depend on ϕ0, and thus ϕ0 is

chosen such that cπ = 0 and cval = 0 have a convenient meaning. Specifically, these situations

mean that the respective average flux along ϕ is zero, see below.

Although there are labels at the tick marks in the plot of the fluxes in Fig. 4.27 and Fig.

4.28, these labels are for now only meant to indicate the magnitude of flux differences. The

absolute value of the fluxes is in general unknown, because the flux parameters cπ(t) and

cval(t) are unknown. Especially the position of the zero of the fluxes is unknown, and thus

the angle at which zero-flux surfaces occur and where the direction of the flux is reversed are

unknown.

Both Fig. 4.27 and Fig. 4.28 show the density and fluxes at 0, quarter of the tunneling

time, half of the tunneling time, and three-quarters of the tunneling time. After one tunneling

time, the dynamics repeats as if it was t = 0. Note that all densities are normalized to the

number of the respective electrons.

Initially as well as after half the tunneling time, there is constant flux independent of the

angle. Because there shall be no unidirectional flux, at these times the flux has to be zero and

the tick marks in the figures indeed represent the values of the fluxes. The flux parameters
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Figure 4.27: Angular densities n(t, ϕ) and fluxes F (t, ϕ) for π-electrons (top half) and valence
electrons (bottom half) at times t = 0, τ/4, τ/2 and 3τ/4, for double proton transfer in
the formic acid dimer. At t = 0 and t = τ/2 the nuclei corresponding to the peaks in the
density are shown above the graphs. The labels at the ticks for the graphs of the fluxes are
determined only up to a constant in ϕ, which may be different for each time (see text for
explanation). Here, the constant is determined such that

∫
Fdϕ = 0, or that the average

angular flux is zero.

have to be zero, cπ(kτ/2) = 0 and cval(kτ/2) = 0 for k = 0, 1, 2, . . . . Note that in the figures

the flux is not exactly zero. This is because the fluxes were calculated numerically from the

time-derivative of the densities using finite differences. The time step used was ∆t = τ/200.

Thus, to be precise, the fluxes shown in the figures do not correspond to t = 0, τ/4, . . . , but

to these times shifted by half the time step, t = ∆t/2, τ/4 + ∆t/2, . . . .

After one quarter and three-quarters of the tunneling time the nuclear structure is quite

symmetric: In case of malonaldehyde there is one mirror plane perpendicular to the nuclear

plane at ϕ = 0, and in case of the formic acid dimer there are two such mirror planes, at

ϕ = 0 and ϕ = π/2. However, in contrast to the mirror planes present in the models of

benzene and cyclooctatetraene, the mirror planes found here are not persistent in time.

Consequently, no statement about the zero-flux surfaces and the flux parameters can be

made from these mirror planes. Thus, in Fig. 4.27 and Fig. 4.28 the fluxes at t = τ/4 and

t = 3τ/4 are indeed only determined up to a constant in the angle.

In the formic acid dimer there are eight π-electrons and 36 valence electrons. In Fig. 4.27

the highest peaks of the density correspond to the position of the oxygen nuclei, while the

smaller peaks in between the two pairs of large peaks corresponds to the carbon nuclei (or

the CH-groups between the pairs of oxygen nuclei). Also, at times t = 0 and t = τ/2 the

position of the CO-double bond can be easily identified, because at the corresponding angles

the density is larger compared to angles corresponding to a single bond. For example, at
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Figure 4.28: Angular densities n(t, ϕ) and fluxes F (t, ϕ) for π-electrons (top half) and
valence electrons (bottom half) at times t = 0, τ/4, τ/2 and 3τ/4, for proton tunneling in
malonaldehyde. At t = 0 and t = τ/2 the nuclei corresponding to the peaks in the density are
shown above the graphs. The labels at the ticks for the graphs of the fluxes are determined
only up to a constant in ϕ, which may be different for each time (see text for explanation).
Here, the constant is determined such that

∫
Fdϕ = 0, or that the average angular flux is

zero.

t = 0 the density nπ shows a local minimum between the (from left to right) first large and

second small local maximum. The value of this local minimum is larger than that of the next

minimum. The first local minimum corresponds to the location of the CO-double bond, while

the second corresponds to the single bond connecting a carbon nucleus with the OH-group.

This feature can also be seen in the valence electron density, albeit less pronounced due

to the larger number of other electrons. Although the locations of the maxima close to the

oxygen nuclei are similar for the π- and the valence electron density, the locations of the

maxima close to the carbon nuclei change a bit: For the π-electrons, the maximum at the

carbon position is slightly closer to to oxygen of the CO-double bond as compared to the

respective maximum for the valence electrons.

At t = τ/4 the density is completely symmetric and the amplitudes of the fluxes are

maximal, while at t = τ/2 the initial situation is reversed. Note that there is both more π-

and valence electron density at the position of the oxygen nucleus of the hydroxyl group

than there is at the position of the oxygen nucleus of the aldehyde group. The approximate

position of the hydrogen nucleus cannot be inferred from the density because of the absence of

a corresponding peak. It is buried in the shoulders of the oxygen peak. Due to the hydrogen

nucleus there is some small density at ϕ = 0, π in case of the valence electrons, while there is

none in case of the π-electrons.

For malonaldehyde, there are six π-electrons and 28 valence electrons. In Fig. 4.28 the
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positions of the oxygen and carbon nuclei are apparent by peaks in the electron density, like

for the formic acid dimer. Double bonds are distinguishable from single bonds by higher

values of the local minima. As in the case of the formic acid dimer, the position of the peaks

in the π- and valence electron density does almost not change, except for the carbon peak of

the CO-double bond. The peak is slightly closer to the corresponding oxygen peak for the

π-electron density than it is for the valence electron density. As for the formic acid dimer,

the position of the tunneling proton cannot be directly seen. It manifests itself only in the

small but non-zero density at ϕ = π in the valence electron density as compared to the zero

π-electron density at this position.

To characterize the complete tunneling process it is enough to consider the fluxes until

t = τ/4: From the flux F (t, ϕ) in the interval t ∈ [0, τ/4], the flux in the interval t ∈ [τ/4, τ/2]

can be obtained as

F (t, ϕ) = F (τ/2− t, ϕ) for t ∈ [0, τ/2]. (4.109)

Similarly, the flux up to t = τ can be obtained as

F (t, ϕ) = −F (τ − t, ϕ) for t ∈ [0, τ ]. (4.110)

In the following only the fluxes until t = τ/4 are discussed.

The reference case c(t) = 0

The position of the zero for the fluxes in Fig. 4.27 and Fig. 4.28 was chosen deliberately: The

fluxes were shifted such that the sum of the fluxes,
∫
F (ϕ)dϕ, is zero, which is equivalent

to zero average angular flux. This situation is called the reference situation, and for this

choice c(t) is defined to be zero for all times. For the time being, the dependence of the flux

parameter c on the start of the integration in eqn. 4.58 is made explicit again. By eqn. 4.58

(or eqn. 4.107 and eqn. 4.108),

0
!
=

∫
F (t, ϕ)dϕ

= −
∫ 2π

0

∫ ϕ

ϕ0

∂tn(t, ϕ̃)dϕ̃dϕ+ 2πc(t, ϕ0) (4.111)

and thus

c(t, ϕ0) =
1

2π

∫ 2π

0

∫ ϕ

ϕ0

∂tn(t, ϕ̃)dϕ̃dϕ. (4.112)

The value of ϕ0 is chosen such that the first line of eqn. 4.111 is fulfilled if c(t, ϕ0) = 0.

The expectation value of the angular velocity operator ω̂z and the average angular flux

G are related by

〈ω̂z〉 =

∫
F (t, ϕ)dϕ = 2πG. (4.113)

Thus, for the just defined reference situation, c(t) = 0 is equivalent to 〈ω̂z〉 = 0 and G = 0,

i.e. to zero average angular flux. Also, if c(t) > 0, the sum of all angular fluxes becomes

positive, and thus there is an average angular flux in the direction of positive ϕ. If c(t) < 0,

the sum of all angular fluxes is negative, and there is an average angular flux in the direction

of negative ϕ.

The value of c(t) depends on ϕ0, the start of the integration over ∂tn. Consequently, by

choosing the definition of c = 0 by a global property, namely, the result of an integral, ϕ0

becomes a function of time: The integration has to start at an angle where F = 0, and this

angle may change with time. However, in practice for this definition of c = 0 the position of

ϕ0 does not change with time within an accuracy of π/1000.
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Fig. 4.29 and Fig. 4.32 show the densities and fluxes for the π-, other valence and all

valence electrons at t = τ/4 for the formic acid dimer and for malonaldehyde, respectively.

These pictures are for the reference case, cπ = coval = cval = 0. In the figures, the locations

of the zero-flux surfaces are shown by vertical lines. As just mentioned, they do not change

with time within an accuracy of π/1000. Also, the fluxes from t = 0 up to t = τ/4 rise almost

linearly, and fluxes between t = 0 and t = τ/4 would just show the same qualitative behavior

as shown in Fig. 4.29 and Fig. 4.32, but with smaller amplitude, cf. eqn. 4.98. Consequently,

depiction of these intermediate fluxes is omitted.

The reference case c(t) = 0 is expected to be already a good approximation to the true

dynamics. This is because of the shape and dynamics of the electron density. The expectation

value of the angular momentum around the z-axis,

〈lz〉 =
y

jϕr
2drdϕdz, (4.114)

and the average angular flux G with

2πG =
y

jϕdrdϕdz (4.115)

differ by the weighting of the angular flux density jϕ (which, in the cases discussed here is

equivalent to the angular flux F (t, ϕ)) with respect to the radial distance.

During dynamics in the electronic ground state, the electrons in proximity of the nuclei

move in the direction of the nuclei. This was shown for the examples of tunneling in

cyclooctatetraene and nuclear dynamics of benzene along the Kekulé mode, and it holds

also for proton tunneling in malonaldehyde and in the formic acid dimer. The electron

density is distributed mainly torus- or doughnut-like around the approximate circle on which

the nuclei are located. The nuclear motion conserves the expectation value of the angular

momentum, which is zero for all processes discussed here. Then, for each radial distance

r the contributions of the angular flux density at this distance can be expected to cancel

approximately,

f(r) =
x

jϕdϕdz ≈ 0. (4.116)

While eqn. 4.114 is zero by electronic angular momentum conservation, eqn. 4.115 is also

approximately zero, and thus also

c(t) ≈ 0. (4.117)

Moreover, as the electron density is (to a very good approximation) confined to a cylinder

with some radius rmax, the generalized mean value theorem for integrals can be used. Because

r2 does not change sign for r ∈ [0, rmax], it holds that [47]

〈lz〉 =

∫
f(r)r2dr = f(r̃)

rmax∫
0

r2dr =
r3
max

3
f(r̃) (4.118)

for some 0 < r̃ < rmax. Zero expectation value of the electronic angular momentum for ground

state reactions, 〈lz〉 = 0, means that for r̃ the integral of jϕ over the ϕ and z is zero, f(r̃) = 0.

The function f(r) does not vary much for the electron densities of interest, as explained

above. Thus, eqn. 4.117 should, in the cases to be discussed, be a good approximation.

That the average angular flux should not be too different from zero should be a very

good approximation for the core electrons, which are distributed almost spherically around

the nuclei. Thus, these are excluded from the following discussion, and only the valence

electrons are investigated. However, partitioning of the valence electrons into π- and other
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valence electrons does partition the flux parameter cval(t) in an arbitrary way. Nevertheless,

because also π- and other valence electron density move together with the nuclei (albeit

with different speed), and because their densities are also mainly torus- or doughnut-like

distributed, their individual flux parameters should also be close to zero. However, the

approximation that cπ(t) ≈ 0 and coval(t) ≈ 0 is certainly worse than the approximation that

cval(t) = cπ(t) + coval(t) ≈ 0, which should be kept in mind during the following discussion.

Also, for different, more complicated systems (when the electron density is not mainly

centered around one ring, e.g. when there are larger substitutents that just hydrogens at the

carbon nuclei of the ring) this approximation may not hold.

Reaction mechanism for double proton tunneling in the formic acid dimer
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Figure 4.29: Angular densities n(t, ϕ) and fluxes F (t, ϕ) for π-electrons (top left), the other
valence electrons (top center) and all valence electrons (top right) at t = τ/4, for double
proton tunneling in the formic acid dimer. Horizontal lines in the flux plots indicate F = 0
(the flux parameters cπ, coval and cval, and thus the respective average angular fluxes were
chosen to be zero) and vertical lines indicate the position of the zero-flux surfaces. Below,
the initial and final nuclear positions are shown as in Fig. 4.24, with initial Lewis structure
(light blue), zero-flux surfaces (black lines, left for π-electrons, middle for the other valence
electrons, and right for all valence electrons) and flux directions (blue arrows). Dark arrows
indicate motion of the tunneling protons. Sectors A, B, B’ are bound by zero-flux surfaces,
sector C is between B and B’.

For the formic acid dimer, Fig. 4.29 shows that the choice cπ = 0 leads to four zero-flux

surfaces for the π-electron density, but coval = 0 leads to eight zero-flux surfaces for the other

valence electron density. The valence electron density is just the sum of the two densities as

are the fluxes, and there are also eight zero-flux surfaces at positions between those of the
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4.3. Proton tunneling in the formic acid dimer and in malonaldehyde

π- and other valence electron density. The location of the zero-flux surfaces relative to the

initial and final nuclear configuration is also shown in the figure as well as the flux direction

in terms of arrows.
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Figure 4.30: Left: Angular density n(t, ϕ) and flux F (t, ϕ) for valence electrons at t = τ/4,
for double proton transfer in the formic acid dimer. The horizontal line in the flux plots
indicates F = 0 (the flux parameter is cval = 0.2, and thus there is an average angular flux
in direction of positive ϕ) and vertical lines indicate the zero-flux surfaces. Right: The
initial and final nuclear positions are shown as in Fig. 4.24, with initial Lewis structure (light
blue), zero flux surfaces (black lines, left for π-electrons, right for valence electrons) and flux
directions (blue arrows). Dark arrows indicate motion of the tunneling protons. Sectors A,
B, B’ are bound by zero-flux surfaces, sector C is between B and B’.

Bound by the zero-flux surfaces, there are four regions for the π-electron flux and eight

regions for the other valence and all valence electron flux. However, only two (A and B in

the figure) and four (A, B and B’ in the figure, and C between B and B’) regions are not

symmetry equivalent for the π- and (other) valence electrons, respectively.

For the π-electrons, the zero-flux surfaces pass very close to the position of the oxygen

nuclei. Region A contains the tunneling proton, and the π-electron flux is in the direction of

motion of the tunneling proton. The flux first rises strongly, then reaches a plateau, and

finally drops strongly again. However, this region also contains hardly any π-electron density

at all. Region B contains the CH-group. The π-electron flux is directed, surprisingly, from

the initial carbon-oxygen single bond towards the initial carbon-oxygen double bond, which

will become the single bond. The flux in this region has two local minima located at the

center of the carbon-oxygen bonds, and a local maximum at the position of the CH-group.

In the left bottom part of Fig. 4.29, the behavior in region B is indicated schematically using

two arrows, as compared to the one arrow used to denote the flux for region A.

The local maximum in region B is smaller than zero for the π-electrons. However, for the

other valence electrons it is larger than zero, and for all valence electrons it is larger than,

but close to zero. Thus, compared to the π-electron fluxes a new region occurs in the center

of region B. Thus, for the other valence electrons the sector B is split into two parts, B and

B’, and there is a sector C around the CH-group with opposite flux direction relative to B

and B’. For all valence electrons, this sector does also exist, but it is very small.
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The fluxes of the π-, other valence and all valence electrons are qualitatively similar, but

the value of the flux parameter determines if the flux close to the CH-group is either just

weaker than the flux between the CO-bonds, but with the same direction, or if there is a

change of flux direction and the appearance of further zero-flux surfaces. In principle both

cases are possible for π-, other valence and all valence electrons, depending on the actual

value of the respective flux parameter. How different can the mechanism become?

