CLOSED HYPERSURFACES DRIVEN BY THEIR
MEAN CURVATURE AND INNER PRESSURE

Dissertation von

THILO NOTZ

betreut von

PRrROF. DR. GERHARD HUISKEN

eingereicht am Fachbereich Mathematik und Informatik
der Freien Universitat Berlin

angefertigt am Max-Planck-Institut fiir Gravitationsphysik
(Albert-Einstein-Institut)

April 2010






1. Gutachter: Prof. Dr. Gerhard Huisken
2. Gutachter: Prof. Dr. Christian Bar
Datum der Disputation: 4. August 2010

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstandig verfasst und keine an-
deren als die angegebenen Hilfsmittel verwendet habe.

Berlin, 15. April 2010



Danksagungen

An dieser Stelle mochte ich mich ganz herzlich bei Herrn Prof. Dr. Gerhard Huisken fiir
die hervorragende Betreuung und freundliche Zusammenarbeit bei der Erstellung dieser
Dissertation bedanken. Mein Dank gilt auch Carla Cederbaum, John Head und Kristen
Moore fiir die Hilfe bei der Korrektur der Arbeit.



Zusammenfassung

Die vorliegende Dissertation untersucht eine neue geometrische Flussgleichung, die die Be-
wegung geschlossener Hyperflaichen in Riemannschen Mannigfaltigkeiten beschreibt. Ist
die Hyperflache spharisch, kann diese Bewegungsgleichung als ein idealisiertes mathe-
matisches Modell fiir die Bewegung einer Seifenblase betrachtet werden. Sie wird als
Euler-Lagrange-Gleichung eines Wirkungsintegrals hergeleitet. Dieses enthélt neben der
kinetischen Energie auch Terme fiir die Oberflachenspannung und den Innendruck abhangig
vom eingeschlossenen Volumen. Die resultierende Euler-Lagrange-Gleichung ist eine quasi-
lineare entartete hyperbolische partielle Differentialgleichung zweiter Ordnung, die extrin-
sisch die Bewegung einer Flache beschreibt.

Dieser Typ der Gleichung begriindet das mathematische Interesse an der Untersuchung.
Wahrend die Einsteingleichungen zwar eine dhnliche Struktur haben, beschreiben diese
jedoch die Evolution der Geometrie nur durch intrinsische Groflen. Im Unterschied zu
Wave-Maps ist die vorgestellte Gleichung nicht mehr semilinear, sondern quasilinear und
entartet. Eine der wenigen mathematisch exakten Untersuchungen von Gleichungen dieses
Typs ist die Arbeit von Smoczyk und LeFloch [LS08].

Einfiihrend leiten wir die Gleichung her, um anschliefend grundlegende Eigenschaften
wie Energie- und Impulserhaltung zu untersuchen. Als spezielle Losungen dieser Gleichung
finden wir Spharen mit oszillierendem Radius sowie Sphéaren, die zuséatzlich mit konstanter
Geschwindigkeit translatieren.

Die Frage der Existenz einer Losung fiir kurze Zeit wird in Kapitel 2| wie folgt beant-
wortet: Zu einer gegebenen glatten Immersion der Ausgangsmannigfaltigkeit und einer
gegebenen glatten Anfangsgeschwindigkeit existiert fiir kurze Zeit eine glatte Losung mit
diesen Anfangsdaten. Der Beweis dieses Kurzzeitexistenzsatzes wird mit Hilfe des Satzes
iiber inverse Funktionen von Nash und Moser gefiihrt.

In Kapitel 3] beweisen wir ein Fortsetzungskriterium (Theorem , das eine hin-
reichende Bedingung angibt, unter der eine Losung auf ein grofleres Zeitintervall fortgesetzt
werden kann. Die Bedingung ist, dass die Familie der Parametrisierungen der Flachen sowie
deren Zeitableitung in der rdumlichen C*-Norm beschrankt sind. Anders ausgedriickt: Ist
das maximale Existenzintervall endlich, werden diese C*-Normem zum Ende des Inter-
valls unbeschrankt. Dartiiber hinaus beweisen wir, dass der Abstand zweier Losungen nicht
schneller als exponentiell wichst, wenn die Anfangsdaten dicht beieinander liegen (Theo-
rem[3.7). Aus dieser Abschatzung folgt die Eindeutigkeit von Losungen der Gleichung und
eine untere Schranke an die maximale Existenzzeit. Wenn eine der beiden Losungen fiir
unendliche Zeit existiert, dann wachst die Existenzzeit der anderen Losung mindestens wie
der negative Logarithmus des Abstands der Anfangsdaten, wenn dieser nach Null geht.
Eine analoges Wachstum der Existenzzeit erhalten wir auch, wenn sich die Metrik des
umgebenden Raumes der euklidischen Metrik annéhert (Theorem [3.10)).
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Preface

This thesis is devoted to the study of a new geometric flow equation, which describes
the motion of closed hypersurfaces in Riemannian manifolds. If the surface is spherical, this
equation can be considered as an idealised mathematical model of a moving soap bubble. It
will be obtained as an Euler-Lagrange equation of a suitable action integral. In addition to
the kinetic energy this action integral contains terms for the surface tension and the inner
pressure, which depends on the enclosed volume. The resulting Euler-Lagrange equation
is a quasilinear degenerate hyperbolic partial differential equation of second order, which
describes the motion of the surface extrinsically.

The structure of this equation generates interest from a mathematical point of view.
Although Einstein’s equations have a similar structure they describe the evolution of the
geometry via intrinsic quantities. In contrast to wave maps our equation is not semilinear,
but rather quasilinear and degenerate. One of the few mathematically rigorous studies of
equations in this category is the paper of Smoczyk and LeFloch [LS08|.

In the introduction we derive the equation. We then study the basic properties of solu-
tions of this equation, like energy and momentum conservation, and find special solutions
of the equation such as oscillating and translating spheres.

In Chapter [2| we answer the question of short time existence in the following way:
given a smooth immersion of a closed hypersurface and a smooth initial velocity, there
exists a smooth solution for a short time attaining these initial data. The proof relies on
the Nash-Moser inverse function theorem.

Finally in Chapter |3| we prove a continuation criterion (Theorem [3.1)) which gives a
sufficient condition under which the solution can be extended to a larger time interval.
The condition is that the family of parametrisations of the surface and its time derivative
are bounded in the spatial C*-norm. To state it differently: at the end of the maximal time
interval these C*-norms become unbounded if the interval is finite. Furthermore in that
chapter we prove that the distance between two solutions grows at most exponentially if
they are close to each other initially (Theorem . This estimate implies the uniqueness
of solutions and gives a lower bound on the maximal time of existence. If one of the two
solutions exists for all future times then the maximal time of existence of the other solution
goes to infinity at least as fast as the negative logarithm of the initial distance between
the solutions if this initial distance goes to zero. A similar stability estimate holds if the
metric of the ambient manifold is close to the Euclidean metric (Theorem [3.10)).






CHAPTER 1

Introduction

This chapter is structured as follows. In Section [I.I] we set up the notation for closed
hypersurfaces moving in an ambient manifold and we state some formulas that we will use
frequently. In Section we define the action integral and derive the equation that
we will study in this thesis. Section [L.3| contains the derivation of conservation laws and
its impliciations. Special solutions of our equation are given in Section [1.4]

1.1. Notation and Preliminaries

Let N be a smooth closed oriented manifold of dimension n. By 8" we will denote
the n-dimensional sphere. Let (M"*! g) be a smooth complete oriented n + 1-dimensional
Riemannian manifold. We will mostly write (-, -) for g(-,-) and M for (M"!,g).

We represent the evolving surfaces by a smooth family of immersions u : [0, 7) XN — M
and for the surface at time t we write ¥; = u(¢,N). The induced metric on N at time ¢
is g(t) = u(t)*g. Now suppose we have local coordinates z* on N and y* on M. Here
latin indices run from 1 to n and greek indices run from 0 to n. Then the canonical
tangent vectors associated to z* and y® are 0y,...,0, and O,...,0, respectively. The
Levi-Civita connection of g is denoted by V,0; = Ffj@k and that of g by 75(1 Op = flﬁc(%.
In local coordinates the inverse of the metric g;; is denoted ¢, i.e. g"g;x = ;. We use
the summation convention, i.e. we sum over repeated indices if they have a position of
different height and the sum goes over the whole range of values the index can take.

The map u induces a Riemannian vector bundle u*T™M over [0,7) x N whose fibre

at (t,z) is Tyt M with metric g, ). The Levi-Civita connection V of g gives rise to
a connection ©*V on w*TM. This is the unique connection with the property that for

X e I(T([0,7) x N)) and Z € I'(TM) we have

(W V)x(Z o) = Vi x 2.
By I'(V) we denote the space of smooth sections in a vector bundle V. Mostly we denote u*V
again by V as long as it is not necessary to distinguish between these two. The connection
u*V is called the covariant derivative along the map u (cf. [Fer08, Satz 21, Satz 24] and
also [Jos08, Ch. 4.1], [Spi79, Ch. 6]). It is metric compatible and torsion free in the sense
that for X, Y € I'(T'([0,T) x N)) and Z3, Z € T'(u*TM) we have

X(9,(Z1,25)) = §,((u*V)x Z1, Z) + G,(Z1, (u*V ) x Z5)

9



10 1. INTRODUCTION

and
(w*V)xuY — (v V)yu. X = u,[X,Y]. [1.1]
In local coordinates we have e. g.
Vo, 0u® =(u*V)g,0u® = 02u® + fgv(u)ﬁtuﬂ&gu”
Vo, 0u® =(u*V)a,0u® = 0;0,u™ + fgv(u)(?iuﬂﬁtu'y.
Relation implies for example
Va,00u = (u*V)a,0u = (u*V)5,0iu = V,0u

since [0;, 0] = 0. The same considerations hold for variations u : (—eg, gg) X [0, T] xN — M.
We have

vae 6tu = v(at 85u
where in local coordinates
V. 0u® = 0.0u® + fgv(u)ﬁsuﬁ&u”’.

Here 0. is the derivative with respect to the first coordinate. Another important identity
that can be checked for X, Y € I'(T'([0,T) x N)), Z € I'(w*TM) by direct calculation is

VXVYZ — VYVXZ — V[X,Y]Z = E(U*X, U*Y)Z.
Here R is the Riemann tensor on M.
Let v denote the outer unit normal to ;. The second fundamental form is given by
—hijlja = @@ua — Ffj@kua + ngaiuﬁﬁju'y
and the mean curvature vector is
—Hv* = —gijhijyo‘ = Ay = ¢g¥ (&@ua — Ffjakuo‘ + ng&'uﬁﬁjtﬂ) )
The norm of the second fundamental form is |h|> = h¥h;;. For a section f*dx’ @ 0, of the
bundle T*N ® u*TM we define the connection

Vo, ff = 0;fF — T fo + T3, 0u° f;.
With this definition we have that V,0;u = —h;;v and

Of course this last expression is not a tensor.

The induced surface measure of ¢(t) is denoted by dpu,. We will fix a reference surface
measure dpg on N with a smooth density function. For notational convenience we assume
that dug is the surface measure of a fixed Riemannian metric gy on N. We note that only
the measure dyuy will play a role in the evolution equation. The ratio of du; and dug is a
scalar function which in local coordinates can be computed as

iy vV det(gij)

d,uo \/ det(g()ij) .
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For any smooth function f on N we have

d
[ g = [ 15l
N N Glo

By Ff‘] we will denote the Christoffel symbols of the metric gq.
The enclosed volume of ¥; = u(t,N) will be denoted by Vol(u). If u. is a variation of
u with ug = u then we have from [BACES88, 2.1 Lemma] that

d ou
2| volu) = /N e 1.3]

Y
e=0

and so

0 Vol(u) :/<y, Oru)dyuy.
N

Setting Voly = Vol(u(0)) we can write

t
Vol(u) :Volo+/ /(@U,V)dutdt’.
0 JN

We can take this expression as a definition if it is not clear how to define the volume. We
will of course always assume that it is possible to define the enclosed volume for the initial
surface.

We denote by C any universal constant appearing in estimates. This constant may
depend on fixed quantities such as the dimension of the manifold and derivatives of coordi-
nate changes of a fixed atlas. The dependence on other quantities will be stated explicitly.
If we want to point out that C' depends on some other constant, say K, then we use a
subscript Ck.

We note the well known variation formulas for g;; and dy; when tangential variations
are also allowed.

LEMMA 1.1. Let u. be a smooth variation of an immersion u : N — M with ug = u

and % oo = X. Then
0
De szogij(us) = Vo, (X, 0ju) + Vo, (X, Oiu) + 2(X, v)hij = Lxgij + 2(X, v)hyj.
and
0 R
92| drtue) = (X,v)H + div X )dp [1.4]

where X T = (X, 0;u) g d;u is the tangential part of X and £ is the Lie derivative.
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PROOF. We write 0. = % and omit the index e from u,. Start with
0.9i; =(Va.0;u, 0ju) + (Ou, V. 05u) = (V,0-u, Oju) + (aiu,%jagm
=0;(0.u, Oju) — (D.u, V,0;u) + 9;(0.u, Oju) — <8Eu,vaj8iu>
=0;(0.u, O;u) — Ffj (O-u, Opu) + hij(O-u, v)
+ 0;(0=u, Oju) — Ffj (0:u, Ou) + hyj(O:-u, v).
We used that %iaju = —hjv + Ffj@ku. Setting ¢ = 0 we have
O:|e=09i5 = Vo, (X, 0ju) + Vo, (X, Ou) + 2(X, v)hy;.

Hence
1 ..
Oclemodp = 59" Ocle=09ijdn = (X, v) H + div XN)dp. O
DEFINITION 1.2. Let w: [0,7) x N — M be a smooth family of immersions. Define
o =(0wu, V), Si =(0yu, Oju),
a =(Va,0u,v), A; =(V,0pu, Opu).

Hence we have
Ou=ov + S'Ou  and Vy0u = av + A'Qu.

1.2. The Equation

For a smooth family of immersions u : [0,7] x N — M we want to define an action
integral of the form

Au) = /0 K(u) —I(u) — J(u)dt

where X is the kinetic energy and J, J contribute to the potential energy. As the driving
forces should be surface tension and inner pressure we define J to be the energy of the
surface tension, i.e. the surface area

N

The inner pressure is motivated by that of an ideal gas with constant temperature, i.e.
proportional to Vol(u)~!. Therefore we define for a parameter ¢ > 0

d(u) = —olog <V\(2>(1:)) :

The initial volume Voly does not contribute to the Euler-Lagrange equation but we include
it to make the expression in the logarithm scale free. The constant o > 0 determines the
strength of the influence of the inner pressure compared to the surface tension. Another
reason to include this constant is to compensate for the different scaling of the energies. Of
course other functions of the enclosed volume could be considered if they lead to a lower
volume bound as in Corollary [1.6] below.
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We define the kinetic energy as
1
Mw=/§@WWO
N

which can be thought of as being the “sum” of the kinetic energies 1 |d,u|?dpo of each point
of the surface. This then describes the physical energy of the point particles making up
the surface. In Appendix |D| we discuss another choice of kinetic energy. We could also
introduce another constant in front of the kinetic energy but this can be set to one by
scaling in the time variable or by including it in dj.

Altogether the action integral is

T 1 T T 1
:/!/—@m%mﬁ—/‘/dmﬁ+g/l% Vol(u)y 4,
0o Jn2 0o JN 0 Vol

PROPOSITION 1.3. Let u. be a variation of u with ug = u and a;g 0= X. Then
d
e —oA(uE) —/(X 8tu)du0 /(X &gu)duo
- [1.5]

/ / (X, Va,0uu)dpodt — / /H v, X) Vol( )<1/ , X)dpdt.

ProOF. We first compute

d [ 1 T - . o
_/ /_latua|2dﬂodt:/ /<V8satue,atu5>d'uodt:/ / Vat Oy dpiodt
dg 0 N2 0 N 0 a
' Oue ou, —
_ /0 /N 0N, D) — (5, Vo, Ouc) dpodr

From the variation of du, [1.4] and the divergence theorem
d T T
— / / dpg(ue)dt = / / H{v, X)dudt
dele=0 Jo Jx 0o JN

and by [1.3] we have that

4 » /OT log(Vol(u.))dt = /OT Voll(u) /N<1/,X>dutdt.

de
Adding these together and setting € = 0 where necessary yields the statement. U

If the variation vector field X vanishes at the boundary i.e. X(0) =0 and X(7) =0
we obtain the Euler-Lagrange equation.

COROLLARY 1.4. The FEuler-Lagrange equation of A 1is

dpy 0
= —H . E
Vo, 00 = duo ( + Vol(u)) v [EQ]
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1.3. Conservation Laws

1.3.1. Energy Conservation. Define the energy

1 Vol(u
E(u(t,)) = /N§|(9tu]2duo + /Ndut — olog ( Vo(lo)) .

Let u: [0,T) x N — M solve [EQ] with £y = E(u(0,-)).

PROPOSITION 1.5. We have E(u(t,-)) = Eq for allt € [0,T).

PRrROOF. Simply compute

d —
%E(U(t,-)) = /N(Vaﬁtu, Oru)dpg + /NH<V, Oyu)dpy — W%(u)/}f@’ Oyuydpy, =0
if u solves the equation. O
COROLLARY 1.6. (1) The enclosed volume is bounded from below by

Vol(u) > Vol e e

(2) Assume that an isoperimetric inequality holds on M, namely that there is a con-
stant ¢ > 0 such that

/ dpy > cigo VOl (u) 741 [1.6]
N

Then there is a constant K depending only on ¢, 0, €y and Voly such that
Vol(u) < K and consequently

1 ) K
— d du, < & 1 — .
/NQ@U\ uo+/N e < & + olog <Volo)

PROOF. The lower volume bound is immediate from the energy conservation and the
nonnegativity of [5; 3|0ul*duo + [5 dp.
Using the energy conservation and the isoperimetric inequality [1.6] it follows that

0 <&p + plog(Vol(u)) — / duy — olog(Volp)
N
<& + olog(Vol(u)) — ciso (Vol(u)) ™1 — plog(Voly).

Since the function f(x) = plogx — CisoZ T + &9 — 0log(Voly) becomes negative for large «
there must exist a number K > 0 such that x < K if f(z) > 0. This means Vol(u) < K. O



1.3. CONSERVATION LAWS 15

REMARK 1.7. Another way to formulate the conservation of energy is by a sort of
continuity equation. Using the variation of dy; [1.4] with X = 0,u we compute

1 du = . dyu d g
o | =0 + — ) =(0 0 div.S— + (0, H—
t (2| tU,| + d,uo) < tU, Vat tU) + div duo + < tU, I/> duo

dpse 0 dit - dpu
=— (O, Hv)— + ———(0, — +divS—+ (0 H—
< tU, V) d,UO + VOl(’U,)< tU, l/> dﬂ(] +div dﬂO + < tU, V) d,U/O
. dpy 0 dpu
=divS—+ ———(0 —_—
v djig + Vol(u)< v, v) d o
Integrating this with respect to dug and dt gives the energy conservation as above.

1.3.2. Momentum Conservation. Let X be a Killing vector field on M and ¢, its
local flow, which by definition is an isometry. Define the momentum with respect to X of

a solution u of by
Pau(t, ) = [ (0 X)) do

N

PROPOSITION 1.8. Let w: [0,T) x N — M solve [EQ|. Then Px(u(t,-)) is constant as
a function of t.
d

Us
Jds

d
—|  A(us) =0.
dsls=0 (1)

From the variation formula we get that
0=Px(u(t,")) — Px(u(0,:))+0

as u solves the Euler-Lagrange equation. Il

ProoF. Let us = w5 0u. Then

oo = X(u). As ¢ is an isometry we have

REMARK 1.9. We can also formulate the momentum conservation as a continuity equa-
tion. Again let us = ps o u. We have

Oi(Oyu, X (u)) =(Va,00u, X (u)) + <8tu,vatX(u)Z

~~
=0

— (Hy X)) 2, xy O

duo — Vol(u) djto
. dpg 0 dpi 0 dpu
=divX'—— — | log(du(us))—— + —— (v, X) ==
v dpg — 0sls=0 og(dpu(u ))duo + Vol(u) v >du0
. diu 0 djug
=divX"' X
v dpg * Vol(u) (v >d,u0

since %|S:0dut(us) = 0 as X is Killing. Integrating with respect to dyuy and dt and using

d
that [\ (v, X)dus = —|  Vol(u,) = 0 we get the same momentum conservation as above.
5=0

dsls=
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We can obtain a third conservation law by exploiting another symmetry of the action,
namely the invariance under diffeomorphisms of N that leave dug invariant. So let Y be
a vector field on N with divg,, Y = divy ¥ = 0. We define the interior momentum with
respect to Y as

Oy (u(t,)) = /N (O, uY Vo,

PROPOSITION 1.10. Let u : [0,T) x N — M solve [EQ|. Then Qy (u(t,-)) is constant
as a function of t. Furthermore we have

1
3t<8tu, U*Y> = 5 divdu0(|3tu\2Y).

PrOOF. In local coordinates on N write Y = Y?9;,. We have that v.Y = Y?0,u and
compute
01 (Ou, u,Y) = (Vo,00u, u,Y) +(0yu, Vo, 0iu)Y".
I

=0
1 1 . 1 .
:YZEaz‘latUF - 5 dlvduo(|atu|2y) - §|atu|2 dlvduo Y.

Integrating with respect to duy and dt using the divergence theorem and that divg,, Y = 0
yields the result. U

1.4. Special Solutions

1.4.1. Rotationally Symmetric Solutions. Assume u : R x 8 — R™! has the
form wu(t,z) = r(t)z with initial conditions r(0) = ro > 0 and 7(0) = ry. Let dpo be the
surface measure of a spherical metric go, i.e. go = Y2gs» where gg is the standard metric
on 8" and 79 > 0 is a constant. Of course the mean curvature of wu(t,8") is given by
H(t) = n/r(t). Furthermore Vol(u) = w,1r(t)"™ and %’j—; = 7r(t)"/~y. So for the radius
r(t) we get the ordinary differential equation

. nr(t)"1
LA U A S
Yo Wn 41787 (1)

This second order ODE can be written as a system of first order ODEs for (r, z) = (r,7)

r =z
n—1
PO ) S [1.6]
Yo Wn1757 (1)
Clearly the right hand side is locally Lipschitz and in fact smooth around (r, 1) so there
exists a local smooth solution. Using the energy conservation we will see that the solution
stays bounded and that its orbits are periodic. For the energy we have

1 ; n n T
E(u(t,-)) = §r2(n + Dwnr1vg + (n+ Dwpgr™ — o(n + 1) log (r_()) .
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Hence

2€ no9
72 = . _ol 4 ¢ log(1>

(n+ Dwns17d W Wnt1V0

which implies that the integral curves can be written as a graph

2& n 2
P =+ 0 n—QT—nJr inog(i).
(n + Dwn 17 T Wnt1To 7o

To see that these curves are closed, let f(r) be the expression under the root which becomes
negative if r gets large and if » gets small. So the curve given by the graphs of v/f and
—+/f consists of two arcs which meet at the r-axis. If initially " = W§+1 and 7 = 0
then we are in an equilibrium and this is the only equilibrium. So by the uniqueness of
the solution of the ODE we cannot reach an equilibrium if we are not in an equilibrium
initially. As the solution has to be on the upper or the lower graph of £1/f and cannot
change its direction of motion the solution is periodic. The smoothness of the curve at

the transition between the two graphs is guaranteed by the standard ODE existence and
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uniqueness theorem. See Figure for examples of the integral curves. We summarise
this as a proposition.

PROPOSITION 1.11. Let gy = Y2gsn be a spherical metric with v > 0 and dug its surface
measure. Let ro > 0, ry € R. Then there exists a unique rotationally symmetric periodic
solution u : R x 8" — R"™! of equation [EQ] centered at the origin with initial conditions

w(0,2) = roz, Ou(0,x) = rma. Ifro = /22— and ry = 0 then the solution is constant

m t.

1.4.2. Translating Solutions. If u: [0,7) xN™ — R"*! is a solution of and & is
a vector in R™™ then a(t, -) = u(t, -)+t£ is also a solution of equation with initial data
@(0,-) = u(0,-), 0:u(0,-) = dwu(0,-) +&. This is easy to see since %(—H + o Vol(u) ') is
translation invariant and 024 = 9?u. Together with Proposition we obtain translating
vibrating solutions.

PROPOSITION 1.12. Let go = Y2gsn be a spherical metric with vy > 0 and dyy its surface
measure. Letrg > 0,7 € R, p,& € R"L. There exists a unique solution u : Rx8" — R"H!
of [EQ] having the form u(t, z) = p+r(t)z+t& withu(0,z) = p+roz and du(0,z) = riz+£.
This solution is the oscillating solution from Proposition|1.11 with initial conditions ro, 1
translating with velocity &. Att =0 it is centered at p.



CHAPTER 2

Short Time Existence

2.1. The Strategy

The objective of this chapter is to prove the following theorem.

