
Chapter 9

Retrieval of polarization shaped
pulses with a multi-objective EA

9.1 Introduction

For pulse forms originating from the parallel setup where a phase shift of one beam-
path versus the other has already a great impact on the whole polarization tran-
sient, a method to reliably determine the full pulse information is highly desirable.
Using conventional, dual-channel interferometry methods like POLLIWOG [160] for
pulses originating from the parallel setup would mean placing one interferometer into
another interferometer arm, which would be an arduous experimental effort. The
alternative, time-resolved-ellipsometry (TRE) [151], requires an additional measure-
ment through a quarter wave plate in order to determine the helicity and, as a pure
temporal measurement, does not provide phase information.

A number of cross-correlations to different projection angles already provide a
good insight to the temporal course of major axis angle, intensity, and also ellipticity,
as shown in the previous chapters. Phase-driven features (like for example chirps)
and the helicity can not be retrieved by such measurements. In the previous chapter,
spectral intensity projections to different angles (Fig. 8.3, bottom) showed that there
is much information contained within the pulse spectra. Recording a set of spectra
together with cross-correlations for multiple angles could help assigning helicity and
uncover phase information, without resorting to interferometry.

Pooling many spectra and crosscorrelations to one single solution (a polarization
shaped pulse) is unfortunately neither trivial nor an analytical matter as the phase
information is squared out in the measured data, and the observables are convoluted
by the reference pulse and by the limited spectral resolution of a spectrometer.
Given the problem definition (finding an unique polarization pulse form, which,
when projected to several angles fulfills measured profiles in the time and frequency
domain), the method of choice was a multi-objective evolutionary algorithm.

The first efforts of retrieving the polarization traces by fitting the two goals tem-
poral and spectral projection intensities simultaneously with a Weighted Sum Ap-
proach (as used in Chapter 4) caused various difficulties, among them convergence to
local instead of global optima, as the combined and convoluted time-frequency search
space practically eluded the attempted scalarization to a single goal. Therefore, a
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multi-objective algorithm which incorporates the concept of Pareto-optimality was
applied for the task. From the various incarnations, a variant implementing sorting
of individuals by their Pareto-optimality was chosen, named non-dominated sorting
genetic algorithm (NSGA) [161]. It guarantees a continuous fair treatment of the
conflicting goals (fitting the temporal and spectral traces) and has practically proved
to avoid premature convergence to a single dataset or goal.

In a brief excursion, this chapter first discusses the concept of non-dominant
sorting as, to the authors knowledge, it has not yet been incorporated in an OCE;
tests an implementation of NSGA-II on a multi-modal problem, then presents the
mathematical tools to calculate arbitrary projections before finally combining the
methods in an retrieval algorithm

9.2 Multi-objective optimization

Concept of non-domination. The foundations of multi-objective optimization
were set in 1969 in the PhD thesis of Rosenberg [162] who suggested, but not
simulated such a procedure. The decisive difference of multi-objective algorithms
compared to single objective variants is that not one, scalar fitness per individual
is responsible for its advance, but M goals that are pursued simultaneously, which
means that the comparison of the individuals for survival has also to be conducted
in an M-dimensional “objective space”. If an agglomeration of solutions to a single
region (called “crowding”) is avoided, such an algorithm yields a set of compromise
(Pareto-optimal) solutions instead of a single optimal point. This set is said to
“dominate” all other individuals, as illustrated in Fig. 4.2. There, four solutions in
a 2D objective space were sorted by their usefulness, whereby three of them consti-
tuted a “Pareto-optimal” front, and one solution was outperformed by all others,
and therefore was “dominated” by them.