The effect of a change of the flux parameter c(t), and thus of the position of the zero of

the fluxes, depends on the slope of the flux. For the zero-flux surfaces close to the position

of the oxygen nuclei, the effect is rather small: The (absolute value of the) slope of the flux

for a choice c > 0 (that means some average angular flux in direction of positive ϕ, or a shift

of the zero line downwards relative to the graph of the fluxes) is large, and thus the zero-flux

surface will always be close to the position of the oxygen nuclei. Changing c = 0 to its largest

possible value, c = 0.5, will change the position of these surfaces by ca. 17 ◦. However, such

an extreme value of c is very unlikely in the electronic ground state and without interaction

with external field, see the explanation above. A more realistic case, cval = 0.2, is shown in

Fig. 4.30. As can be seen from the figure, the respective zero-flux surfaces are still close to

the oxygen nuclei. This statements hold also for cπ < 0. However, for cval < 0 the (absolute

value of the) slope of the flux is comparably small. If this is the case, region A may indeed

become significantly smaller.
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Figure 4.31: Mechanism of double proton tunneling in the formic acid dimer for the reference
case of zero average angular flux and the flux parameter c = 0 at all times. Numbers and
arrows (brown) outside the ring of the nuclei correspond to transferred π-electrons, while
numbers and arrows (blue) inside the ring correspond to transferred other valence electrons
from one bond sector to another. Boundaries of the bond sectors are defined by the mean
values of initial and final position of the respective nuclei. The numbers of transferred
electrons are shown for only half of the arrows, as the other equivalent arrows represent
the same numbers. The sizes of the numbers and of the arrows indicate approximately the
relative amount of electrons which are transferred.

In contrast to the relative stability of region A, region C and thus also region B and B’

may vary strongly. The (absolute value of the) slope from a minimum of the flux to the local

maximum at the position of the CH-group is comparably small: In this region, depending on

the value of c(t) the position of the zero flux surfaces may vary up to 32 ◦. The two extreme

cases are when either only region B exists but not region C, or when regions B and B’ vanish

almost completely, leaving a large region C. For cval = 0.2, Fig. 4.30 shows that region C

extends up to about one third of the carbon-oxygen single and double bond.

To analyze the reaction mechanism, fluxes into or out of bond sectors shall be used to

represent the meaning of the arrows in Lewis structures. For the present tunneling processes,

the definition of the bond sectors is slightly different from the previous definitions: For

motion of benzene along the Kekulé mode, smooth bond sector boundaries were used defined

by the nuclear wave function, while for tunneling in cyclooctatetraene a superposition of the
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4.3. Proton tunneling in the formic acid dimer and in malonaldehyde

bond sectors of the initial and final structure were employed. In the two processes discussed

here, the model does not yield a nuclear wave function, and the superposition of initial and

final bond sectors is also not possible, because the individual bounding surfaces have to

be used. Thus, a simple definition of the boundaries of the bond sectors is chosen: They

correspond to the mean value of the angle of the nuclei of the ring at their initial and final

position. As can be seen from Fig. 4.24, for all but the tunneling protons, the mean angle

between initial and final position of the nuclei does almost coincide with the positions of the

nuclei themselves, because the hardly move along ϕ.

For the reference case of zero average angular flux, the number of π- and other valence

electrons moving from one bond sector to another one are shown in Fig. 4.31. As could

already be inferred from the position of the zero flux surface and the shape of the flux, almost

no π-electrons (0.05) and a small number of other valence electrons (0.11) move from the

bond sector containing the initial carbon-oxygen double bond to the sector of the nascent

carbon oxygen double bond, and the motion of the other valence electrons can be attributed

to the motion of the proton of the CH-group into the nascent sector. There is a gain of both

π-electrons and other valence electrons, of 0.13 and 0.20 electrons, respectively, coming from

the bond of the initial hydroxyl group. The gain of π-electrons may be interpreted as coming

from the lone pair at the oxygen nucleus of the hydroxyl group, while the other valence

electrons come from the oxygen-hydrogen bond. The same number of π- and other valence

electrons is also transferred from the double bond of the aldehyde group into the sector of

the nascent hydrogen-carbon bond. The π-electrons are accumulated as the oxygen lone pair,

while the other valence electrons are part of the nascent hydrogen-carbon bond. Finally, for

the reference case 0.38 valence electrons accompany each tunneling proton. Compared to the

total number of moving electrons, this is a significant amount. Thus, the process may be

called double proton tunneling, but it may also be called double hydrogen atom tunneling

because part of the electrons forming the nascent hydrogen-oxygen bond come from the

initial hydrogen-oxygen bond. Interestingly, these electrons tunneling with the proton consist

of 0.15 π-electrons and 0.23 other valence electrons. Thus, there is even some π-electron

density moving together with the tunneling proton.

It shall be remarked that, to some extent, the static definition of the bond sectors

precludes such effects as the compensation of flux of π-electrons out of a bond sector by flux

of other valence electrons into the sector, and vice versa, as found in the previous examples.

This is because the electrons close to a nucleus move in general in the direction of the nucleus,

but with different speed. As the boundaries of the bond sector do not move or change with

time, π- and other valence electrons should move in the same direction. The only exception

is the bond sector boundary at the location of the CH-group, as the proton moves faster

than the carbon nucleus relative the the sector boundary.

The mechanism of Fig. 4.31 is a reasonable guess of the mechanism without knowledge

of the exact behavior of the average angular flux with time, as explained above. It is even

better to look at all the valence electrons together, thus avoiding the somewhat arbitrary

division of the flux parameter into two parts. It is worth to compare the present result of

the overall valence electron flux with a study of Okuyama and Takatsuka on the mechanism

of double proton transfer in the formic acid dimer [168]. This study is quite different from

the case discussed here, because it is a dynamics study including electronically excited

states, in contrast to the coherent tunneling model in the electronic ground state discussed

here. In Okuyama’s and Takatsuka’s study, it was found that the net flow of electrons

during proton transfer resembles the mechanism shown in Fig. 4.29 for the π-electrons or

the qualitative mechanism shown in Fig. 4.31 (counting together the π- and other valence

electrons): Electron density moves together with the proton, as well as from the oxygen
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of the initial hydroxyl group to the oxygen of the initial aldehyde group. The study of

Okuyama and Takatsuka is a dynamics study which uses semiclassical Ehrenfest dynamics

to calculate first the dimerization and then the proton transfer. Although different from the

study presented here, the similarity of the mechanisms found in the coherent tunneling limit

and in the finite-temperature simulation is remarkable.

Reaction mechanism for proton tunneling in malonaldehyde
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Figure 4.32: Angular densities n(t, ϕ) and fluxes F (t, ϕ) for π-electrons (top left), valence
electrons (middle) and valence electrons except the π-electrons (top right) at t = τ/4, for
proton tunneling in malonaldehyde. Horizontal line in the flux plots indicates F = 0 (the
average angular flux as well as the flux parameter c are zero) and vertical lines indicate the
position of the zero-flux surfaces. Below, the initial and final nuclear positions are shown as
in Fig. 4.24, with initial Lewis structure (light blue), position of the zero flux surfaces (black
lines, left for π-electrons, middle for valence electrons, right for all valence electrons but the
π-electrons) and flux directions (blue arrows). Dark arrow indicates motion of the tunneling
proton. Sectors A, B, C, D are bound by zero-flux surfaces.

For malonaldehyde, in Fig. 4.32 the fluxes of π-electrons, valence electrons and the

other valence electrons except the π-electrons are shown for zero average angular flux,

cπ = cval = coval = 0 (see eqn. 4.107, eqn. 4.108 and eqn. 4.111). For π- and valence electrons

there are six zero-flux surfaces, and bound by these surfaces there are six regions. Four

of them, labeled A, B, C and D in Fig. 4.32, are not symmetry-related. For the other

valence electrons there are four normal zero-flux surfaces and one almost-zero-flux surface.

Consequently, there are three different regions, labeled B, C and D. As in the case of the

formic acid dimer, the location of the zero-flux surfaces for c(t) = 0 does not change with
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4.3. Proton tunneling in the formic acid dimer and in malonaldehyde

time within an accuracy of π/1000.

Two of the zero-flux surfaces for the π-electrons pass close to both oxygen nuclei, while

two pass close to the position of the nearby carbon nuclei. The last two pass through the

carbon-hydrogen bond. In contrast, the zero-flux surfaces for all the valence electrons are

different: They pass close to the center of the connections between neighboring nuclei of the

ring. Thus, they pass through all bonds along the ring, but are not in close proximity of any

nucleus. The zero-flux surfaces for the other valence electrons are located at the initial and

final position of the tunneling proton, in the middle of the carbon-oxygen bonds, and at the

position of the central CH-group.

The difference between the location of the zero-flux surfaces is explained by the shape of

the fluxes. For all valence electrons, there are minima in regions A and C of approximately

the same magnitude, and there is some significant flux in region B. For the π-electrons, the

flux in region A is much stronger than the flux in region C. Also, the flux in region B is very

small. As can be seen from the flux of the other valence electrons, the flux in region A in

clockwise direction is due to the π-electrons.

In region D, which contains the tunneling proton, the electronic flux is always in the

same direction as the tunneling proton, albeit there is some mechanistic difference between

the π- and the other valence electrons, explained below. From the location of the zero-flux

surfaces alone it follows that the π- and the total valence electron fluxes follow qualitatively

the mechanism M2 of Fig. 4.23.
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Figure 4.33: Mechanism of proton tunneling in malonaldehyde for the reference case of zero
average angular flux and the flux parameter c = 0 at all times. Brown numbers and arrows
in the left structure correspond to transferred π-electrons, while blue numbers and arrows in
the central structure correspond to transferred other valence electrons from one bond sector
to another. Boundaries of the bond sectors are defined by the mean values of initial and
final position of the respective nuclei.

The effect of values of cπ 6= 0 and coval 6= 0 are very different, because the shape of the

π-electron flux and the full valence electron flux is different. Note that a positive/negative

value of cπ, coval and cval means an average angular flux in direction of positive/negative ϕ,

or a shift of the zero line downwards/upwards relative to the graph of the fluxes. For the

π-electrons, already cπ < −0.04 would make region B disappear and regions A and C merge,

while cπ > 0.11 would make region C disappear and regions B and D merge. These values

of cπ have to be contrasted to the range of possible values, −0.31 < cπ < 0.35. This means

that the qualitative reaction mechanism for the π-electrons is rather instable with respect to

the value of cπ. Specifically, regions B and C contain initially the carbon-oxygen single bond

that will become a double bond. Thus, for cπ = 0 the π-electrons forming the nascent double

bond come from both the oxygen and the carbon nucleus (which is part of the carbon-carbon

bond initially). For cπ < −0.04, the π-electrons come essentially from the oxygen only, while

for cπ > 0.11 the π-electrons come from the initial carbon-carbon double bond.

In contrast, for the other valence electrons a coval < 0 would make region A appear,
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while a coval > 0 would make the almost-zero-flux surface at the central CH-group disappear,

but would otherwise not change the mechanism. For all valence electrons, the dependency

on the flux parameter of π-electrons and other valence electrons cancel each other to some

extent. The fluxes in regions B and C are stronger as they are for the π-electrons. With

cval > 0 regions A and C become smaller. The larger the value of cval, the smaller these

regions become, and for almost unidirectional fluxes (in direction of positive ϕ) region A

vanishes. Region C cannot vanish unless the flux is unidirectional. Region B would vanish

for cval < −0.19, which is almost half of the minimal possible value cval < −0.44. Thus, the

qualitative mechanism for the valence electrons is rather stable with respect to the value of

cval.

For the reference case c = 0 (see eqn. 4.111), the numbers of electrons moving from one

bond sector to another are determined as shown in Fig. 4.33. Again, the boundaries of the

bond sectors are defined by the mean value of the angles of initial and final positions of

the nuclei along the ring. From the reference case, one can deduce a number of interesting

features of the reaction.

From the position of the zero-flux surfaces for the valence electrons it is apparent that

the overall mechanism can be described as the mechanism M2 of Fig. 4.23, a mechanism

similar to the motion of the electrons in the examples of the Kekulé mode of benzene and

tunneling in cyclooctatetraene. However, the individual contributions of π- and other valence

electrons are different. For the π-electrons, the only notable contributions are a flux from the

region of the initial carbon-carbon double bond into the region of the nascent carbon-carbon

double bond (0.35 electrons) and a flux together with the tunneling proton (0.31) electrons.

Interestingly, there is little flux out of the sector belonging to the initial carbon-oxygen

double bond towards the sectors of the nascent carbon-carbon double bond (0.04 electrons)

and towards the nascent hydrogen oxygen bond (also 0.04 electrons). Consequently, there

is little difference between the numbers of π-electrons in the sector for the lone pair at the

hydroxyl group and for the double bond of the aldehyde group.

In contrast, the number of the other valence electrons moving from the initial carbon-

carbon single bond towards the nascent carbon-carbon single bond is close to zero (0.003

electrons), and also the other valence electrons accompanying the tunneling proton is small

(0.13 electrons) compared to the number of π-electrons. The flux of other valence electrons

from the initial double bonds towards the sectors of the nascent double bonds is both 0.15

electrons. The strongest flux is away from the initial hydrogen-oxygen bond to the nascent

carbon-oxygen double bond and vice versa, each accumulating to 0.28 electrons.

In summary, for proton tunneling in malonaldehyde a mechanism was found that could

have been anticipated in advance, except for the interesting detail that there is significant

π-electron motion accompanying the tunneling proton. This flux exists independent of the

choice of the flux parameter (excluding the pathological case of making the flux of π-electrons

unidirectional). It is found that for the reference case 0.44 valence electrons move together

with the tunneling proton, which is a significant amount. Thus, the process may be called

hydrogen atom transfer.

4.3.6 Cluster analysis of the electron density

A second approach to circumvent the lack of knowledge of the flux parameter is to make

reasonable assumptions about the behavior of the angular fluxes. One possibility, inspired

by applications in the field of classical molecular dynamics simulations of molecules, is to

assume that the flux at some point is determined by the difference of the density at that

point and the neighboring points. If such a behavior was assumed for the time-evolution of
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the system, an incoherent equilibration would happen which at zero temperature (i.e. for the

cases discussed in this work) would lead to no flux at all. However, the densities at different

times are taken as given, and fluxes are determined such that the density at one time step is

converted to the density at the next time step. The time-dependence of these densities fulfills

the requirement of local conservation, and for the approach presented here the continuity

equation is fulfilled. The fluxes are determined according to the average of the densities of

neighboring points.

In the following, the assumptions to be made are explained in detail. The angular electron

density is used as input, and in the end angular regions with large flux inside but little

flux between them will be obtained. These regions, called clusters, can be used to find the

location of minimal flux surfaces in this model. In the next section, the results of the method

are compared for proton tunneling in malonaldehyde and for double proton tunneling in the

formic acid dimer with the fluxes determined from the electron density and the continuity

equation.

Roadmap

The time of conversion from reactants to products, here t = [0, τ/4], is partitioned into M

intervals [tα, tα+1] with τ/4 = tM > · · · > t1 = 0. The number of time intervals is small, e.g.

for the applications in the next section M = 6. The angular electron density n(t, ϕ) is given

at the times t = tα and at N points ϕi, with −π = ϕ1 < · · · < ϕN = π. Each of these points

represents an interval in the angular space, which will in the following be called a sector.

The column vector containing the N entries n(t, ϕi) = ni(t), i.e. the amount of density in

the sectors, is denoted by n(t).

The first step of the model is to construct a matrix P̃ (tα+1, tα) which transforms the

density at time step tα to the density at time step tα+1, It is constructed from the assumption

that much density difference between two sectors leads to much flux, which is made precise

below. The entry P̃ji with i 6= j tells how much density is moving from sector i to sector j

from one time step to the next, and thus the entry P̃ij tells how much density is moving

from sector j to sector i in this time interval. Because there are fluxes to and out of the

sector, P̃ is called a gross transition matrix.