THEOREM 2.1. For every smooth immersion ug : N — M with Vol(ug) = Voly > 0
and initial velocity uy € I'(ufTM) there exists € > 0 and a smooth family of immersions
u: [0,e) x N — M solving the Cauchy problem

Va,0u = g/% (—H(u) + ﬁ(@) v, for allt € 0,¢)
u(07 ) = Uo
3tu(0, ) = Ui.

REMARK 2.2. In this chapter we only prove the existence of a solution for a short time.
The uniqueness is a special case of our stability estimate Theorem [3.7] (see Corollary |3.8)).

We will first prove Theorem for the simpler case M = R""!. The modifications
necessary to generalise this result to arbitrary target manifolds are indicated in Section 2.6

Our equation Eﬂ is a quasilinear second order partial differential equation. As we will
see in Section [2.2] the linearisation is not strictly hyperbolic. Due to the diffeomorphism
invariance of the mean curvature only the normal part of the linearised operator is a wave
operator. For Ricci flow and Mean Curvature Flow a suitable family of reparametrisa-
tions has been used to remove such a degeneracy. This procedure is known as DeTurck’s
trick [DeT03]. Here this does not work since, due to the djo-term, the evolution of the
reparametrisations does not decouple from our equation, and it is not clear how this de-
generacy could be removed. We therefore work directly with the degenerate equation and
use an inverse function theorem to obtain short time existence. As previously mentioned,
the linearised equation contains a wave equation. By the standard energy estimates for
wave equations, we cannot guarantee that the solution of a wave equation has two orders
of differentiability more than the right hand side. So we cannot consider the wave operator
and hence our linearisation as an invertible operator between fixed Banach spaces and we
cannot apply the inverse function theorem for Banach spaces. This phenomenon, usually
called “loss of derivatives”, suggests that we should work in C'*° and use the Nash-Moser
inverse function theorem instead. Another loss of derivatives comes from the decomposi-
tion of the linearisation into normal and tangential parts, since the application of a second
order operator to the normal vector v and tangent vectors dyu gives third derivatives of
u. We will now explain how to use the Nash-Moser inverse function theorem to obtain a
solution for a short time and after that we carry out the steps necessary for the application

19
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of this theorem. The strategy of the proof is similar to the short time existence proof for
the Ricci flow given by Hamilton in [Ham82b].

Let F be the Fréchet space C*([0,T] x N,R"™!) and let Fy be the Fréchet space
C>(N,R"™!). We define the open subsets

U={ueF, det(gy;) >0, forallte|0,T]},
UO :{U - Fo, det(gij) > O}

and on a subset U’ C U we define the operator 3 : U’ — F by

P(u) = Vo, du — Z—Z (—H(u) n ﬁ) v, 2.1]

The subset U’ will be chosen later in Proposition such that Vol(u) is defined for all
uw € U'. Of course P(u) is a vector field along u but we identify T, R" with R"*! in
the usual way. In the Euclidean standard coordinates we may write 9?u instead of Vg,0u.

The strategy is as follows. Below we shall construct an approximate solution u :
0, 7] x N — R"™ with w(0) = wug, d;u(0) = u; for which J3(u) is defined such that
f = P(u) satisfies 8fﬂt20 =0 for all Kk =0,1,.... By making T smaller if necessary we
may assume that @ is defined for ¢ € [0,T + &]. We put f = 0 for ¢t < 0 which keeps f
smooth. Then we define f.(t) = f(t —¢) for 0 < ¢ < &y which satisfies f.(t,-) = 0 for
0 <t <e Now f. converges to f in C*®. So for every neighborhood U of f € F there is
an € € [0, o] such that f. € U.

We shall use the Nash-Moser inverse function theorem in the form of [Ham®&2a] (see
also Appendix [B)) to show that the operator & : U — F x Uy x F defined by

gz(u) = (‘B(U)a U(O, ')7 atu(o’ ))

is locally invertible in a neighborhood of .

This implies that there exists a neighborhood W of (4, ug,u;) such that we can solve
P(u) = (f, o, Uy ) for every (f,to, u;) € W. If € is small enough such that (f., ug,u;) € W
then we get a solution of P(u) = f. with the right initial conditions. Then in fact P(u) = 0
for 0 <t <e.

To construct the approximate solution we first compute inductively from the initial
data all time derivatives that a solution of the equation must have at t = 0. Assume for a
moment that u solves P(u) = 0, i.e.

Otu = &(u)
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with €(u) = dd_ﬁé (—H(u) + Volg(u)) v and initial conditions u(0) = ug, yu(0) = uy. Then

we can compute

O*u =€ (u)
O}u =D& (u){Ou}
Otu =D& (u){0*u} + D?*&(u){0,u, O,u}

Since u(0) = uy and dyu(0) = uy are given as initial data, we can evaluate the expressions
on the right hand side line by line at ¢ = 0 to compute the next time derivative of u
at t = 0. Borel’'s Lemma (see [GG73, p. 98|) based on a formal power series can be
used to define a smooth function u : [0, 7] x N — R"™! which has these time derivatives
at t = 0. Of course we do this locally in charts and patch this together using a partition
of unity. This is possible due to the compactness of N. If T" is small enough then u(t, -) is
an immersion since «(0, -) is an immersion and this condition is open. By making 7" small
enough we can also assume that Vol(i) > 0. By construction we have that OFB(u) = 0 at
t = 0. Hence u can be used as an approximate solution.

The main difficulty is the application of the Nash-Moser inverse function theorem. We
will carry out the necessary steps in the following sections. In Section [2.2] we compute
the linearisation of 3. After that, in Section we prove estimates for solutions of the
linearised equation and more general systems, including a tame estimate that is needed
for the application of the Nash-Moser inverse function theorem. Using these estimates
we prove in Section that the linearised operator is invertible in a neighborhood of the
approximate solution. We are then able to conclude the short time existence proof in the
Euclidean case in Section 2.5l For the convenience of the reader we included some material
concerning the Nash-Moser inverse function theorem in Appendix [B]

2.2. The Linearisation

We will compute the derivative of the operator B defined in [2.1]. The decomposition
of the derivative into normal and tangential part given in Corollary is crucial for
the proof of the short time existence theorem. Differentiating ¥ in tangential direction
Y*Opu gives no derivatives of ¥* in the tangential part of the derivative of 3. This fact
reflects the degeneracy of the mean curvature in tangential direction which comes from the
diffeomorphism invariance. As we will see this still allows us to derive useful estimates.
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LEMMA 2.3. Let V € F and let u : [0,T] x N — R™" be a smooth family of immersions
such that Vol(u) > 0. We have

DBV} =0}V — S—Z (AW, v) + WP (V,v) = (VH,VT) — ﬁ /NW, V>d,ut) v

_ i (—H + %) (divVT +(V,)H) v

d o Vol(u)
dpy 0 Ik
+ e (_H + W) (V(V,v) — (V, Opu) h*" O u). [2.2]

PROOF. Let u. be a variation of u with d.|.—qu. = V. It is well known that
~0:lemoH (us) = A{V,v) + B (V,v) = (VH, V)
and
—0.|eov () = — (0:|emov(ue), Ou) g* O = (B,V, V) g"* Opu
=0V, 1) g"*Opu — (V, 0v) g™ Opu = V(V, ) — (V, Q) h* O
By the variation of Vol(u.)™! is given by
o [V
and the variation of dy; is given by . O

COROLLARY 2.4. Let V € F and u be as in Lemma . Decompose V = pv + *0,u.
Then we can write DB (u)V = W + WFou with

d
WO =% — d_ZZ{A“ e — (VH, )

0 0 .
Vol(u)? /ngd,ut + ( H+ Vol(u)) (dive + Hep) }
+ (020, 1) + 20,% (9,04u, V) + VF(D20,u, 1)
d,ut Y . X
k —92 k Il 2 k. p ki ) 7k
W* =0;y" + o ( H+ Vol(u)) (V © — h;"Y ) + 20,p(0v, Oju) g

+ (0%, (%u)gjk + 20,4 (0,0pu, @-u)gjk + 0?0, (9ju>gjk.

PROOF. The only term which is not yet decomposed in [2.2] is 9?V. We compute
GEV zﬁf(gpy + 1/Jkaku) = 8t2gou + 2040 + 30831/ + 831/1k8ku + 28t¢k8t8ku + 1/1k8t28ku
=(07¢ + p(OFv,v) + 2007 (0,0u, v) + VF (07 Opu, v))v
+ (8,?1#’“ + 20,0(0p, ju) " + (02, Dju) g?*

+ 20,01 (00w, Du) g7* + (02D, O;u) gjk) By, 0
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Clearly the derivative of & is DZ(u){V'} = (DP(u){V'}, V=0, 0:V|1=0). To prove the
invertibility of DZ(u) we have to solve the equation DZ(u){V} = W uniquely for any
given W and initial conditions V' (0) = Vg, 9,V (0) = V. Decomposing W = W +W*d,u,
Vo = @ov+¢FOLu, Vi = v +19Fd,u we have to solve the system for ¢ and ¥ subject
to the initial conditions ¢ (0) = ¢y, ¥*(0) = 1§ and

p(0) =1 — 13(:0;u(0), v(0)),
D" (0) =¢f — @o(w(0), Bru(0)) g™ (0) — 45 (B:;u(0), Byu(0)) g™ (0).
Furthermore we have to prove a tame estimate for the solution operator of this system

where on the right hand side norms of u, W, V4, V; may appear. The invertibility and
the tame estimate will follow from the separate treatment of more general systems in

Sections 2.3 and [2.4]

2.3. Estimates for Weakly Hyperbolic Linear Systems (WHLS)

In this section we will define weakly hyperbolic linear systems (WHLS) and derive
estimates for them. These are systems that consist of a number of coupled linear wave
equations that are again coupled together with a system of ODEs with suitable conditions
on the appearance of the highest order terms. We also allow integrals of the unknowns
to appear. These systems generalise the linearised equation in the Euclidean case.
We need this generalisation when we prove short time existence for more general target
manifolds in Section [2.6|and when we estimate the maximal time of existence in Chapter
Weakly hyperbolic linear systems are a hyperbolic analogue of Hamilton’s weakly parabolic
linear systems in [Ham82b|.

We will derive a tame estimate for solutions of these systems in terms of the coefficients,
the right hand side, the initial data and a special set of basis vectors used to split the system
into a wave and an ODE part. In order to derive this estimate we combine a very simple
ODE estimate with the usual energy estimate for wave equations. Along the way we need
to prove a version of the standard elliptic regularity estimate that allows us to prove a
tame estimate later. In contrast to the usual statement of the elliptic regularity estimate
(see e.g. [Eva98, Theorem 1, 6.3.2]) we are not allowed to have a nonlinear dependence of
high derivatives of the coefficients which is usually hidden in the constant .

In a first step our estimates (Proposition and Proposition will look very
similar to energy estimates for the wave equation which estimate the spatial H*-norm of
the solution at a time. As a grading (see Definition [B.1]) for C*([0, 7] x N, V) we will choose
an H®-grading in space and time. So in Subsection [2.3.7| we will integrate the estimates
of spatial norms in time in order to derive estimates of the H*-norm in space and time.
Therefore we need a kind of Moser inequality that does not mix space and time derivatives
in the highest order terms. This inequality is proved in Appendix where we included
also the frequently used Moser inequalities. Norms are defined in Appendix

2.3.1. Definition of Weakly Hyperbolic Linear Systems. Let 7 : V — N be a
d-dimensional Riemannian vector bundle over N. Let F be the Fréchet space C*(]0, 7] x
N, V) of smooth time dependent sections of V. Assume that we have an atlas of coordinate
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charts (z4,U,) as in Appendix of Nyie. a=1,...,J, ,(U,) = Bs(0) and the sets
z,'(B1(0)) cover N. Assume also that for each such chart there are smooth time dependent
local sections 1/1(406), A=1,...,d, and T]Ea), k=1,...,d" of V (d' + d" = d) defined on the
domain of the chart which together form a basis of the fiber over each point in U,. For any

other chart (xg, Ug) with U, NUs # () we assume that the 1/1(40‘) (p) and l/l(f) (p),peU,NUs
span the same space and are bases for this space. Furthermore we assume that the spaces

spanned by the uﬁf‘) and the T,ga) are orthogonal. If the specific coordinate chart does not
play a role or is fixed, then we will omit the index («). Let dug be the volume form of a
reference metric gy. Let V' € F. In each coordinate chart we can decompose

V=V + V= ptva+ 9.

We say that V satisfies a weakly hyperbolic linear system if in each coordinate chart
(o, Uy) we have

Ohpt — LAgH — N4y — QA =v
2 1k k k k [2.4]
O — M) — PP =w

for some given W = v, 4+ w*7,. The operators are assumed to be of the following form
in local coordinates

LAQDA :aAijaiaj(pA + aAiaigaA + aAcpA

N4y =ni0p7 + ndy + nd09u* + nt Z / ;s do

Q0 =q5'0:0" + ape” + 4?0 0" + Z ACfE)BS"%)dﬂO
B=1

MF¥p =mlyt + mi00,
Pro =p ;0" + pioe®.

Of course we do not apply the summation convention for the indices A. We assume all
coefficients and also v and w* to be smooth functions on z,(U,) and A§9&;E; > ai&;¢; >
A§9EE; for all € € R™ with some fixed A, A > 0. Assume a¥ = a4, Assume supp b&) i C

xEI(BQ(O)) and supp c?ﬁ)B C xEI(BQ(O)). Furthermore we want that W = v4v,+wk7, is an
element of V, i.e. the equations transform appropriately under coordinate transformations
on N and under change of basis between different (uf), 7',50‘)) and (fo ), r,i M.

2.3.2. Preliminary Estimates. Assume that we are given the local bases v4, 75 as
in the previous subsection and that V = V| +V+ € F. Locally we write V = @44 + 7.
We want to use a notation similar to that of Appendix for norms that measure the
components ¢?, ¥* of V|, V+ with respect to the time dependent frames v4, 7,. We also
want to take norms of the frames v4, 7 although these frames are only defined locally.
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Therefore we add the respective norms which are defined locally in a coordinate chart over
all coordinate charts, e. g.

J 4
lells =D lle

H#(B2(0))
a=1 A=1
J d
Il =" W5 0 2 s (sa(0))-
a=1 A=1

We do the same for the other norms || ||, ||| [|ls, /Il - [Il= defined in Appendix [C.1]

In Appendix we have defined norms [-],, [-]s, [[-]],, [[-]lgs for linear operators
which are not the usual operator norms but measure the norms of the coefficients. To
apply this notation to the operators N and () in we write in a local coordinate chart
(%a, Ua)

H*(B2(0))

(Moo = D103 mszaon + D _lInf|
Ayi

o0 + i
Ajij Ak

+ D I lszao)) + Dbyl (za00)
A A,j

and define

Note that this is not a norm for N.

We will occasionally identify v4 and v4 o ;! and similarly for other quantities.

From the WHLS we will later derive estimates for ¢ and . To this end we will apply
estimates that only allow us to estimate a function on a smaller domain (e.g. the elliptic
estimate Lemma . So we have to estimate norms of ¢ and ¢ by norms on smaller
domains. The objective of this subsection is to provide these estimates. Doing this there
will of course arise norms of the basis transitions between different Vj(f) and T,ga). We will
express these as norms of v, and 7, and include them in our estimates. We will not use

the system [2.4] yet in this subsection. The following notation will be used several times.

DEFINITION 2.5. Define

VAB :(VA,VB>, Tkl =<7'1<;,Tl>,

() =(vap) ™, (™) =(7a) "
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LEMMA 2.6. Let
[vllco + lITllco < K
and
det(vap) > A1, det(mr) >\

for some K, \; > 0. We can estimate

142 s Bagoy) SO+ V] s (Bo(0)))
17" 1= (Batoy) SCQ+ 171112 (32 00))
122 | 222 o, 1yx Ba0y) SC(L+ V| #15(0,77% B (0)))
725 a2 qo.11x Bato)) SCL A+ 7= 0,71x B20))
1242 co (B, (0y) <C
17| co (B, (0)) <C

with C' depending only on A\ and on K.

PROOF. We want to use the third Moser inequality (Theorem to prove these
estimates. Therefore we have to prove that v¥4Z is a smooth function of the v4 and that
this function and its derivatives are bounded on the range of the v4. This is easy to see if
we use the cofactor representation of the inverse

CD _ (_1)C+D det(NDC)
det(VAB)

where Ngp is created from (vap) by deleting line C' and row D. By our assumption
det(rvap) > A1 and determinants are only polynomials of the matrix entries. Therefore as
claimed v“? is a smooth function of v4p and all derivatives are bounded in the range of
v4. Hence we can apply the third Moser inequality. The estimate for 7* is exactly the
same.

For the C? estimate simply take the supremum in the stated expression for v
similarly for 7+ O

AB and

LEMMA 2.7. Let s > [§] +1 and V = 0Avs + Y7y, locally. Assume further
s + |07 < K,

[l + [[0wlls + {17

det(l/AB) > >\1, det(Tkl) > A\
for some K, \; > 0. Then
(1)

el < CZZH@

a=1 A=1

Hs Bl
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10volls <CZZ 1820|222 (810)) + 19000 | 225 (51 0)))
a=1 A=1
(3)
.] dll
[l < CY > Nk im0
a=1 k=1
(4)
.] d//
10:blls < C D (100l o)) + 10 a5 (Brcon) ) -
a=1 k=1

If additionally ||0?v||s < K then
(5)

J d
1070l < CY > (1070 =m0y + 10108 (51 0) + 1ty | 72101 ) -
a=1 A=1

The constant C depends on K and on .

ProoOF. To prove the first statement write go(a) = 1/( BV, ox !, (a)). By the first
Moser inequality (Theorem |C.3)

Hs(By(0)) ||VABVB HCO(Bz(O))

o (By0)) < C([VL o,

|

+ Ve oz |comaon 1V P v s (Bac0y) ) -

Now by the Sobolev embedding theorem since s > [ 41

|V o $;1||CO(BQ(0)) <C|Viox,!

H?=(B2(0))
and

[Wllco < Cllv]ls < K.

So we can use the first Moser inequality and Lemma [2.6[to estimate the ||v4Zvg]
term

H*(B2(0))~

12| e (Bo0)) SCUvP oo Baop vl me B0y + 174 1282000 VB | 00 (B2 0)))
<C(1+|v[s) < Ck.

In view of Remark we have ||V oz}
obtain

Ho(Ba0)) < C X gllVi 0 a5

H3(B1(0))- So we

ity H(B1(0))

1o (Bao)) < C Y IV oag!|
B8
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Writing locally V| o xgl = gp*{‘ﬁ)yg’g ) and using again the first Moser inequality and the

Sobolev embedding theorem we obtain

H*(B2(0)) SC'Z Z (||9024ﬁ)|
5 A
<CY Y eyl oy
B A

Summing over all coordinate charts yields the desired estimate . Statement is proved
similarly.

Via

(] wopllvllco + e llco opllvils)

OV = 0yova + 1 0wa 2.5]
we obtain
ot = (OV, VB>VAB — @C(atuc, VB>I/AB.

Proceeding similarly as before we can estimate

Hs(B2(0)) HVABVB ||CO(B2(0))

12 (By(0) < C(H@M oz,

+ 18V 0 2 M| comaon IV P vl

||3t90éy) |

s (o0 [V (0w, vB) || oo Ba (o))

B0 + 1¢°]

+ [ cooop IV (Orve, va)] HS(B2(0))>‘
Using again the first Moser inequality, Lemma [2.6| and the Sobolev embedding theorem

I Owe, ve) | 1e(Bay < C(A+ O]l + Ils) < Ck.

Using also the previous estimate for Hgo(Aa s (B20))

Hs(B2(0)) SCZ Z (||(9tVL o J]§1|
B8 A

Then using [2.5], the first Moser inequality and the Sobolev embedding theorem as before
we obtain our estimate . Estimate is proved in the same way.
Estimate is proved using

0PV, = 020 va + 20,004 + 0PV s

10:0 (| 12(8:0)) + 0yl e (81 0))) -

which implies
Ot = (92V, vp)vP — 20,0% (O, ve)v P — C (0P ve, )P,
Then we proceed in the same manner as before. ]
LEMMA 2.8. Let V = pAvy + ¢F7, locally and assume
[llco + |0vllco + 107V lco + [ITllco + |07 [lco <K,
lellco + [0wellco + 1107 ellco + [[9lloo + 0 lloo <K
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and
det(vap) > A1, det(mr) >\
for some K, \; > 0. Then

1)
el < (s 3 S ety oo )+1)
a=1 A=1
)
1ells < (2wl + I, 3 S e lmon + iyl By +1)
a=1 A=1
(3)
1021l <C (8w, + llawlls + Il
J d
+ 30 2108t Lo + Wity o )+ iy lson) + 1)
)
d//
llls < (il S s y+1)
a=1 k=1
(5)
d//
Jells < ¢ (0l + Il 3 S0ty o )+ 10 o) + 1)
a=1 k=1

where C' depends on K and on ;.
PROOF. We begin as in the proof of Lemma

Hs#(B3(0)) ||VABVB ||CO(32(0))

e (Bo0)) < C(IVL o x|

|

+ IV o 23 oo maon v P vall s (20)))-

We estimate |[v45vg||cos,0)) < C and ||[v*Bup| gs(s,0) < C(1 + ||v||s) which gives

He(B20)) T VL 0 23 [eomaon + Ve 0 23 lcosaon IV]ls)-

Ho(Ba0)) < C([Vioa,|

|

By the assumption ||V} o z,||co(p,0)) < C and we can proceed similarly as in the proof
of Lemma [2.7] using the assumption instead of the Sobolev embedding theorem. g
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2.3.3. Basic L*-Energy Estimate. The estimate from this subsection is standard
but we will need a version that accounts for the finite speed of propagation and uses the
more precise Gronwall inequality Lemma [C.8 For a constant A > 0 and (o, 7o) € R"*!
we denote Sy(tg, z0) = {x € R, |z — x0| < V/A(to —t)}. If there is no confusion about the
point (g, xg) we only write S;.

PROPOSITION 2.9. Let Q C R™ be open and let ¢ : [0,T] x Q — R satisfy
Ofp(t,x) — a (t, x)0;0;p(t, ) — a'(t, )0t x) — a(t,z)p(t, x) = F(t,z)
where a¥ is symmetric and satisfies
AYEE; < a¥EE; < NYEE

k

for constants A\, A > 0. Furthermore let a”, a*, a and F be smooth functions with

1+ Z Z 100" || o) + ZHakHCO(Q) + [laflco@) < K

a=01,5=1

for some K > 0. Let (ty,x0) € [0,T] x Q such that Sy = So(to, o) C Q. Then there is a
constant C' depending on A, A and K such that

1 Dp(t, ) L2es,) + 10:p(t, ) 2(sy + o, ) llz2es,) <
t
Ct(HDSD( 250y + 110000, )||L2(So)+||90(0,')||L2(so)+/ e HF(t,f)HLQ(St/)dt/)-
0

PROOF. Define

_1 o 1 o, 1 5 ~ _1 2 1 Y D). 1,
6(90)—2|8t90| +2|D90| ¢ 6(90)—2|0t<p\ + 507 0ip0ip + 5
and
B0 = [ e(o)d Bt = [ a(eld
St St

It holds that
max(A, )e(p) 2é(¢) > min(A, 1)e(p)

and
max(A, 1) E(t) >E(t) > min(\, 1)E(t).