The following two conditions must be fulfilled so that individual x(1) dominates
x(2) (having j = 1, · · · ,M objectives and more than one objective function fj ,
j = 1, · · · ,M)1

1. x(1) is no worse than x(2) in all objectives: fj(x
(1)) ⊀ fj(x

(2)) : ∀ j =
1, 2, · · · ,M

2. x(1) is strictly better than x(2) in at least one objective: ∃j ∈ {1, 2, · · · ,M} :
fj(x

(1)) ≻ fj(x
(2))

Sort by domination. The term non-dominated fronts originates from Chankon
[163] (1983), shortly afterwards, a vector-based genetic algorithm (VEGA) was sug-
gested by Schaffer [164] using vectorial fitness values. The first concept of non-
dominated sorting was stated in the standard work of Goldberg [42], which was
the basis for the two most prominent, elitist multi-objective algorithms used today,
NSGA-II [165] and SPEA2 [166]. A non-domination sorting algorithm proceeds it-
eratively, in a first step determining the non-dominated solutions, assigning their

1⊀ and ≻ are used so the definition can apply to both maximization and minimization
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Figure 9.1: A sorting algo-
rithm based on the concept of
non-domination determines fronts
of equal domination. The dashed
rectangle represents the distance of
two solutions to their neighbours
and serves to assign a crowding dis-
tance, which is greater for solution
A than for B. In this snapshot,
taken from a polarization retrieval,
f1 represents the mean squared er-
ror of the fit of all SFG-CC traces
and f2 of the spectra.

domination count, removing them from the set, and sorting the remaining ones
again, etc. The assignment can be visualized for two objectives, as illustrated2 in
Fig. 9.1. The lines connect solutions of equal domination count, starting from 0
(non-dominated) (left bottom), working upwards to the right-top corner, as both
objectives are to be minimized.

Sort by crowding distance. Early incarnations of multi-objective algorithms used
special techniques to avoid a concentration of individuals to single regions (niching)
using fitness-sharing [167] of closely spaced individuals. NSGA-II uses a comparably
simple, yet less intrusive method using a sorting by crowding “distance”. After the
solutions were sorted by fronts of equal domination, a second sorting rewards more
“lonely” individuals by assigning a crowding distance. This distance is defined as
the average side-length of the cuboid determined by the next neighbouring solutions
(see the two dashed rectangles in Fig. 9.1). There, solution A is more exposed than
solution B, and therefore preferred. For the procedure, the corners are given the
highest priority, and then, the rest of the solutions follow by descending crowding
distance.

Operators. NSGA-II carries out non-dominated sorting of a pool of parents and
offspring, filling every front subsequently with new solutions while keeping the total
population size constant. Afterwards, the parents for the next generation are se-
lected deterministically according to their domination rank and crowding distance,
before the operators simulated-binary-crossover (SBX crossover) [168] and polyno-
mial mutation [169, 170] are applied.

2The pulse shapes corresponding to the two corner solutions of the non-dominated front are
very similar in structure, meaning that the Pareto-optimal front is indeed very narrow. Still, the
emphasis of this particular retrieval is to treat the goals fairly in order to reach an optimal solution.
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Figure 9.2: Test function g(x(2))

with a global minimum at x(2) = 0.2
and a local minimum at x(2) = 0.6.

9.2.1 Test function for NSGA-II

The retrieval algorithm was first tested on a known function or problem3, which
is a necessary precondition before employing it on real-world problems with un-
known solutions. As two objectives were considered for the retrievals (fitting the
cross-correlations and the spectra), the chosen test function will also consist of two
dimensions, with f1 and f2 as the respective fitness components. The easiest test
function to think of is f1 = x(1) and f2 = x(2) both to be minimized, with a global
optimum at x(1) = x(2) = 0. More interesting, and also incorporating the commonly
encountered trade-off between objectives, a setup like f1 = x(1) and f2 = c/x(1)

(with only positive values) produces an easily imaginable Pareto-optimal front in
objective space, having the form of an hyperbola as f1f2 = c. The compromise is
easily seen; when the algorithm tries to minimize f1 by minimizing x(1), f2 increases
due to the denominator x(1). Incorporating a second variable x(2) could, for example,
look like

f1 = x(1)

f2 = g(x(2))

x(1)

. (9.1)

Constructing g(x(2)) in a way that there is a global and a local minimum

g(x(2)) = 2.0− exp
{

−
(x(2) − 0.2

0.004

)2}

− 0.8 exp
{

−
(x(2) − 0.6

0.4

)2}

(9.2)

(taken from from Ref. [171] and plotted in Fig. 9.2) introduces multi-modality
and puts an algorithm to a reasonable test. The two Pareto-optimal fronts will have
the form (Eq. 9.1), f1f2 = g(0.2) (global), and f1f2 = g(0.6) (local), which also has
a larger basin of attraction.