The density is interpreted as a classical probability density, and the gross transition

matrix shall satisfy microscopic reversibility. The second step of the model is to construct

a net transition matrix P (tα+1, tα) from the gross transition matrix P̃ . Elements Pji of

this matrix with i 6= j contain the difference of the conditional probability of the electrons,

relative to sector i, to move from sector i to sector j from tα to tα+1 (i.e. P̃ji) and the

probability of the electrons to move from sector j to sector i in this time interval (obtained

from P̃ji and the densities in the sectors). By calculating this difference, it would hold that

Pji = −Pij . The matrix shall, however, only contain information which represents from

which place to which place the electron density moves. It thus shall have only positive entries,

and negative entries are set to zero. The matrix P is approximately block diagonal or can be

made approximately block diagonal by exchanging rows and columns in an appropriate way,

and each block represents a range of sectors. Within this range of sectors, called clusters,

there is a lot of flux, while between those sectors there is little flux.

In the third step, all those matrices P (tα+1, tα) for the different times steps are used to

construct a matrix T that represents the whole tunneling process as a reversible process.

This matrix is analyzed by using its eigenvectors and a method called the robust Perron

cluster analysis, which yields the clusters that tell at which angles there is a lot of flux, and

where there is little flux.
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Construction of the gross transition matrix

The gross transition matrix P̃ (tα+1, tα) shall transform the density at tα to the density at

tα+1,

n(tα+1) = P̃ (tα+1, tα)n(tα). (4.119)

The process of moving from one time step to the next is described by classical probability

theory [46], and is assumed to be a homogeneous Markov process. For such a process, there

exists in infinitesimal, time-independent generator matrix Q which is related to P by the

Chapman-Kolmogorov equation [46,109,113]

∂tP̃ = QP̃ (t). (4.120)

Thus, P̃ is obtained by Q as

P̃ (tα+1, tα) = exp ((tα+1 − tα)Q) . (4.121)

For the elements of Q it holds that

−Qii <∞

−Qii =
∑
j 6=i

Qji. (4.122)

Note that the off-diagonal elements are all positive, while the diagonal elements are all

negative. The quantity −Qji/Qii is the conditional probability of moving from sector i to

sector j in an infinitesimally small time step, given the particle was initially in sector i [113].

Also, −Qii is the rate of particles leaving sector i [113]. Hence, Q is called the instantaneous

transition rate matrix, and by eqn. 4.121 it generates the transition matrix for the finite time

interval from tα to tα+1.

In principle, for small enough time steps the matrix P̃ may always be written as eqn. 4.121,

with the correct choice of Q. In practice, Q is unknown and may also not easily be derived

from the Schrödinger equation in the Born-Oppenheimer approximation. Consequently, an

assumption is made for the entries of Q.

A possibility to construct a Q such that the entries of P̃ obtained from eqn. 4.121 meet

the condition of microscopic reversibility, niP̃ji = njP̃ij , is to choose

Qji =
1

ni
Sji, (4.123)

where Sji is symmetric with respect to i and j [113]. In the following, the rates Qji from

sector i to sector j are zero for non-neighboring sectors, and S is an average of the density of

the sectors for neighboring sectors. The choice made here is that the rates are

Qji = γ
√
nj/ni, j = i± 1. (4.124)

This is the geometric mean of the densities in neighboring sectors,
√
njni, weighted by the

amount of density in the starting sector i. Other averages, like the arithmetic or harmonic

mean, were also tested but did not alter the results presented in the next section. Thus, they

are not further discussed. Note that in a quantum mechanical system, eqn. 4.121 can only be

approximately valid, and Qji = 0 for non-neighboring sectors does not follow automatically

by continuity. Note also that Q depends on time, as the densities ni depend on time. Thus,

the condition of microscopic reversibility is fulfilled for each Q only at that given time step.
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The constant γ with dimensions of inverse time is an unknown parameter. It is determined

indirectly by ensuring that the second largest eigenvalue of Q has a certain value (the largest

eigenvalue is zero). If the angular space is divided into two regions such that the flux between

the two regions is as small as possible, the second largest eigenvalue of Q is the negative

value of this flux [57]. It is not zero in the approach presented here, but small, and it has to

be guessed. However, in practice, the algorithm used works only for some range of values for

γ, and within this range the results are robust with respect to the specific γ.

By assumption, the instantaneous rate matrix Q may be different for each time interval

[tα, tα+1], but shall not change within the time interval. This condition is not met by a Q

defined by eqn. 4.124, as the densities n(t) depend on time. Thus, an average between Q at

tα and Q at tα+1 is used, and eqn. 4.121 is replaced by

P̃ (tα+1, tα) ≈ exp

(
(tα+1 − tα)

Q(tα) +Q(tα+1)

2

)
. (4.125)

Using this P̃ , eqn. 4.119 is not fulfilled exactly anymore. However, it is important that

the continuity equation is fulfilled, and thus row and column rescaling by the method of

Sinkhorn [193] is used to correct for this small error. As P̃ (tα+1, tα) is constructed by using

the transition rate matrix at two different time steps, Q(tα) and Q(tα+1), it does not fulfill

the condition of microscopic reversibility anymore, although the individual rate matrices do

with respect to the densities ni at the respective time steps.

Construction of the net transition matrix

After obtaining the gross transition matrix P̃ , the net transition matrix P can be constructed

as the difference between forward and backward flux with respect to a given sector. The

conditional probability of transition from sector i at time tα to sector j at time tα+1, relative

to sector i, is P̃ji. (because the instantaneous rates Qji were always referred to the given

sector, cf. eqn. 4.123). The conditional probability of transition from sector sector j at tα to

sector i at time tα+1, relative to sector i, can be obtained from P̃ij as [46]

P̃ ′ji(tα+1, tα) =
nj(tα)

ni(tα)
P̃ij(tα+1, tα). (4.126)

While P̃ji may be called the yield of the forward flux, P̃ ′ji may be called the yield of the

backward flux. The net transition matrix is constructed from the difference between forward

and backward flux, and it shall only contain the information from which place to which place

the density moves. Thus, it is set to zero if the backward flux is larger than the forward flux.

The off-diagonal elements of P are then given by

Pji(tα+1, tα) = max

(
P̃ji(tα+1, tα)− nj(tα)

ni(tα)
P̃ij(tα+1, tα), 0

)
. (4.127)

The diagonal elements Pii(tα+1, tα) are determined by conservation of the density, i.e. such

that the column sums of the matrix are equal to 1.

Off-diagonal entries of P tell how density is moving from one sector to another, and thus

P can be used to find regions of large flux. But before this can be done, the matrix describing

the overall process has to be made time-reversible, as there are different matrices P for

transition from each time step to the next. This requirement is accomplished by construction
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of a matrix T from P (tα+1, tα) such that

T =
1

2


0 P (t2, t1) 0 · · ·

P (t1, t2) 0 P (t3, t2) · · ·
0 P (t2, t3) 0 · · ·
...

...
...

. . . .

 (4.128)

The factor 1/2 is introduced because T shall also have the column sum 1. The matrix

describing the process backward in time, P (tα, tα+1), is just the transpose of P (tα+1, tα). It

should be remembered that each Pji(tα+1, tα) represents the net probability of going from

sector i at time tα to sector j at time tα+1. The diagonal blocks of T are empty, as there is

no transition if there is no change in the time step. Also, blocks of T corresponding to time

steps which do not follow each other are also zero, as there shall be only transitions from the

current time step to the next, or to the previous one.

Robust Perron Cluster Analysis PCCA+

The matrix P was designed such as to be used with the Robust Perron Cluster Analysis,

called PCCA+ (Perron Cluster Cluster Analysis, the + stands for improvements regarding

the original method) [63,64]. This method is now described.

Along the angle ϕ, there are regions bounded with zero-flux surfaces, and there is flux

inside this regions, but not between those regions. These regions will be called clusters in the

following. The matrix T describing the complete process can, by appropriate row and column

reordering under the condition of the cyclic boundary conditions, be made approximately

block diagonal.

It is assumed for the time being that this matrix is exactly block diagonal. For example,

there may be three different blocks ,,/ and ☼ of sizes m×m, n× n and l × l, respectively,

each representing one of the clusters. T has three eigenvectors with eigenvalue 1 (in this

context, the eigenvalue 1 is called the Perron eigenvalue), because its column sum is 1 by

construction. They are given by , 0 0

0 / 0

0 0 ☼

κ = κ (4.129)

as κ1 = (1m, 0n, 0l)
T , κ2 = (0m, 1n, 0l)

T and κ3 = (1m, 0n, 0l)
T . Symbols like 1m and

0n represent vectors with m entries 1 or n entries 0, respectively, and each entry of the

eigenvectors κi corresponds to one sector centered around an angles ϕ. Thus, if an entry of κi

is equal to 1, the corresponding sector belongs to region i, and if it is equal to 0, it does not

belong to this region. In case of infinitesimally small sectors along the angular coordinates ϕ,

the matrix T becomes an operator, and the κi are eigenfunctions of this operator. These

depend on time and angle, κi(t, ϕ), and they are called membership functions, because they

tell if a certain angle belongs to a given cluster i. In practice, the angular region is always

partitioned into finite sectors, T is a matrix and the κi are vectors. Nevertheless, from now

on they will be called membership functions.

All those membership functions are eigenvectors of T to the same eigenvalue, and other

linear combinations of the membership functions are also eigenvectors. However, such a

linear combination cannot be interpreted as a membership function anymore. Thus, to be a

membership function, not only does κi need to be an eigenfunction of T , but is has also to

consist only of ones and zeros.
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The ones and zeros of κi are actually vectors. However, if the entries of all the κi are

taken together, they may be considered as the corners of a so-called simplex. In the case of

three blocks, above,

(κ1κ2κ3) =



1 0 0

1 0 0
...

...
...

0 1 0

0 1 0
...

...
...

0 0 1

0 0 1
...

...
...



(4.130)

and each row of this matrix defines the corner of a triangle. For four blocks, the rows of such

a matrix would be the corners of a tetrahedron, which has triangles as its faces. For five

blocks, the lines of this matrix would correspond to the four-dimensional simplex, which

has tetrahedrons as its faces, and so forth. In general, for L eigenvectors to the eigenvalue

one, the lines of this matrix correspond to the L corners of the respective simplex. An

algorithm that searches for the eigenvalues of T with eigenvalue one will in general find linear

combinations of the membership functions κi. Geometrically, such a linear combination

represents a rotated and stretched simplex, and this can be exploited to find the membership

functions.

The matrix in eqn. 4.130 is redundant, as the corners of the simplex are already given by

the rows of the matrix 1 0 0

0 1 0

0 0 1

 .

This matrix contains all points given by the rows of eqn. 4.130. It is quadratic, as there

are as many corners of the considered simplex as there are entries in a row. Below, the

eigenvectors will be determined from a matrix that is only approximately block diagonal.

However, such a quadratic matrix can also be obtained by selecting some of the rows of the

matrix constructed of its eigenvectors. The other rows of this matrix will not coincide with

the selected rows, but if the selection is done as explained below, the points represented by

these rows will be (almost) within the simplex.

By construction of T according to the recipe given above, the matrix T cannot be made

exactly block diagonal, and the eigenvalues will only be approximately 1. Thus, a method is

needed which, given some eigenvectors of T to an eigenvalue close to one, creates approximate

membership functions which represent the probability of an angle to belong to a given cluster.

The method used her is the Robust Perron Cluster Algorithm, called PCCA+ [63,64]. This

method uses the eigenvectors of P and the number of clusters to determine membership

functions κi with entries between zero and one.

The number of clusters is simply the number of eigenvalues close to 1. Then, in order to

find the membership functions κi, the geometrical picture sketched above is used in order

to determine the corners of the rotated and stretched simplex. The individual set of points

obtained from the L eigenvectors with eigenvalue close to 1 are not exactly on this deformed

simplex, but close by. To find the L corners of the rotated and deformed simplex, the

following steps are taken:

• For eigenvectors e1, e2, . . . , eL, each being a column vector, the rows of the matrix
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(e1, e2, . . . , eL) are interpreted as data points.

• The data point farthest away from the origin is the first corner of the rotated and

stretched simplex.

• The data point farthest away from the first corner is the second corner.

• The data point farthest away from the line connecting the first and second corner is

the third corner.

• This procedure is repeated, always searching the data point farthest away in the space

orthogonal to the existing shape, until there are L corners, i.e. there are as many

corners as there are eigenvectors.

• Application of the inverse of the (quadratic L × L) matrix containing all corners

transforms the corners of the stretched and rotated simplex to the simplex itself. As

by construction of the corners, these form an approximate convex hull for the other

points (i.e. the other points are approximately within the shape generated by the

corners), application of this inverse matrix to all data points yields points which are

approximately within the simplex. These are the approximate membership functions

κ1, κ2, κ3, . . . .

The described steps are only a sketch of the method. For details, please refer to [63,64].

4.3.7 Results II: Cluster analysis and the resulting mechanisms

The valence electron densities nval(t, ϕ) for the proton tunneling in malonaldehyde and in

the formic acid dimer were used to calculate the rate matrix Q and the transition matrix P

described in the previous section. These densities were obtained as described in section 4.3.4,

with angular step size ∆ϕ = 0.025. The results from section 4.3.5 will be compared with the

present model, but only the valence electrons will be considered: Partitioning the electron

density into contributions of core and valence electrons is not problematic for the unknown

flux parameter. Further partitioning, however, introduces further arbitrariness, see definition

of the reference case above.

The time of conversion from reactant to product was divided into six steps. For these

steps, the instantaneous rate matrices Q and net transition matrices P were constructed,

and the PCCA+ algorithm was applied to find a number of clusters along the angle ϕ.

Within each cluster, electron flux is large, whereas flux between the clusters is small. The

membership functions κi(t, ϕ) giving the probability of an angle ϕ to belong to cluster i

were determined for a parameter γ such that the smallest flux between two optimally chosen

clusters is 0.04 per tunneling period, cf. the explanation after eqn. 4.124.

In Fig. 4.34, the membership functions κi(t, ϕ) of the clusters are shown for both

processes, for the six analyzed time steps from reactants to products. Note that by the

method described above, a matrix T for all time steps is constructed, and the membership

functions are calculated for all time steps simultaneously and thereafter divided into the six

parts, each representing one time step. For proton tunneling in malonaldehyde five clusters

were determined, while for double proton tunneling in the formic acid dimer four clusters

were found. Except for the region of the tunneling proton, the membership functions at

different time steps do almost not differ from each other.

For malonaldehyde, three clusters encompass a CH-group, while the other two are

centered around the oxygen nuclei. As explained above, the angles corresponding to the

transition region between two clusters are regions of minimal flux. Thus, close to where
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Figure 4.34: Top: Membership functions κi(t, ϕ) representing the probability of an angle
to belong to one of the sectors for proton tunneling in malonaldehyde (top left) and in the
formic acid dimer (top right). For malonaldehyde, there are five membership functions (cyan,
green, red, blue, violet), while for the formic acid dimer there are four (green, blue, red, cyan).
Each of those functions is shown at six different time steps, thus there are six lines of each
color present (which are almost distinguishable on the graphical scale). In the background,
the initial electron density and the electron density after half the tunneling time are shown.
Bottom: Fluxes for the respective processes at quarter a tunneling time, for the case of zero
average angular flux. Angles with zero flux are indicated by vertical lines through bottom
and top pictures.

two neighboring membership functions cross (at a value of ca. 0.5) zero flux surfaces can

be expected. Comparison of the cluster transition regions with the zero-flux surfaces of

the reference case (with zero average angular flux), depicted in Fig. 4.34, show interesting

similarities: The zero-flux surfaces between two carbon nuclei or between a carbon and

an oxygen nucleus are within the region of transition between two clusters. However, the

zero-flux surfaces between the oxygen nucleus and the proton, bounding the region of the

tunneling proton, are not reproduced. These zero-flux surfaces, at ϕ ≈ ±2.5, are still within

the cyan and violet clusters. Instead, the region of cluster transition from the violet to the

cyan cluster, around ϕ = ±π, is located at the angles where the flux has its maximum. This

region corresponds to the tunneling proton. Because this is the global maximum of the flux,

a zero flux surface at this place would imply that all fluxes are negative, corresponding to

an entirely unidirectional flux. Thus, a zero-flux surface at this position is forbidden due to

conservation of electronic angular momentum, see [134].