We have for a smooth function f: Q — R

VA(to—t)
f(z)de = / / fdwdr
St 0 OBr(x0)

d [ syt = VA [ pa

dt 95,

and consequently
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Using integration by parts we calculate

OE) = [ OpF + dupa O + adipp + pdyp — Dppd;a” dypda
o [2.6]
Lo i ij 1 VA 2, ij 2
—+ ; §3ta @(pc‘?](pdm + s athCL 81909 — 5 ((9t<p “+a @goﬁjgo -+ @ )dw
Here ( is the outer unit normal of 95y = 0B, /5, (%0) and dw the surface measure of 95;.
By the generalised Cauchy-Schwarz inequality [Eva98, §B.2] and the Cauchy inequality

N

< |0l (a7 0ip8;0) % (MGG C;) 2
1 ..
< 5 (10l + a"0,00;0) VA,

Ahpa DipCy < |Orpl (a”0ip050) * (a (i)

So the last integral in [2.6] is nonpositive and can be discarded in our estimate. Using
Holder’s inequality we can estimate

OE(t) < F(t,)lz2sollowe(t, iz, + CK | )z

< E () zxs) E®)? + C(1+ A KE(t). 2.7]
Let e > 0 and E. = E +¢. Since [2.7] also holds for E. we can divide by E2 > 0 to get
OE-(t)% < |[F(t )| zasy + CE=(1)*.
By Gronwall’s inequality Lemma we conclude that

t /
E.(t)2 < el O (EE(O)% + / e o CdSHF(t’,-)HLz(st,)dt’>.
0

Letting ¢ — 0 and comparing E(t) < (14 A1) E(t) and E(0) < (1 + A)E(0) we get the
stated result. U

2.3.4. ODE Estimate.

LEMMA 2.10. If Q C R™ is open and bounded and ) : [0,T] x Q — R is smooth and
satisfies O2* = w* then

[0t ) mr@) + 100 E, ) 1) < C€Ct<||¢(0, N ) + 104000, ) || a0
t
+/ €_Ct ||w(t’, >||H1(Q)dt,>
0
PROOF. Define

B =5 | WP+ 100F + 1DV +10.D0fds
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and compute using Holder’s inequality and Cauchy’s inequality

OE — / 5 0 + ;000 R + 6,810 0, + 6,50M 0,00 0P dr
Q
sc( / G + |0l + | DY[? + 8. DY Pda
Q

+ 10l oy [wl 220 + HathJHL?(Q)HDUJHL?(Q)>
<O(E + B2 |lwlm ). 2.8)
Let € > 0 and E. = F + ¢. Inequality [2.8] also holds for E. and dividing by F2 > 0 we
get
QE-(t)2 < C(E-(t)? + |w(t, )| m@).
By Gronwall’s inequality Lemma

t
E.(t)z < Ce (EE(O)% +/ e lw(t, .)HHl(Q)dt’) .
0

Letting & — 0 and using the equivalence of E(t)2 and ||[i(t, )| g1 () + [|0b(t, )| g1 () this
implies the result. O

2.3.5. Elliptic Estimate.
LEMMA 2.11. Let Q CC By(0) be open and let
Lo = a"0;0;¢0 + a'Oip + ap = F

on B(0) with a" = a’", a"&;&; > NYEE; for some X > 0 and F, ¢ and all coefficients be
smooth with bounded derivatives.

(1) If [L] ys(pyoy < K for some s > [3] +2 and K > 0 then there is a constant C
depending only on K, X\, s and on §2 such that

lellzz2(0) < C (I1F || s (ma0) + Nl
(2) If [Llca gy 0y < K and |[¢llc2(By0)) < K for some K, K' > 0 then for every s > 0
there is a constant C' depending only on K, K', \, s and on Q such that

lellaesz@ < € (I1F)

Ho+(By(0))) -

a0 + Ll aagoy + Il ooy )

PROOF. For s = 0 part (2) is a simple corollary of the standard elliptic regularity
estimate [Eva98, Theorem 1, 6.3.1] and would be much easier to prove directly with
our smoothness assumptions. Note that by the Sobolev embedding theorem we have
[Llcr(py0y < C’[L]HL%HQ(BQ(O)). So [L]ci(pyoy < Ck in both cases. For s > 0 let o8
be a spatial derivative with |3| < s. Differentiating the equation yields

LI%p = 0°F — (0°(Ly) — LO%p) =: F.
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Applying the estimate [Eva98, Theorem 1, 6.3.1] yields
10%lleqe) < C (17l z2(acon + Il

with ' depending only on K, A and 2. We can estimate by the second Moser inequality
Theorem [C.4]

Ho+ (B (o»)

10°(L) — LO%¢l| 12(By0)) < C ([L]HS(BQ(O)) lellc2a0)) + [Ller pyoy 191 HS“(Bz(O))) :
Hence for the first assertion we estimate
1F || 28200y < C (I1F s (m20)) + 1 llc2(Ba0)) + 0]l e+ (8200

and use the Sobolev embedding theorem to estimate ||¢||c2(p,0)) < Cll¢]
the second assertion we estimate

1| 22 (Bago)) SC(HFHHS(BQ(U)) + (L] g (Baoy) + Il

H5+1(By(0))- For

Hs+1(32(0))> . |:|

REMARK 2.12. If we do not use the assumption that [|¢[/c2(p,)) < K’ in the second
part then we get the estimate

ey < C (1P

Il 12820 + Ll o(oaion 19l 2cmaion + el mon ) -

2.3.6. Estimates for the Full System. To combine the estimate from the previous
subsections we define the total energy of the system [2.4] as

Ey(t) = 1107 (t, s + 100t s + [t )llser + 10t lsr + [[0(E ) [[s1- [2.9]
PROPOSITION 2.13. Assume that @, 1 satisfy the weakly hyperbolic linear system [2.4]
on a time interval [0,T] and that for some s > | 5] +2 and K1, K3, \; >0
[]s1 + 10w llse1 + 1071 + 17|51 + 107 ([0 < K,
1 + [L]s + [atL]s + [M]erl + [Q]s + [atQ]s + [N]s + [8tN]s + [P]S+1 S K2
and
det(VAB> > )\1, det(Tkl) > Af.
Then we have the estimate
t
Ey(t) < CeCtES(O) + C/ GC(t_t/)(“U(tlv s + 10w, ) ls + [Jw(', ')||s+1)dt/‘
0
where C' only depends on Ky, Ko, X\, A\, A and s.
PrROOF. 1.  Set By = B1(0) € R" and B = By(0) € R"™ Choose (tog,z9) =

(%,O). Recall from Subsection [2.3.3 that S, = {z € R", |z — x| < VA(ty — 1)}

Then we always have S; C B. We also have B(0) C S; if ¢t < 2\% because then

VA(tg —t) > 3 _1=1>|z| for z € Bi(0). We also choose a set ! CC B such that
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Sy CC ) in order to avoid constants depending on S, e.g. 2 = B% (0). We will prove the
estimate first for ¢t < t* := ﬁ When we apply Proposition W we use that

L+ 10aa"|lco) + Y _lla*co) + llallco@) < T+ [Llgr + (0Ll < Ko
a,t,g k

by the Sobolev embedding theorem since s > [ 5] + 2.
2. We write the system [2.4] as

02t — LA =v? + N4 + Q% [2.10a]
OXY* =w* + Pro + M. [2.10b]
Since s > [ %] 4 2 we can use the Sobolev embedding theorem to estimate the C°- and C'-

norms of the coefficients of the operators by CK,. Clearly ||g*! Zﬁ Ik CZ%)BSDg)dMOHB(St,) <

C||¢|l 2 by Holder’s inequality and [|Q4¢]| 125y < C(||¢lli+0eello). Whenever we estimate
Qy, we need a “global” term including ||| 2 or ||¢||co because of the integrals. The same
applies for estimates of N1). If we do not intend to apply the elliptic regularity estimate we
will carry out the estimates on the larger domain 2 instead of S;. Hence we can estimate
the L?(Sy)-norm of the right hand side of the wave part by

Clllvllezs + 191l + 10bllo + [lell + 10ello)
and the H'(Q)-norm of the right hand side of the ODE part [2.10b] by
C (wl s + 191 a1 m) + 110 as) + lellm@ + 10ellam) -

By the elliptic regularity estimate [Eva98, Theorem 1, 6.3.1] and the equation [2.10a] for
Ly we have

lellmz@) <C (1Ll 2m) + el ms))
<C (1107 ¢l r2my + 0l z2my + 19l + 10:0]lo + el + [|8sllo) - [2.11]

Applying the energy estimate Proposition 2.9 and the ODE estimate Lemma to equa-
tions [2.10a] and [2.10b| we get

||at§0A(t7 ')||L2(B1) + ||D90A(t7 '>||L2(Bl) + ||90A(t7 ')||L2(Bl)
< Ce (19 (0, ) ez + 11D (0, ) e + (0, 2

t
+ C/ e (ollo + N[l + 110kl + llelly + 110eello) d [2.12]
0
and
10" (t, M sy + 100" () sy < Ce“ (1050, )y + 110000, )| 1))

t
+ 0/ e (|lwlly + llvllo + 107 llo + 10eplls + llll + [l + 10:ll1) dt'. [2.13]
0
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3. In order to use Gronwall’s inequality later we also need the terms ||07¢| r2(p,) +
|0s0]| 1.(B,) on the left hand side of the estimate. Therefore we differentiate the wave part
m 2.10a] with respect to time

20,0 — LA0,p™ = 0,0 + 0L + O,Np + N20up 4+ 0,0 ¢ + Q0.

For the application of the basic energy estimate we estimate the L?(Sy)-norm of the right
hand side by

C (10wl 2(m) + llellaz@) + 1l + 100l + 1070 2em) + el + [10xells + 1107 ]o) -
The term [|¢|| g2() is estimated as in [2.11]. By the equation for 97¢ [2.10b] we have
107011 228) < C (10| 2y + 1l 223y + el sy + 10l 2y + lwllc2m)) -
An application of the basic energy estimate Proposition [2.9] yields

||815290A(t’ ')||L2(B1) + ”atDSDA(tv ')||L2(Bl) + Hat(p(t’ ')||L2(B1)
< Ce” (11070, )l 2(m) + 10: D™ (0, ) 20y + 1060™ (0, )| L2(13))

t
+ C/ e“ ([10wwllo + llvllo + llwllo + 10l + 1l
0

+10F¢llo + el + 9l ) dt’. [2.14]

4. Let 8 be a multiindex with 1 < |3| < s and 9” a be spatial derivative. Note that
by the Sobolev embedding theorem we have || -[[cx < C||-|[|z)414x. Differentiating the

system [2.10] in a coordinate chart yields
020°p* — LA0Pp =0%v? + 0° (LAp?) — LA0Pp? + 05 (N4Y) 4+ 0°(Q4yp) =: ?}/[‘2 5]
070 Yr =0Pwh + 0° (M*Mep) + 0° (PFy) =: u*. '

We want to apply again the basic energy estimate Proposition [2.9 and the ODE estimate
Lemma 0 to this system and hence we must estimate the terms 19| £2(s,) and ||| g1(e)-
By the second Moser inequality Theorem [C.4 and the Sobolev embedding theorem we have

10°(Le) = L% ¢ll2) <C (Il o ellce) + Llen a0l )
§C||§0|H5+1(B)‘ [2.16]

By the first Moser inequality and the Sobolev embedding theorem we have

10 (NW) |2y <C(IN], ([0l + 10l co) + [N]o (19 lls1 + 101ls))
<C([9llsr + 196 [|s41) - [2.17]

Note that we could estimate the integrals by

J
0% /“Z / bk dio) 2y =10° (") 3 /Nb&wimduolhw < Cllgllen [N,
B=1
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Similarly
10°(Q)llz2(m) <C (ll@lls+1 + 19:2ls) 2.18]
and trivially |0°v||z2(5) < ||v]|m=(5). Hence
15[l 22(s,) < C (IIllzrs(m) + lellssr + [0epllssr + [Pllsr + 10 lls41) -

Application of Proposition [2.9 implies

10.0°0 (t, M z2(m0) + 1D (¢, )2y + 10704 (2
< Ce“([10:07¢™ (0, ) | z2(m) + 1D (0, ) |2y + 1079 (0, )l r2m))

t
+ 0/ e (Jlolls + el + 10pllser + 19l + [10lls1)dt’. [2.19]
0

We estimate similarly
187 (M) 5y <C(IM] goss gy (100l ooy + 1]l cogm))
+ (Mo (10l sy + 19| s+1(3)))
<C (||@/)| e (p) + [0 Hs+1(3)) [2.20]

and

10°(Po) |10y <C ([P gy (10r2llene) + ellere)

+ [Pl (el + [10ip 1))
By the elliptic estimate Lemma part (1) and equation [[2.10a]
lellzre+2(@) <C (I1Lellrs(m) + ol mre+1(m))
<C (1020l s sy + 10l s () + INYl s () + |Q o) + ool o153

<C(llvlls + 107 ells + ¥ llss1 + 10 lls+1 + Nollsrr + Oeells) 2.22]
ms() and [|Qy||gs(p) were estimated as in [2.17] and [2.18]. Hence

19l < C(lwllme(z) + V]

where | N)|

we(m) + 1076l + 10ip ]l 51
+lllstr + [$llse1 + 0]l s11)-
Thus the ODE estimate Lemma, [2.10] implies

0%  (t, Moy + 100" (Ml ) < Ce™ (107050, ) ) + 100" (0, ) 1))
t
+ C/ e (Jwllsar + olls +107¢lls + 10541 + 0l
0

1 llsr + 10l sa)dt’. [2.28]
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5. Asin step 3 we need an additional time derivative and so we differentiate the wave
part of the system [2.10a] using 9;,0” in order to get an estimate for 2. We calculate

atzataQQOA — LA@taﬂ(pA :075(9611’4 + 86(8,5];’4(,0’4) + (3/6(LA075§0A) — LAat@ﬁgoA
+0°(0:Q%p) + 0°(Q"0kp) + (AN ") + O (N0p) =: v*

and we will estimate [|7]| 12(s,)- To this end

10°@ L)y <C (1Ll goqiy I llecs) + [BLloy Ielliesaqe)
<C (ol + 10205 + 10l + [9llss1 + 10 lls1 + olss1) [2:24]

using the first Moser inequality and [2.22]. Futhermore by the first and second Moser
inequality and the Sobolev embedding theorem

|0°(Lorp) — Laﬁat@”LQ(B) <C <[L]HS(B) 10pllc2(m) + [L]Cl(B) [renel Hs+1(B))
<C||0pl s+ 2.25]
107 (0N )28 <C (10N, (I¥ller + 10l eo) + [0:N] o (191l s1 + [10:¢115))
<C ([lls41 + 10l 541) 2.26]
107 (NOw)|2(m) <C (NI, (10 ller + 107 | cog))
+ [Nco (10|51 + 1074 | = (5)))
<C (10 lls+1 + 107 ]| 1+ ) [2.27]
and analogously
10°(2: Q) 22(5) <C(llOwells + llollss1) [2.28]
10°(Q8r0) |28y <C |0l a1 + 1072]15)- 2.29]
We use the ODE part [2.10b] to estimate
107N =5y <C ([[wll =y + 1M =) + [Pl 1r=(3)) -
SC(H“’HHS(B) + H@tw Hs+1(B) T H?N Hs+1(B)
+ el a=+1) + 100l () - [2.30]

Consequently

19022 < C (0w

moB) + |1V |ls41
+ 10|41 + [l s1 + 10eplls1 + 1070]|5)-

HS(B) + ||U| HS(B) + ||U)|



38 2. SHORT TIME EXISTENCE

We apply again the basic energy estimate Proposition to get
107070 (t, )| r2myy + 1DOD% (2, 223y + 10:0° (8, )l 22(my)
< Ce“ (1070 9(0, )2y + D000, )| L2y + [10:0°0(0, )| 2())
t
+ C/ e (10wlls A olls + wlls + [$llssr + [0l s41
0

+ lells+1 + 10wl 41 + ||8t280||s)dt/- [2.31]

6. We sum the estimates [2.12],[2.13],[2.14],[2.19],[2.23] and [2.31] over all coordi-
nate charts and over all 5 with 1 < |3| < s and we use Lemma [2.7| to obtain

t t
EL(t) < Ce“E,(0) + C / ) ([lolls + 00lls + lellssa)dt +C / It
0 0

We will apply the Gronwall type inequality from Lemma with A(t) = E,(t), g(t) = e,
h(t') = Ce=“" and

t
B(t) :CES(0)+C/ e (Jolly + 18s0lls + olloss) e
0

We have that B'(t) = Ce™"(||v||s + [|0v]|s + [[w]ls+1) and h(r)g(r) = C. Consequently
Lemma implies

t
BLft) < CePB(0) + ¢ [ 00 (ol + O]+ )
0

which is after adapting the constant C' the result for ¢ < #X =t*.
7. Now let ¢t < T be arbitrary. We write ¢t = kt* + ¢ with t* = ﬁ and £ < t*, k € IN.

We shall iterate the estimate finitely many times to estimate Es(t). For a moment we
will denote the constant C' which has been used in the estimate for ¢ < ¢* by ). Clearly
Ch > 1. We estimate

kt* 4+t

Ey(t) =B, (kt* +1) < C1eCFIE (kt*) + Cy / S dt!
et
kt* kt*+t
<C2CO-=10) B (k= 1)) 4 2 / €Ot gy 1y / (CO—t) gy
(k—1)t* kt*

k—1 (i+1)t* kt*+
<o < CFMeTEL(0) + Z Cpti—i / € Al + ¢y / St

p it et

Now by definition k < ti* <k+1andit* <t < (i+ 1)t" in every integral. Hence we can
estimate

1 1
E—i< o=+ D)) +1< (=) +1
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and consequently in every summand it holds CF~% < Cfotit,)/ " and in the first term
crl < Cle/ " Writing C% = €”1°5¢1 we obtain the estimate in the desired form. 0

PROPOSITION 2.14. Assume that @, 1 satisfy the weakly hyperbolic system [2.4] on a
time interval [0,T] and that for some Ky, Ko, Ay >0

[V)lco 4+ 10w ]lco + [|07v]lco + [|[Tllco + |07 ]|co < K,
L+ [Llgn + [0:L] o + (Mo + [Ql o + [0:Q] o + [N]co + [0:N] o + [Plen < Ko

and
det(vap) > A1, det(mg) > Ay
Suppose further
lellez + [10eelic> + 1¥ller + 10 ller <K
and
[v]lco + [lw]lco <Ky

for some K3, K4 > 0. Then for any s > 0 we have the estimate

B(8) O sup (15l + 100 ors + [l + s + 10l +1) + OB (0)
,t

+0 [ D (ol + 0wl + ol + (2], + 71,
+ Q) + [BQ), + [N], + [BN], + (M), + [P, ) e

where C' only depends on Ky, Ky, K3, K4, A\, A1, A and s.

Proor. 1. The strategy of the proof is very similar to the proof of Proposition [2.13
For the low order terms or if s = 0 we simply reuse the estimates [2.12],[2.13] and [2.14].
Then we consider the differentiated equations again. We replace the estimates
[2.16],[2.17] and [2.18] by

Haﬁ(LSD) - LW@HL?(B)

C (Lo lellc2m) + Lo py 1ol aei(m)

C([L] sy + ol m+1(m)) 2.32]
N, ([¢ller + 10l o) + [Neo ([4lls+1 + 11060115))

Js + [10lls41 + [0 ] 541)

s (Uleller + 10egllco) + Qoo (lellssr + 10:¢lls))

Jo + lellsrs + 10iells)-

IA A

10°(NY)|| £2(n)

IN A
Q

(

(

10°(Q)| 225y <C(1Q
<C(



40 2. SHORT TIME EXISTENCE

We replace |2.20],[2.21] by
||5ﬁ(M¢)||H1(B) <C([M]yeiris) (10 llcos) + 1]l o)
+ [M]CO(B) N0 =41y + (1] HS“(B)))
C([M]ess gy + 10l gserm) + 10| o15))
10°(Po)l (@) <C ([Pl gy (10l co) + llellere)
+ [Ploog (llel m+1(2)))
<c([p ]Herl(Q) + H90||Hs+2(m + 110l 1) -

IN

mer2(q) + |0k

We use the elliptic estimate Lemma part (2)

o2y < C([[Lol

ol o) + 1l asr1s) + Ll o) )

to obtain

ol vz < C(|lv]

m:) + 107¢lls + 10lls + 1@ llsr + [Pllssr + 1060 |41
which replaces [2.22].

2. After differentiating the wave part [2.10a] additionally in time we replace the
estimates [2.24],[2.25],[2.26],[2.27],[2.28],[2.29] by

10°(0uLe) 12(@) <C (1L ey el + O] cogsy elirv2ce))
<C<||<P|Hs+2(m+ 0L (3 2.34]
||3B(L5t90)—L358t<P||L2(B) §C< H*(B) 10pllc2(m) [L]Cl(B) ||at90|HS+1(B)>
<C (10l (3 + (Lo 2.35]
107 @N )|z <C(10N], ([¢ller + 10lleo) + [0:N]co (1ellors + 10]))
<C (0N, + [llos1 + 10l o11)

107 (NOw) |2y <C (N1, (10 ller + 1074l co)

[Nco 10|51 + 187N o (m)) )

NI, + 1106 ls+1 + 107 | 2 ())

a:Q), (leller + 10pllco) + [0:Q)co (l@lls1 + 10uells))
Q) + l@llst1 + 10l s41)

Ql, (18seller + 107 ¢lloo) + [Qleo (10:plls1 + 107 ]ls))
Ql, + 10plls1 + 1107 ]ls) -

Q +

10°(8:Qe)|| L2(5) <C

—

10°(Qsp) || 12(my <C

VASAS VASRVASAY
Q

Q

—_— T~
— —
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We used that [|07¢|co < C and ||02¢|co < C by the equations and the assumptions. We
use [2.33] to estimate |¢|| gs+2(0) and the ODE part [2.10b| to estimate

107 |+ SCUIM o) + 1Pl =) + ]

<C(IM] gy + 100l rs() + [[¥]

+ [l

H(B))
ws(B) + [Plys(p)
o1y + 1100l s () + W] 15 (m))-

3. Now define E, to be the energy taken with norms on By, i.e.

U

Et) =) > (lefw

IsH

He+1(By) T ||3ts0éy)| Hs+1(By) T ||8t290éy)| HS(Bl))
a=1 A=1

J d//

+ Z (H¢ | Hs+1(By) T ”atd)(a | H5+1(Bl))
a=1 k=1

Altogether we get, similarly to the proof of Proposition [2.13] that
E,(t) <Ce“tE,4(0) + 0/ C= B ()dt!
0
t /
+€ [N (ol + 0 + ol + ), + 0], + Q)
0

+[0,Q], + [N], + [ON], + [M],,; + [P, )dt’
t
<Ce®E 0)+C | O E ()t
0

+o£ ) (foll, + [lly + ol + L], + [B.L], + (@),

+ [atQ]s + [N]s + [atN]s + [M]s-i-l + [P]s—i-l
F07v[ls + 10w s + IWllsr + (7 llsr + 107|541 + 1) dt!

where we used Lemma to estimate F, against E,. Now we apply Lemma and use
again Lemma [2.§| to estlmate E, against E,. Then iterate the estimate for ¢t > t* similarly
to the proof of Prop031t10n 2.13 O

REMARK 2.15. The norms of v4 and 7 only arise in the last step from the application
of Lemma 2.8 and also the additional +1. If

lls + llowlls + 1107Vl + I7lls + 197 lls < €.

for all s > 0 and constants Cs; > 0 we could apply Lemma instead of Lemma and
these terms would not appear.

We can use the modification of the elliptic estimate in Remark [2.12] and we do not need
to use the assumption ||¢||cz +[|0wp|lc2 < K3 in [2.32],[2.34] and [2.35]. If we also assume
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that P =0, Q = 0, M = 0 then we obtain the estimate

t
E,(t) < CeCE,(0) + C/ S (ol + 1000]ls + flwllssa
0

+[L], llellez + 0L, el + [L], [|0pllc=) dt'.

We will apply this modified estimate to estimate the time of existence in Chapter 3} The
idea behind this is that [L], + [0,L], might not be small and so it needs a factor that is
small if ¢ is small.

s

2.3.7. Tame Estimate for Weakly Hyperbolic Linear Systems.

THEOREM 2.16. Let the assumptions of Proposition be satisfied with some sy >
[2] + 2 and initial conditions *(0) = ¢§, V*(0) = o, dip™(0) = o, Op*(0) = ¢F with
the bounds

[@ollso+2 + llerllsorr + ldollsors + ¥allsorr < K,
[0llso + 110rvllsq + llw]lsor1 < K
for some K3, K4 > 0. Then for any s > 1 we have the estimate

e llls + Ml llls < C(HSOOHSJA +1%olls + llenlls + lnlls + Mol 2145 + Nllwllls

Il zpesse + 7 emn + 2] 3y + L+ V] s P + Q0 s + 1)
[2.36]
with C' depending on K1, Ko, K3, K4, A\, A1, A, s and T.
ProoF. 1. First we want to apply the estimate from Proposition [2.13|in order to get

pointwise bounds for up to second derivatives of ¢ and first derivatives of ¢ in terms of
the data. By the Sobolev embedding theorem and the assumptions we have

[Ller + 0L er + [N ]lgn + [0 N ]lon + 1@l er + 0@l er + M ]l + [[Pllen < €

We can estimate the ||07¢||s,-term in E,,(0) using the equation, the first Moser inequality
and the Sobolev embedding theorem by

Clleollsora + le1llso + vollsorr + [[¥1llso + [0(0)]]s) < C.
So by the Sobolev embedding theorem and Proposition [2.13| we have the estimate
plloz + 10ipllc2 + 107 ¢l + 10ller + [[d]ler < C [2.37]

with C' depending on Ky, Ko, K3, K4, \, A, A1, s and T'. Also by the Sobolev embedding
theorem we have

|v]lco + 10wl co + [|07v]|co + ||T]|co + |07 ||co < CK,
and
[vllco + wllco < CKy.
Hence also the assumptions of Proposition are satisfied.
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2. We will obtain the result by induction on s. The statement for s = 1 is trivial since

by [2.37] we have
llellls + Ml < C.
The induction hypothesis is that inequality [2.36] holds true for some s € N, i.e.
llellls + llYllls < CRy
with
Ry = |lpollssr + llvbolls + [lealls + Noalls + llvllli 245 + [llewllls
+ Mlllg sz + Tl g vore + L0 ) s + IMI + 1IN 246 + TP + 1@ 24 + 1

We will prove estimate [2.36] for s + 1 under this assumption.
3. We have to prove the estimate

T T
/0 |l + / |02, dt < CR2,, 2.38)

for j =0,...,s+1. To this end we do an induction on j as long as j < s+ 1. For the base
cases 7 = 0 and j = 1 we apply Proposition

1070 (t, s + 10p(E Mlsar + ot Msr + 100 (&, s + 19 (E s
< C[Soujl% I0Fvlls + 10w lss1 + I llser + N7 llser + [0 [ls1 + 1)

+ CEL(0) + C/o [vlls + 18wlls + [Jwllss1 + [L], + [0 L],
+[Q], + [0:Q], + [N], + [0:N], + [M] | +[P],, dt’.