A successful run of the employed NSGA-II algorithm4 is shown in Fig. 9.3,
showing that most of the individuals (green squares) have converged to the global
front (black hyperbola), and not to the local (dashed).

3in the evolutionary computation literature referred to as “experiment”
4The objective value’s range for x(2) was [0.05;1], an elitist (30,80) algorithm with 15 survivors,

σs =0.03, using SBX crossover (probability 1, coefficient 12) and polynomial mutation (probability
0.1, no mutational adaptation), deterministic selection; result after 189 generations.
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Figure 9.3: Result of a multi-
modal test function for NSGA-II.
The dashed line is local Pareto-
optimal front, the rectangles rep-
resent the individual solutions af-
ter 189 generations, most of them
have already converged to the global
front (straight hyperbola), only a
few remain elsewhere.

9.3 Pulse retrieval routine

9.3.1 Projected intensities from set B

The procedure of determining the parameters of set E, the intrinsic ellipse param-
eters, from pulse projections to several angles (used for the TRE-like detection
scheme) was described in Sec. 3.4. The retrieval algorithm internally stores the
pulse form in the laboratory system, set B: {a, b, ε}, so this set’s angle α dependent
projection (intensity) has to be derived.

By calculating the offset d of the orthogonal ellipse tangent y = x tan (α− 90◦)+
d to an axis with the angle α, the projected spectral or temporal intensities P 2(α)
must be derived (see Fig. 9.4). The tangent offset d can be calculated solving

x2 ·
( 1

a sin ε

)2

+ y2 ·
( 1

b sin ε

)2

− 2xy · 1

a b
· cos ε

sin2 ε
= 1. (9.3)

(Eq. 7.13) for y, which yields two results (upper and lower ellipse halves),

y(x)∓ =
a b x cos ε∓

√

a2b2(a− x)(a + x)sin2ε

a2
(9.4)

where y− is the lower arc and y+ the upper arc. Allowing only one solution for x
for a given α means solving the equation system of the tangent and Eq. 7.13 for x
and y, yielding

d = ± sin ε

√

−b2 + 2 a b cos ε tanα− a2 tan2 α

cos2 ε− 1
. (9.5)

As the projection P = d sinα is measured as spectral (or temporal) intensity, the
last term can be further simplified5 to

5The main computational effort for the presented routine is to calculate the field projections
(for every data point in time or frequency). For Eq. 9.6, cos2 α and tanα can be calculated once
per retrieval run, leaving cos ε as the most CPU expensive expression.



114 Retrieval of polarization shaped pulses with a multi-objective EA

Figure 9.4: Calculation of
the projection P of an ellipse
(determined by the parameters
a, b, and ε) to an axis with the
angle α.

projection axis

d P

Ex

Ey

P 2(α) = cos2 α
[
b2 + a tanα · (a tanα− 2b cos ε)

]
. (9.6)

To simulate the spectrometer, a convolution (marked by ∗) of the spectral intensity
with the resolution function (a spectral Gaussian intensity profile with a width
corresponding to the resolution δλ) Ires(ω)

|E ′
x,y(ω)| =

√

|Ex,y(ω)|2 ∗ Ires(ω) (9.7)

has to be performed, introducing the respective components a′ and b′

|a′(ω)| =
√

|a(ω)|2 ∗ Ires(ω)

|b′(ω)| =
√

|b(ω)|2 ∗ Ires(ω)
(9.8)

which transforms Eq. 9.6 into (omitting the absolute value vertical lines)