For the formic acid dimer, the situation is similar. All four clusters are centered around

the position of an oxygen nucleus, and transition from the two clusters within a molecule

(from green to blue, and from red to cyan) happens at the position of the carbon nucleus

of the molecule. This region is also the region of the zero-flux surfaces in the reference
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case of zero average angular flux. Depending on the choice of the free parameter γ in the

determination of the rate matrix eqn. 4.124, even the two zero-flux surfaces in close proximity

to each other at this region may be seen as a deformation of the membership function. The

zero-flux surfaces between the oxygen nuclei and the tunneling protons, bounding the two

proton tunneling regions at angles ϕ ≈ ±0.6 and ϕ ≈ ±2.4, are not found, as in the case of

malonaldehyde. These lines are within the region of the green, blue, red and cyan cluster.

Instead, the respective transition regions between the cyan and green, as well as blue and red

clusters around the angles ϕ = ±π and ϕ = 0, respectively, are again at positions where the

electron flux has its global maxima. Thus, if the zero-flux surfaces were at these positions,

the electron flux would be unidirectional, and the selection rules for electronic fluxes in the

ground state would be violated, cf. [134]. Thus, these locations are forbidden for zero-flux

surfaces.
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Figure 4.35: Nuclear probability density ρ at time zero (brown), a quarter of the tunneling
time (orange) and half the tunneling time (yellow), and flux density j at quarter a tunneling
time (blue) for tunneling in ammonia, from [86].

The reason why the assumption that the fluxes are determined by the density difference

between neighboring points in space lead to reasonable zero-flux surfaces between the heavy

nuclei, but fails to describe proton tunneling, can easily be understood. The assumption is

based on classical probability theory. If the density represents classical particles, and if these

are located at time t0 around x0 and at a later time t1 around x1, at some intermediate

times the particles have to be found in between x0 and x1. If the particles move essentially

on a straight line from x0 to x1, there will be a large flux between the two places in space.

Translated to the density, this means that in order to have a lot of flux between two places

in space during some time interval, the time-dependence of the density needs to be such that

the density is peaked at one place, and this peak moves to the final place. The shape of the

peak may change, but it has to be found at intermediate places for intermediate times. In

contrast, the present scenario of tunneling is a quantum effect, where density at a certain

location may be transferred to a location further away, without ever being found in between

the initial and final location. Already by the approximation that the electron density at a

given time is the sum of initial and final densities weighted by the respective probabilities to

find initial and final configuration at that time (see eqn. 4.98), the quantum nature of the

process is apparent.
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What happens in the case of tunneling can further be investigated by considering another

model system, from which the behavior of the nuclear density and flux density are known.

In Fig. 4.35, the density and flux density for ground-state nuclear tunneling of ammonia

are presented. The model is taken from [120], and the densities and fluxes are discussed

in [86]. The figure shows an initial localization of the nuclear wave packet at the left potential

well, corresponding to one of the two equilibrium structures of ammonia. At a quarter of

the tunneling time, the wave packet is split in two parts, each localized in one of the wells.

Finally, after half the tunneling time, the wave packet is completely localized in the second

well, corresponding to the other, inverted equilibrium structure of ammonia. As can clearly

be seen, the density is never significant in between the two wells, e.g. at x = 0, representing

planar ammonia. Classical particles would have to travel continuously from one well into

another, and if these probability distributions were interpreted classically, (almost) zero flux

would be expected at x = 0. However, the quantum mechanical flux density is also shown in

the figure. It is clearly at a maximum at x = 0, and thus there can be no almost-zero-flux

surface there. Although this model is for the nuclear density and flux density, a similar

behavior can be expected for the electron density in proximity to the tunneling hydrogens:

While the electron density disappears together with the nuclear density of the proton at one

location and appears at another, the flux density in between the two locations should be

significant.

In the case of tunneling in malonaldehyde and the formic acid dimer, the assumption

that the density behaves classically, moving continuously from one place to another instead

of disappearing at one place and appearing at another, is not applicable for the tunneling

protons, but applicable to the heavier nuclei. The tunneling of the proton happens such

that electron density disappears at one position and appears at another position far away.

Thus, it is not possible for the PCCA+ algorithm to find the path from one position to

the other. For heavy nuclei, the density tunnels, but only a very short distance. As can be

seen from Fig. 4.27 and Fig. 4.28, the maxima of the electron density at the nuclei shift,

effectively, from initial to final position, while visiting the intermediate region. Thus, the

density behaves similar to a classical density, and the PCCA+ algorithm can find sensible

clusters. This difference between the light and heavy nuclei can also be compared with the

2nd Born-Oppenheimer approximation [133], for which not only the dynamics of the light

electrons and heavy nuclei, but also the dynamics of the light nuclei and heavy nuclei can be

approximately separated. Heavy nuclei exhibit approximately classical behavior, while light

nuclei often do not.

The assumption that only the density differences between neighboring points determines

the fluxes can nevertheless also give reasonable results for the tunneling protons, if one is

aware of the applicability of the assumption. The problematic regions can be identified from

the membership functions: From Fig. 4.34 it can be seen that the membership functions in

the regions of the tunneling proton stay close to a value of 0.5 for a rather wide range of

angles, so that an assignment of the angles to one of the clusters is impossible. Reasonable

zero-flux surfaces for such regions can be found by using the other minimal-flux surfaces

together with the fluxes from the continuity equation. If, for example, for malonaldehyde

the minimal-flux surfaces between two carbon nuclei or a carbon and an oxygen nucleus

were used as zero-flux surfaces for the fluxes, the zero-flux surfaces for the tunneling protons

would automatically follow, see section 4.3.3.

The systems studied here exhibit clearly quantum mechanical behavior, as they describe

large-distance tunneling. Thus, the assumptions made in this section seem to be problematic

at first glance, but nevertheless the results are very encouraging. How would the method

perform for a quantum dynamics study above the barrier? This question may be answered

119



Chapter 4. Applications

internuclear distance

nu
cl

ea
r p

ro
ba

bi
lit

y 
de

ns
ity

Figure 4.36: Sketch of two possible (not normalized) nuclear probability densities (orange
and brown) for a diatomic molecule along the internuclear distance. The brown curve shows
interference effects, while the orange curve does not. Above, there is a sketch of a cut of
the electron density for the individual internuclear distances. If the total electron density
is built as a superposition of the individual electron densities weighted by the respective
nuclear probability density, the resulting electron densities will look qualitatively similar,
and interference effects will not be seen.

by asking how “quantum” the electron density becomes. In Fig. 4.36, for some diatomic

molecule a sketch of a nuclear density along the internuclear distance as well as a cut of the

electron density along this coordinate and a coordinate perpendicular is shown. Although

the nuclear density may show quantum effects like interference patterns, the electron density

in the Born-Oppenheimer approximation is a superposition of the ground-state electron

densities for all internuclear distances, weighted by the nuclear density for this distance.

Consequently, it will exhibit hardly any quantum effects or interference patterns. An example

is simulation of the electronic flux density of vibrating H+
2 in [69]: There, the nuclear wave

packet at the turning point of the potential clearly shows interference effects, and these are

also apparent in the nuclear flux density. However, these effects do not translate to the

electron density or the electronic flux density.

It may thus be possible to use the assumptions made here also for determination of

fluxes from a density obtained by a quantum dynamics simulation. However, further work

regarding the validity of the assumptions is necessary, as these have not yet been justified. A

detailed analysis of the relation between quantum mechanical probability theory and classical

probability theory for electron dynamics in the Born-Oppenheimer approximation would be

necessary, and this still has to be done. Also, the method is based on the density only, and

fluxes that are not apparent in the density, but only encoded in the wave function, can also

not be described.
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Chapter 5

Conclusion

In the Introduction, the goal was set to make the arrows in Lewis structures describing the

reaction mechanism of an electron rearrangement time dependent, focusing on reactions in

the electronic ground state. How well has this goal been achieved?

The electronic flux density would be the tool of choice to achieve this goal. Analysis of the

concept of a flux density and the fate of the electronic flux density in the Born-Oppenheimer

approximation in Chapter 2 showed a major problem: There exists an electronic flux density

for reactions, for which the approximation that they happen in the electronic ground state

is applicable. However, the Born-Oppenheimer approximation precludes straightforward

calculation of the electronic flux density. Few approaches to remedy this problem are known

in the literature, and these were reviewed in Chapter 2. These approaches are promising, but

they also show that a fully quantum mechanical determination of electronic flux densities

is very difficult. On one hand, such a quantum mechanical electronic flux density would

be very important to learn about the details of the reaction mechanism, and to analyze

situations where the quantum mechanical nature of the particles becomes important. On the

other hand, chemists use a mixture of quantum mechanical and classical concepts to describe

chemical reactions, and often the nuclear motion can be considered approximately classical.

Thus, the methods to calculate electronic flux densities to analyze chemical reactions should

incorporate this knowledge. An important step forward would be, for example, to be able

to calculate an electronic flux density from the data of an ab-initio molecular dynamics

simulation, i.e. from positions and velocities of the nuclei in combination with the electron

density. Developments in this direction were made by Diestler [67] and Patchkovskii [172],

and further development would help a lot for the understanding of chemical reactions.

In contrast to the electronic flux density, the time-dependent electron density is readily

available, also for the case of a chemical reaction in the electronic ground state. From the

electron density, electron fluxes into or out of regions of space can be calculated. These

represent less information than the flux density, but also the arrows in Lewis structures

represent much less information than the flux density. It was shown by Barth, Hege, Ikeda,

Kenfack, Koppitz, Manz, Marquardt and Paramonov in [25] that electron fluxes from the

time-dependent electron density in the Born-Oppenheimer approximation agree very well with

the exact fluxes. Thus, these can be used to analyze time-dependent reaction mechanisms

for model systems.

However, to obtain the electron fluxes in sectors is also far from trivial. Some of the

problems were explained in Chapter 3. The development of a program (the Magic Density

Creator, developed with the help of Gunter Hermann and Vincent Pohl from Freie Universität

Berlin) to calculate the electron density from the basis set coefficients of a quantum chemical

calculation efficiently was already an important step. There are still a number of technical

121



Chapter 5. Conclusion

problems to be solved, like stable integration of the electron density in arbitrary regions of

space, until electronic fluxes can be used to analyze simulations of chemical reactions in a

simple manner.

The model systems investigated in this work are the double bond shift of cyclooctatetraene

in the tunneling limit, motion of benzene along the Kekulé vibrational mode, and proton

tunneling in malonaldehyde as well as double proton tunneling in the formic acid dimer. All

these processes are mainly circular electron rearrangements, and in a first approximation

only the circular mechanism is of interest. Thus, the applications focused on the circular

mechanisms.

For cyclooctatetraene, presented in section 4.1, first a model for coherent tunneling was

developed, and the electronic fluxes were calculated within this model. To obtain a reaction

mechanism, the electronic space was divided into bond sectors that should represent a bond

along the ring structure of the molecule. Electron fluxes into and out of the bond sector were

calculated, and interesting results were found: While the core electrons are uninteresting for

the mechanism and the π-electrons move as can be expected from conservation of electronic

angular momentum, the other valence electrons move into the direction opposite to the

π-electrons. This flux is strong enough so that the net flux of electrons is opposite to the

expected reaction mechanism. However, this effect is to some extent due to the definition

of the bond sectors, and only the following investigation of benzene could shows that this

effect is not only an artifact of the model but a feature of the reaction. Also, it could be seen

that the net flux of electrons is very small, and that there are much less electrons moving as

suggested by the arrows in Lewis structures.

Motion of benzene along the Kekulé mode is another example, presented in section 4.2.

The molecule was prepared in one of the Kekulé structures, an effectively one-dimensional

model for the nuclear motion was set up, and a quantum dynamics calculation for the nuclei

was performed. The resulting time-dependent electron density was again used to calculate

fluxes into or out of bond sectors representing the bonds along the nuclear ring. It was found

that again comparably little electron density moves, and that π- and other valence electrons

move into opposite directions. However, all valence electrons taken together move into the

direction of the π-electrons, and thus into the direction implied by the expected reaction

mechanism based on the Lewis structures. By the setup of the model it could be concluded

that this effect is indeed present. Further analysis showed that in principle all electrons move

into the direction of the nuclear motion of the nearby nucleus. The effect of an effective

motion of π- and other valence electrons into different directions relative to the bond sector

could be explained by the different speed of the electrons: The π-electrons are faster than

the nuclei, while the other electrons are slower.

The examples of cyclooctatetraene and benzene had the advantage that possible reaction

mechanisms were already known from the beginning by conservation of electronic angular

momentum for reactions in the electronic ground state, and by symmetry of the process. For

general circular electron rearrangements that do not exhibit the appropriate symmetries the

possible reactions mechanisms are constrained much less. Examples of such processes are

proton tunneling in malonaldehyde and double proton tunneling in the formic acid dimer.

For both processes, already the circular flux is only determined up to a time-dependent, but

angle-independent flux parameter.

In Chapter 4.3, it is found that this angular flux parameter is related to the expectation

value of a new operator, the angular velocity operator. However, the time-dependence of

this expectation value, and thus also of the flux parameter is difficult to obtain without

knowledge of the flux density. For the considered tunneling dynamics of malonaldehyde and

the formic acid dimer the value of the flux parameter can nevertheless be estimated via the
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known shape of the electron density and the connection between the angular flux and the

electronic angular momentum.

The reaction mechanisms of proton tunneling in malonaldehyde and in the formic acid

dimer were determined, depending on the value of the flux parameter. For the dynamics, the

coherent tunneling model that was previously used for cyclooctatetraene could be employed

again. The electron fluxes were determined by the continuity equation, up to the unknown

flux parameter. It was found that independent of the exact value of the flux parameter,

the qualitative reaction mechanisms could be reliably determined. For proton tunneling

in malonaldehyde, the mechanism is similar to the previous mechanisms found for double

bond shift in cyclooctatetraene or motion of benzene along the Kekulé mode. For double

proton tunneling in the formic acid dimer, it was found that an important ingredient of

the mechanism is the π-electron density at the oxygen of the hydroxyl group, and that the

mechanism is counterintuitive. It is also found that compared to the number of electrons

that move in total, the number of electrons accompanying the tunneling proton is significant.

Thus, it is concluded that instead of proton tunneling, one may also speak of hydrogen atom

tunneling. Finally, it was also found that some π-electron density tunnels together with the

proton, which is also unexpected.

Last, the time-dependent densities of malonaldehyde and the formic acid dimer were

used to test a model based on classical probability theory. This model has a number of

ad-hoc assumptions, that still need to be justified. Interestingly, the results obtained with

this model are, for the electron density close to the heavy nuclei, in very good agreement

with the reference results based on the continuity equation for the electron density. For the

electron density in proximity to the tunneling proton(s) the model fails, but behavior of

these electrons can be recovered from the results obtained for the electron density close to

the heavy nuclei. Still, a derivation of this model starting from quantum probability theory

has to be performed, in order to assess the applicability of the assumptions.