Now we neglect every term from the left that contains more than s+ 1 derivatives in space
or time. Using >, a? < C(},a:)* < CY ., a? for a finite number of nonnegative a; and

( fOT fdt)? <T fOT f2dt by Holder’s inequality, we can square all norms. Then we integrate
the estimate in ¢t. Therefore we use that for f > 0

/OT /Otf(t’)dt’dt < C/OT f(t)dt

which is easy to see using an integration by parts

/OT /Ot f(t)dt'dt = — /OT O,(T — t) /Ot f()adt'dt = /OT(T — ) f(t)dt.

We can estimate ||02¢(0, -)||s using the equation by

197 ¢(0)]1s < L) (0)ls + [N (0)2(0) s + IQ0)(0) Is + [[v(0) -
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Then we estimate

IL(0)p(0)[[s <C(ILO)]; [leolle> + [L(0)]co llpollst2)
(

(I
<C([L(0)]gs + llpolls+2)
<C(|[L]lgs + lleolls+2)
<C(|[L]

|Lg o1 T lolls+2)-

The other terms can be estimated similarly and hence

107 (0)lls <Cllollse2 + llills + 1ollser + nlls + vl 24541
F UL 2 arn IV g agn + 1@ 2 4a0)-

This estimate for [|02¢(0,-)||s is the reason that we need ||@o|s41 on the right of the
statement and the high der1vat1ves of the operators L, N and Q).
We can estimate

Sup (oEvlls + 10 llss1 + v llses + N7 llser + 10e7lss1) SCUIWlllgsre + MTlllesre)

<C(|HVH|L%J+5+3 + |||T|||ng+s+3)-

This yields the base cases for the induction on j.
4. The hypothesis for the induction on j is that inequality [2.38] holds true for some
j>1landforj—1,ie

Ry W T
100 ot [ 101 gt <ORL,
If j = s+ 1 we are done. Otherwise we prove the estimate for j + 1. Using the equations
T T
el e = [0 L+ Qe+ Vo 0l
oo T
[ et i = [ e o+ P+ )l
We estimate the right hand side term by term. Trivially

T T
| ez i <o, | ez i <o,
0 0
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We use Lemma (replace s by s — 1 and k = j — 1), the induction hypotheses and the
observations from the first step to estimate

T T
[0 ol i <c (1L [ 107 Dl + 107 Dl + 00 el
0 0
UL (DA + 1Dl + elIE-o) + el L]
Cc1 % -2 2 s—2 2 s—2 2 C2 s—1

<0 ([ 108 ezt + ol + [2IE) < R,

We used that we can estimate all terms with less then s derivatives by R? < R2. | due
to the hypothesis from the induction on s. For the following terms we use the first Moser
inequality

T .
/0 107~ (M) |2 jdt <MY < CUM|y Ml lller + Mo [101lls)* < CORZ,

T
/0 1077 (Po)IIZ- st <IIPelllz-y < CUPY,- llelllcr + 11Plleo lllollls)? < CRZ,,.

To estimate the integrals occuring in Ny and Q¢ we use Holder’s inequality and the first
Moser inequality

Zm J
CZ (

+ b o o,rix Bacon 1) |
< CUIN]s—r [ lllco + [V o lI#Als—1)

Ho=1([0,T]x B2(0) < szbﬂ)a |l

H*=1([0,T)x B2(0))

H#=1([0,T]xB2(0)) |||¢€g) |||CO([O,T]><B2(O))

Hs=1(]0, T]><B2(0))>

and hence

J
S | bl
=1

Hs—-1([0,T]x B2(0))

J
<Cy (|||nA1|HHS—1([O,T]><BQ(0))|||/Nb?ﬁ)ngﬁ)dﬂomco([o,ﬂXBQ(O))
5=1

+ H|77/AlH‘CO([(LT]XBQ(O))Hl/Nb(}B)ngﬂ)dﬂOH Hs—l([O,T}xBQ(O))>

< C(IN -y + Ml llls—1)-
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Consequently we can estimate

T
/O 101 (NP dt <|INGJIZ, < CR2,

and similarly

T
|1 @l e <liQel s < oR
This proves the theorem. Il

COROLLARY 2.17. Let the assumptions of Proposition be satisfied with sg > | 5] +2.
Let locally V = o vg + W*1 and W = vAvg + whry. Let V(0,:) = Vp, 9,V (0,-) = V4 with

Vollso2 + [IVillsor1 < K
for some K3 > 0. Suppose further
[ ]lsp+2 < K5
and
[W[so+1 + 10:W |5y < K4

for some K} Ky > 0. Then for any s > 1 we have the estimate
IV1lls < C(HVOHSH + IValls + MW g s + LN 2 s + [TMT + 1IN 2

1P, + QU g o+ Mg 2+ Il 2 + 1)
with C' depending on Ky, Ko, K3, K4, A\, A\, A, s and T.

PRrROOF. We only have to rewrite the estimate from Theorem [2.16] in terms of V' and
W. Therefore we use that locally V' = p?v, + ¢*7.. Applying the first Moser inequality
in space and time (see Section |C.2)) we can estimate

V11l §C<|le|ls 11l o + Mllellleo M llls + 1l [[17lllco + (1201 co IHTH\S)

<C (1Mlellls + Ml + Wl + 01

where we estimated the ||| - ||| o-terms as in the first step of the proof of Theorem [2.16]
Since

2V (0) = 0,0 (0)va(0) 4 9,4* (0)75(0) + ™ (0)D,v4(0) 4 *(0)Dy7(0)

our initial conditions in terms of f' := ©(0), Y& := ¥*(0), ot := 9,p2(0), ¥F := 9,*(0)
are ¢y = (Vo, v5(0))r"4(0), ¥§ = (Vo, (0))7(0) and

o1t =(V1,vB(0)r"4(0) — f (9wc(0), v5(0))r4(0) — 4§ (9 (0), v (0)) 4 (0)
oy =(Vi,m(0))7(0) — 5 (B (0),71(0)) 7*(0) — ¥ (9rm (0), m(0)) 7 (0).



2.4. SOLVABILITY OF WHLS 47
By the same methods as in the proof of Lemma [2.7] since ||v||s,12 < K}
I@ollso+2 + lerllso+r + ltbollsor1 + ¥allsor1 < CUIVOllso42 + [Villsos1) < C
and
[llso + [10e]lso + lwllsorr < CUW [[so11 + 10:W]ls) < C.

In fact this follows as in the proof of Lemma from the first Moser inequality and the
Sobolev embedding theorem. Having these bounds we can apply Theorem [2.16

We want to estimate the initial data by Vi and Vj for any s > 0. Using the same
methods as in the proof of Lemma [2.8] we can estimate

I@olls+1 + llpalls + ldbolls + lnlls < CUVollsta + [Valls + [[2(O) 542 + I (O)]]s
+10w(0)]s + 10, (0)]s + 1)-

Now we do not want norms of v(0) and 7(0) to appear. So we estimate by the Sobolev
embedding theorem

[vO)l[s+1 + 10 (0)ls <Cll[lllcsss < Clllvlllstizi+e
I7(O)ls + 107 (O)[s <CllI7lllgerr < CllITllls412)42-

We have locally v = vAB(W,vg) and w* = 7" (W, 7). We can estimate similarly

ol z)+s + [lfwllls §C<|HW|HL%J+S + vl z)+s + MMl 2p+s + 1). O

2.4. Solvability of WHLS

In this section we use the estimates from the previous section to prove the existence
and uniqueness of a solution to the WHLS.

PROPOSITION 2.18. Let Vy, Vi € C®°(N,V) and W € C*([0,T] x N,V) be given. Then
the system has a unique smooth solution V- on [0, T] x N with V(0) = Vi and 9,V (0) =
Vi.

PROOF. Write locally V' = ¢dvy + ¢, and W = vvy + whr,. Define off =
(Vo, vg(0))vP4(0), 4 = (Vo, (0))7"*(0) and
w1 =(Vi,vp(0))r74(0) — o5 (e (0), vs(0))r4(0) — ¥ (07 (0), vi(0))v7(0)
Y =(Vi, m(0))7"(0) — 95 (9v24(0), 72(0)) 7 (0) — ¢ (De75(0), 72(0)) 7 (0).
We will solve the system for 4, % by a simple fixed point iteration. Start with
go(})) =0, ¥, = 0. Then we solve inductively
afgpzqm—&-l) - LASO?m—i-l) :UA + NAw(m) + QA()O(m)

[2.39]
O Umary =" + M Ygm) + Pripgm)
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with initial conditions
(pzqm-i-l)(()) :()0647 wécm-i-l)(o) :w§7
at@(lmﬂ)(o) :90147 atwégmﬂ)(o) :1%6

The system only consists of linear wave equations for ¢ and linear ODEs for 1*.
The ODEs have a unique smooth solution on [0,7]. The wave equations can be solved
locally in space and for a short time due to finite speed of propagation. The coordinate
invariance of the system implies that V{,,.1) = gpf‘m yva+ Q,Dé“m +1)Tk 18 well defined for

small ¢. This can be iterated such that we get a solution on [0, 7.

The differences g?)(Am ) = gp{‘m )~ gp(Am) and z/;é“m ) = wé“m )~ wé“m) satisfy the system

2 ~A A=A AT A~ C~A
O; Pim+1) — L Plmary =N V) + Q7 Py = U
2 7k kT k= ok
815 7vb(erl) =M 7vb(m) + P P(m) = W(m)
which is a WHLS. Smoothness and compactness imply bounds on all necessary norms of
the operators and of v, 7 and that det(vap) > A1, det(7g;) > A1 uniformly for some \; > 0.
We want to apply Proposition for any s > | 5] + 2 and so we have to estimate |7,
|0,0]|s and ||@]]s41. Define
Cm(t) = 18m) (£ M1 + 118620my (8 Mls1 + 107 D0m (£ )6
F [0y (& ) ls+1 4 [0cthmy (€ )] s41-
As in [2.17],[2.18] we can estimate
[9(t, ) [ls < Cem(t).
Repeating the arguments of [2.20],[2.21],[2.22] using Lemma [2.7| we can also estimate
[@(t, ) [[s41 < Cenl(t).
Repeating the estimates [2.26],[2.27],[2.28],[2.29],[2.30] we obtain
10:0(t,-)[|s < Cem(t).

Hence Proposition [2.13| implies

t
emsi(t) < C / e ()t
0

Inductively we get

(co™ sup ¢ (t). [2.40]

Cm_|_1(t) S cm // Cl(tl)dtldtm <
m! 0<t'<T

0<t1<t2<---<tm <t

This shows that for every ¢ € [0,7] the functions wfm)(t,-), atgofm)(t,~), wé“m)(t,-) and
8,5@Z)é“m) (t,-) are C*°-Cauchy sequences and have limits cp(‘oo)(t, ), gééo) (t,-), wé“oo)(t, -) and
zﬂfoo) (t,-). As we can also take the supremum over ¢t € [0,7] in [2.40] we get uniform

convergence in ¢t and the limits are continuously differentiable in ¢. This implies that we
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can also interchange first and second time derivatives with the limit. Passing to the limit
in shows that (o) and () satisfy the WHLS . Smoothness in time follows
from the equation by an induction.

To show uniqueness we assume there exist two solutions gp(Al), wé“l) and gpé), wfz). The

differences ¢4 = gpé) — gpé) and 1/;"3 = wfl) — goé) satisfy the system
Oe" — L' = N — Q"¢ =0
Ot — M) — Prg =0
with vanishing initial data. Hence by the estimate from Proposition for any s > |5 ]+2
1Blls1 + 10:@ 541+ 107 @l + 1Pl + [10ptPllsa < O
So 4 =0 and ¢*F = 0. O

2.5. Conclusion of the Short Time Existence Proof

We wish to write the linearisation as a WHLS and derive a tame estimate for
solutions of this system. We will need to estimate the coefficients of the operators L, M,
N, P, @ in terms of u to derive our tame estimate. This can be done by the third Moser
inequality but we have to be aware of the terms that could possibly blow up. These are
only ||v]|s and ||g7!||s. In the following Lemma we show that we can indeed apply the third
Moser inequality to these terms if we assume that det(g;;) > A > 0 for some A\;. This
assumption will be satisfied in Proposition due to the choice of neighborhood. For
later applications the proof of the following Lemma will be valid also on a general oriented
manifold M.

LeEMMA 2.19. If ||ullcr < K and det(g;;) > Ay for some K, A\ > 0 then
[v]ls <O+ ||lullst1)

[vllls <C + [l|ullls41)
and

Hg_l”s <O+ flulls41)
g™ llls <CC+ Mulllssr)
with C' depending on K, \i and s. If also Z§:0||0§u\|01 < K for somei > 1 then

101, <C(1L+ ) ||0fullss)
1=0
and

19fg 7 I, <C(L+ ) lI0full 1)

=0

with C' depending on K, A\, s and i.
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PROOF. To estimate ||v||s we will use the third Moser inequality. We have to show
that v is a smooth function of v and Du with all derivatives bounded. Now using the cross
product on manifolds we can write up to sign

O1u X - -+ X Opu

vV = .
1011 X -+ X O]

By definition
Vi X o X Vi = 0oy /det(Gup)ear. an Vi - . VO G705

where Vi,...,V, € T,M are vectors, €q,..q,,, is the Levi-Civita symbol and o,, is a sign
determined by the orientation of M. Let V = (V,%). Let V., be the n X n matrix created
from V when line v is deleted. Similarly let (g),s be the matrix § where line v and row
d are deleted. By the multiplication theorem for determinants (see [Fis79] also known as
Cauchy-Binet formula) we have that

n+1

det((V;, V) =det(V'gV) = > det V7, det(gV),
=1

n+1 n+1

=33 det V., det(().s) det Vs

y=1 6=1

= Z Z 1)°*7 det(3)g°" det V., det Vs

= det(g>g 5a1...an'y€ﬂ1‘..ﬁn6‘/1al c. Vnan‘/lﬁl .. Vnﬁ"
:|‘/1 X+ X Vn’2

We used the cofactor representation of g7° and that det V., = (—=1)7ea,._ 0, Vi* ... V.9 by
cofactor expansion (no sum over 7). Hence

|O1u X -+ X Opu| = y/det(gi;)-

This is the denominator in the expression for v and it is bounded below by assumption. So
v is a function of v and J;u and the denominator is bounded in the range of u, Du. This
also holds for all derivatives as they can only contain powers of this denominator. Clearly
this also works for time derivatives.

The estimate for ¥ works exactly in the same way as the estimates in Lemma and
this clearly also works for time derivatives. U

REMARK 2.20. For later reference we note the essential fact of the preceeding proof:
If |lullcx < K and det(g;;) > A1 > 0 then we can write ¢ = F¥(u, Du) and v = G(u, Du)
with smooth functions F' and G that are bounded with bounded derivatives in the range
of w and Du.

From Corollary we get the promised tame estimate for D21 on a neighborhood
of the approximate solution u.
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PROPOSITION 2.21. Let @ : [0,T] x N — R™"! be the approzimate solution constructed
in Section [2.1. There is a neighborhood U’ C F of 4 on which the operator

dpu 0
P(u) = Vo,0u — d,uo <—H(u) + Vol(u)) v

can be defined for all uw € U'. Furthermore & : U — F x Fy x Fy defined by P (u) =
(B(u),u(0,-),u(0,-)) is a smooth tame map and DP ' : U x F x Fy x Fy — F exists
and is a smooth tame map.

PROOF. 1. Choice of U'. 1In order to apply Corollary we choose U’ such that
the following properties are satisfied for all u € U’
(1) Aé" > g > \6¥ for some A, A > 0,
(2) det(gi;) > A for some A\; > 0,
(3) llullz)+s + 110l |2 45 + 10Full 2 14 + 10Full 245 < KT for some K > 0,
(4) Vol(u) is defined and Ay > Vol(u) > A for some A, Ay > 0.

Therefore define for some 0 < § < 1
={u € F | [|lu—all,z+s <}

We will now see that if § is small enough then U’ will have the desired properties. For any
u € U we have

9i;(w) = gi; (@) + (05, Oj(u — @) + (01, O;(u — ) + (9;(u — ), D;(u — w))
and hence
1935 (w) — gi5(@)| < C([lu —aller + lu—al|Zn) < Co.

So if § is small enough we get properties () and (2). For s € [0, 1] define u; = @+ s(u—a).
We have the same estimate for ug

1935 (us) — gi; (@] < C(llu — aller + llu —allgn). [2.41]

Hence properties (1)) and (2)) also hold for us. We can compare dy(us) < Cdpg using [2.41]
independently of 6 < 1. We can then define Vol(u) in a neighborhood of @ and we have

Vol(u) = Vol(u / 05 Vol(us)d

— Vol(i / / V()1 — @) dpe(us)ds. 2.42]

We use this to estimate

|Vol(u) — Vol(u |</ /| v(ug), w)|dpg (us)ds
<Cllu — ul|co < CO.

Since property holds for @, we can get this property for all u € U’ if we just make ¢
small enough. Property is immediate from the definition of U’.
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2. Tameness of B.  From [Ham82a, Corollary 11.2.2.7] we know that a nonlin-
ear partial differential operator is a smooth tame map. But P is not a differential
operator in this sense because it includes the Vol(u)-term. But we can write P(u) =
PB(u, Vol(u)) where P is a differential operator of second order in u and zeroth order in
Vol(u). Since the composition of tame maps is tame we only have to show that the map
u +— Vol(u), U — C>=([0,T],R) is a smooth tame map. Therefore we write

Vol(u) = Vol(ug) + /0 t /N (Dyu, v)dpudt.

Let w(u) := (Opu, v) 35t d” L This is a nonlinear partial differential operator that assigns to u
a smooth function on N, 1 e. w: U — C®([0,T] xN,R). Since this is a smooth tame map
we only have to show that the map f assigning to w the function f(w) fo fN wdpdt

is a smooth tame map. Clearly f is continuous. Now D f(w){@}(t) fo S @dpiodt and
D?f(w) vanishes. So f is smooth and we only have to prove a tame estimate for f and
Df. We estimate for £ > 1

10 £ oy = | (@ F) ()t = / ( / af_1WdM0)2dt
<C/ /a’“ L) dpgdt

<Cllwllliy < Cllwlllz-

Taking the square root this yields a tame estimate. The estimate for D f is the same. Since
Vol(u) is bounded by the choice of neighborhood we see that the map u — Vol(u) is tame.

3. The Linearisation as a WHLS. We write the system as a WHLS. For the
bundle V take N x R"*!, @' = 1, d” = n. Take v, = v and 7, = Jyu. Let 1, be a partition
of unity subordinate to the sets z;'(By(0)). Then is a WHLS with the operators

djug 2 0 2
Lo =-FtIA h H Hopb —
© duo{ o+ | |90+( +V1( )) 90} (Ov,v)p

_dlut 0 i 7
N _d_,uo{ — O HY' + < H+V 1(a )) (0" + Tyt }
— 2(0;0u, V}@tv,bk — (0?0, V)"

dﬂt / dpie
_ o h g
Q0= Vol Z atp g1 Ao

M* _ i (—H + 0 ) hiFyt — 2(0,00u, O;u) g?* Ot — (O} Oy, Oju) g’ o)

dpio Vol(u)
d ' |
Pkgo = dZ; (—H + Volg(u)) ngp — (O, 3ju>gjk8tg0 _ <at2V7 aju>gjkg0
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4. Tameness of D', Let sy = [2] + 2 and (W, 1y, V1) € F x Fy x Fy. Choose
constants K3, K3, K such that ||W||s,+1+10:W |lse < K5, [|Vollsore < K5 and ||Vi||sp+1 <
K}. Choose a neighborhood V C F of W such that ||[W||s41+ [|0:W s, < K3 for all W €
V. Choose also neighborhoods Vg, Vi C Fy around Vj and V; such that ||Vo|s, 2 < K3 and
IVillsor1 < K for all Vy € Vg, Vi € Vy. For any (u, W, V,, V1) € U x V x Vi x Vy let
V = D2 (u, W, V, V1) be the unique solution to DB(u){V} = W with initial conditions
V(0) = Vo, 9,V (0) = V; whose existence is assured by Proposition [2.18] Using Lemmal[2.19|
and the Moser inequalities we can estimate the operators by

[L],, <CA A+ ullsgsz + 10l so1 + 107l s941) < Crt

DL, <O+ Jlullsysa + |0ullsorz + |07l so1 + 07ullso41) < C;
[N],, SCA A [[tflsgss + 0l so1 + 107 ullsgs1) < Ciy
[0:N],, <O+ [lullsors + 0tllsoss + 107ullso1 + 107ullsg1) < Crey
[Ql,, C(L+ [Jullso41) < Cky
[atQ]so <O(1+ ||ullsg+1 + |0kl sg+1) < C'Ki«
[M]soﬂ <C(1+ ||ullsgrs + |0t sgr2 + 1|07 ullso+2) < Ck:
[P, 41 SC(+ l|ullsgrs + [0l sz + 107 ullsg12) < Cis.

We can also estimate [[E]|jn,, < C(1 + [[[ull| 2)4s13) for E € {L,M,N,P,Q} using
2
Lemma [2.19] and the Moser inequalities since at most third derivatives of u occur in the
operators. We apply again Lemma to estimate
[V]]so+2 + 10 lls1 + 107 [lsg + N7 lsg1 + 1967 [lsg1
< O(1+ [Jull sy + [[Opul| o 42 + ||8t2u||80+1) < OKI'
Also by Lemma [2.19
llsz 2 < OO+ lullos gy50) and [17llor 02 < OO+ il 3150)
This implies that the assumptions of Proposition and Corollary are satisfied and
in view of Corollary we can estimate for any s > 1

VI < C (1 WV lloer + 1Valls + W g1+ Wl 3105

The constant C' only depends on K7, K3, K5, K;, A, \, Ay, T" and s. This clearly is a
tame estimate for D21,

5. Continuity of DZ~1.  We wish to check the continuity of DZ?~!. Therefore
let (ug, Wi, Vor, Vir) be a sequence in U’ x F x Fy x Fy converging to (u, W, Vy,V}) €
U x F x Fy x Fyin C*. As this sequence is bounded, we can choose constants K, K},
K such that the bounds ||[Wg||s+1 + [|0:Willso < K5, |[Vorllsor2 < K% and [|[Vig||sor1 < K}
hold uniformly in k. As in step 4 we get the estimate

[IVellls < C (1 F 1 Vorllstr + Varlls + [IWelll )45 + |||Uk|Hs+L%J+3>

for Vi = D2 (uy,, Wi, Vor, Vi) and consequently the sequence (V},) is also bounded.
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As every bounded sequence in C* has a convergent subsequence there exists a sub-
sequence Vi, and converging to some V' € F. The convergence of the data and of the
Vi, in C* implies that we can take the limit in the equations for Vi, and so V solves
DPB(u){V} = W with initial data V(0) = Vy, 9,V (0) = V;. The solution of this equation
is unique and so we can conclude convergence of the whole sequence V}, to V. By definition
V =DP Y (u,W,Vy, V1). Hence D! is continuous.

6. Conclusion. ~ We have shown that D2~ ! exists, is continuous and satisfies a
tame estimate. By [Ham82a, Theorem I1.3.1.1] it follows that DZ~! is a smooth tame
map. [l

This means that we can apply the Nash-Moser inverse function theorem as described in
Section[2.1] This concludes the short time existence proof for the Euclidean case M = R"+1.

2.6. Generalisation to Manifolds

The space E C C*°([0, T]xN, M) of time dependent immersions from N to the manifold
M is a Fréchet manifold. For u € E the operator

= dyu 0
PB(u) = Vy,0u — i (—H(u) + W) v

is a vectorfield along u. The space of vectorfields along a map u € E can be identified
with the tangent space T,E. This means that 3 is a vectorfield on the manifold E. In
order to replicate the short time existence proof and apply the Nash-Moser argument in
this setting one would have to choose a local coordinate chart for E around u and consider
the operator 3 in such a chart. Then we are in the situation that 3 can be considered as
a map between Fréchet spaces. However it seems to be very complicated to carry this out
in detail. To avoid these complications we will in the following translate our problem to
an equivalent problem for maps in the Fréchet space C*°([0,T] x N, R).