P ′2(α, ω) = cos2 α
[
b′(ω)2 + a′(ω) tanα · (a′(ω) tanα− 2b′(ω) cos ε(ω))

]
. (9.9)

Similarly, the SFG-CCs can be calculated by deriving the cross-correlation with the
reference pulse’s intensity profile6 Iref(t)

|E ′
x,y(t)| =

√

|Ex,y(t)|2 ∗ Iref(t), (9.10)

leading to

P ′2(α, t) = cos2 α
[
b′(t)2 + a′(t) tanα · (a′(t) tanα− 2b′(t) cos ε(t))

]
, (9.11)

meaning that the algorithm automatically includes a deconvolution of the measured
temporal and spectral profiles.

9.3.2 Spectral influence of the helicity

The key to retrieving phase and helicity information for a polarization shaped pulse
form lies in the (projection) angle dependent spectra P ′2(α, ω).

6a temporal Gaussian intensity profile with the respective pulse duration
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Figure 9.5: Impact
of helicity changes on
pulse spectra for a 0◦

linear/circular pulse,
calculated for a polarizer
angle α = 67.5◦. Solid
lines: helicity swap of the
linear pulse, dashed line:
circular pulse’s helicity
swapped from right- to
left-handed, which is a
comparably large effect.

Fig. 9.5 demonstrates this effect for a ∆t = 200 fs, 0◦ near-linear/circular double
pulse with pulse spectra calculated for a projection angle of α =67.5◦. The dashed
line results from swapping the circular pulse’s helicity, the closely-drawn lines show
the difference when the helicity of the near-linear pulse (Hba = 0.05) is swapped
which, at this angle, shows a smaller effect.

9.3.3 Input data

To demonstrate that the retrieval from SFG-CCs and spectra is functioning as in-
tended, meaning that all the information about polarization and phase is indeed
contained, a previously known (simulated) waveform consisting of four sub pulses
featuring different intensities, distances, polarization states, and zero order phases
(including an overlap of the chirped and the circular pulse) will be restored. Know-
ing three projections per data point would be sufficient to determine the shape of an
ellipse, but to additionally retrieve helicity and phase, more information is required.
A set of nine spectra (at least eight, uniformly distributed within an angular interval
of 180◦ are recommended7) have shown to be reliable. For the cross-correlations,
a minimal number of three is required, having more increases the accuracy of the
ellipticity, especially for near-linear cases.

7to minimize the chance to miss a crucial angle (see Fig. 9.5)
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9.3.4 Retrieval algorithm

First, as a reference, the total energy of the waveform has to be determined, inte-
grating ∫

P ′2
k (α, ω)dω = A2

k(α) (9.12)

over all frequencies or alternatively, integrating P ′2
k (α, t) over all times, for all avail-

able k spectral or temporal traces. Then, a sinusoidal function is fitted through
A2

k(α) as

A′(α) = a0 + a1 · sin (2α + a2) (9.13)

(similar to Eq. 7.39, or as shown in Fig. 7.7) in order to yield a continuous function
of α, and thus, the energy contained in the waveform is 2a0. The optimal solution,
a filter H̃par

opt , must therefore provide the same P ′2(α, ω) and P ′2(α, t) traces as the
input data, if multiplied with a reference field Ein(ω) of the energy 2a0.