In summary, a number of new insights could be gained, but there are also a number

of open questions and problems. One immediately apparent problem that was already

mentioned in the introduction is the question of how to define a chemical bond. Moreover,

not only bonds need to be defined, but also regions of the electronic configuration space

have to be assigned to a bond. In the analysis presented here, geometrically simple bond

sectors were defined, and these are to some extent interpreted as representing bonds in Lewis

structures. However, the definition used here is in fact just a partitioning of the angular space

which parametrizes the molecular ring structure. It thus cannot be used for other systems,

and it would be already difficult to use for ring structures with large substituents. Do these

substituents count to a bond sector, or should they be removed? And if so, how could they

be removed? For example, one may consider to replace the quantum chemical ansatz of

molecular orbitals as linear combination of atomic orbitals by valence bond theory [188],

which naturally yields localized bonds. However, although in both cases chemical bonds are

well-defined, the respective definitions are nevertheless arbitrary. The only way to determine

reaction mechanisms without the problem of first defining bonds is to look at the electronic

flux density, the quantity that is so difficult to obtain.

But this brings up a second issue, which is also a problem for the interpretation of

electronic flux densities as chemical reaction mechanisms: The partition of electrons into

classes, like core and valence electrons or σ- and π-electrons. This division of the electron

density is important, as the different chemical kinds of electrons play different roles in

the theory of chemistry as well as in general chemical thinking. However, this division is

also arbitrary, and the dynamics analyzed here and the conclusions drawn for the reaction

mechanisms are very much depending on this partitioning. The different behavior between
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π-electrons and other valence electrons, for example, is a dynamics that arises from the

quantum chemical calculation itself, and from the way of how the partitioning arises there.

In this work, partitioning was simple as only Hartree-Fock calculations or suitable complete-

active space self-consistent field calculations were performed, and the molecular orbitals

can be easily separated. For other quantum chemical methods this may not be the case.

Also, while π-electrons are a well-defined concept and double bonds in Lewis structures like

that of benzene have a clear meaning, this is already different for non-planar systems like

cyclooctatetraene in its electronic ground state. There, molecular orbitals that represent the

double bond are only π-like orbitals, and these are not well-defined anymore.

At this point, the question of how much work should be invested to continue interpreting

Lewis structures shall not be further discussed. The idea of reaction mechanisms and shifting

electron bonds in Lewis structures is very useful. However, supplementing these ideas with

knowledge of how the electronic flux density behaves during a reaction will definitively widen

the horizon of the theory of chemical reactions in the future, and there will be many new

effects that are still waiting to be discovered.

The final conclusion is the same as of any scientific work: A lot has been tried, a few

problems have been solved, and many new problems have been discovered. Thus, the scientific

journey continues.
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Appendix A

Notational conventions

The notation is different for electrons, nuclei, and for general relations. The rules are:

• There are n electrons with position (operator) q = (x1, . . . ,xn) ∈ R3n, with xi ∈ R3.

Lowercase letters are always used to denote electronic coordinates. Every other

lowercase bold-face roman letter referring to electronic properties, like j, has always

dimension dim j = dim q = 3n or dim j = dim x = 3. The electronic wave functions are

φ or φi, the electronic probability density is ρ, and the electronic flux densities are j or

jij . The electronic mass is me.

• There are N nuclei with position (operator) Q = (X1, . . . ,Xn) ∈ R3n, with Xi ∈ R3.

Uppercase letters are always used to denote nuclear coordinates. Every other uppercase

bold-face roman letter referring to nuclear properties, like J, has always dimension

dim J = dim Q = 3N or dim J = dim X = 3. The nuclear wave functions are χ or χi,

the nuclear probability density is %, and the nuclear flux densities are J or Jij . Nuclear

masses are M or Mi, respectively.

• In case the discussion does not refer to electronic or nuclear properties explicitly, the

notation for electrons is used as generic notation. The generic mass is m.

Special notations for an operator and its expectation value are not used, except where it is

necessary to distinguish both. In this cases, the operator gets a hat, like ĵ.

Derivative operators are written e.g. as ∂t or ∂q, where the latter is short for the vector

of the derivatives with respect to all components of q. Specifically, the gradient of a scalar

field ρ(q) is grad ρ = ∂qρ, and the divergence and curl of a vector field j(q) are div j = ∂q · j
and curl j = ∂q × j, respectively. If derivative operators have to be applied several times,

exponents are used for the operators. For example, the Laplacian is ∂2
q. Also, operators

always act on everything to the right, unless their action is limited by the usage of brackets.

Similar notation is used for elementary differential forms. For example, dx = dx1dx2dx3,

and ∫
f(x)dx =

y
f(x)dx1dx2dx3.

The notation
s

and
t

for double and triple integrals is only used for emphasis, and it

is always understood that an integral is performed over all coordinates indicated by the

differential form. If the bra-ket notation is used for scalar products, like∫
φ∗Ôφdq = 〈φ|Ô|φ〉,

the integral is always performed with respect to the electronic coordinates q only. Differential

forms, which are not (necessarily) the elementary forms of the vector space, get a check, like
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the form ǰ.

Electron fluxes are denoted by F , electron yields (time-integrated electron fluxes) by Y ,

and electron numbers (electron density integrated in some sector) by N . A one-dimensional

electron density obtained from the electron density ρ by integration over all but one coordinate

is denoted by n. The electron density ρ is split into the density of core electrons ρcore and

the density of valence electrons ρval. The latter is split again into the density of pericyclic

electrons or π-electrons, ρper or ρπ, and the density of the other valence electrons ρoval.

This decomposition carries over to the fluxes, yields, electron numbers, and one-dimensional

densities. Accordingly, these obtain similar superscripts “core”, “val”, “per”/“π”, and “oval”

as the densities. Note that there will be no ambiguity in the text whether N and n have

the meaning of an electron number or a one-dimensional electron density, respectively, or

whether the symbols denote the total number of nuclei and electrons.

Cyclic electron rearrangements are discussed throughout the text, hence often the coordi-

nates for one electron x are expressed in cylindrical coordinates. The cartesian coordinates

are x = (x1, x2, x3), and the cylindrical coordinates are x = (r, ϕ, z), with x1 = r cosϕ,

x2 = r sinϕ, and x3 = z.
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Appendix B

A brief introduction to

differential forms

This section will cover parts of the calculus of differential forms in a rather casual way, as a

formalism used interchangeable with standard vector calculus. There is more to differential

forms, but the modest aim of this appendix is to present the basic concepts which will be

of use in the main text. After introduction of the algebra of differential forms two very

important results are presented: Poincare’s Lemma and Stoke’s Theorem. Both are given

without proof. Details on differential forms and the proofs can be found in [73, 161]. In

extension to the usual vector calculus, the usage of differential forms will allow to write

equations in a concise and dimension-independent way (e.g. there is not need to bother

about how the generalization of a cross product looks like). Additionally, it will provide

information by only the algebra of differential forms instead of tedious vector calculations

and it simplifies the notation sometimes significantly. In this section a notation for the forms

is used which is similar to their appearance in the main text.

Differential forms are what is left from an integral over a k-dimensional surface after

removing the integral symbol. As Flanders says: “These are the things which occur under

integral signs” [73]. They combine and generalize line integrals, surface integrals and volume

integrals. Consider a linear vector space of dimension K with coordinates q1, . . . , qK , and

let
∧k

denote the space of k-forms. A symbol for the linear vector space is omitted, as in

general it will not be dealt with multiple vector spaces at once. Then,

• c = c(t) is a constant with respect to q1, . . . , qK , but possibly a function of other

variables denoted by t.

• f ∈
∧0

, called a 0-form, is a function of q1, . . . , qK and possibly also of other variables

t, i.e. f = f(q1, . . . , qK , t).

• ǰ ∈
∧1

, a 1-form, is the equivalent of a vector field in K dimensions, i.e.

ǰ = j1dq1 + · · ·+ jKdqK , (B.1)

with the jk being understood as functions of q1, . . . , qK , t.

• Ǎ ∈
∧2

, a 2-form, is e.g. in three dimensions

Ǎ = A1dq1 ∧ dq2 +A2dq2 ∧ dq3 +A3dq3 ∧ dq1, (B.2)

with Ak being understood as functions of q1, . . . , qK , t. The exterior product of two
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basis 1-forms dqi and dqj is skew-symmetric, that is,

dqi ∧ dqj = −dqj ∧ dqi. (B.3)

For 2-forms, this is equivalent to having oriented surface elements, and the property

of orientation generalizes naturally to higher dimensions. It follows immediately that

dqi ∧ dqi = 0. In the following, as customary in the literature, the explicit use of the

∧-symbol for basis forms is omitted.

• β̌ ∈
∧k

is a k-form and has
(
K

K−k
)

=
(
K
k

)
basis k-forms like dq1dq2 . . . dqk, dq2dq3 . . . dqk+1,

etc. Consequently, the space of k-forms and the space of (K − k)-forms have the same

dimensionality. This property will be useful for the definition of the scalar product.

• ρ̌ ∈
∧K

, a K-form, is the volume element

ρ̌ = ρ(q1, . . . , qK)dq1 . . . dqK . (B.4)

The scalar product is defined as a map of two k-forms to
∧K

via the Hodge dual ∗. This

operator maps a k-form to its dual, a K − k-form. For this mapping it is important that

both spaces
∧k

and
∧K−k

have the same dimensionality, as just explained. The action of

the Hodge dual depends in general on the metric of the space. We will be working here with

the simple flat Euclidean metric only, for which ∗ is defined via the basis forms as

∗dqi1 . . . dqik = εj1...jkjk+1
dqjk+1

. . . dqjK , (B.5)

with εj1...jkjk+1
being the Levi-Civita symbol. This symbol is defined as

εj1...jk =


1 for (j1 . . . jk) even permutations of (1, 2, . . . , k),

−1 for (j1 . . . jk) odd permutations of (1, 2, . . . , k), and

0 else.

(B.6)

For example, for a one-form α̌ =
∑K
i=1 aidqi in

∧4
, application of the Hodge dual gives

∗α̌ = a1dq2dq3dq4 − a2dq1dq3dq4 + a3dq1dq2dq4 − a4dq1dq2dq3. (B.7)

With the Hodge dual, a scalar product of two forms α̌, β̌ ∈
∧k

can be defined as

α̌ ∧ (∗β̌) = (∗α̌) ∧ β̌ = 〈a, β〉dq1 . . . dqK . (B.8)

For example, consider the scalar product between two vectors a = (a1, a2),b = (b1, b2)

in two-dimensional space. In the language of differential forms, the two differential forms

α̌, β̌ ∈
∧2

,

α̌ = a1dq1 + a2dq2 (B.9)

β̌ = b1dq1 + b2dq2 (B.10)

would be used. The scalar product a · b is given by

α̌ ∧ (∗β̌) = (a1dq1 + a2dq2) ∧ (∗(b1dq1 + b2dq2))

= (a1dq1 + a2dq2) ∧ (b1dq2 − b2dq1)

= (a1b1 + a2b2)dq1dq2. (B.11)
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The previous example is repeated for three-dimensional space, for the vectors a = (a1, a2, a3),b =

(b1, b2, b3). The respective differential forms α̌, β̌ ∈
∧3

give

α̌ ∧ (∗β̌) = (a1dq1 + a2dq2 + a3dq3) ∧ (∗(b1dq1 + b2dq2 + b3dq3))

= (a1dq1 + a2dq2 + a3dq3) ∧ (b1dq2dq3 − b2dq1dq3 + b3dq1dq2)

= (a1b1 + a2b2 + a3b3)dq1dq2dq3. (B.12)

Note that this is a 3-form, and thus stands for a volume. Usually, the scalar product is

considered to give a number. We can force this by application of the Hodge dual:

∗(α̌ ∧ (∗β̌)) = a1b1 + a2b2 + a3b3. (B.13)

However, such a transformation is practice usually not necessary, as the spaces
∧k

and
∧K−k

are equivalent.

The cross product a×b for a = (a1, a2, a3),b = (b1, b2, b3) can also be easily represented.

All that needs to be done is to act with the Wedge product, to obtain

α̌ ∧ β̌ = (a1dq1 + a2dq2 + a3dq3) ∧ (b1dq1 + b2dq2 + b3dq3)

= (a2b3 − a3b2)dq2dq3 + (a3b1 − a1b3)dq3dq1 + (a1b2 − a2b1)dq1dq2. (B.14)

The result may look unfamiliar: In traditional vector calculus, the result of a cross product

is again a vector. Vectors are identified with one-forms, but the result of eqn. B.14 is a

two-form. However, this is in complete accord with the meaning of the cross product: The

length of the vector c = a× b is the area of the parallelogram spanned by the vectors a and

b, and the direction of c gives the orientation of the normal to the surface containing the

parallelogram. The form α̌ ∧ β̌ is automatically describing this surface, with the orientation

encoded in the order of the basis forms dqidqj . The Hodge dual may be applied to eqn. B.14

to obtain a one-form (and thus to resemble the cross product completely):

∗(α̌ ∧ β̌) = (a2b3 − a3b2)dq1 + (a3b1 − a1b3)dq2 + (a1b2 − a2b1)dq3. (B.15)

The product α̌ ∧ β̌ for arbitrary k-forms α̌, β̌ generalizes the cross product to arbitrary

dimensions.

The last important operation for differential forms that is considered is the action of the

d-operator, which maps from
∧k

to
∧k+1

. For definition of this differential operator, a slight

change is made in the notation, following [73]: A general k-form β̌ is written as

β̌ =
∑
L

βLdqL, (B.16)

where dqL denotes a basis k-form, i.e. L stands for the set of all indices of the 1-forms used

to construct a given basis k-form. Then,

dβ̌ =

K∑
i=1

∑
L

∂βL
∂qi

dqidqL. (B.17)

This definition is in the following applied to a few examples, to see how the d-operation works.

Usually, when working with differential forms, the definitions look much more complicated

than the application of the operators in practice, as will be seen below.
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For a 0-form f in the K-dimensional linear vector space the d-operator acts as

df =

K∑
k=1

∂f

∂qk
dqk. (B.18)

This is the gradient of the function f .

For a 1-form ǰ =
∑3
k=1 jkdqk in 3-space,

dǰ = d(j1dq1) + d(j2dq2) + d(j3dq3)

=

(
∂j1
∂q2

dq2dq1 +
∂j1
∂q3

dq3dq1

)
+

(
∂j2
∂q1

dq1dq2 +
∂j2
∂q3

dq3dq2

)
+

(
∂j3
∂q1

dq1dq3 +
∂j3
∂q2

dq2dq3

)
=

(
∂j3
∂q2
− ∂j2
∂q3

)
dq2dq3 +

(
∂j1
∂q3
− ∂j3
∂q1

)
dq3dq1 +

(
∂j2
∂q1
− ∂j1
∂q2

)
dq1dq2. (B.19)

This is the curl of the corresponding vector j. Again, this is not a 1-form but a 2-form and

represents a surface, like the equivalent of the cross product, eqn. B.14.

Finally, for the same 1-form ǰ =
∑3
k=1 jkdqk in 3-space,

d(∗ǰ) = d(j1dq2dq3)− d(j2dq1dq3) + d(j3dq1dq2)

=

(
∂j1
∂q1

dq1dq2dq3

)
−
(
∂j2
∂q2

dq2dq1dq3

)
+

(
∂j3
∂q3

dq3dq1dq2

)
=

(
∂j1
∂q1

+
∂j2
∂q2

+
∂j3
∂q3

)
dq1dq2dq3. (B.20)

This is the divergence of the corresponding vector j. It is a 3-form, similarly to the definition

of the scalar product, cf. eqn. B.12.

With these definitions, it is possible to state the two most important results of the calculus

of differential forms:

• Poincare’s Lemma: For any differential form β̌,

ddβ̌ = 0. (B.21)

Also, if dγ̌ = 0 for any (k + 1)-form γ̌, it follows that there is a k-form β̌ such that

γ̌ = dβ̌.