2.6.1. Extrinsic Formulation of the Problem. By the Nash embedding theorem
we can suppose that the ambient manifold M is isometrically embedded into R¢ by ¢ : M —
R¢ for some d. We derive an extrinsic form of the Euler-Lagrange equation which is
similar to the extrinsic form of wave maps (see e.g. [SS98]) and the extrinsic form of the
evolution equation for magnetic geodesics [Koh09]. Let my be the closest point projection
to ¢(M) which can be defined on a neighborhood

M={z+v|zecuM), ve (TuM) v <d)}

of «(M) and is smooth there. Here 0 is a positive smooth function on ¢(M). Now the
second fundamental form of M is given by

Bag = 6a(§gL — Fzﬁayb [2.43]

and this is normal to ¢«(M) and so Dy (¢(p))(has) = 0 for p € M. Since ¢ = myro ¢ we have

5a5ﬁb — f’;ﬂéw = DADBWJ\/[éﬁLAéaLB + Dﬂ'jv[(gaggL — FZW@L) = DADBﬂ'MagLAgaLB.
2.44]
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Here D, is the derivative in the direction of the canonical basis vector e4 in R¢.
Now if w : [0,7] x N — (M) we can write v = ¢ o« with @ : [0,7] x N — M. We
compute

P =B,1020° + 8yD, 10,050,
=0a1(07 0" + T'3,0,0°0,07) + 0,00, (050, — T, 0at)
=D(V,00t) + DaDpmy(u)du’ 0,u®
and similarly
g7 (9;0;u — Ffj@ku) =0a1(g" 0;0;0* — rgakaa + Fgwa,.aﬂajm) + 9" D oD pme(u) Ojut0;u”
=Du(—H(@)v(0)) + g DaDpmyi(u)diu?o;u®.

Clearly the normal vector v(u) and the volume Vol(u) of u in «(M) are given by v(u) =
Du(v(u)) and Vol(u) = Vol(u) since ¢ is an isometric embedding. We write

- d .
Ou = a,?u - d—ﬂtg” (&Bju — Ffjaku) )
Ho

So
Ou — %(u) d v(u) — D Dpmyi(u) (Qu0u® — %(u)gijaiuAa-uB)
dpo " Vol(u) dpo !
f— " d/,l/t “ ~ Y ~
=D - — —H — . 2.4
L (Vaté?tu o (0) ( (@) + Vol(zl)) V(u)) [2.45]
Hence @ : [0,7] x N — M solves [EQ] if and only if u : [0, 7] x N — (M) solves
~ d d g
0=0u-— d—z:)(u)v%wy(u) — DaDpmyi(u)(Ou?o,u® — d—l[Z(u)gzjaiuAajuB). [2.46]

In order to solve we will formulate this equation for functions w : [0,7] x N —
M c R? which do not necessarily map to ((M). We will do this in such a way that the
linearisation is a WHLS in order to apply the Nash-Moser argument for this new equation.
The quantities v/(u) and Vol(u) have to be replaced to make sense for such maps. Let 7y, (u)
be the projection onto the normal space of ¥; = u(t,N), i.e. 1 (u)V =V — gV, 0;u)0;u
for V€ R?. We replace v(u) by #(u) = ms1 (u)v(mpou), i.e. the projection onto the normal
space of 3; of the normal vector v(mycou) in ¢(M) of the map myow : [0,7] X N — «(M).
If u is close enough in C! to a family of immersions that map to «(M) then my¢ o u is also
a family of immersions and v(myg o u) is defined. We can assume this as we just need to
make our neighborhood smaller in the Nash-Moser argument. By definition 7(u) is normal
to O;u and v(mycou) is an element of T (,)¢(M). We define %l(u) := Vol(myou). Clearly
if u maps to ¢(M) then v(u) = P(u) and Vol(u) = \/Nol(u).

We then define II,(0qu, dpu) = Ty (u) DD pmyi(u)d,u?dsuf. If u maps to ¢(M) then
71 () DaDpye(u)audpu” = DaDpmyi(u)dau’d5u” because it follows from [2.43] and
that DaDpmi(u)0,u?dsul is orthogonal to «(M) and hence to %;.
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Then we want to solve the equation
= duy 0 . dpe
Ou = ————70 + I, (Qu, dyu) — —g" 11, (0;u, d;u 2.47
dpto Vol (u) (000 = G i) [247]

subject to given initial conditions. We will see in Subsection that this is possible.
Assume u solves [2.47]. It is clear from our considerations that if v maps to (M)
2.4

then we have solved | . We will prove in the following lemma that if u maps to ¢(M)
initially and the initial velocity is tangent to ¢(M) then u maps to ¢«(M) for all time.

LEMMA 2.22. Let u : [0,7] x N — M C R? be a smooth solution of equation [2.47)
with w(0,x) € (M) and 0w (0,2) € Tyout(M) for all v € N. Then u(t,z) € (M)
for all (t,z) €[0,T] xN and 4 = ' o u solves with 4(0,-) = ™t o u(0,-) and
0y(0, ) = D=1 (9yu(0,-)).

PROOF. Define my(z) =  — (). Then clearly Dy = 1 — Dmy and DyDpmy =
—D s Dpmy. We compute

d .
0 (o w) = 50" (00 (ma; o w) — Thd(mco w)

i
~ d .
= Doy (uw)Ou® + DD pm(u) (Oyu opu® — d—utg”@iuAajuB)
Ho
d duy ..
S ﬁDc?TJJ;[(U)ﬁC + Demy(u) D oD prs(u) (O ou® — ﬁg]”@w“(?juB)
Vol(u) dio dpug

d .
— Demng(w)Opu® (D oD pmi(u), o) g™ (Ou? ou® — d—ztg”aiuAajUB)
0

d .
+ DaDpmy(u)(Ou?ou® — d—mg”é)iuAajuB)

o
=—DsDpmy(u)
o duy 1 c o dpuy kl 1L
= ———Demy(u)v” (myou) — ———(v(my o u), du)g” O (my 0 u
Vol(u) dtto el Vol(u) dM0< ( S

d .
— Dem(w) D oD pr$i(u) (9yu 0pu®” — d—mg”&-uAajuB)
Ho
d g
— (DsDgmy(u), Opu) g™ (Ou opu? — d—'utg”Gl-u“‘(?juB)(?k(7r;,f4 ou). [2.48]
Ho
If w maps to «(M) then [2.48] is a linear wave equation for m3; o u because then we
know that Domae(u)vC(my o u) = 0 and Demye(u)DaDprs(u)0autdsu® = 0 since then
D 4Dp7§(u)d,utdsu® is normal to t(M). As we will see in the following energy estimate
this is approximately true even if u does not map to ¢(M) and we can estimate the remaining
terms in terms of the distance |my(u)| of u to t(M). Define

1 1 1
e(t) = §/N|8t(7rf,[ou)|2duo+§/N|V(7ri,[ou)|2dut+§/N|7rj%,[ou|2duo
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where of course in local coordinates |V (my; o u)|?> = ¢"(0;(m; o u),0;(my; o u)). In the
following we compute in local coordinates under the integral which is easy to make rigorous
using a partition of unity.

Dpe(t) = / <8t(7ri/t ou), af(m ow))dug + / gij<5’i(7ri/[ o u), 0,0, (ij,t ou))du
N N
1 - 1
+5 [ o), (i i+ § [ Voo dgudie
+ / (0, (T3; 0 w), T 0 w)dpig
N

< / (0, (T o u), O (myp o u) — j—/’ljtgij(&aj(ﬂﬁ ou) — Ffjak(ﬁﬁ[ ou)))duo + Ce(t)
N 0

.48
2 Ce(t) + 2 / (Do (u)vC (g 0 1), (s o )y
Vol(u) J
— / <8,5(7r3%4 ou), DCWM(U)DADBW%(U)(8tuA8tuB — Z—l/jtgijOiuAﬁjuB))d/Lo
N 0
— NQ / (v(m o), 8lu>gkl<8k(7r#v[ ou), 8,5(773%4 ou))dy
Vol(u) /N
— / (@UA@UB — %gijﬁiuAajuB)(DADBﬂM(u), 3lu)gkl (&5(7#% ou), (")k(wjf,[ o u))djig.
N 0

Now we show that we can estimate all terms by Ce(t). For the last two integrals this
is clear using the Cauchy-Schwarz inequality and ab < %aQ + %62. Since we have a fixed
solution u we can use that all quantities are bounded depending on u. We can also compare
dpo and dy; uniformly. In p € (M) it is true that Dmy(p)V =V for V € T,t(M) and
hence

U

Deomyi(mae(u))vC (mac o u) = v(mac o u) — Demae(m(u) v (T o ) = 0.

Furthermore 0, (my o u) is tangent to ¢(M) and hence

DADB’/TJ\/[(WJ\/[<U))(9Q(7TM e} U)A6g<7TM o ’LL)B

is normal to ¢(M) in view of [2.43] and [2.44]. Since Dmy(my(u)) vanishes on normal

vectors we have

Dcﬂm(ﬂ'm(u))DADBWJC\;[(WJ\/[(U))aa(WM o U)Aag(ﬂ'jv[ 9} U)B =0.
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For s € [0, 1] write us = (1 — s)my(u) + su. We can estimate

/N (Oe(myg 0 u), Demye(u)v (mag o u))dpe = /N (Oe(my 0 u), Demyg(mae(w))v (mag o u))dpee

1
4 / (O (i o), v (g 0 ) / 9, Dormiy(uus)ds)d
N 0

1
= / (0y(37 0 ), v (T 0 w) (u — mae(u)) E/ Dg Doy (us)ds)dpu
N —— o
i ()
< Ce(t).
The appereance of 7y (u) = u — my(u) here is the reason to include |my(u)|? in the energy
e(t). Similarly we use
Dcﬂm(u)DADBWJCV[(U)aaUAagUB
= Dcﬁjw(WM(u))DADBWJC‘;E(WJ\/[<U))8Q(7TM o u)Aaﬁ(wM o U)B
1
+/ Os(Demai(us) DaDpmsi(us)0autOgu’)ds
0
1
— (u— mac(u))? / D Dor(tt2) DaD (1) Do 0P s
0
1
+ (u — ij[(u))E/ Demai(us) DpDaDpmsi(us)dgutdsuds
0
1
+ On(u — WM(U))E/ Demi(ug) DaDpmsy(us)dsulds
0

1
+ 0(u — 7ij[<u))E/ Demi(us) DaDprsp(us)Oquitds
0
to estimate
du,
/(at(ﬂﬁ[ o), Demat(u) Do Dpmse(u) (Ou0u® — d—mg”&uAﬁjuB»duO < Ce(t).
N Ho

Due to the initial conditions e(0) = 0. By Gronwall’s Lemma we conclude that e(t) = 0
for all ¢ € [0, 7). This implies (m3;0u)(t, ) = 0 for all (¢, z) € [0, 7] x N. This is equivalent
to u(t, x) € «(M) for all (t,x) € [0,T] x N. Since ¢ : M — +(M) is an isometry we get from

[2.45| that @ solves [EQ)]. O

2.6.2. The Linearisation in the Extrinsic Formulation. To conclude the short
time existence proof in the general case, we have to prove that the linearisation of [2.47] is a
weakly hyperbolic linear system. Now we will take F to be the Fréchet space
C>=([0,T] x N,R?) and Fy = C*(N,R?). Define similarly as in Section

U={ueF, det(g;;) >0, forallt €0,T]},
Uo :{U € Fo, det(gm) > O}
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We only need to apply the inverse function theorem on a neighborhood U’ C U of the ap-
proximate solution % which can be constructed as in Section 2.1} Compared to Proposition
2.21| we have to impose additional conditions on U’ and the time interval. We need (@)
to be an immersion in order to define (u) in [2.47|. This will be true if 7" is small enough
since my(u(0)) = up is an immersion and this condition is open. If U’ is small enough then
this will also be true for all v € U’.

For the bundle V we take V = N x R%. Given a map u € U’ we have to define the
vectors v4 and 7. Choose a local orthonormal frame 74, A = 2,...,d—(n+ 1) on a
neighborhood of a point uy(z) that spans ker Dmy. We then want to define 1720‘) =rvpou
on a chart domain U, with x € U,. By making the coordinate charts and the time interval
smaller this can be done for ug and 4. By making the neighborhood U’ smaller in C° this
can be achieved for all u € U'. Define v1 = 0 = my (u)v(mc o u) and v4 = w1 (u)(74) for
A=2,...,d—(n+1). This will then give a basis for the space orthogonal to T,X if u
is close to my(@) in C*. As the projection 7y (u) and 7 depend smoothly on w and Du
also the v, will depend smoothly on u and Du. The vector ¥ can be estimated as the v in
Lemma if we assume det(g;;(mypcou)) > A} > 0. We also get similar estimates for the
other v4 since the only term that could blow up in the projection is ¢” which we can also
estimate as in Lemma [2.19, For 7, we simply take Oku

To estimate Vol(u) define us = my (2 + s(u — @)) for s € [0,1] and use

Vol(u) = Vol(u / 05 Vol(us)ds = Vol(u / / v(ug), Dmye(u — @))dpy

instead of [2.42]. Suitable estimates on Vol(u) can then be obtained using conditions
and below. Then we choose U’ such that the following properties are satisfied

(1) u(x,t) € M for all (t,z) € [0,T] x N,

A% > g (u) > N\6¥ for some A, \ > 0,

N6 > gi(ug) > N9 for some A/, N > 0 and all s € [0, 1],

det(g;;) > A for some A\; > 0,

det(g;;(us)) > Aj for some A} > 0 and for all s € [0, 1],

mc(u(t,+)) is an immersion,

v4 can be defined as above,

det(vap) > A/ for some N\ > 0,

[ull 245 + 1Osull 245 + 10F7ull 2 )44 + 107wl 243 < KT for some K7 > 0,
(10) Vol(ma(u)) is defined and Ay > Vol(ma(u)) > Ag for some Ag, Ay > 0.

Clearly all these properties, which are in parts redundant, can be achieved on an open

neighborhood U’ of 4.
Define

~ dus o - dps 35
Qu) = Ou — ———0 — I1,(0su, Oyu) + — g 11, (Ou, O;u).
(u) dpio Vol(u) (O, O dpo ( u)

PROPOSITION 2.23. Let V,W € C*([0,T] x N,R%). Then for u € U’ the equation
Q(u){V} =W is a WHLS with respect to va, 7, and the bundle 'V defined above.
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PROOF. Let u. be a variation of u with O.|._qu. = V. If V = ¢*7;, is tangential then
the variation of du; gives a derivative of V. But this term always accompanies a normal
term. This is the reason for defining I and 7 with the additional projection to the normal
space of ¥J;. All the other terms are diffeomorphism invariant and thus no spatial derivative
of V occurs in the tangential part of DQ(u){V'}.

Now let V' be arbitrary. The decomposition into normal and tangential part of the
variation of the second time derivatives O.|.—q0?u = 9V is

(02, vp)vBA =020 + 20,0% (O, )P + 09 (0Pve, v )P4
+ 200" 0y, v )W P + R (0% Ty, vp)BA
(OFV, )T =02 + 20,0™ (OyTom, )T 4 Y™ (0P, ) THE
+ 20,02 (O, )T + MO, T) TR

Since the operator 9 is of second order, DQ(u)V is also of second order in V. The only
term generating second derivatives in the variation is Au = ¢"(9;0;u — (0;0;u, Ou)g"*Ou).
If V = v, then

O-|c—oAu =g"(0;0;V — (0;0;V, Oyu) g*' Opu) + lower order terms
=g @@gpAVA + lower order terms
and so
(0c|e=0Au, VB>VBA :gijf)iaj(pA + lower order terms
(Oc|cmoAu, 1) 7™ =0 + lower order terms.

By “lower order terms” we mean terms with at most first derivatives of p* and at most
third derivatives of .
Now

0.Vol(u) = /N (g 0 ), Vi

du dp

B t l t

= o y _d o ) d
Ea /Nn {(v(mytou) VB>g0(a)d,u0 1o + Ea /Nn (v(mtou) Tl>w(a)—duo 140

where 7, is a partition of unity subordinate to the sets z_'(B(0)). The variation of the
volume only occurs in the vy = v-part of the system.

We have checked the wave equation structure for the ¢*, the ODE structure for the
1% and the integral terms which will subsumed into the operators N and Q. This implies
that we indeed have a WHLS. O

The Nash-Moser argument applies and this concludes the proof of Theorem in the
general case.



CHAPTER 3

A Continuation Criterion and Stability Estimates

In the first part of this chapter we will prove a continuation criterion (Theorem [3.1])
for a solution w of which can also be interpreted as a singularity criterion. If
u:[0,7) x N — M then this will be a condition under which there is no singularity at
time 7', i.e. the solution can be extended uniquely to [0,7 + §] for some 6 > 0.

For quasilinear symmetric hyperbolic systems the standard continuation criterion is the
condition that first derivatives of the solution stay bounded [Tay97, Ch. 16, Prop. 1.5].
For second order quasilinear wave equations this corresponds to the condition that second
derivatives have to be bounded in order to extend the solution. As our equation is not
strictly hyperbolic we do not get the same condition. Our condition will be a bound on
fourth derivatives of the parametrisation and its time derivative.

Other well known examples of continuation/singularity criteria come from Ricci-flow
and Mean Curvature Flow. If the curvature tensor stays bounded then the solution of
Ricci flow can be extended [Ham82b), while if the second fundamental form is bounded,
then a solution to Mean Curvature Flow can be extended [Hui84].

The difficulty is that, as our equation is not strictly hyperbolic, the solution u itself
does not satisfy an equation for which we have any useful estimates in this context so
far. In Chapter [2| we have only obtained estimates for the linearised operator. But if
we differentiate the equation in space or time, the leading order term will always be the
linearised operator. So we could use this and try to estimate derivatives of u. As our
equation is of second order, the decomposition into normal and tangential parts gives us
terms involving third derivatives no matter how often we differentiate the equation. So
differentiating the equation once is not enough to close the loop in the Gronwall argument.
But if we compute enough higher derivatives then it is possible to close the loop and obtain
estimates for the solution. We do most of the necessary computations in Appendix [A]

We use the same method to estimate the distance from u to another solution @ in
Theorem We thereby obtain the estimate that the distance between the two solutions
only grows exponentially if they are close to each other initially. As a special case we get
the uniqueness of solutions. The maximal time of existence can be estimated from below
by the negative logarithm of the initial distance between u and w. A similar estimate
holds if the ambient manifold is a perturbation of Euclidean space. We can then estimate
the maximal time of existence in terms of the distance from the ambient metric to the
Euclidean metric, see Theorem [3.10]

Throughout this chapter we assume that the metric g of the ambient manifold M and
all its derivatives are uniformly bounded in local coordinates. By the Nash embedding
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theorem we can assume that M is isometrically embedded into RY. We assume that the
second fundamental form of M and its derivatives are uniformly bounded.

3.1. The Continuation Criterion
THEOREM 3.1. Let u : [0,T) x N — M be a solution of [EQ|. Assume that for all
tel0,7)
[ult, Mes + 10ku(t, -)llos < K

for some K > 0. Then there exists 6 > 0 such that u can be extended to a solution

@:[0,T+ 0] x N—M of [EQ].

REMARK 3.2. This statement can be formulated as a singularity criterion: If the so-
lution u cannot be extended beyond time 7" then |[u||cs + ||0su||c+ becomes unbounded as
t—T.

DEFINITION 3.3. Let w: [0,7) x N — M. Define

B = (Va,0iu, V) and By, = (Va,0iu, Opu)

i.e. V@iﬁtu = ﬁil/ + szaku
Recall from Definition that dyu = ov + S*Opu and Va,0,u = av if u solves [EQ].

REMARK 3.4. As in Section we assume that + : M — R? is an isometric embedding
and if we identify M and (M) we can assume M C RY. When we consider norms of u we
will take the norm of u : [0,T) x N — R? as a map into RY. If we identify u and ¢ o u we
can also identify v(u) and v(tou) and dyu and dy(tou). Let h be the vector valued second
fundamental form of M. With our identifications we can write

3i8ju :vaﬁju + B(@lu, (%u)
= — hjjv + Ffj@ku + h(du, O;u)

and similarly

O10yu =av + h(dyu, Oyu)

g dp 2h I, I ok,
=\ dio 2 1
( " Vol(u)> i’ h(v,v) +205"h(v, Ou) + S'S*h (B, Opu)  [3.1]
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and
0,0,0;u =0,(V 5,01u) + O,(h(Oyu, Osu)) = Vo, Va,0iu + h(Oyu, Vg, 0iu) + 0, (h(Opu, Oyu))

=0,8;v + B;Vo,v + 0, B;* Opu + Bi*V ,0u + h(dyu, Vo, 0u)
+ Dh(dyu, Oyu, Oyu) + h(Vs,0mu, Oju) + h(dwu, V,05u)

=(8:83; + Bi*Br)v + (0,B;* — ;8" + B/ B;*)dyu + 20 3;h(v, v)
+ 20 Bi*h(v, Oyu) + 25' B;h(Oyu, v) + 28" B*h(0yu, Opu) + ah(v, Ou)
+ 02 Dh(v, Oyu, v) + oS Dh(v, O;u, Opu)
+ o S'Dh(Oyu, Ogu, v) + S*S'Dh(0yu, Ou, Oyu). 3.2]

LEMMA 3.5. Let u be a solution of [EQ)|. Let

.....

.....

Then (¢*) and (V*) satisfy
e (tx) = LA (t, w) =F*(x, 0, Dip, Orip, 1, DY, Oy, Vol (u))
0fut =G (x, 0, D, Dy, 1, O, Vol(u))

where F4 and G* are smooth functions in all their arguments such that if ||| o1+ || Ospl| co +
|]lcr + |05 |co < K and det(gi;) > Ay for some K, \; > 0 then FA and G* and all their

derivatives stay bounded. The operator L is given by LAo? = %A@A.

PROOF. The evolution equations for u and d;u? are [3.1] and [3.2] if we use [A.2)]
and [A.4] to replace f; and 0,5;. The calculations for the other evolution equations are
postponed to Appendix . The evolution equations for o, S*, h;;, Ffj, and B;* are equations
[A.9],[A.10],[A.11],[A.12] and [A.13], respectively. We have written I'}; — I'}; instead of
only Ffj as we want ¥* to be a tensor. All evolution equations can be written with a

dependence on Ffj — Ffj instead on Ffj We only have to check that the functions F' and G
and their derivatives do not blow up. The only terms that could possibly blow up in the
evolution equations are g¥, v and Vol(u)~!. The latter is bounded in view of the energy
conservation. For the other ones we use Remark 2.20] O

LEMMA 3.6. Let u : [0,T) x N — M with ||Owullcr + ||ullcr < K for some K > 0.
Then the metrics g;;(t) for all different times are equivalent, and they converge ast — T
uniformly to a positive definite metric g;;(T) which is continuous and also equivalent.
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PROOF. We have that
81591']' = (Vaﬁiu, 3Ju> + <0iu,vat8ju>.

By the assumptions all these terms are bounded and so 0,g;; is bounded uniformly for
0 <t <T. Now we apply [Ham82b, 14.2 Lemma]. O

PROOF OF THEOREM B.1l. Let s > | 5] + 2.
1. Estimating the operator L. The coefficients of L = g—/‘j{‘]A contain ¢/, Christoffel

symbols and derivatives of Christoffel symbols. Lemma implies det(g;;) > A for some
A1 > 0. By the Moser inequalities and Lemma we can estimate

(L], < C(+ Jlullsts)

with C' depending on K since L contains no more than third derivatives of u. Clearly
also by the assumption [L],, < Cg. Similarly [0,L], < C(1 + ||ul|s+3 + ||Owul|s13) and
[0 L) 1 < Ck.

2. Application of the estimate for WHLS. In order to apply Proposition [2.14] we have
to specify the vector bundle V and the basis in which the system from Lemma [3.5] is a
WHLS if we consider the right hand side FA(...), G¥(...) as fixed functions. For the
bundle we take

V=NxR)®(TN@T*N)d (N x R & (N x R) @ T*N)
BITNG® (T"NRTN) & (T"'NRT*N®TN) [3.3]
with metric induced by gy on TN and 7*N and the Euclidean metric on N x R?. Let

(4, U,) be a local coordinate chart with canonical tangent vectors 9y, and dx’ its dual
covectors. For v, we take

{vataci.. 1em2 = {(1,0,0,0,0,0,0)(0,dz’ ® dx?,0,0,0,0,0); j=1. .n} 3.4]

..........

.....

77777777

(0,0,0,0,0,0,d2" ® da’ ® Op)ijpt...n}. [3.5]

.....