Fig. 9.6 shows a sketch of the evolutionary retrieval algorithm and explains the
retrieval procedure in the figure caption. It turned out that the NSGA-II operators
simulated-binary-crossover (SBX crossover) [168] and polynomial mutation [169,
170] could be exchanged for their computationally less expensive, standard versions.
The mutation rate was adapted with a 2/5 decision factor to the best progress of
either time- or frequency domain, depending on how good the respective offspring
performed in either domains. Furthermore, a non-elitist (12,40)-strategy could be
used instead of the elitism of NSGA-II. The search space sampling was 512 points,
the spectral sampling resolution was 0.3 nm, the temporal resolution 14 fs, Ires(ω)
was 0.55 nm, and the reference pulse’s FWHM was 25 nm.
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Figure 9.6: Flowchart diagram of the retrieval algorithm. The encoding is set in the
frequency domain, a chromosome consists of the four data strings Tx, Ty, φx, and φy; which
also comprise the general filter function H̃(ω) also used to describe the parallel setup in
Chapter 8. The algorithm starts with a random initial guess in order to obtain the first
generation’s set of 40 individuals. In the next step, using the information encoded in the
genes, the transfer function H̃(ω) = x̂

√

Tx(ω)eiφx(ω)+ ŷ
√

Ty(ω)eiφy(ω) (see also Eq. 8.1) is

constructed. Again, the output field is determined as E′
out(ω) = H̃(ω)·Ein(ω). Afterwards,

the spectral projection intensities P ′2(α, ω) of E′
out(ω) (Eq. 9.9) are calculated using Eq.

9.8, where the x- and y-components are denoted as a and b, respectively. For the simulated
SFG-CCs, the spectral field E′

out(ω) first has to be inversely Fourier transformed to become
Eout(t), before calculating P ′2(α, t) using Eqs. 9.10 and 9.11. In order to obtain the two
fitnesses f1 and f2, the mean squared errors of P ′2(α, ω) and P ′2(α, t) are added to their
corresponding measured traces as f1 =

∑

α MSEα,temp and f2 =
∑

α MSEα,spec, resulting
in two overall fitness “dimensions” which were both to be minimized. The non-dominated
sorting algorithm performs the ranking according to the degree of non-domination and
crowding distance. Afterwards, the 12 most fit individuals (from the 40 original) are
deterministically selected (in the order how they were sorted), undergo crossover in order
to produce 40 new offspring for the next iteration, which then are mutated. If a sufficient
coincidence or a fixed number of generations is reached, the algorithm finishes and yields
the output filter H̃sol(ω).
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Figure 9.7: SFG-CC (a) and spectral intensity (b) projections to various angles serve as
input for the algorithm, showing a waveform consisting of four, parametrically generated
sub pulses.

9.3.5 Quadruple pulse retrieval

To demonstrate that the method is functioning as intended and there is enough
information contained in the projections, a previously known waveform is retrieved,
which is a parametrically constructed quadruple pulse. It consists of four sub pulses
which features different intensities, distances, polarization states, and zero order
phases; including an overlap of the chirped and the circular pulse.

Fig. 9.7 states the input for the algorithm in the time (a) and frequency (b)
domain. The respective traces serve as reference in order to calculate the mean
squared error of the current individual’s temporal and spectral projections, whereby
the projection spectral intensities (b) show to be highly structured.

Fig. 9.8 shows the result of the retrieval, which was obtained after 5000 itera-
tions8. The straight line represents the original parameter courses over time, and the
dashed lines the retrieved values. Graph (a) shows the temporal intensity, (b) the
ellipticity Hba, (c) the major axis angle β/2, (d) the helicity, and (e) the sum-phase
φsum = φx + φy, where the linear chirp of one of the sub pulses can be qualitatively
spotted as a quadratic shape. A very good agreement could overally be obtained
even with the reduced sampling; it is also apparent that the coincidence scales with
intensity. The helicity could be well recovered for all states which were not too close
to linear polarization. The result for the sum-phase (e) is not unambiguous, it bears
a constant phase offset which is of no practical consequence for non phase-stable
laser systems, and was manually adapted for the comparison.

Retrieval course. It is interesting9 to observe the multi-objective algorithm’s be-
havior during the run and to point out features which enables it to treat the two
goals fairly.