• Stoke’s Theorem For any k-form β̌ and any region Ω with boundary ∂Ω,∫
Ω

dβ̌ =

∫
∂Ω

β̌. (B.22)

These two identities unify many formulas used in traditional vector calculus. For example,

for a 0-form in 3-space it follows from Poincaré’s Lemma that

curl grad f = 0 (B.23)

for a function f , whereas for a 1-form it follows that

div curl a = 0 (B.24)

for a vector a. Stoke’s theorem is the generalization of what is known as Green’s theorem as

well as the Divergence/Gauss’s/Ostrogradsky’s theorem. There will be the opportunity to

apply both when the solution of the continuity equation is discussed, see section 2.2.
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As a final application, consider the solution of the integral of eqn. 2.30. Specifically,

I =

∫
B

∂q ·
q

|q|K
dq (B.25)

is to be solved for integration over a small ball B centered around the origin. The integral

I resembles the integral of eqn. 2.30, if the problem is centered around zero, q = 0, and

if the substitution q′ → q is made. The problem at hand is similar to the calculation for

gravitational flux given in [16].

The one-form

α̌ =
1

|q|K
K∑
i=1

qidqi (B.26)

is introduced, so that eqn. B.25 becomes

I =

∫
B

d ∗ α. (B.27)

For example, for three dimensions

∗α =
1

|q|K
(dq2dq3 − q2dq1dq3 + q3dq1dq2) (B.28)

and it is to be integrated over

d ∗ α =

(
∂q1

q1

|q|K
+ ∂q2

q2

|q|K
+ ∂q3

q3

|q|K

)
dq1dq2dq3. (B.29)

Using Stoke’s Theorem, the volume integral can be replaced by the surface integral

I =

∫
B

d ∗ α =

∫
∂B

∗α. (B.30)

As a next step, spherical coordinates in K dimensions are introduced, defined by

q1 = r cosϕ1

q2 = r sinϕ1 cosϕ2

qi = r sinϕ1 sinϕ2 . . . sinϕi−1 cosϕi

qK = r sinϕ1 sinϕ2 . . . sinϕi−1 sinϕK−1. (B.31)

The radius is defined in r ∈ [0,∞], and all the angles are defined in ϕi ∈ [0, π] except ϕK−1,

for which ϕK−1 ∈ [0, 2π]. The basis forms transform as

dqi =
∂qi
∂r

dr +

K−1∑
j=1

∂qi
∂ϕj

dϕj . (B.32)

Now ∗α can be calculated in this basis to solve eqn. B.30. For the calculation, a computer

algebra system is strongly recommended due to the large number of terms. Using Sage [7],

the simple result

∗α =
rK

|q|K
(sinϕ1)K−2(sinϕ2)K−3 . . . sinϕK−2 dϕ1dϕ2 . . . dϕK−2dϕK−1 (B.33)

was obtained. It is evident that all other basis forms except dϕ1dϕ2 . . . dϕK−2dϕK−1 vanish.
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Appendix B. A brief introduction to differential forms

For the integration over the boundary ∂B of the ball r = |q|, so that∫
∂B

∗α =

∫ π

0

· · ·
∫ π

0

∫ 2π

0

(sinϕ1)K−2(sinϕ2)K−3 . . . sinϕK−2 dϕ1dϕ2 . . . dϕK−2dϕK−1.

(B.34)

Specific solutions to this integral for a given dimensionality are straightforward. The general

solution, which will not be discussed further here, is the surface of the unit K-sphere

AK =
2πK/2

Γ(K/2)
. (B.35)
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Appendix C

Kinetic energy operators from

symmetry-adapted curvilinear

coordinates

For an accurate quantum dynamics simulation of the nuclear wave function during a process

there is a computational problem: The dimensionality even for rather small systems, like

the molecules considered in this text, is already far too large to be able to calculate the

nuclear wave function completely. For cyclooctatetraene, for example, there are 48 nuclear

coordinates, and already the storage of the wave function on a computer becomes a challenge.

Even with todays most successful quantum dynamics methods which use efficient basis sets to

represent the wave function, like the MCTDH method [31,147] or the coupled coherent states

approach [189], only a dozen degrees of freedom may be calculated completely (although,

under certain circumstances more dimensions may be treated approximately by a multilayer

approach, see [144]).

Additionally, for the calculation of the nuclear quantum dynamics a potential energy

surface is needed, and this has to be calculated by quantum chemical means. Depending on

the region of the configuration space which the molecule visits, expensive quantum chemical

methods may be necessary. For some problems this calculations becomes unfeasible, and

even though the nuclear dynamics might be determined in principle, in practice it cannot

due to the lack of an accurate potential.

Thus, it is almost always necessary to set up a model system with a reduced number

of degrees of freedom. Fortunately, the processes of interest do often happen in a small

subspace of the nuclear configuration space. In consequence, a transformation (the model)

from Cartesian coordinates of the nuclei to more appropriate coordinates is sought, which

divides the set of coordinates into two parts: A (hopefully small) relevant part, and an

irrelevant part, which may be neglected. Two aspects are important for such a transformation:

On one hand, the set up of the model is influenced by assumptions about how the process

happens. Consequently, if results of the model do not agree with reference data, the

original assumptions need to be modified. On the other hand, a well-designed model can be

systematically improved by inclusion of more and more degrees of freedom. Thus, even if it

was possible to calculate the whole dynamics in a brute-force approach, from construction

and investigation of a model of reduced dimensionality a lot can be learned.

Notwithstanding, setting up such an appropriate transformation for the process is in

general necessary anyway, and a lot of effort has already been undertaken by scientist in this

matter. These approaches shall be reviewed in the following.
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Appendix C. Kinetic energy operators from symmetry-adapted curvilinear coordinates

One way to find coordinates which achieve the goal of separating coordinates into relevant

and irrelevant parts is the transformation to Jacobi coordinates [101,119] (also called mobile

coordinates), which are defined as coordinates that separate the center of mass motion and

leave the kinetic energy operator of the internal motions diagonal. There are also generalized

Jacobi coordinates, which only separate the center of mass motion [74]. This separation is

always desirable for quantum dynamics simulations, except if one needs the reference to an

external frame (e.g. if an external field is included in the simulation). Jacobi coordinates are

also used below, and will be further discussed. For now, it should be noted that usually Jacobi

coordinates are used as rectilinear coordinates, but they may also be expressed as curvilinear

coordinates, e.g. in terms of spherical coordinates. While rectilinear Jacobi coordinates are

suitable both for small amplitude motions (often, normal coordinates are almost Jacobi

coordinates) as well as the large amplitude motions, curvilinear Jacobi coordinates may

be used for large amplitude motions to keep the dimensionality of the problem as small as

possible.

There has been much interest in curvilinear coordinates: Already in 1928, Podolsky [176]

derived a form of the kinetic energy operator for general coordinates. The book of Wilson,

Decius and Cross [226] discusses several types of coordinate systems for the ro-vibrational

problem, which is extended in the book of Bunker and Jensen [48]. Other examples for

curvilinear coordinates usable to describe the dynamics of molecules can e.g. be found in

the work of Handy [92] on internal coordinates, in the work of Bramley et al. [40] on the

separation of rotation and vibration, in the work of Mladenović [151–153] on spherical polar

parametrization and in the work of Okuno [166] on quasi-rectilinear coordinates. Also,

interesting work on general curvilinear coordinates including numerical solutions was done

by Chapuisat, Nauts and Durand [53], Nauts and Chapuisat [162] and Lauvergnat and

Nauts [117], as well as on the polyspherical coordinates by Gatti, Muñoz and Iung [83], Gatti

and Iung [82], Sadri et al. [181] and Joubert-Doriol et al. [105]. Another approach is to use

hyperspherical coordinates, see e.g. the work of Hauke, Manz and Römelt [95].

If the nuclear configurations retains symmetry elements during the dynamical process,

these symmetries are very handy and should be exploited as much as possible. Thus, the

coordinate transformation should be adapted to the symmetry, i.e. the relevant coordinate

subspace shall exhibit the symmetries of the process. Examples for such situations are the

processes discussed in the text, i.e. the motion of benzene along the Kekulé mode as well as

ring inversion and double bond shift in cyclooctatetraene. In this section, a way to perform

a coordinate transformation is introduced that is simple, symmetry-adapted, and easily

improvable. The route map of this transformation is the following: First, Jacobi coordinates

are set up to separate the center of mass motion by keeping the kinetic energy operator

diagonal. Next, some of those Jacobi coordinates are expressed in terms of polar or spherical

coordinates. The symmetry elements are introduced by combination of radii and angles, to

yield symmetry-adapted curvilinear coordinates. Finally, the coordinates which represent

the process are selected.

The method is first illustrated for a diatomic molecule, for which the calculation of the

coordinates can be performed on the back of an envelope. Then, the method is applied

for four nuclei, to construct a model for double bond shift in cyclobutadiene. Thereafter,

six nuclei are considered, and the kinetic energy operator for benzene of section 4.2.3 is

derived in a more general way, which allows systematic improvements. Finally, the procedure

is used for eight nuclei, to construct a two-dimensional model for double bond shift in

cyclooctatetraene, and a possible extension to build a four-dimensional model including ring

inversion is discussed. While the method itself is very simple, the detailed calculations are

cumbersome. This is a good application for a computer algebra system. For the calculations
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C.1. The kinetic energy operator in general coordinates

presented below, the Symbolic Toolbox [8] for Matlab [4] was used.

C.1 The kinetic energy operator in general coordinates

To transform a general kinetic energy operator (KEO) from Cartesian coordinates to an

arbitrary coordinate system,

1. the motion of the center of mass is separated,

2. the equations for the transformation to the new coordinates are set up,

3. the metric tensor is constructed, and

4. the volume element as well as the integration limits for normalization of the wave

function are determined.

To accomplish item 1 on the list, Jacobi coordinates are a natural choice. Jacobi coordinates

are constructed by introduction of linearly independent quasi-particles with coordinates that

are the difference between the center of mass of subsets of the particles. These subsets may

also contain one particle only. Such constructions are exemplified below, and they always

yield one coordinate which corresponds to the center of mass of the whole system. In the

following it is at some point of the discussion always assumed that all particles have the

same mass. Extension to particles with different masses is straightforward, and may always

be accomplished by scaling of the original Cartesian coordinates. In the cases discussed

below, coordinates which include rotation of the whole molecule are automatically apparent.

In general, however, rotational invariance may have to be enforced. Also, although the

rotation group has three parameters, it is in principle not possible to separate three rotational

coordinates for any (even infinitesimally small) displacement (a prove for this statement is

given by Littlejohn and Reinsch [125]).

Item 2 is tailored to the problem at hand. The metric, item 3, is needed to know how

the second derivative with respect to the Cartesian coordinates in the KEO transforms, and

thus to set up the KEO in the new coordinates. To keep the correct normalization, item 4 is

needed, i.e. the scalar product in terms of the new coordinates needs to be found.

It will be handy to introduce a few notations. These notations differ from the rest of

the work, but will be applied throughout this appendix. The original Cartesian coordinates

of the particles are r with elements ri, the Jacobi coordinates are u with elements ui, and

the arbitrary final coordinates that are to be transformed to are q with qi. There are, of

course, the same number of elements for each of those sets. After transformation from r to

u the kinetic energy operator is still diagonal in the coordinates (i.e. it contains no mixed

monomials of the components of u). This is a special and convenient property of the Jacobi

coordinates. Next, r needs to be expressed as a function of u, which might already be a task

for a computer algebra system. Given the transformation from u to q, the coordinates u are

needed as a function of q. Then, the Jacobian matrix J can be calculated and from that the

components of the metric tensor gij . The inverse gij of the metric is used to calculate the

Laplacian.
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Appendix C. Kinetic energy operators from symmetry-adapted curvilinear coordinates

In the following, summation over repeated indices (the Einstein summation convention)

is implied, unless specified otherwise. Then,

∂i :=
∂

∂qi
is the covariant derivative,

gij :=
∂rk

∂qi
∂rk

∂qj
≡ (∂ir

k)(∂jr
k) is the metric or first fundamental form,

gij :=
∂qi

∂rk
∂qj

∂rk
= g−1

ij is the inverse metric, for whichgijgjk = gijg
jk = δik,

J := det

(
∂ri

∂qj

)
is the Jacobian determinant,

g := det(gij) = J2 is the determinant of the metric, and

dτ :=
∏
i

dri = J
∏
i

dqi is the Cartesian volume element.

Using this notations, the Laplacian becomes

L =
∑
i

(
∂

∂ri

)2

= g−1/2∂j

(
g1/2gij∂i

)
≡ J−1∂j

(
Jgij∂i

)
. (C.1)

For the evaluation of these expressions a large number of terms have to be kept track of.

This can be conveniently accomplished by a computer algebra system.

C.2 Vibration of a diatomic molecule

The procedure of the coordinate transformations is first illustrated for two particles in a

plane. This problem is very simple, as it is known in advance that only the inter-particle

distance is of importance, if no external potentials (like electromagnetic fields) are present.

Thus, in view of the later treatment of more complicated systems, the two-particle system is

treat in a seemingly too intricate way.

The particles have masses m1 and m2 and are located at (x1, x2) and (x3, x4), respectively.

The total mass of the system is denoted by M = m1 +m2. There is only one possible choice

for the Jacobi coordinates, i.e.

u1 = x1 − x3 u3 =
1

M
(m1x

1 +m2x
3)

u2 = x2 − x4 u4 =
1

M
(m1x

2 +m2x
4). (C.2)

Two fictive particles are defined by this coordinates, one of which, (u3, u4), describes the

motion of the center of mass of the system. This particle is of little interest, because it is

assumed that the problem is invariant with respect to translation of the whole system. For

the other fictive particle at (u1, u2), the rectilinear Cartesian coordinates are replaced by

polar coordinates as

u1 = r cos(ϕ) u2 = r sin(ϕ). (C.3)

A change in the angle ϕ corresponds to rotation of the whole system, and this coordinate is

also of no interest. Thus, there is only one relevant coordinate, the inter particle distance

r. In analogy to the treatments in the next section, the final coordinates are defined as

q1 := r, q2 := ϕ, q3 := u3, q4 = u4. At the moment this seems like a trivial change of notation,

but below the symmetry constraints will be introduced with this last transformation. In
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C.3. Double bond shift of cyclobutadiene

total, the transformation thus reads

x1 = q3 +
m2

M
q1 cos(q2) x3 = q3 − m1

M
q1 cos(q2) (C.4)

x2 = q4 +
m2

M
q1 sin(q2) x4 = q4 − m1

M
q1 sin(q2). (C.5)

As a next step, all mases are set equal, m1 = m2 = m. For the final coordinates the Jacobian

is J = q1. Now, again in view of the treatment of the other systems below, q1 =: 2R is

defined such that R is denotes distance of both of the particles from the center of mass.

All coordinates except q1 (i.e. the position of the center of mass and the rotation of the

molecule relative to a space-fixed frame) are set to zero. The Laplacian is then obtained by

calculation of the metric gij and application of eqn. C.1 as

L =
1

2
(∂R)2 +

1

R
∂R. (C.6)

There is one last point that has to be taken care of: By constraining coordinates to zero,

the form of the wave function Ψ is assumed to be a product of the system part and

a constrained part. Specifically, δ-functions have to appear in the density |Ψ|2 for all

constrained coordinates [24]

|Ψ(q1, q2, q3, q4)|2 = χ(q1)δ(q2)δ(q3)δ(q4). (C.7)

The normalization of the wave function and the corresponding limits of integration have to

be adjusted. Note that the δ-functions can also be replaced by wave functions of Gaussian

shape, which makes the wave function in momentum space also well-behaved.