Here v4 and 7 are independent of the solution and det(vap) > A; and det(7y) > A; for
some A\; > 0. The system for ¢, ¢ from Lemma [3.5]is a WHLS with M = N =P =Q =0
and right hand side F4, G*. By assumption and Lemma the right hand side is bounded.
In order to apply Proposition we have to check that

el + [10wpllcz + ldller + 19hller < C. [3.6]

By assumption it is clear that o, h;; and d,h;; are bounded in C?. To bound d;0 in C? we
compute using [A.3]
0o = (V,0pu, v) + (Ou, Vav) = a — (Vo,S) + hy;S'S7.
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Hence also 0,0 is bounded in C? by assumption. Clearly u?, d;u, S7, B*, T Zj, Ou,
0, 0u, atrk are bounded in C! by assumption. For 9,57 and 9,B;* a C'-bound is readily
obtained using 8,5; = o3; + S*B;;, and - As in - define

Ey(t) = [1070(t, )ls + 10:0(t, M1 + ot Mssr + 100 spr + [0 ) s
Hence we can apply Proposition [2.14] to obtain

Ey(t) < Ce™(1+ Ey( /IIF Ms +N0:(F - Dlls + NGC- D llsan + [L], + [0 L], dt).

3. Estimating the right hand side. We have to estimate ||F'(...)s, [|O:(F(...))|s and
|G(...)||s+1. By assumption

t
|Vol(u)| = |Volg +/ /(@u, vydudt'| < C
0 JN
and

19, Vol(u)| = | /N (O, V] < C. 3.7]

By assumption and Lemma we can apply the third Moser inequality Theorem to
estimate

IECIlls <CAA el + 10l + [lls1 + 10015 + [Vol(u)]lo)
<C(1+ Ej)
IGC -l SCA A+ l@llstz + 10iellst1 + [$lls12 + [0l s1 + [[Vol(w))lo)
<O+ By + [lgllsv2)-
We use the elliptic estimate Lemma part (2) since ||¢||cz < K

[ellsr2 <C([Lells + lellser + [L])
<C([10F¢lls + 1FC - s + lpllsrr + [leeflses + 1)
<C(1+ Ej).
Note that an application of Lemma [2.7] was used here to estimate norms on large domains

against norms on small domains.
Now by the chain rule

O (F(...)) = F(x,0,Dp,dyp0,0%p,0, D, 1p, Db, ), 9%, 8, D1, Vol (u), 0, Vol (u))

and F is also smooth and with bounded derivatives as long as the arguments are bounded
because the partial derivatives of I’ are bounded as long as the arguments are bounded.
In fact, the arguments are bounded by , and the evolution equations. So we can
use the third Moser inequality to estimate

10:(F (- Dlls <CA+ [[@llssr + 10pllss1 + 107l + 121 + 106 llsr + 1075
+ [ Vol(w)llo + [|0; Vol(u)]lo)
< C(L+E+07]s).
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By the equation for 97¢) we can estimate
107¢]ls < CIG(. )]s < CIG( ) llsa
and we have already estimated the last term. Altogether we find that
[EC-Ils +M0:(FC s + 1GC - D llsr < C(A + E).

The initial energy F(0) is fixed. So we obtain the estimate

t
E(t) < Crk(1 +/ 1+ Ey(t')dt").
0
We use Gronwall’s Lemma to conclude

l(t, Mlsar + 1000, lsr + 1070t s + 1 (E s + 100 (E s < C

for all 0 <t < T. This can be done for any s > | 5| 4 2. This implies that all derivatives
of u are bounded uniformly in .

4. Convergence fort — T. The sequence u(t;) for t; — T, t; < T is bounded in C*
and therefore has a convergent subsequence to a smooth limit function «(7"). Since

tx
u(t;) — u(te)| < C/ |Ovuldt’” < C(ti — ti)
t;

we have uniform convergence in C°. This implies that the limit is unique and that the
whole sequence converges. The same argument applies for dyu(t;) and the limit Oyu(T) is
the time derivative of u(t) at ¢ = T. Smoothness in time on [0, 7] follows by an induction
using the equation. As we have seen before in Lemma (3.6, «(7") is an immersion. Then
we can apply the short time existence result Theorem with initial conditions u(7") and
0,u(T) to extend the solution. O

3.2. Stability Estimates

Assume that we have a solution @ : [0, T) x N — M of [EQ]. For instance this could be
one of the special solutions in Section with T" = oco. All quantities with ~will refer to ,
e.g. h;j is the second fundamental form of 4. We intend to prove the following theorem.

THEOREM 3.7. Let s > | 2] +2, T € Rt U{oo} and @ : [0,T) x N — M be a solution
of [EQ]. Assume for all t € [0,T)

I(t, Msrs + 106t )lsrs < K and det(gi;) = M and §7 > A

for some constants K, A1, A\ > 0. There exist constants c1,co > 0 and g9 > 0 such that if
ug : N — M is an immersion and uy : N — ufTM s a vector field along uy with

o — w(0)|s14 + [|ur — 04 (0)||s43 < €
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for some 0 < & < g¢ then there exists T > min{T, ¢ log (2)} and w: [0,T] x N — M that
solves

Vo, 00 = (—H(u) + ity ) for all t € 10,T]

dpuo
u(0,-) = up
Ou(0,+) = uy.
For allt € [0,T] we have the estimate
lult, ) = a(t, )llsea + |10pu(t, ) — Byt )|l < Ce'e
with C' depending on s and 1.

COROLLARY 3.8 (Uniqueness). Let u : [0,T] x N — M and @ : [0,T] x N — M be
solutions of [EQ]| with u(0,-) = u(0,-) and (9tu(0, ) = 0wu(0,-). Then u(t,-) = u(t,-) for
allt €10,T].

LEMMA 3.9. Let u be a solution of [EQ] and @ as in Theorem[3.7 Let

77777

,..., =l,...

Then (¢*) and (V*) satisfy
0; o (t,x) — LAt ) =F (2, ¢, D, Oyp, ¥, Db, O, Vol(u) — Vol(a))
at2¢k :Gk (xu 2 D307 at@, ¢, at¢7 VO1(U> - VOl(a>>

where F4 and G* are smooth functions in all their arguments such that if ||o||c1 +||0sp| o+
|¥]lcr + [|0b]|co < K and det(gi;) > M\ then FA and G* and all its derivatives stay
bounded. Furthermore F(x,0,0,0,0,0,0,0) =0 and G(x,0,0,0,0,0,0) = 0 and the opera-

tor L is given by LAp4 = ZZS AgoA.

PRrOOF. Simply substract the evolution equations for all the quantities corresponding
to u from the evolution equations for the quantities corresponding to u. Replace everywhere
e.g. 0 =+ (0 — &) to write the equations as equations for the differences. To get the
term including L write e. g.

e py thA~ NP LN Y

dpio dpio dpio dpio dpio

It is clear that F' and G vanish if « = 4. The only terms that could possibly blow
up in the evolution equations are ¢“, g%, v, v, Vol(u)~' and Vol(a)~!. For ¢, ¥ v
v we use Remark while Vol(u)™" and Vol(@)™ are bounded in view of the energy
conservation. U
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PROOF OF THEOREM [3.7. 1. The Bootstrap Argument. We will prove the theorem
by a bootstrap argument. As in [2.9| define

E(t) = 107t )lls + 0o (t, Mlssr + lo(t, Mlsrr + 10 (2, ) lsr + (8 ) saa
with ¢ and ¢ from Lemma 3.9, Define
E,(t) = Ey(t) + [Vol(u(t)) — Vol(a(t))].

We make the following hypothesis with respect to a fixed constant x > 0.

H(t): There is a solution u defined on [0, t) satisfying the initial conditions and E,(t') <
holds for ¢’ € [0, 1).

From this hypothesis as long as t < min{T’, ¢; log (%2) }, we will derive the conclusion

C(t): There is a solution u defined on [0, ) satisfying the initial conditions and E,(') <
1k holds for ¢’ € [0, 7).

The constant xk will be chosen in step 2 below. Then we choose £y < 1 so small such that
the hypothesis holds for a small ¢ > 0. Clearly by Theorem there exists a solution for a
short time. We can estimate F¢(0) < C'gq. To estimate |Vol(ug)—Vol(%(0))| we choose g¢ so
small such that if 7, is the closest point projection to M then vy := (@ (0) 4 s(up—u(0)))
is an immersion for all s € [0, 1]. Then

|Vol(ug) — Vol(@(0))] :|/0 05 Vol(vg)ds| 3.8]

- / /N (v(02), Deae(@(0) + (o — @(0))) (1o — 4(0)))dse(v)ds|
<C,|lug — @(0)||co < Cre. 3.9]

Note that Dmy(@(0) + s(ug — @(0))) can be controlled since |[ug — @(0)]]s44 < 9. Hence if
g0 is small enough then F,(0) < x and H(t) will be true for small ¢.

The conclusion is stronger than the hypothesis, i.e. if C(¢) is true then also H(¢') is
true for all ¢ in a neighborhood of ¢. This can be seen by the continuity of F(t) and the
continuation criterion since the C*-norms of u and d,u can be bounded in terms of Ej.

It is clear that the conclusion is closed, i.e. if C(¢;) holds for a sequence (¢;) which
converges to another time ¢ with #;,# < min{7, ¢; log (2)} then also C(¢) is true.

Then the abstract bootstrap principle [Tao06, Proposition 1.21] will imply that C(t)
is true for all 0 < ¢ < min{T", ¢, log (2)} provided we have assured the implication H(t) =
C(t) for all 0 < t < min{T, ¢; log (2)}.

So assume in the following that H(t,) is true for some to € [0, min{7’, ¢; log (2)}] and
let t < to.

2. Choice of k. We want the operator L to be elliptic and we need det(g;;) > A2 for
some Ay > 0 in order to apply Lemma . Now u = @ + (u — @). This implies that

9ij = 9ij + (010, 0;(u — @) + (9;0, 0;(u — w)) + (Oi(u — @), 9;(u — w))
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and hence
1955 — Gij| < C(Ju—aller + [Ju —al|Z).

Since ||u — ul|cr < CEy < Ck by the Sobolev embedding theorem and the bootstrap
hypothesis, we can choose  such that det(g;;) > 1) and g > %)\ uniformly in ¢t as long
as H(t) holds.

3. Estimating the operator L. The coefficients of L = giéA contain ¢, Christoffel
symbols and derivatives of Christoffel symbols. By Lemma and the Moser inequalities
we can estimate

since L contains no more than third derivatives of u. Clearly also by the hypothesis and
the Sobolev embedding theorem [L],. < C,. Similarly

0,L), < Cu(1 4 |lu— @543 + [|0ru — 04| s43) < Cr(1 + Ej) [3.11]

and [0 L] < C.
4. Application of the estimate for WHLS. We take the same bundle V as in [3.3] and
v4 and 75, can be taken as in [3.4],]3.5].

By the Sobolev embedding theorem we have
lelle2 +l8iellez + lvller + 10i]ler < CE; < Ck. [3.12]
Hence we can apply Proposition with the modifications of Remark to obtain

Es(1) §C€CtEs(0)+C/O I NEC s HHNOE s NGl + (L lolles

+ 0L, [lelle2 + [L], [19rpllc2)dt’. [3.13]

5. Estimating the right hand side. We have to estimate ||[F/(...)||s, ||0:(F(...))]||s and
|G(...)||s+1- By the hypothesis and Lemma we can apply the third Moser inequality
in the form of Corollary with F(x,0) = 0 and G(z,0) = 0 to estimate

IEC)ls <CUlellsrr +N10iells + [[¢lls1 + 10e0]]s + [[Vol(u) — Vol(@)]|o)
<C(Es + [[Vol(u) — Vol(@)]lo)
IG( - llsr <CUellsr2 + [0pllser + [19llse1 + 1030|541 + [[Vol(u) = Vol(@)]lo)
SC(Es + [lllsra + [[Vol(u) — Vol(a)]|o).

We use the elliptic estimate Lemma part (2) since ||¢||c2 < C, with the modification
of Remark 2.12 and obtain

[@llste <C(ILells + lellser + [L] #llc2)
<C(lo7ells + N1EC - lls + lellssr + (lu = @llsss + Dl ellce)
<C(E; + ||Vol(u) — Vol(a)||o)- [3.14]
Note that we have also used ||¢|lc2 < C||¢]|s+1 by the Sobolev embedding theorem.
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Before we estimate||0;(F(...))||s we have to estimate |0; Vol(u) — 0; Vol(a)|.

|3t VOI(U) — 8,5 Vol(ﬂ)| :|/ <I/, 8{& - @@dut + / <I/@ — I;, aﬂ))d;ﬂ [3.15]
N N

] dy
<C||0wu — Byitllo + Callv £t — i,
dpu
<Cx(llello + ll¥llo) < CkEs. 3.16]

We use the fundamental theorem of calculus to estimate

|Vol(u) — Vol(@)| <|Vol(ug) — Vol(a(0))] + /0 0, Vol(u(t')) — 9, Vol(u(t))|dt’

t
<CeC!|Vol(ug) — Vol((0))| + C / CE R () dt (3.17]
0

Now by the chain rule

O(F(...)) = F(x, ¢, Dg, dip, 00, 8: Dep,
W, D, 0, b, 0, D, Vol(u) — Vol(a), 9, Vol(u) — 9, Vol(a))
and I is also smooth and with bounded derivatives as long as the arguments are bounded

because the partial derivatives of F' are bounded as long as the arguments are bounded. In
fact, the arguments are bounded by [3.12],[3.16] and the evolution equations. Furthermore

F(z,0) = 0. So we can use again Corollary [C.6| to estimate
10:(F (- Nl <CUlellsar + 10pllsrr + 107 ells + 19 llsrr + 10cbllssr + 107l
+ || Vol(u) — Vol(i)||o + ||0; Vol(u) — 0 Vol(@)||o)
<C(E; +[10/¢[ls + [[Vol(u) — Vol(@)||o + [|0; Vol(u) — 0, Vol(@)lo)-

By the equation for 9%¢) we can estimate
107¢]ls < CIG(. )]s < CIG( )l
and we have already estimated the last term. Altogether we have that
IECIls +M0(F D)) + 1GC - llsia < Cu(Es + [[Vol(u) — Vol(a)]|o

Using [3.10],[3.11] and the Sobolev embedding theorem the remaining terms in [3.13]
are estimated by

(L] ellce + 0L, llelle> + (L], [[Oepllez < C (14 E) Es < CLEs.

So we obtain the estimate

E(t) < Ce“" E (0) + C / t e EL(t) 4 [Vol(u(t) — Vol(a(t')))dt'.  [3.18]
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6. Conclusion. We add [3.17| and [3.18

t
Ey(t) < Ce“" E,(0) + C / B (Yt

0
and apply the Gronwall type inequality from Lemma with A(t) = E4(t), B(t) =
CE,(0), g(t) = e, h(t') = Ce=C". This yields

E,(t) < Ce“ E,(0).
Now using
Ey(0) < Cu(lluo — @(0) |4 + [lur — 8,a(0) |4 + [Vol(uo) — Vol(@(0))]) < Cre
and hence
Ey(t) < Ce%e.

Hence if t < C~!log (ﬁ) then Es(t) < %/i. Define ¢; = C7! and ¢, = 55- We need ¢t > 0
and hence ¢ < ¢y. So the last condition for gq is g9 < co.

The estimate for the norms is true since using [3.14] and the Moser inequalities we
have

| — ]| s4a + [|Osue — Oyit]| 513 < Cr( Es + |Vol(u) — Vol(@)]) < Cee. O
THEOREM 3.10. Let M = (R"',g) and let M = (R™,8) with the Euclidean metric

6 on R™. Let s > 2] +2 and @ : [0,00) x N — M be a solution of [EQ| and let for all
t €10,00)

[(t, s + [10s(E, )svs < K and det(gy;) = M and 37 > A

for some constants K, \1,\ > 0. There exist constants c1,co > 0 and 9,1 > 0 such that
if ug : N — M is an immersion and uy : N — uiTM is a vector field along uy with

|uo — @(0)||sa + [lur — Bpu(0)[|s43 < €
and

lg — dl|gsta < €

for some 0 < e < ey and 0 < & < & then there exists T > ¢ log (gffa,) andu : [0, T] xN —
M that solves

Vo, 0iu = % (—H(u) + \ﬁ@) v, for allt € ]0,T]
U(Oa ) = Uo

Ou(0, ) = uy.
For allt € [0,T] we have the estimate
lult, ) = alt, Mssa + 10pu(t, -) — Beii(t, ) [ls+3 < Ce' (e + &)
with C' depending on s and .
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Proor. We will assume that ; < 1 in order to get bounds on g that do not depend on
g’ or 1. Only a few modifications of the proof of Theorem are necessary. We employ
the same bootstrap argument except that here we only consider E,(t) instead of E,(t).
Again we have to choose the constant k. We calculate

9ij — Gij = (g — 0)(0yu, 0;0) + g(0;u, Oi(u — w)) + g(0;u, 0;(u — w))

and estimate
1955 — Gij| < C(|][g — 6llco + llu—tl|er + [lu — @l|zn).

Then if €1 is small enough we can choose x similarly as in step 2 of the proof of Theorem
such that det(g;;) > A1 and ¢ > X uniformly in ¢.

We will work in standard coordinates for R"*!. If ¢; < 1 the operator L = S—ZSA can
be estimated by

(L], <Cu(1+[lu = allsys + lgou — b 0 alfs4)

SCu(L+ [lu = fls4s)

s

and similarly

[0 L] <Co(1+ [[u— dllsss + [|Ou — Opt]| s45).-

We include the dependence on gou — ¢ o4 in the functions F' and G from Lemma [3.9] and
write the system in the form

07 (t, ) — LA (t, ) =F4(x, ¢, D, yp, b, Db, 8yp, Vol(u) — Vol(a),
gou—3doi,(Dg)ou,(D*g)ou, (D°G)ou)
" =G*(x, 0, Do, Oyp, ¥, Oy, Vol (u) — Vol(@),
Gou— 601, (Dg)ou, (D*q)ou,(D*g)ou). [3.19]

Here DG stands for the derivatives of order i of g in the standard coordinates. In these
coordinates the derivatives of § vanish and so we do not have to include them. All curvature
terms occuring in the evolution equations can be expressed by derivatives of g up to order
three.

We now need to estimate the difference of the volumes. We write Vol? and Vol° for
the volume taken with respect to the metric g and 0 respectively. We also mark other
quantities with g or ¢ if they are taken with respect to the respective metric. Write

Vol (u) — Vol° (@) = (Vol? (u) — Vol¥ (1)) + (Vol¥(it) — Vol’ (@) =: Dy + Ds.
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The difference D; can be estimtated similarly as in | - 3.8] using

Vol9 (u) — Vol (i / ds Vol (u,)d

_ /0 /N G0 (), u — i) dd (uy)ds

where us = @ + s(u — @). Using also the bounds on g we get

| Ds| = [Vol? (u) — Vol¥(@)| < Cyllu —iillco < Cr(ll@llssr + ¥ [ls41)-

Let L denote the Lebesgue measure on R™*!' and let L9 =, /det(g,5)L. Let Q C R"*!
be the interior of the surface (¢, N), i.e. Vol’(@) = L(Q) and Vol(a) = LI(Q). If we
apply the mean value theorem to the function s — \/ det(dap + 5(gaps — dap)) and use the

assumed bounds on g we can estimate

[/ det(us) — 1 = |1/ det(G) — /det(das)| < C[g = b]lco.

Clearly we need e; small enough such that det(das + $(Gns — dap)) > Az uniformly for
s € [0, 1] for some A3 > 0. Hence we can estimate

D :/dm—/d;;:/,/detga dL—/dL
Do =l A=)y det(Gan) 4ol

< [ 1y/det(gp) ~ 114 < Cllg - o Vol’(@) < Cllg — e
Q

We used the a priori volume bound for Volé(ﬂ) from Corollary Combining the estimates
for D; and Dy we arrive at

[Vol?(u) — VoI’ (a )I < Gy (H90|\5+1+|WH3+1+H9 8ljco).

Including the different metrics in we can estimate in a similar way
|0 Vol (u) — 3tV015( )I < Crlllpllstr + 1¥lls1 + 117 = dllco)-

If g = § and u = @ then clearly the right hand side of the system [3.19| - | vanishes. So
we can apply the third Moser inequality Corollary to obtain the estimates

IE( )l <C([lells+1 + 110eplls + 1lls1 + [10:0]]s + Vol (u) — Vol()]lo
+[gou—0d01lsss)
IG(-- s+ SCUlellsr2 + 10lls1 + [[¥][s41 + [0 ][ 541 + [[Vol(w) — Vol(@) o
+lgou—doalss)
10:(F( - Dls <CUlllstr + 10epllsrr + 10Flls + 1lls11 + [0 lls11 + 10740
+ ||0yu — Oyti||s + || Vol(u) — Vol(@)]|o + ||0; Vol(u) — 9, Vol()]|o
+[gou—0010sta)
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Now [[gou—doillo < Clg—6llco and [|(D'g) o ul|s < C||Dg|
[gou—doil <Clg— 9|

cs. Hence

Cs+4.

Similarly as in the proof of Theorem we arrive at the estimate

Cs+4 dt'.

t t
B,(t) < CeC*B,(0) + C / LB ()t + / CeCt=|5 - 5|
0 0

An application of Gronwall’s inequality yields

t
E(t) < Ce“(F,(0) + / e |G — 0| caradt’).
0

cs+1 < ¢’ and (use the third Moser inequality)
cs+1) < Crle+€).

Now by assumption ||g — ¢
E(0) < Cu(lluo — @(0) |54 + [lur — 0¢@(0) |53 + ||g — 4
Since fot e Ctdt’ < C~! we have the estimate
Ey(t) < Ce (e +€).

As in the last step of the proof of Theorem we can use this estimate to apply the boot-
strap argument provided that C' log(m) > (. This can be accomplished by demanding
that 9 < ;5 and &1 < J¢.

This concludes the proof of Theorem [3.10] O




APPENDIX A

The Evolution Equations

In this section we will compute the evolution equations for o and S*, for h;; and
Ffj, and for 3; and B;* for a solution u of the equation Vy,d,u = av where we write

o= j—l‘j;( — H+ #@)) according to Definition . Recall that by and Definitions
and each of these quantities can be written as the normal or tangential part of a
derivative of u, i.e. Ou = ov+ S*Ou, Vﬁju = —hiju—i-Ffjaku, and V,;0,u = Biv + B;*0u.
To compute the evolution equations for h;; and Ff}, for example, we will differentiate our
differential equation Vaﬁtu = av with %Vaj. Then we interchange the derivatives to
obtain an equation for Vp, O;u and decompose this into normal and tangential parts. The
decomposition of second time derivatives is carried out abstractly in Lemma [A.T]

The calculation of each evolution equation only consists of these simple steps. Nev-
ertheless due to the interchange of derivatives many curvature terms will arise which we
decompose into their normal and tangential parts as well. In order to suitably express
V,;V;H we use Simons’ identity which also contains an interchange of derivatives. We
need an analogous identity for 9,0; H which will be derived in Lemma [A.2] Although the
evolution equation for ; is not needed in the main text, we include the computation for
the sake of completeness.

For the Riemann tensor we use the notation
Eol'jk = Eam(guo‘@-uﬁﬁju”@ku& = <E(l/, o;u)0ju, Oku,),

for example.