Fig. 9.9 shows the changing internal states over generation for the quadruple
pulse retrieval. In (a), the progress for the two individual goals f1 (temporal fit/
black) and f2 (spectral fit - red/ gray) is shown. The risk that scalarization methods
face, namely favoring one goal over the other, does not apply due to non-dominated

8about 40 minutes of computing time on an AMD Athlon XP 2200+
9in anticipation of upcoming experiments
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Figure 9.8: Target and retrieved pulse form, using only spectra and SFG-CCs.
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Figure 9.9: Inner work-
ings of the retrieval algo-
rithm. (a) Evolution of
the two respective goals f1

(SFG-CCs) and f2 (spec-
tra); (b) shows the relative
progress in fitness relative
to 20 generations before.

sorting, which can also be seen by the fact that the SFG-CC fits f1 improve con-
siderably at the beginning, while having lower (arbitrary) values than f2. In Graph
(b), the initial, relative progress of the two goals relative to the values 20 genera-
tions before (averaged over three generations) is depicted. The graphs illustrate an
important feature of a multi-objective algorithm, a “sacrifice” of one progress rate
towards another; whereby the progress of one goal comes to halt or even deteriorates,
in order to allow the other to “flourish”.

9.3.6 Experimental pulse retrieval

Finally, an experimental demonstration incorporating, unfortunately, only four SFG-
CCs and spectra10 is presented. It shows a successful convergence to all four spectral
and four temporal goals under experimental, noisy conditions, without claiming a
successful retrieval of the helicity and phase.

The experimental pulse retrievals (see Fig. 9.10) showed no particular degra-
dation of fit quality by typical measurement noise, as an evolutionary algorithm
innately can overcome noise to a certain degree. The individual fit results after
13000 generations showed a good convergence for all input angles (-20◦, 0◦, 45◦, and
90◦) when comparing the SFG-CCs (left column) and spectra (right column).

10as it was still not yet clear at the time of data acquisition that more that four spectra would
be necessary for a reliable retrieval
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Figure 9.10: Retrieval of an experimentally generated pulse form. Left column: SFG-
CCs, right column: spectral intensities; green/dashed lines: targets, straight lines: re-
trieval results. Top to bottom: -20◦, 0◦, 45◦, and 90◦ projections.

9.4 Summary and Outlook

In this chapter, a method capable of fully retrieving polarization shaped pulse forms
which does not require an interferometric detection, was presented. A retrieval for
a complex pulse shape demonstrated that there was enough information embedded
in a set of cross-correlations and spectra for this task. From an experimental point
of view, it is not too costly (a set of SFG-CC traces and spectra - behind a polarizer
- have to be measured), and the computational effort employing a multi-objective
evolutionary algorithm is also manageable, as such algorithms are widely (and freely)
available [172, 173, 174].

As for an outlook, multi-objective algorithms, to the author’s knowledge, are not
used in femtochemistry experiments so far11, only scalarization methods seem to be
employed on a regular basis [55, 85, 86, 87, 88, 89] but carry with them the prob-
lems which non-Pareto approaches bring along, which were discussed throughout

11only a draft of a theoretical study [91], and analysis of RAMAN-spectra [175] could be found
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this work. Using Pareto-methods and employing multi-objective algorithms instead
would allow to perform experiments with the advantage not only not to be both-
ered with objective weightings, but also obtaining a set of solutions that can shed
light onto the causes that underlie processes and allowing to investigate correla-
tions between conceptually arbitrary aims. That way, a systematic assignment how
specific features favor or facilitate certain goals could be conducted. For example,
the relation between ionization versus ionization plus fragmentation of molecular
systems could be studied in order to find a Pareto-optimal front which contains
pulse forms that could comprise features (sub pulses, polarization states, peaks in
spectra, etc.) which could be traced along the front in order to find a decisive fea-
ture change leading to the different molecular dynamics. For example, the issue
of fragmentation of more complex molecules into various daughter ions could be
explored in a systematic way - even with a higher dimensionality - by optimizing
three or more fragments (with perhaps even different isotopic masses) simultane-
ously. Furthermore, the shape of the Pareto-optimal front itself could be used to
study (non)linearities of the involved processes.