In the case of only two particles the integration limits are simple, because the final

coordinates are simple spherical coordinates. For the choice of normalization
∫
|Ψ|2dx = 1 it

follows that

1 =

∫ ∞
−∞

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

|Ψ|2q1dq1dq2dq3dq4. (C.8)

Note that J = q1 = 2R. The constant is best included in the Laplacian, such that

L = (∂R)2 +
2

R
∂R, (C.9)

and J = R with normalization of the model wave function χ̃(R) = χ(q1) as

1 =

∫ ∞
0

|χ̃|2RdR. (C.10)

C.3 Double bond shift of cyclobutadiene

The procedure is used now to obtain a model for cyclobutadiene which is capable of describing

double bond shift dynamics in the molecule. In its equilibrium configuration, cyclobutadiene

has point group symmetry D2h and a rectangular shape. Thus, the transformation shown in

Fig. C.1 is to be described, where the oblong structure distorts to a square (point group D4h)

and then to the other oblong structure. Each point corresponds to a particle and symbolizes

a CH-group. It would probably be no good to represent the motion of Fig. C.1 by rectilinear

coordinates: In the D4h-structure, the square would be rather small, and this configuration

would be energetically unfavorable. Thus, the atoms shall move on a circle as indicated in

the figure. If this effectively one-dimensional motion along a circle with fixed radius turns

out to be not accurate enough, the radius (a breathing motion) may also be included as a
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Appendix C. Kinetic energy operators from symmetry-adapted curvilinear coordinates

variable, and the model becomes two-dimensional.

It is assumed that the hydrogen nuclei are rigidly attached to the corresponding carbon

nuclei, and that they move along the circle with the same angular velocity as the carbon

nuclei. All particles of the model therefore have the same mass m (the mass of the CH-group)

and are located at the center of mass of the CH-group. The radius of the circle is ξ, and the

angle describing the motion of all the particles simultaneously is ϕ, to be defined below. For

a more accurate model, motion of the carbon and hydrogen nuclei may also be considered

separately, such that the model discussed below is applied for both types of atoms (i.e. there

is one ξ and ϕ for carbon nuclei, and one for hydrogen nuclei).

1
2

3
4

1
2
3
4

Figure C.1: Left: Relevant motion for the four particle system. The circle may also change
size (breathing motion). Right: Particle numbering (blue) and Jacobi coordinates (orange
and red; green is the center of mass), shown for a distorted configuration, to be able to see
all coordinates.

For the masses, the notations mij = mi +mj and M =
∑
imi is used. The Cartesian

coordinates are again denoted by ri = (xi, yi). The Jacobi coordinates are chosen to be

u1 = r1 − r3 u3 =
1

m13
(m1r

1 +m3r
3)− 1

m24
(m2r

2 +m4r
3)

u2 = r2 − r4 u4 =
1

M
mir

i (C.11)

with the inverse transformation

r1 =
m3

m13
u1 +

m24

M
u3 + u4 r3 = r1 − u1

r2 =
m4

m24
u2 +

m13

M
u3 + u4 r4 = r2 − u2. (C.12)

The Jacobi coordinates are shown in figure C.1, for an asymmetrical configuration, as some of

these would otherwise not be visible. Two of the Jacobi coordinates, u1 and u2, are expressed

in terms of polar coordinates with the center of mass as origin and the angles measured from,

say, the (particle 3)-(particle 1) connection. Specifically,

u1 =:

(
ξ1 cos

(
ϕ1

2

)
, ξ1 sin

(
ϕ1

2

))
u2 =:

(
ξ2 cos

(π
2
− ϕ2

)
, ξ2 sin

(π
2
− ϕ2

))
. (C.13)

The angles ϕ1 and ϕ2 thus reflect the angular displacement from the square configuration.

Note the minus sign for ϕ2, which is introduced to adopt to the symmetry. Later, the two

angles are set equal to describe the process at hand.

The final coordinates to be considered are combinations of the radii and angles, i.e.

q1 :=
1

2
(ξ1 + ξ2) q2 := ξ1 − ξ2

q3 :=
1

2
(ϕ1 + ϕ2) q4 := ϕ1 − ϕ2

u3 =: (q5, q6) u4 =: (q7, q8). (C.14)
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The Jacobi coordinates u3 and u4 are not transformed, as these are the coordinates of the

center of mass and thus of no interest. The coordinate q1 is the sum of the radii and thus

corresponds to the breathing coordinate. In contrast, q2 corresponds to a motion where two

diagonally opposite particles of the rectangle move away from each other, while the other

two come closer together. For the definition eqn. C.13 and for ϕ1 = ϕ2, it follows that q3 is

the motion depicted in the left panel of fig. C.1, while q4 corresponds to a rotation, where all

particles move along the circle in the same direction.

It is straightforward to express the ξi in terms of the qi:

ξ1 = q1 +
1

2
q2 ϕ1 = q3 +

1

2
q4

ξ2 = q1 − 1

2
q2 ϕ2 = q3 − 1

2
q4. (C.15)

With the masses of all four particles set equal, the Jacobian is J = 1
4 (q2)2 − (q1)2 or

J = −ξ1ξ2, the product of the two inter particle distances.

Next, the distance of the particles from the center of mass is defined q1 = ξ, as well as the

the change of the opening angle between between neighboring particles from the equilibrium

value π/2, q3 = ϕ. The other coordinates are set to zero, qi = 0 for i = 1, 2, 4, . . . , 8 for the

whole process. With this constraints, the Laplacian for this model is given by

L =
1

ξ2

∂2

∂ϕ2
+

2

ξ

∂

∂ξ
+

∂2

∂ξ2
. (C.16)

with J = −ξ2. The sign reflects the choice of orientation for the Jacobi coordinates and may

be easily changed by a redefinition of the coordinates. From the Laplacian, the kinetic energy

operator can be determined. For example, if ξ is kept fixed, the kinetic energy operator is

given by

KEO = − ~2

2µξ2

∂2

∂ϕ2
, (C.17)

where µ is twice the reduced mass of two CH-groups moving against each other, i.e. µ =

2m2 = m.

Finally, care has to be taken for the normalization of the wave function. If
∫
|Ψ|2dx = 1,

then

1 =

∞∫
−∞

. . .

∞∫
−∞

∞∫
0

∞∫
0

2π∫
0

2π∫
0

|J ||Ψ|2dϕ2dϕ1dξ2dξ1dq8 . . . dq5. (C.18)

The integral boundaries change due to the change from rectilinear coordinates to polar

coordinates. For the radii,

∞∫
0

dξ1

∞∫
0

dξ2 =

∞∫
0

dq1

2q1∫
−2q1

dq2 (C.19)

and for the angles

2π∫
0

dϕ1

2π∫
0

dϕ2 =

π∫
0

dq3

2q3∫
−2q3

dq4 +

2π∫
π

dq3

2(q3−π)∫
−2(q3−π)

dq4. (C.20)
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The constraint of normalization thus reads

1 =

∞∫
−∞

. . .

∞∫
−∞

dq5 . . . dq8

∞∫
0

dq1

2q1∫
−2q1

dq2

 π∫
0

dq3

2q3∫
−2q3

dq4 +

2π∫
π

dq3

2(q3−π)∫
−2(q3−π)

dq4

 |J ||Ψ|2.
(C.21)

C.4 The Kekulé vibrational mode of benzene

The procedure will be used to derive again the kinetic energy operator of section 4.2.3 in

another way. To this end, the same assumptions as for the cyclobutadiene molecule are made,

i.e. only motion in a plane is considered, each point of the hexagon is considered to be a

CH-group and the same angles are used for the carbon nuclei and the attached hydrogen

nuclei. Additionally, the distance between the carbon nuclei and the attached hydrogen

nuclei are again kept fixed.

1

4

2

1
2

5
6

5

3
6

3

4

Figure C.2: Left: Relevant coordinate for the six particle system. Right: Particle numbering
(blue) and Jacobi coordinates (yellow, orange and red; green is the center of mass), shown
for an arbitrary configuration.

First, the Jacobi coordinates shown in figure C.2 are set up as

u1 = r1 − r4

u2 = r2 − r5

u3 = r3 − r6

u4 =
1

m14
(m1r

1 +m4r
4)− 1

m25
(m2r

2 +m5r
5)

u5 =
1

m1245
(m1r

1 +m2r
2 +m4r

4 +m5r
5)− 1

m63
(m3r

3 +m6r
6)

u6 =
1

M

∑
i

mir
i. (C.22)

The notation of the masses is similar as before, i.e. mij = mi +mj and mijkl = mij +mkl.

The coordinates of interest are u1, u2, u3, as keeping their length fixed but rotating them

appropriately will result in the motion that is to described. Thus, these shall be expressed in

terms of polar coordinates

u1 =:
(
ξ1 cos

(
ϕ1
)
, ξ1 sin

(
ϕ1
))

u2 =:
(
ξ2 cos

(π
3
− ϕ2

)
, ξ2 sin

(π
3
− ϕ2

))
u3 =:

(
ξ3 cos

(
2π

3
+ ϕ3

)
, ξ3 sin

(
2π

3
+ ϕ3

))
. (C.23)

The angles are chosen again such that their meaning is the displacement from the regular

hexagon, which for benzene is the equilibrium configuration. The radii and angles are
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C.5. Double bond shift and ring inversion of cyclootatetraene

combined via the orthogonal transformations

q1 =
1

3

(
ξ1 + ξ2 + ξ3

)
q4 =

1

3

(
ϕ1 + ϕ2 + ϕ3

)
q2 = ξ1 − ξ2 q5 = ϕ1 − ϕ2

q3 = ξ2 − ξ3 q6 = ϕ2 − ϕ3 (C.24)

with the inverse transformation

ξ1 = q1 +
2

3
q2 +

1

3
q3 ϕ1 = q4 +

2

3
q5 1

3
q6

ξ2 = q1 − 1

3
q2 +

1

3
q3 ϕ2 = q4 − 1

3
q5 1

3
q6

ξ3 = q1 − 1

3
q2 − 2

3
q3 ϕ3 = q4 − 1

3
q5 2

3
q6. (C.25)

By the choice made of measuring the angles, q4 will correspond to the Kekulé mode motion.

The masses of the particles are set equal again. With this coordinates, the Jacobian is a

rather complicated expression, given by

J =
1

27
((3q1 − q2 + q3)(q2 − 3q2 + 2q3)(3q1 + 2q2 + q3)). (C.26)

To reproduce the kinetic energy operator eqn. 4.44, the constraints ϕ1 = ϕ2 = ϕ3 =: ϕ

(i.e. q5 = q6 = 0) and ξ1 = ξ2 = ξ3 =: ξ (i.e. q2 = q3 = 0) are used. Then, the Jacobian is

obtained as J = −ξ3 and the Laplacian is given by

L =
2

3ξ2

∂2

∂ϕ2
+

2

ξ

∂

∂ξ
+

2

3

∂2

∂ξ2
. (C.27)

For the kinetic energy, ξ is kept fixed to its equilibrium value. Then the kinetic energy

operator is given by

KEO = − ~2

2µξ2

∂2

∂ϕ2
, (C.28)

where the mass µ corresponds to three times the reduced mass of two particles moving

against each other, µ = 3m2 = 3
2m. This is the same kinetic energy operator as was obtained

in section 4.2.3. It can easily be extended, for example by not keeping ξ fixed and thus

including a breathing motion of the ring.

C.5 Double bond shift and ring inversion of cyclootate-

traene

The final example is a model for the double bond shift in cyclooctatetraene with possible

extension to include ring inversion. The process of changing from one D4h configuration of

cyclooctatetraene to the other via a D8h configuration, cf. fig. C.3, is to be described. Then,

it is shown how appropriate three-dimensional coordinates can be set up to include the two

orthogonal ring inversion coordinates.
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Figure C.3: Left: Relevant coordinate for the eight particle system, next to a breathing
motion. Right: Particle numbering (blue) and jacobi coordinates (yellow, orange and red;
green is the center of mass), shown for an arbitrary configuration.

The Jacobi coordinates of choice are

u1 = r1 − r5

u2 = r2 − r6

u3 = r3 − r7

u4 = r4 − r8

u5 =
1

m15
(m1r

1 +m5r
5)− 1

m26
(m2r

2 +m6r
6)

u6 =
1

m37
(m3r

3 +m7r
7)− 1

m48
(m4r

4 +m8r
8)

u7 =
1

m1256
(m1r

1 +m2r
2 +m5r

5 +m6r
6)

− 1

m3478
(m3r

3 +m4r
4 +m6r

6 +m8r
7)

u8 =
1

M

∑
i

mir
i. (C.29)

shown in figure C.3. The coordinates of interest are expressed in terms of polar coordinates

as

u1 =:
(
ξ1 cos

(
ϕ1
)
, ξ1 sin

(
ϕ1
))

u2 =:
(
ξ2 cos

(π
4
− ϕ2

)
, ξ2 sin

(π
4
− ϕ2

))
u3 =:

(
ξ3 cos

(π
2

+ ϕ3
)
, ξ3 sin

(π
2

+ ϕ3
))

u4 =:

(
ξ4 cos

(
3π

4
− ϕ4

)
, ξ4 sin

(
3π

4
− ϕ4

))
. (C.30)

These are combined to the final coordinates

q1 =
1

4

(
ξ1 + ξ2 + ξ3 + ξ4

)
q5 =

1

4

(
ϕ1 + ϕ2 + ϕ3 + ϕ4

)
q2 = ξ1 − ξ2 q6 = ϕ1 − ϕ2

q3 = ξ2 − ξ3 q7 = ϕ2 − ϕ3

q4 = ξ3 − ξ4 q8 = ϕ3 − ϕ4

with the inverse transformation

ξ1 = q1 +
3

4
q2 +

1

2
q3 +

1

4
q4 ϕ1 = q5 +

3

4
q6 +

1

2
q7 +

1

4
q8

ξ2 = q1 − 1

4
q2 +

1

2
q3 +

1

4
q4 ϕ2 = q5 − 1

4
q6 +

1

2
q7 +

1

4
q8

ξ3 = q1 − 1

4
q2 − 1

2
q3 +

1

4
q4 ϕ3 = q5 − 1

4
q6 − 1

2
q7 +

1

4
q8

ξ4 = q1 − 1

4
q2 − 1

2
q3 − 3

4
q4 ϕ4 = q5 − 1

4
q6 − 1

2
q7 − 3

4
q8.
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The Jacobian is given by

J =
−1

256
((4q1−q2−2q3 +q4)(4q1−q2 +2q3 +q4)(q2−4q1 +2q3 +3q4)(4q1 +3q2 +2q3 +q4)).

(C.31)

Once more, all angles are set equal, ϕ1 = ϕ2 = ϕ3 = ϕ4 =: ϕ, so that q6, q7 and q8 are

zero and q5 corresponds to the double bond shift. Also, all radial distances are set equal,

ξ1 = ξ2 = ξ3 = ξ4 =: ξ. With this definitions, the Jacobian is J = ξ4 and the Laplacian is

L =
1

2ξ2

∂2

∂ϕ2
+

2

ξ

∂

∂ξ
+

1

2

∂2

∂ξ2
. (C.32)

For a model of the double bond shift, the radial distance ξ can be kept fixed, as it does

almost not change during the process [183]. However, if ring inversion is to be included, this

degree of freedom may have to be taken into account: During ring inversion, the centers of

mass of the CH-groups do not move on a sphere, but the radial distance is smaller for the

equilibrium D2d structure of cyclooctatetraene than it is for the planar D4h transition state

structure [183].

There are two orthogonal ring inversion coordinates, as explained in Appendix D. These

can be incorporated by using spherical coordinates instead of the polar coordinates of eqn.

C.30,

u1 =:

(
ξ1 cos

(
ϕ1
)

cos
(
θ1
)

, ξ1 sin
(
ϕ1
)

cos
(
θ1
)

, ξ1 sin
(
θ1
))

u2 =:

(
ξ2 cos

(π
4
− ϕ2

)
cos
(
θ2
)

, ξ2 sin
(π

4
− ϕ2

)
cos
(
θ2
)

, ξ2 sin
(
θ2
))

u3 =:

(
ξ3 cos

(π
2

+ ϕ3
)

cos
(
θ3
)

, ξ3 sin
(π

2
+ ϕ3

)
cos
(
θ3
)

, ξ3 sin
(
θ3
))

u4 =:

(
ξ4 cos

(
3π

4
− ϕ4

)
cos
(
θ4
)

, ξ4 sin

(
3π

4
− ϕ4

)
cos
(
θ4
)

, ξ4 sin
(
θ4
))
.