A.1. Decomposition and Interchange Identities

We first compute the evolution of the canonical tangent vectors d,u and of the normal
vector. We have that

Vo, Va,0u =V, Va,0iu + R(Oyu, Opu)du
=Opav + ah'Ou + o*R(v, Opu)v + oR(S, Opu)v
+ oR(v, Opu) S + R(S, Opu) S
=(Ocx + USpﬁ()kpo + Squﬁqkpo)l/
+ (ahi' + 0*Rokomg™ + 0SPRpromg™
+ 0SPRokpmg™ + SPSRprgmg™ ) Oyu. [A.1]
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We have the following alternative expression for (;
B = (Vo,(ov + S*Opu), v) = 8;0 — S*hyy,. [A.2]
We have
Vo, v = (Vav, Opu) g™ o = —(Va,00u, V)" 0w = —350pu = —Vo + S'h"Opu. [A.3]
We compute using

atﬁi :<vatvaﬁiu, V> + (Vaﬁtu,v@y)
:@a — szﬁk + O'Spﬁ()ipo + Squﬁpiqo. [A4]

Since 0,g'* = —(B* + B*) we can compute the evolution of v

Vo, Vo = — 08 0cu — B5(Vo,00u, v)v — B5(Vo,00u, Ou) g™ Opu
= — Va + B0+ (B™ + B")B:0pu — OSPP_{inogik(‘?ku
— 5P SRpiqog ™ Ohu — B*Brv — B By Opu
=— |8’y = Va + 26'B*,0u
— JS”EOiPogikﬁku — SquEpiqogikﬁku. [A.5]

Later we will insert

d ‘ .. d
Via = —d—Ztka + (—H + 2 ) (ri, — 1)
0

Vol(u) d o
and
182 = |Vo|* + S*S'h yhj — 20;0h" S,
Note that
d L I dpt ; N
R ) L I Rt AN4 SRR AUB el
O o (29 Oxgi — 590 Orlois o (T — k) o

For reference we also note
8tBik :atgjsz] + gjk<v8tv8taiua (9]u> =+ gjk<v8taiu7 vata]u’>
= — (BY + B'*)B;; + B/'Bug’* + 8,8;¢’" + ah"
+ (O’QEQiOm + O'Spf_{pi()m + O.Spl:_{inm + quplz_{mqm)gmk. [AG]
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LEMMA A.1. Let V = v + ¢ 0u. Then

(Vo, Vo, V,v) =0}p — 0| B° + 204" By, + ¢¥*Opa + * .S Roo + " S'SPRigpo
and

(Vo VoV, 0pu) g™ =0 + 2000% By — 20,08" + ap*hy! — V' + 2p8* BY),
+ V* o Roromg™ + 2ﬂk<75pf_{pkomgml
+ UV SPoRotpmg™ + SPSW Rpgmg™
- Spaspﬁokpogkl - ‘Pspsqﬁpkqogkl'
PRrROOF. We have
73t73tv :83901/ + 28tg073tu + (,Dvatvatv + aflbl@lu + 28t¢k79t Opu + ¢kv(9tv(9t Opu
:<815290 + 90<v8tv8t v, V) + 28t¢k <v6tak’uv V> + wk <v8tv8taku7 V>)V
+ (02 4 200" (V o, 0pt, O g™ + ¥ (V 5,V o, Ot Ot g™
+20,0(Va,v, Gmu>gml + ©(V,Va,v, 0mu)gml)8lu

Using [A.1] and [A.5] we get the stated result. O

LEMMA A.2. We have the identities

ViV,;H =Ahy; — Hhgh!'; + |h[*hi; + HRoiwj — hijg" Rowm

+ B Rigim + Rt d" " Rigjm — 20" Riim; + 6"V ;Rotim + 9" ViRoijm
and

—0i0;H =AB; + (B" + B*)Vhyy + W¥'V(Biy, + Bu)
+ le{atrfkhip — 8T hiy + 0 VoRauwi + SV Romi — B Ropiri
+ 2B"Ropki + BiRowo + Bi"Roinp
— ViBPhy — BV hy — oV Rows — SPViRpi
o+ hiaS"Ryoni — ha Rty — o SRy | A.7]

PROOF. The first statement is Simons’ identity (see e.g. [Hui86]). For the second
statement write

OV ihg + ViNVi15; =(0:Vihg — 0:Vihiy) + (0:Vihy — ViOihi)

A.8
+ (ViOiha + Vi Vi5;). | ]
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By the Codazzi equation the first bracket is

—0,(R(v, Oyu, Oy, 1)) = — VoRous — SPVPEOM — R(Vs,v, Ou, Oxu, O;u)
— R(v, Vo,0u, Opu, Oiu) — R(v, dyu, V,0pu, Oiu)
— R(v, Qu, Opu, Va,0iu)
= — oVoRomi — S” vaOZki + 5pf_{plki
— Bi"Ropri — BeRowoi — B Roipi — BiRowwo — Bi*Roup-

For the second bracket in [A.8] we compute
athhZ’l - 81;((9khzl - F?khfpl - F?kth) - Vkathil - 8tffkhpl - thfkth
For the third bracket in |A.8] we compute

Oihi =(V,0iu, Vav) + (0u, Vo, Vo, V)
=B’hy + (0iu, Vo, Va,v) + (R(Owu, Opu)v, u)
=B’hy + 0,(0;u, Vo, v) — (Vo,0iu, Vo, v) + R(Oyu, Oyu, v, u)
=Bhy — O,5; + T3, + R(Owu, du, v, O;u)
= — Vi3 + Bihy + R(Ou, Oyu, v, Oyu).

Hence the third bracket is

ViBPhy + BPVihy + ViR(9u, Ou, v, 0pu) + R(Va, O, Ou, v, Oiu)

+ R(0yu, VO, v, diu) + R(Owu, Opu, Vv, 0u) + R(Oyu, Opu, v, Vidiu)
=V B hy + BV ihy + 0ViRowi + S*ViRpui

+ BxRowi + Br"Rypioi — PSP Rpoos

+ hi?oRoipi + 7 STRgipi-

Furthermore we compute that

0 H =g"0,0ihiy + 09" 0yhiy + 9;hi0rg™ + hi0;0,g™
=g"0,0:h — (T,9™ + Thg™)Ohiy — O;hia(BM + B')
+ B (Bpg + Byp) (9™ g™ Ty + 7T 9™ + g7 Th,9™" + g7T5,.9™)
- hklai<qu + Bq;D)gkpgql
=¢"'V:0,hjy — (B* + B*)V;hyy — h*'V;(By, + Bu)

=0,V il + g™ O by + g™ O hyy — (B + B™)Vihyy — WMV ( By, 4 Br).
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Putting things together we get that
—0,0;H =AB; — g0, hy — MO, hy, + (B¥ + B*)Vihyg + WMV (Byy, + Br)

+ gkl{f)thkhpl + O, hip + oV oRom: + SV, Romi — B R

+ Bi"Ropri + BeRowi + B Roypi + BiRowo + Bi* Roiyp

— ViBPhy — BV ihy — oV Rowi — SPViRpi

— BrRowi — By’ ];_{pIOi + hy SP EpOOi — hifo P_{mpi — hi? Sqqupi}-
By the Bianchi identity Rop; — Ry = —Rpoi- Ordering the terms we get the stated
result. O

A.2. The Velocity

To compute the evolution of the velocity vector Ou = ov + S*0,u we differentiate the
equation Vy,0iu = av using Vy,. On the right hand side we get

Vo, (av) =0,av + aV v
=d,av + a(S'h* — VFo)opu.

We use Lemma with V = 0,u = ov + S*O,u to decompose Vatvaﬁtu and compare
the normal parts to obtain

0?0 = d,a + 0| B> — (S, Va) — 20,5% 3, — 7.S* S Rowio.
We use the

dypiy 2, ™I 0
8,50[ :d_IuO{AU + O'(|h| + RIC(V, V)) — W /j;fO'd,U/t

~(VH,S) + (—H + %(u)) (div S + JH)}

and insert the expressions for o, Va and |3|? to get the evolution equation for o

0lc =—3 A h|? +R — d
t0 d,UO{ o+ o(|h|” + Ric(v,v)) Vol(u)? NJ ot

0 . ‘ ;
+ (—H + VOM)) (div,, S + aH)} +o(|Vol|* + S*S'hIyhy — 20,0h'1,S%)

—20,5%0,0 + 20,5%h;,S* — 0% S Rowo. [A.9]
Comparing the tangential parts we get
92S™ =a(S'h™ — V™o — S*h™) + 20,0 4+ oV™a — 20,5 B,™ — 208" B™,,
+ 025" Roiaog™ + 05 S* Rinog™ — 0*S" Rororg™ — 05" S"Roag™.
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We insert the expressions for a, Va and 3 to get the evolution equation for S™

d,ut Y . o .

d . o
+20,0(V™o — h™p.S*) — dzt V™H —20(Viec — h';S7)B™; — 20,5" B,™
0
+ Uzslr’_{ouogim + O'Slskl:_{likogim - UZSkEOkolglm - Usksif_{onglm- [A.l()]

A.3. Second Fundamental Form

To compute the evolution equation for the second fundamental form we differentiate
the equation Vy,0iu = av using V5, Vy, and get on the right hand side

VoV, (av) =0,0;av + 0;aV v + 0,0V v + oV Vg, v
=(0;0;c0 — ahikhkj)y + (aiahjk + (%-ahik + a@ihjmgmk — afimhljgmk)aku.
In the last step we used

<vaivaj v, V> =0; <v3j v, V> _<v8j v, vai V> = _hlkhkj
=0
and
(Vaﬁaj Vv, Opu) =0; (ﬁaj v, Opu) — <Vaj v, Va,0mu)

Using Simons’ identity we can calculate V,;V;a

_dp dit dit dpu
-V.Vja =—V,V;H — | -H ViVj— +V;—V,;H +V;,—V,;H

~ dpo ( " Vol(u )) Tdpe T e T T Y g,

_ dp

dp {Ah Hhilhlj + |h?hij + HRoioj — hijglmﬁozom
0

+ ' " Rikim + Ri' g ™ Rikjm — 2" Riimj + ¢V Rotim + glmvl}_{Oijm}

[ 4% % ol k k I pl
( H+VOI(U)) diio <v’(rﬂ L) + (= L) (L Fﬂ))

d,ut k k dﬂt I
s H—(I'} — T H——(; — T

We also have to interchange derivatives on the other side, whence we obtain
Vo Vo, Vo0t — Vo,V Vo,05u = (Vo, Vo, Vo, Oy — Vo, Vo, Vo, Oy
+ (Vo,Va,Vo,0iu — Vo, Vo, Vo, 00u) + (Vo,Vo,Vo,0iu — Vo, Vo, Vo,05u)
= Vo,(R(05u, Ou)dyu) + R(9yu, Ou) Vo, pu + Vo, (R(Ou, Oyu)dju).
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Using Lemma with V = %aju = —hiv+ rf;.aku and comparing the normal parts we
get the evolution equation for h;;
_8752}“]' zaﬁja — Oéhikhkj — hw|ﬁ|2 — 28&“53[3;{ — Ff]aka — FZO’SZEQMO — FZ-SZSPI_{MO
— (Va,(R(9;u, Opu)dpu), v) — (R(Ou, Oyu) Vo, 00u, v) — (Vo (R(O;u, u)dsu), v).

Using the expressions for —V,;V,a, a, |3]* and expanding the curvature terms we get

d _ _
Phyy :d—Z;{Ahij — Hhah'; + |h*hi; + HRoiy —hiy g™ Rotom
—_————

=+hi]‘m(lj,l/)

+ 1 g ™ Rigim + Bl " Rikjm — 2R Riimj + 9"V Rotim + glmvlf_{mjm}

0 dp ' i [
- (—H + W) d_u(t) (Vz’(ré‘l - Fé’l) + (ka; - ka)(ré‘l - Fé’l))
dp o dp s
- Vde—M;(ka — %) + Vin_,£<F§l — %)
Y dpuy k 2 kalyi i qk
AT Vol ) gy VO SRR = 2000457

+ 20,05, (0o — hiS") + 0V iRjokoS™ + ViR S* S — hijRokioS* S
+ Rjoro (9,0 — haS")S* + RjuoS'Bi* + oRjoro Bi* + S*Rjjpao Bi!

+ oRioko B;* + S'Ruko B;* + 0*VoRinjo + 7S *VoRikjo + "oV Riojo
+ S5S'W i Ritjo + (950 — hitSY) S Rokjo + Bi'oRigjo + Bi' S*Rukjo

diuy, — _ _
n (—H n Vof(u)> d—//jE)ijo + B'oRy0 + B, S Rywo. [A.11]

A.4. Christoffel Symbols

We can then read off the evolution equation for I’fj which is
831“2 :&ahjk + 8jozhik + a(@lh]mgmk — Fﬁmhl]gmk) — 28tF§jBlk
— 20ihy; B — ahy"TL; — by V¥ + 20 B' B + ( — 0T Roiom

- Féjspo-ﬁpwm - Féjspo-ﬁ()lpm - Fijspsqﬁplqm — hijSpaR)mpo
- hijSquﬁpmqo - (Vi(ﬁ(aju, Oyu)opu), Opu) — (ﬁ(@iu, Gtu)vjﬁtu, Omt)

— (Vi(R(Ou, Dyu)du), 8mu)> g™
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Inserting the expressions for o, Vo, 3 and expanding the curvature terms this is

dp Y dpit
20k — (=, Hh* — V. Hh* + VP HR) 22+ (—H ——V;h;"
; ij ( \ J Vi tV ]) d,u0+ +Vol(u) d,uov !

0 dpve ) g ° ki =) km (1l o
+ (—H + VO](U)) d_luo(h] (le — le) + h/z (Fjl - Fjl) - hijg (le - le))

- 28tFéjBlk — 28thij(vk0 - hkmSm) + thj(vla - thSm)Blk + (—Uzréjf_{omm
1

v~ N~

2 3 4
— hijspsql:_{pmqo - Uzviﬁjogm — O'Spvil:_{jpom - O'Spviﬁjopm —_ SpSlvif_{jplm
+ hijO'Spf_{opom + hijSpSllz_{oplm —F2j0'21:_{100m —Fi-jO'Spl:_{lpom

-~

1 2
—FéjaSpf_{lgpni\—FﬁjSquf_{lpqni (00 — haSYoRjoom — (i — hirS") SPRjopm
3 1
— Bi'oRjiom — Bi'S"Rjipm — (0i0 — hiuSY)Rjoom — SP(0i0 — haSY)Rjpom
— oBilI_{jolm — SpBilEjplm —0(0;0 — hlel)Eiogm — SP(0j0 — hlel)Eipom
— 0B, Rioim — S"BiRitpm — 02 VoRiojm — 75" VoRipjm
— 05"V Rigjm — SPS'VRitjm — SP(0i0 — haSY)Ropjm — Bi'oRigjm — Bi' SPRipjm

I i) l o I in} i)
_Fz‘jSpURplom _FijSpUROlpm _FijSquRplqm _hijSpUROmpO

du 0 . B -
- d_/ut) (_H * Vol(u)> Riojm — 0(050 — hjuS")Rioom — S”(9;0 — hjuS") Ripom
B O-le]-:_{iOIm - SijlEiplm> gmk. [A.lz]

The terms marked with equal numbers cancel, and this equation is indeed a tensorial
equation.
A.5. Mixed Derivatives
Next we differentiate the equation vat Oyu = a using %ﬁ&.. We have
Vo,Vo,Vo,0iu — Vo, Vo, Vo, 0 = Vo, (R(O;u, Opu) ).
We have that
Va, Vo, (av) =(0:0ia + a(V, Vv, v))v
+ (=0iaf* + Orahi® + (N o,V o, v, Opu) g™ ) Opu
=(0,0i0 + ahi* B )V
+ (=0ia* + Orahi® + ad,h* + ahi' B*)0pu
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since
V@tvaiu :é?thikaku + hzkﬁkl/ + hilBlkaku.
We have computed all that we need for writing down the evolution equation for [;.

OB =0,0ia + ahi* By + Bi| B> — 20:Bi' B, — BFOpa —

BilO'SpE()kp() - SquBilEplqO
— (Va, R(0zu, Oyu)opu), v)

If we expand the last term and use that

_ d dpuy dput 0 / dp
0,0; —0,0;H — 0;HO — 0, HO,; - dp0;——
1= dpo Ydpe T dpy  Vol(u)? Jy o "dpg

*(‘]”w( >>Md o

and if we use |A.7] we obtain

dpu
afﬁi *duo (Aﬂz (Bkl + Blk)vihkl + hklvi(Blk + Byr)

+ gkl{ﬁtrfkhip — 0T by + 0 VoRoi + SPV,Romi — B Ryni
+ 2B/"Ropri + BiRoiwo + Bi* Roukp
— VB hy — BV ihy — oV Ros — S*ViRpi

_ _ _ d dyuy
4 hS"Ro00i — hutoRopi — hkququm-} O, H " Byt — g, (1!, — 1Ly SK
d,u d o
0 I N 0 N
_ du, (T, — T _H+—2 Nor —T
VOI(U)Q /NU Mt( 2l zl)d 0 + ( + Vol(u)) ( 2l Zl)dﬂ(]
Y 1 I\ Kl d 0 d,ut 2
g Tl Py B - l
( +Vol()>(” )9 kd0+< +Vl())d0 + il

0 N
—20,B;' 8, + B;* 0, d o (—H+ W) BT, — rﬁd)d " — Bi'o S"Rorpn
- SPSqBilﬁplqo — 0 S VORiOpO - aSquvof_{iqpo - O'SZSPVIRZ'OPO
- SZSPSQVZEWO — Squﬁiﬁoqu — BilSpO'Elopo — BilSquﬁlqu — Oéspﬁz‘opo.

We also used that d,dj; = ¢* Bjdp, and that 0 Op 3ot d‘“ @(Fﬁl—fél)jﬁ+(ﬂl—fél)gleklg—Zé.
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We can simply write down the evolution equation for B;* which is

O?B* = — 9,08 + 0,ah* + ad,hi* 4 ah;' Bf
—20,B/'B/* 4+ 20,88 — B'W"a + B;V*a — 23,8 BY,
+ { - Bl‘lO’QEOZOm — BilSpO'Eplom — Bilspo.ﬁ()lpm — BilSquEplqm
+ ﬁiUSpP_{Ompo + ﬁiSquP_{pmqo — (Va,(R(0su, Oyu)du), 8mu>}gmk.
We expand 0;«, v, o, 3, 0y and the last term to obtain

d d o
2B = — ain—Z(vka — 1S + (—H + Vof(u>> d—:‘é(rgl ~TLY(VFe — RF,.8™)

dpu 0 duy / 4 At
hi*3 —0,H-— — d —H ——q¢™ By,
* { “dpe  Vol(u)? dug NJ He ot N Vol(u) d,uog l}

0 djug k I pk
—-H ——(O¢h; h;'B
+ ( + vol(u)> d,uo< ihi” + )

— 20, BB + 2(—B(0,0 — hymS™) + 0.5 Roipo + S* S Ryig0) (VFe — BESY)

d d
— B'h/} (—H + L) (00— haSHVEH

Vol(u) ) duy djtg
0\ At g :
+ (0i0 — hipS?) (_H + VT(u)) d_,u;gk (Chy =T

— 2(0i0 — hySY) (V™o — h™,SP)B*,,

+ {—Bﬁa?EO,Om — B'SP0R iom — Bi'SPoRaopm — Bi'SPSTR g

+(00 — hitSH) TSP Rompo + (9,0 — hySY)SPSTRpmgo — 0> VoRioom

— 0%257(VoRiopm + VpRioom + VoRipom) — 7575 (VoRigpm + VeRiopm + VpRigom)
— SPSISN Ripgm— (0:0 — hiSY)SPoRopom — (950 — hirS')SP S Ropgm
—Bi'aSP(Rigpm + Ripom) — Bi' o Rigom — Bi'S? S Ripgm

d _ _ _ _
+ (—H + Vof(u)) d—[Z;(-O’RZ'()()m — SpRiopm — O'Rioom — SpRipom)}gmk. [A13]

The underlined terms can be simplified to
2(810' — hilSl)O'Spf_{ompo + 2(310' — hiZSZ)SPSqﬁpmqo.



APPENDIX B

The Nash-Moser Inverse Function Theorem

We include some of the necessary definitions, some examples and the statement of the
Nash-Moser Theorem. Everything in this Appendix is taken from [Ham82a].

DErFINITION B.1. [Ham82a, I1.1.1.1] A grading on a Fréchet space is a collection of
seminorms {|| ||, : » € J} indexed by integers J = {0,1,2,,...} which are increasing in
strength, so that

1fllo < IIflle <M fll2 < -
and which define the topology. A graded Fréchet space is one with a choice of grading.

ExaMpPLE B.2. [Ham82a, I1.1.1.2(2)] Let X(B) denote the space of all sequences { fi }
of elements in a Banach space B such that

[e.9]

el =D e™ I fillz < oo

k=0
for all n > 0. Then 3(B) is a graded space with the above norms.

ExamMpPLE B.3. [Ham82a, I1.1.1.2(4)] Let X be a compact manifold. Then C*°(X) is
a graded space with

1Flln = 1A llomex)

where C™(X) is the Banach space of functions with continuous partial derivatives of degree
< n. If V is a vector bundle over X then the space C*°(X, V) of smooth sections of V is
also a graded space.

DEFINITION B.4. [Ham82a, I1.1.1.3] We say that two gradings {|| ||.} and {|| ||,}
are tamely equivalent of degree r and base b if

1flln < ClIf sy and £, < ClLFllnsr
for all n > b (with a constant C which may depend on n).

ExaMpPLE B.5. [Ham82a, I1.1.1.4(3)] If X is a compact manifold, then the following
gradings on C*°(X) are equivalent
(1) the supremum norms || f1|,, = || fllcn(x),
(2) the Holder norms || fl],, = || f]|cn+e for 0 < a < 1,
(3) the Sobolev norms || f||,, = || f||wnr(x) for 1 < p < o0,
(4) the Besov norms || f{|ln = || f[[gn+e(X) for 0 <a <1, 1 <p<oo,1<g< o0,

85
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For example, by the Sobolev embedding theorem, if » > dim X /p then

1 fllenxy < Cl fllwntro(x)-

DEFINITION B.6. [Ham82a, I1.1.2.1] We say that a linear map L : F' — G of one
graded space into another satisfies a tame estimate of degree r and base b if

ILf]ln < Cllfllnr

for each n > b (with a constant C' which may depend on n). We say L is tame if it satisfies
a tame estimate for some r and b. A tame linear map is automatically continuous in the
Fréchet space topologies.

DEFINITION B.7. [Ham82a, I1.1.3.1] Let ' and G be graded spaces. We say that F
is a tame direct summand of G if we can find tame linear maps L : ' - Gand M : G — F
such that the composition ML : F — F' is the identity

Fha2r
DEerFINITION B.8. [Ham82a, 11.1.3.2] We say a graded space is tame if it is a tame

direct summand of a space 3(B) of exponentially decreasing sequences in some Banach
space B.

THEOREM B.9. [Ham82a, 11.1.3.6/11.1.3.7] If X is a compact manifold with or with-
out boundary then C*(X) is tame.

REMARK B.10. Since the product of tame spaces is tame [Ham82a, 11.1.3.4] this
implies that C°°(X, R%) is tame if X is a compact manifold with or without boundary.

COROLLARY B.11. [Ham82a, 11.1.3.9] If X is a compact manifold and V' is a vector
bundle over X, then the space C*(X, V) of sections of V' over X is tame.

DEFINITION B.12. [Ham82a, I1.2.1.1] Let F' and G be graded spaces and P : U C
F' — G anonlinear map of a subset U of F'into G. We say that P satisfies a tame estimate
of degree r and base b if

IP()ln < CAA+ 1 llnsr)

for all f € U and all n > b (with a constant C' which may depend on n). We say that P is
a tame map if P is defined on an open set and is continuous, and satisfies a tame estimate
in a neighborhood of each point. (We allow the degree r, base b, and constants C' to vary
from neighborhood to neighborhood.)

THEOREM B.13 (The Nash-Moser Theorem). [Ham82a, I11.1.1.1] Let F' and G be
tame spaces and P : U C F' — G a smooth tame map. Suppose that the equation for the
derivative DP(f)h = k has a unique solution h = V P(f)k for all f in U and all k, and
that the family of inverses VP : U x G — F is a smooth tame map. Then P is locally
invertible, and each local inverse P~' is a smooth tame map.



APPENDIX C

Norms and Inequalities

C.1. Norms

We will use an atlas o/ = (z,,U,) of the compact manifold N with the properties that
a=1,...,J (due to compactness) and x,(U,) = Bs(0). Suppose that the sets z ' (B1(0))
cover N.

We define the following norms for functions ¢ : N — R, ¥ : [0,7] x N — R

HM—ZWMIW&wQSZWWM )M z2(B200))

alwq
|Mm§mwxcww—ZZHmwaﬂ
a=1|8|<s B2(0)
ez =3 / 07
= Jo
9
ZZZ sup sup\ﬁj 'ﬂ‘aﬁ( (t,-) o )|
a= 1|6|<S] OtEOT]BQ

The family of norms ||| -|||s, s = 0,1,2,... defines a grading on C*°([0, 7] x N, R). For
functions V in C*([0, T] x N, R%) we simply add the norms of the components, e. g.

d
V1l = DIVl
k=1

Now let # : V — N be a smooth d-dimensional vectorbundle over N. By making
the coordinate charts smaller if necessary we can assume that the domains of the local
trivialisations ®,, a = 1,...,J, correspond to the domains of the coordinate charts, i.e.
®, : 7 1(U,) — U, x R Denote the transition function between ®, and ®5 by @4, i.e.
Pgo0d (x,v) = (z,Pas(x)v) for (z,v) € (U, NUsz) x RY. Let my : Uy x RY — R? be the
projection to the second factor.

For a smooth section V' of V we define its local norm as the norm of the coordinates in
the local trivialisation, i.e.

IV oal'|

Ho(B(0)) = [|T2 0 Po 0 V 0 2 | 12 (81 (0)) -

87
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To define the norm of V we sum these local norms over all coordinate charts

J
VI = IV oz a0y
a=1

with an analogous definition for the other norms || - ||cs, ||| - |||s and ||| - ||| os. The family of
norms ||| - |||ls, s = 0,1,2,... then defines a grading on the Fréchet space C*°([0,T]xN,V) of
time dependent smooth sections of the vectorbundle V. This grading is tamely equivalent
to the usual C*-grading.

REMARK C.1. In these charts we can estimate a smooth function ¢ : N — R via
J
o oz L2 (Ba0)) < CZHS@ ° $51||L2(Bl(o)),
B=1
where C' depends on the derivatives of the coordinate changes. Furthermore we have
J
H3(B(0)) = CZH‘P ° $El||HS(Bl(0)),
B=1

where C' additionally depends on higher derivatives of the coordinate changes.