While the equations for the radii ξi and in-plane angles ϕi stay the same, there are additional

collective coordinates describing the out-of plane motion, given by

q9 =
1

4

(
θ1 + θ2 + θ3 + θ4

)
q10 =

1

4

(
θ1 + θ2 − θ3 − θ4

)
q11 =

1

4

(
θ1 − θ2 − θ3 + θ4

)
q12 =

1

4

(
θ1 − θ2 + θ3 − θ4

)
with back-transformation

θ1 = q9 + q10 + q11 + q12

θ2 = q9 + q10 − q11 − q12

θ3 = q9 − q10 − q11 + q12

θ4 = q9 − q10 + q11 − q12.

The two ring inversion coordinates are q10 and q11. By repetition of the procedure explained

above, the Jacobian and the Laplacian for a four-dimensional model describing double bond

shift (bond-alternation coordinate and a ring-breathing coordinate) as well as ring inversion
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Appendix C. Kinetic energy operators from symmetry-adapted curvilinear coordinates

(two ring inversion coordinates) can be obtained.
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Appendix D

Quantum chemistry of

cyclooctatetraene

In chapter 4.1, coherent nuclear tunneling in cyclooctatetraene at zero temperature was

discussed. Tunneling happens in a symmetric quadruple-well potential. Each minimum

corresponds to a D2d equilibrium structure of cyclooctatetraene. The minimum energy

path for the interconversion of one of these structures into another passes either through

a transition state of D4h point group symmetry, or through a transition state of D8h point

group symmetry. The former path is called ring inversion, and the latter double bond shift.

Fig. 4.2 in section 4.1.2 shows the potential energy surface schematically.

In order to estimate the tunneling times for the interconversion of the equilibrium

structures as described in section 4.1.3, accurate values for the barrier heights of ring

inversion and double bond shift were needed. Literature values for these barriers were

either estimated by experiment [14, 15, 169, 171] or computed using at best the CASPT2

method [13,30,33,79–81,174,237]. However, test calculations showed that CASPT2 is not

suited to describe the double bond shift. Consequently, a quantum chemical study of the

system was performed. Part of the results are presented here, and further information can

be found in [183].

D    or D2d              4h D8h

Figure D.1: Energetical ordering and occupation of the π-electrons or π-like electrons for
the transition state of ring inversion and the equilibrium structure (left), as well as for the
π-electrons of the transition state of double bond shift (right). Black bars represent location
of orbital energies (with lowest energy at the bottom and highest energy at the top; not to
scale) and brown arrows represent occupation of the orbitals with electrons, in a Hückel
picture.

In the following, the D2d ground state equilibrium structure will be denoted GS, the D4h
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Appendix D. Quantum chemistry of cyclooctatetraene

∆ERI ∆ERI(MRCI) ∆EDBS ∆EDBS(MRCI)

HF 13.46 - 24.16 -
CCSD(T) 12.62 - 13.30 -
CAS(8,8) 10.61 10.44 7.38 7.37
CASPT2∗ 14.06 - 3.67 -
CASPT2 11.68 - 0.17 -
CASPT3∗ 13.00 13.00 7.31 7.31
CASPT3 10.50 11.14 6.69 6.68
MRCI(Dav.)∗ 13.29 13.29 7.40 7.40
MRCI(Dav.) - 11.73 - 6.55
MR-ACPF∗ 12.99 13.00 7.36 7.36
MR-ACPF - 11.19 - 6.65

Table D.1: Energy differences in kcal/mol between the equilibrium structure and the transition
state for ring inversion (∆ERI) as well as between the transition state for ring inversion
and the transition state for double bond shift (∆EDBS) obtained with different methods
(first column), with a cc-pVTZ basis set. The second and forth column represent the values
obtained with structures optimized with the given method, while the third and fifth column
represent the values obtained with structures optimized with the MRCI(Dav.)∗ method.
Red values show problematic energy differences. Blue values show the energy decrease from
inclusion of only a limited number of valence orbitals (the methods with an asterisk) to
inclusion of all valence orbitals in the calculations. Green values show the recommended
barrier heights for the respective processes.

transition state structure for ring inversion TS-RI, and the D8h transition state structure

for double bond shift by TS-DBS. The energetic situation of the π-orbitals for the three

structures is shown in Fig. D.1. Note that in case of the GS, the respective orbitals are not

π-orbitals but only π-like orbitals, as the molecule is not planar. However, this distinction is

of minor importance for now and will thus be ignored.

In case of the GS and the TS-RI there is a gap between the highest occupied and the

lowest unoccupied molecular orbital. In both cases it can be expected that already a single

reference quantum chemical method will give a reasonable energy for the structures, and

thus a reasonable value for the barrier of ring inversion. However, for TS-DBS there are two

degenerate highest occupied orbitals. Consequently, it can be expected that any method

which uses only a single Hartree-Fock reference determinant will not capture this so-called

static electron correlation.

A multi-reference method needs to be used to describe the three structures on equal

footing, and to give reliable barriers for both ring inversion and double bond shift. Thus, at

least a CASSCF(8,8) calculation including eight electrons in eight π-orbitals should be used.

Such a calculation alone would prefer the contribution of the π-orbitals over the other orbitals.

In order to get a more balanced description (to capture the dynamic electron correlation),

subsequently either multi-reference perturbation theory or multi-reference configuration

interaction calculations have to be performed.

GS, TS-RI and TS-DBS were calculated using the program package Molpro [225] with a

cc-pVTZ basis set. Table D.1 shows the results for the barrier heights of ring inversion and

double bond shift using a variety of methods. The energy difference ∆ERI is the difference

between the energy of GS and the energy of TS-RI, and ∆EDBS is the difference between

the energy of TS-RI and the energy of TS-DBS. Thus, the barrier for ring inversion is ∆ERI,

while the barrier for double bond shift is ∆ERI + ∆EDBS.

From experiment it is known that ∆E0
RI ≈ 10 kcal/mol [15, 169, 171] and ∆E0

DBS ≈
4 kcal/mol [14, 169]. These values have to be compared with the energy differences of the

structures, but including the zero point vibration. The effect of zero point vibration was

not calculated here but can be estimated using the values of [80]: In order to compare with

the experimental values, for the ∆ERI and ∆EDBS calculated here ca. 0.5 kcal/mol and
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-2.7 kcal/mol have to be added, respectively.

From the table, it is immediately apparent that single reference methods already give

reasonable values for ∆ERI but are completely off for ∆EDBS: While e.g. CCSD(T) gives

∆ERI = 12.6 kcal/mol which compares well with experiment, ∆EDBS = 13.3 kcal/mol is more

than twice as large as the experimental estimation. A CAS(8,8) calculation lowers ∆ERI to

10.6 kcal/mol and ∆ERI to 7.4 kcal/mol, which, including the zero point energy, is already in

very good agreement with the experiment.

To describe the electron correlation in a balanced way, subsequent multi-reference per-

turbation theory to second order (CASPT2) and to third order (CASPT3), as well as

multi-reference configuration interaction with Davidson correction (MRCI) and the multi-

reference averaged coupled pair functional method (MR-ACPF) were used. While CASPT2

is still a comparably cheap method, already CASPT3 is computationally expensive, and

the other methods are even more so. Consequently, for some calculations of the dynamical

correlation, only a subset of orbitals was included. All methods marked with an asterisk have

been calculated treating the eight valence (natural) orbitals with mainly CH-bond character

as core orbitals, thus correlation only the “CC-bonds”. Although structure optimizations

with the demanding methods were not possible, single point calculations with the nuclear

structure optimized at MRCI(Dav.)∗ level were performed. The results of these calculations

are given in the table as ∆ERI(MRCI) and ∆EDBS(MRCI). Note that the nuclear structure

agrees very well with the experiment for all methods, as discussed in detail in [183].

Inclusion of dynamic correlation of the CC-bonds increases the barriers for ring inversion

compared to the CAS(8,8) value to ca. 13 kcal/mol. However, inclusion of all valence orbitals

for calculation of the dynamic correlation reduces the barrier again. This effect can be seen

with all methods, and the resulting numbers are all very similar. The best method for which

structure optimization was still possible is CASPT3. Consequently, the best estimate for

∆ERI is 10.5 kcal/mol (or 11.0 kcal/mol with inclusion of the zero point vibrational energy).

For double bond shift, the best method found in the literature so far, CASPT2, seems

to completely fail: The barrier is far to low and almost vanishes when all valence orbitals

are included for determination of the dynamic correlation. However, CASPT3 gives values

for ∆EDBS that compare favorably with MRCI and MR-ACPF. Again, all valence orbitals

have to be included for determination of the dynamic correlation. The best estimate for

∆EDBS is the CASPT3 value of 6.7 kcal/mol (or 4.0 kcal/mol with inclusion of the zero point

vibrational energy).

Finally, it should be noted that CAS(8,8) already gives surprisingly good values for both

∆ERI and ∆EDBS. It thus seems like dynamic correlation is similar in the three structures,

and CAS(8,8) might be a computationally cheap method for a dynamics simulation of the

system.
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Appendix E

Structure of malonaldehyde and

the formic acid dimer

For the calculations in chapter 4.3 the electron density of the equilibrium structure of

malonaldehyde and the formic acid dimer was used. The equilibrium structure was determined

by a Hartree-Fock calculation with a cc-pVTZ basis set (HF/cc-pVTZ), using the program

Molpro [225].

In table E.1 the structure parameters of the molecules are compared with experimental

reference values. The reference values are found in [21] for the formic acid dimer and in [212]

for malonaldehyde. In both articles, the experimental values are compiled from different

sources in order to compare with MP2 and B3LYP calculations, using a comparable basis set.

The aim in chapter 4.3 is to analyze the reaction mechanism of coherent proton tunneling

in both molecules by using the electron density and electron fluxes due to the change of

the electron density in time. In the HF/cc-pVTZ calculations for both molecules, all nuclei

were constrained to be in a plane. This assumption reduced the number of parameters to be

optimized but does not influence the reaction mechanism significantly, as both molecules are

almost planar in their equilibrium structure.

Table E.1 shows that the structure parameters of the HF/cc-pVTZ calculations are

already in reasonable agreement with the experimental structure. Although in [21] it was

shown that a B3LYP/6-311++G(3df,2p) calculation gives better structure parameters for

the formic acid dimer, and in [212] it was shown that a MP2/6-31G** calculation gives better

structure parameters for malonaldehyde, the deviation of the HF/cc-pVTZ values from the

experiment will not affect the angular reaction mechanism significantly. Only the electron

density, a rather robust quantity, was needed for the analysis, and thus calculations with

methods improving the Hartree-Fock result were not performed.
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formic acid dimer HF/cc-pVTZ experiment malonaldehyde HF/cc-pVTZ experiment

C−H 108.4 107.9 C−C 145.2 145.4
C−−O 119.0 121.7 C−−C 133.9 134.8
C−O 129.6 132.0 C−−O 120.0 123.4
O−H 96.1 103.3 C−O 130.8 132.0
O···H 182.7 - C−H(1) 107.0 109.1
O···O 278.4 270.3 C−H(2) 109.2 109.4

C−H(3) 107.4 108.9
O−H 95.4 96.9
O···H 188.1 168.0
O···O 268.1 255.3

H−C−−O 122.3 115.4 C−C−−C 121.0 119.4
O−−C−O 125.9 126.2 C−−C−O 126.1 124.5
C−O−H 111.3 108.5 C−O−H 109.3 106.3
O···H−O 174.1 180 O···H−O 139.8 147.6

H···O−−C 99.5 -
O−−C−C 124.3 123.0
O−−C−H 119.5 -
H−C−C 116.2 117.6
C−C−H 119.5 -
H−C−−C 119.5 -
C−−C−H 121.2 122.3
H−C−O 112.7 -

Table E.1: Equilibrium structure parameters of the formic acid dimer and of malonaldehyde
calculated with the Hartree-Fock method and a cc-pVTZ basis set (HF/cc-pVTZ), and
experimental values from [21] (formic acid dimer) and [212] (malonaldehyde). All distances
are in pm, all angles are in degrees. For malonaldehyde, C−H(1) is the C−CH−−C hydrogen
nucleus, C−H(2) is the O−−CH−C hydrogen nucleus, and C−H(3) is the C−−CH−O hydrogen
nucleus.

150



Bibliography

[1] Gnu octave. See http://www.gnu.org/software/octave.

[2] Gnuplot 4.4. See http://www.gnuplot.info/.

[3] Inkscape 0.47. See http://www.inkscape.org.

[4] Matlab r2011a. See http://www.mathworks.com.

[5] Molden 5.0. See http://www.cmbi.ru.nl/molden/molden.html.

[6] Python programming language 2.7. See http://www.python.org.

[7] Sage open source mathematics software. See http://www.sagemath.org.

[8] Symbolic math toolbox for matlab r2011a. See

http://www.mathworks.com/help/symbolic/index.html.

[9] Ali Abedi, Neepa T. Maitra, and Eberhard K.U. Gross. Exact Factorization of the Time-

Dependent Electron-Nuclear Wave Function. Physical Review Letters, 105:123002(4),

2010.

[10] Antonio Accardi, Ingo Barth, Oliver Kühn, and Jörn Manz. From Synchronous to
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[13] José Andrés, Obis Castaño, Antonio Morreale, Raul Palmeiro, and Roberto Gomperts.

Potential energy surface of cyclooctatetraene. The Journal of Chemical Physics,

108:203–207, 1998.

[14] F. A. L. Anet. The Rate of Bond Change in Cycloöctatetraene. Journal of the American
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[59] Mauŕıcio D. Coutinho-Neto, Alexandra Viel, and Uwe Manthe. The ground state

tunneling splitting of malonaldehyde: Accurate full dimensional quantum dynamics

simulations. The Journal of Chemical Physics, 121:9207–9210, 2004.

[60] David P. Craig and Thiru Thirunamachandran. Molecular Quantum Electrodynamics.

Dover, New York, 1998.

[61] Ernest R. Davidson. Properties and Uses of Natural Orbitals. Reviews of Modern

Physics, 44:451–463, 1972.
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[137] Ivana Matanović, Nadja Došlić, and Bruce Johnson. Generalized approximation to

the reaction path: The formic acid dimer case. The Journal of Chemical Physics,

128:084103(10), 2008.

[138] Richard D. Mattuck. A Guide to Feynman Diagrams in the Many-Body Problem. Dover

Publications, New York, 1992.
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[173] Ángel Mart́ın Pendás, Miguel A. Blanco, and Evelio Francisco. Chemical Fragments

in Real Space: Definitions, Properties, and Energetic Decompositions. Journal of

Computational Chemistry, 28:161–184, 2007.

[174] Michael W. P. Petryk and Bryan R. Henry. CH stretching vibrational overtone spectra of

1,3,5,7-cyclooctatetraene and 1,1,1-trichloroethane. The Journal of Physical Chemistry

A, 109:7113–7120, 2005.

[175] János Pipek and Paul G. Mezey. A fast intrinsic localization procedure applicable for

ab initio and semiempirical linear combination of atomic orbital wave functions . The

Journal of Chemical Physics, 90:4916–4926, 1989.

[176] Boris Podolsky. Quantum-mechanically correct form of the Hamiltonian function for

conservative systems. Physical Review, 32:812–816, 1928.
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[181] Keyvan Sadri, David Lauvergnat, Fabien Gatti, and Hand-Dieter Meyer. Numerical

kinetic energy operators for molecules in polyspherical coordinates. The Journal of

Chemical Physics, 136:234112(10), 2012.

[182] Axel Schild, Deepanshu Choudhary, Vaibhav D. Sambre, and Beate Paulus. Electron

Density Dynamics in the Electronic Ground State: Motion Along the Kekulé Mode of
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