'l

lpoz,

PROOF. First we show the statement for the L?-norm. For any other chart z4 let
Ay = 25 (23 (Ba(0) N 23 (Bi(0))) € By(0)
We have that
v (2 (Ba(0)) N5 (Ba(0))) = o 0 25 (Ag).
Furthermore, by the properties of our atlas

B,(0) C wa(U (25" (B2(0)) Naz' (B1(0))) ) C U za (21(B:(0)) N x5 (B1(0)))
B B
= Jza o x5 (Ap).
B

And hence

2(
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Here J denotes the Jacobian. For the H®-norm we observe that for any multiindex v with
v < s

(DY (pox,)| =DV (poxs' omgon,’)

in the set x, o xEI(Aﬁ). Using the chain rule and boundedness of the derivatives of the
coordinate changes on By(0), this term can be estimated by a sum of terms of the form

DY (poa;)(wgoay (D)D" (x50 a )(p)] ... | D" (x5 0 2. h)(p)]
< CID (g o z5")|(25 0 25 ()
with |y1] 4+ 4+ |7:| < s and |y/| < s. Then we can do the same as for the L?-norm. [J
We need an analogue of Remark for sections in a vectorbundle.

REMARK C.2. We can estimate a smooth section V of V via

J
IV o2 2 (maoy < C DIV 0 25" | 225, 0y
f=1

where C' depends on derivatives of the coordinate changes and the transition functions
®,5. Furthermore we have

J
IV oz, sy < CY IV 0wy s a0,
B=1

where C' additionally depends on higher derivatives of the coordinate changes and the
transition functions.

PRrROOF. The proof is similar to the proof of Remark [C.I} Additionally, one has to
express mpo P,0V 0 xgl = ®g,0omodPgoVo xgl and estimate ®3, and its derivatives by
the supremum. 0

For a linear differential operator we always define its “norm” to be the norm of the
coefficients in local coordinates. For example if in a local coordinate chart (z,, U,) we have
Lo = a"0;0;¢ + a'0;p + ayp then we define the local norm

(L]0 = ZHainHS(Bz(O)) + ZH@iHHS(Bg(o)) + llall g (5,0
.3 i

and the full norm

J
(L], = ) [L.a
a=1
We define similarly [L].. to measure the coefficients in || - ||cs and if L depends on time we
define |[L]|, and |[L]|. to measure the coefficients in ||| - |||s and ||| - ||| s respectively. Note

that these are not the usual operator norms.
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C.2. Moser Inequalities

Let 2 C R"™ a bounded domain with Lipschitz boundary. The following theorems
follow from the inequalities in [Tay97, Ch. 13, §3] and Stein’s extension theorem for
Sobolev functions [Ste70, Ch. VI]. We denote LP-Sobolev spaces by W*P where k is the
differentiability and put H* = W2,

THEOREM C.3 (First Moser inequality). There ezists a constant C' such that

19 (f )l 2y < C(IIf]
for all f,g € H*(2) N L>®(Q2) and |a| = s.

@) 19l =) + lgllas @ [ Il )

THEOREM C.4 (Second Moser inequality). There exists a constant C' such that
10%(fg) = FO°gllL2@y < C(IIf]
for all f € HY(Q)NWh=(Q), g € HHQ) N L®(Q) and |a| = s.

THEOREM C.5 (Third Moser inequality). Let F' : R" — R be a C* function. There
exists a constant C depending only on || f||r) such that

10°F(f)llc2@) < O+ [ fllm=()
for all f € H*(Q,R") N L>®(Q,R") and s = |a| > 0. If F(0) =0 then
1% F (Pl z2(2) < Cll Nl s(0)-

COROLLARY C.6. Let F': R™ x R® — R be a C* function with F(x,0) = 0 for all
x € R™ and all derivatives bounded. Then there exists a constant C' depending only on
||| oo () such that

@9l + | fllwroe@ gl 1)

IEC s < Cllf a9
for all f € H*(2,R™) N L>(Q,R").

PROOF. In order to estimate the L?-norm write
1
F(z, f(z)) = F(z,0) +/ DyF(x,sf(x))dsf(z). [C.1]
0

To estimate terms where all derivatives fall on the first argument of F', use that D*F'(x,0) =
0 and apply [C.1] to DEF(z, f(z)). For all other terms, the procedure is the same as in
the proof of Theorem O

LEMMA C.7. For any s € N there exists a constant C' such that

T T
/0 o7 (f9)llzs < C (|||f|||200/0 10Fgllz_xdt + [l Mgllz—s + lglllco |||f!||§)

for all smooth functions f,g:[0,7] x N — R.
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PROOF. In a local coordinate chart we have to estimate the terms

T
/0 100 (£ )25 1
where || < s —k and B = B(0). By the product rule
T T T
/0 1050°(F9) [yt < / 1£0E%g 2t +C S / 0410 £ 02022 i .
k1+ko=k,

1B11+182|=|8
k17£0V 8170

The first term on the right is estimated by

T
VR / 165 g2 .
0

For the second term we first consider the case k; = 0. Then 3; # 0 and we can choose [’
with |#'| = || — 1 and 9% = 9% 9;. Then

T T
/0 0% 020 g|2 ydt < C / 109 DFOEO™ g2yt

Now we apply [Tay97, Ch. 13, Prop. 3.6.] on the spacetime domain [0, 7] x B (use again
Stein’s extension theorem [Ste70, Ch. VI]) to obtain the estimate

T
/ 107 Df; 0% g 72 (mydt < C (1D Sl Nallli—y + lgllico IDFIE)
0

since |B'| + |Ba| + k = s — 1. If ky # 0 then choose k' = k; — 1 and estimate in the same
manner

T
/0 10 0% 01 02 0% g|Z2 5yt < C ([119ef Mg MgllZ—1 + Mgl 10 1I13-) -

As |0 f|lls=1 < |IIflls and |[[Dfll|ls—=1 < ||| f]||s we obtain the stated result. O

C.3. Gronwall’s Inequality

We need modified versions of Gronwall’s inequality which are a bit more exact than
the inequalities that are stated in most of the literature. The proofs are very similar.

LEMMA C.8. Assume that n, ¢, > 0 are continuous functions on [0,T] and that n is
continuously differentiable on [0,T]. If

() < p@)n(t) + ¢(t)
for allt € [0,T] then

t
n(t) < elo#0dry0) + / els 2 (5)ds.
0
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Proor. Compute

di <7](S)6_ Jo <P(r)d1"> — e~ Jop(r)dr (77/(3) — o(s)n(s)) < e fEe

s
Consequently we have

t
e B0 <o) 4 [ ey s)ds
0

which implies the inequality.

().

g

LEMMA C.9. Let A, B,h > 0 be continuous functions on [0, T]| and let B be continuously

differentiable on [0,T]. If
A(t) < B(t) + /t h(s)A(s)ds
0
for allt € [0,T] then

t
A(t) < eo "M B(0) + / els M B (6)ds.
0

PROOF. Let
H(t) = B(t) +/0 h(s)A(s)ds
Then
H'(t) = B'(t) + h(t)A(t) < B'(t) + h(t)H(t)
and hence
d

@ (H(S)e—fos h(r>dr> — e RO (B (s) — h(s)H (s)) < e ot

ds
Integrating from 0 to ¢ gives

t
H(t)e™ JoMdr < [ (0) + / e~ Jo MO B (g)ds
0

and consequently

t
A(t) < H(t) < elo "™ B(0) + / el MDA Bl (5)ds.
0

drB/( )

g

LEMMA C.10. Let A, B, h be as in Lemma[C.9 and let g be a continuous positive func-

tion on [0,T). If
AW < 9030 +9(0) [ ) A
for allt € [0,T] then

A(t) < g(t)els 90O B(0) 4 gt /fg i B (s)ds

[C.2]
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for all t € [0,T].
PROOF. Let A(t) = A(t)/g(t) and h(s) = h(s)g(s). Then
A(t) < B(t) + / til(s)[l(s)ds.
Lemma implies O
A(t) < elo B0 B0y 4 / ot A B! (5)ds

0
which implies inequality [C.2]. O






APPENDIX D

Another Choice of Kinetic Energy

In Section we defined the kinetic energy with respect to a reference measure dyg. In
this appendix we discuss another choice, namely if we define the kinetic energy in a more
geometric fashion using the induced volume measure dyu, on the surface, i.e.

1
Kg(u):/J\f§|8tu|2dut.

In this case the action integral is

/ /—|5tu| dﬂtdt—/ /dutdt+g/ log (Vd( )>dt
VOIO
r Vol (u)
_ 2102 —
_/o A(zyatuy 1) d,utdt—l—g/o log< Vol, )dt.

This kinetic energy is also considered in [LS08]. We will first state the resulting Euler-
Lagrange equation. Then we discuss the conservation laws and indicate how a short time
existence result can be established in a special case. Furthermore in Section we will
see that the behaviour described by this equation does not fit with the physical intuition
which is the reason why we chose for our study.

D.1. The Equation

PROPOSITION D.1. Let u. be a variation of u with up = u and % ._op) = X(p).
Then

d

2| gatu) = [ 6 B

/ (X, D

t=0

/ / (X,Va,00u) — (§|8tu|2 - 1) H{v,X) + (0 H + div S)(0pu, X)

1 9 0

= X)dypdt. D.1

+ 5UV10, X) = ot . X BR)
PRrOOF. The computation is done as in Section [1.2| and [LS08]. O
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96 D. ANOTHER CHOICE OF KINETIC ENERGY

COROLLARY D.2. The FEuler-Lagrange equation of As s

4%
Vol(u)

Vo, 0u = (%\&/uﬁ - 1) Hv + v—(ocH +divS) du — %V|8tu]2 [EQ.]

_ (1 2 Q2 P 4
= (2|8tu|—|—1 |S|)Hl/ adeV—i-vOl(u)l/

1
— (o H + div S) S*Opu — 5V|atu|2.

REMARK D.3. If S = 0 (see next section about this assumption) then [EQ5| reads

= _ 1 2 0 _ 1 2 /
Vo, 0 = (2\8tu\ + 1) Hv + Vol(u)y 2V(|8tu| ). EQ2|

We will see by an example in Section that [EQ-s| and [EQ->'| are not equivalent, i.e.
modifying a solution of [EQs| by a diffeomorphism such that the tangential velocity van-

ishes does not yield a solution of [EQ,’|. We also give an example for the non-equivalence
of the [HMCF| and the [HMCF’| equation from [LS08].
D.2. Conservation Laws

The conservation of energy and exterior momentum for [EQ5| is similar to that of [EQ)].
The proofs are also very similar and we omit them. The diffeomorphism invariance of A,
leads to a more general conservation of interior momentum (Proposition than we had

for [EQ).
Define the energy

8(u(t,-)):/N%|8tu|2d,ut+/Nd,ut—glog (VOI(“))

VOIO
Let w: [0,7) x N — M solve [EQq| with €y = E(u(0,-)).
PROPOSITION D.4. We have E(u(t,-)) = €y for all t € [0,T).

Let X be a Killing vector field on M. Define the exterior momentum with respect to

X of a solution u of [EQs| by
Px(u(t, ) = [ (O X))

N
PROPOSITION D.5. Let u: [0,T) x N — M solve [EQa|. Then Px(u(t,-)) is constant
as a function of t.

PROPOSITION D.6. Let Y be an arbitrary vectorfield on N. Define

Qy (u(t,-)) = /N(ﬁtu,u*YMut.

If u solves [EQa|| then Qy (u(t,-)) is constant as a function of t.



D.3. A GRAPHICAL FORMULATION 97
PROOF. Let ¢4 be the local flow of Y and set us; = wo ;. Since A, is diffeomorphism
invariant we have %L:OA(US) = 0. Using |[D.1] with X = .Y = dis‘s:ous we see that
0= Qy (u(T;-)) = Qv (u(0,-)). m
COROLLARY D.7. Letu : [0,T)xN — M solve [EQq| with S(0,-) = 0. Then S(t,-) =0
for allt €10,T).
PrROOF. We have that Qy(u(0,-)) = 0 for any vectorfield Y on N and hence for all
tel0,7)

0= 9Qy(u(t,-)) = /N@tu,u*YMut = /N<S, Y )d .

Since this holds for all vectorfields Y we conclude that S =0 for all ¢ € [0, 7). U

Corollary [D.7)says that if we start with a normal velocity then the velocity stays normal.
This is due to the diffeomorphism invariance of the action A,. In fact, even if dyu is not
normal initially, the tangential velocity S follows a simple evolution.

PROPOSITION D.8. Let u: [0,T) x N — M solve [EQz|. Then

Si(t) = fl—‘;jsxm D.2]

where dpug = dpuy(0) is the induced surface measure at t = 0.

ProOOF. Calculate
0:S; =(V,05u, Oyu) + (Oyu, Vo, 05u)
— — (oH +divS)S, - %&]@uP + %8i|8tu]2
= — 5;0; log dy;.
Define S; = Z_ZSSZ'(O)' Then
&Si = —Siat log d;
and hence S; and S; satisfy the same ODE and 5;(0) = S;(0). By the standard uniqueness
result for ODEs we conclude that S; = S;. O

D.3. A Graphical Formulation

Let ¥9 = w(0,N). We want to write the solution of equation [EQs| as a graph
over Yg. So choose a Gaussian coordinate system (¢,z) for a neighborhood of ¥
where ¢ is the coordinate orthogonal to Y, i.e. the signed distance to X,. Let
M, = {q¢ = 7} and 0;(7) be the induced metric on M,. Let h;;(1) be the second
fundamental form of M, and H(7) its mean curvature. Write @(t,z) = (p(t, z),z) and
u(t,x) = a(t,V(t,z)) = (e(t,¥(t,x)),¥(t,x)) where ¢ : ¥y — R and ¥ : 3y — ¥
is a diffeomorphism. We use @ to express geometric quantities. The tangent vectors to
w(Xg) are given by 9;u = (¢;,0,...,0,1,0,...,0). And so the unit normal is given by
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=+/1+ |Dgp]271(1, —¢'), where @/ (t,x) = o¥(p(t,x), 2)O¢(t,x). The induced metric
and its inverse are given by
= 0+ DD, gl =g — PP
9ij = Oij + 0jp05p, g o 1+ [Dy|?

We multiply
—Hv* = g7 {9,0;0* — T;0,0* + Ty, 0;a° 0,1 }
with v, to obtain
—H = VT+[DgP " g7{0sp — Thiohp + Toodiipyp + Toyio + T,0500 + T,
T Ol Ohp — T, 01" 0, Oy §.
Now we have dya' = 6}, and
=0 A =0 =0 =k —k 5 —k

F'.::__hw, I%m :::FOZ.::I‘\O0 ::O7 Poi::}%H#k, F,,::(I})E

Y v ]

and consequently

—1 .. —3 A
—H =\/1+|Dp|* ¢7(0:0;p — z;akSO V1+[Dgl> - V1+[DoP “hyety
where we used that g¥h; = I:I — 1+ |Dy|2 ﬁklcpkgpl and 1 — /1+ |Dg0|2_2|Dg0|2 =

V1+ |D<,0|2_2. Write S = S*0it = S'dyu. Then

) . o o S
ol = 9,0 =o' + S*Ou = —Ww + 5 [D.3]
and
o’ = o + S°9,0° = S — + Sk .
V14 |Dyp|?
We have

Owp

V14D

o= (O, v) = (Orp + OB, U* — 8,00, V") =

1
VI+IDeP
The 0 component of Vy,0u® is

Vo, 0’ =02 + F?;W@tu’g Oy
—020 + 20,V 0,0, + D,V OV 0,0, + Dpd? V' + T, 9U 007,
~
——hy;
The i components of Vy,0,u® are
Vo0l =02 + Ty, O’ O
—R 4 2T, 0,u’O, W + T, 0,07 0,0
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With V,0,u = av 4+ A'd;u we have
R ‘D‘P’Q 1o, i 7 0 jo i k i j
000 V' = —————=a+ A'Ou'0ip — 2h;;0u" 0,V @' — (I,,);; OppO, V' O, .
V1+ [Dyl? ’
Note that A'‘Quid;p = A9 V0, = A'Qu’. Putting things together
2 i 39 Ty A iy |D‘P‘2 lg, i
(9t (Y2 —+ 28,5\11 &(%gp -+ 8t\IJ 8,5\11 aﬁjgo — hl’jat‘I’ 8t\IJ —_——a + A 8lu &(p
V14 [Dypl?
20O o — (D) Bpd, WO = —— 2+ Alg.
GOtU O W ( )U kPOt t T+ Do’ I
Inserting
a=— 12—1—1—1]5|2 —odivS + ——
-7 2 AT 1( )
and [D.3] for 9, V¢ this finally gives the equation for the graphical evolution
1 1 - y ; illeOkSOZ
Po=[=0+1—=|5 9(0,0;0 — (L) Opp) — H — —22 ©
.5 0
— Opdiv S + /1 + | Dyp|?
t@ A1V + +| §0| VOI(QO)
oyt ~ oy S k
- -9 —— -5 (0,0;¢0 — (I,);; Ok
<\/1+!D90|2 ><v1+|D90!2 )< o~ (L) Ok2)
I B [D.4]
+2| ———— 5" | 0;0p
V1+|Del?

R oy’ i o Gk
— 200" | e — § | | ———— + SOk
’ <\/71+|le2 ><\/71+|Ds0|2 )
P L N G- A
Y\ 1+ |Dy)? VI+|DgP?

To obtain a useful equation for ¢ we have to replace S* using [D.2]. Then [D.4] is
a scalar equation for ¢ and S only comes in via its value at time ¢t = 0. So using our
knowledge |[D.2] of the tangential velocity we can decouple [EQs| into a scalar equation

for ¢ and an ODE |D.3] for ¥. Note that
div S = 9,8 + It () S*

also contains second derivatives of ¢ which do not appear if Dy = 0.
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In the case that S = 0 the scalar equation [D.4] simplifies to

1 y 3 h e
25— (25241 0(0;0;0 — (T,)" Sy L
O;p <2U " ) (9 (0050 )Zj o) 1+ |Dyp|?

2, i
0 o2l
+ 1+ Dyl _

Dyl Vol(p) 1+ |Dy?
200 o2ﬁij¢ig0j

b2 50— .
ST DR Y T 1+ Dep

D.4. Hyperbolicity

(2050 — (T,)%: Okep)
J

i

We want to check in which case the scalar equation for ¢ is hyperbolic in order
to obtain a short time existence result. Then can be treated by standard quasilinear
hyperbolic theory (the less standard integral terms can be readily dealt with). The ODE
for U can subsequently be solved separately. If we only want to get a solution for a short
time we only need hyperbolicity for a short time. By continuity it suffices to check this at
time ¢ = 0. Clearly at time ¢ = 0 we have that ¢ = 0 and hence Dy = 0. Furthermore
Sk = Sk since the initial condition for ¥ is 9, ¥*(0) = &i. The matrix G' by which the
second derivatives are multiplied is given by

-1 =5t . —s"
—g1
G = . - -
: (vg? — S'57)
_gn
at t = 0 where v = (30%+1—3|S%). Clearly we need that v # 0 for otherwise
(1S|%, 51, ..,S,) would be a zero eigenvector. The inverse is given by
—(1=97YSP) =S s TS,
a1 -7 18
: (v 9i5)
_7—1Sn

The matrix G~ defines a Lorentzian metric on [0,7] x N if and only if v > 0. Hence the
hyperbolicity condition is that

IS]? <2+ 02 [D.5]

Clearly 0, is transverse to the spacelike surface {0} x N and if [D.5] holds for the initial
data we can solve the scalar equation [D.4] for ¢ subject to the initial conditions ¢(0) = 0,
O0yp(0) = 0(0). We obtain the following short time existence theorem for [EQaf.

THEOREM D.9. For every smooth immersion ug : N — M with Vol(ug) = Volg > 0 and
initial velocity uy € T'(u§TM) satisfying [D.5| there exists € > 0 and a smooth family of
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immersions u : [0,e) x N — M solving the Cauchy problem

Vo0 = (3|0wu* — 1) Hv + VoV — (0 +div ) Opu — V|0l
U(O, ) = Uo

3tu(0, ) = U7.

REMARK D.10. In [LS08] LeFloch and Smoczyk also use the idea of writing the solution
as a graph to prove short time existence for their equation if S = 0. But we can allow a
tangential motion if the equation is hyperbolic. The hyperbolicity condition analogous to
for their equation is |S|* < n + 0% — ¢ for some ¢ > 0.

D.5. Role of Tangential Velocity and Translations

For a physical model we would expect by Newton’s law that translating a given solution
leads to a new solution since a translation does not change the acceleration, i.e. if £ € R**!
and u : [0, 7] x N — R"™! is a solution of [EQz] then u(t) = u(t) + t£ should again be a
solution. This works fine for as we saw in Subsection m However in the
acceleration depends on dyu. So this doesn’t work.

To be more specific let u, : 82 — R? be a parametrisation of the sphere with radius r

around the origin. Clearly if r = , /ﬁ then u, is an equilibrium solution of [EQ2|. Let

u = u, +t&. We have Qu = ¢, (cH +div S) = d;logdu; = 0, 0?u =0 and H = 2/r. For u
to be a solution of [EQ5] we need that

Lo 0
(2221 __£
(2|€| > ward’

2 0

P eEE) D6
So we only get translating spheres with this parametrisation if the translation velocity is
small enough, i.e. |£| < /2, with a radius depending on the velocity that goes to infinity
as |¢| approaches V2. This corresponds to the hyperbolicity condition since there
are points where |S| = |¢| and o = 0. Alternatively one could read as a condition on
o saying that we have to adapt the inner pressure to the velocity to obtain a translating
sphere with a given radius and velocity ¢ with |£] < v/2.

We show in the following that translating spheres cannot be solutions of [EQs’|. The
normal velocity at ¢ = 0 for a sphere translating in direction £ = vey, v > 0, is (0, z) =
(v(z), &) = vcosp(x) where p(z) is the angle between z and ey, i.e. dyu(0,z) = v cos ¢(z).
Let p; = re; and py = —re;. We have then

1.e.

1
a(0,p1) = a(0,p2) = — (_712 + 1) H + ¢

2 wsr3’
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11-Axis

Write u(t, x) = u,(V(¢,x)) + t€ with a diffeomorphism W satisfying ¥(0) = id. At p; and
po we have at t =0

0=S; = (Qyu, du) = 0, W g;; + (£, Ou)

which implies 9;¥(0,p;) = 9;¥(0, p2) = 0 since £ is normal at p;, p, and 9;¥!(0) = §!. Now
at p1, ppat t =0

&= <8'52u’ V> - <aiajura V>at\piatqjj + (@ur, I/>at2\11Z = 0.
So at py, ps we get the condition

1, 2 0
—(2t1) 2+ 2=
(20+)r+w3r3

Assume that 72 = (w3(v?+2)) o is chosen like that and note that this condition is different
from . Let p3 = rey and py = —res. We have that

a(0,p3) = a(0,p4) = —% + — > 0.
By Taylor expansion for a short time we have that
(u(t, ps), v(0,ps)) =(u(0,ps), (0, ps)) + £(Aeu(0, ps), v(0, ps)) + %tQOz(O,pg,) +0(t%)
=r+ %t2a(0,p3) +O(t*) >r

and similarly

(u(t,pa), (0, psa)) > 7.
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But (0, p3) = e2 and v(0, ps) = —eq. This means that for a short time u(¢, ps) and u(t, ps)
leave the space in between the planes {zs = r} and {zs = —r}. But if the sphere were
translating in the direction e; it must stay in between these planes.

We also saw in this example what we announced in Remark namely that applying
a diffeomorphism to a solution of [EQs| such that the tangential velocity vanishes does
not yield a solution of [EQ,.

We now give an example of a solution of the equation from [LSO08]. For
u:[0,7] x N — M this equation reads

— 1 1
Vo, 0w = (§|8tu|2 - g) Hv — (cH +div S) dyu — §V|8tu|2. [HMCEF]

If S =0 we obtain the [HMCEF’| equation
= 1
Vo, Ou = — <§|0tu]2 +

n
2
The property S = 0 is preserved if it is satisfied at time ¢ = 0.

For some radius r > 0 and some velocity v define u : R x 8! — R? by

u(t, z) = ref@tst),

) Hy — %V!@tuP. [HMCF’|

This is a parametrisation of a circle rotating with velocity v in the complex plane which
we identify with R2. We have
2 2
Bou = ivel @3 92y = — el = T,
r r

Hence o = 0, [Gul> = v* and div S = 0 since S is Killing. Furthermore H = &. Hence u

solves [HMCEF]| if
(1, 1)1
- = —p° — = —
r 2 2)r

ie. v? = % Note that according to the remark at the end of Section the equation
is hyperbolic for this solution since v? < 1. Solving the equation with a circle
without normal velocity as initial data would yield a circle shrinking to a point in finite
time. So these two equations might describe completely different phenomena.
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