
Chapter 7

Parametric polarization pulse shaping

So far, this thesis described experiments with femtosecond pulses that were linearly
polarized; for the following chapters, light fields with varying polarization states on
a fs-timescale will be employed. Coherent control can benefit greatly if the vectorial
nature of light is considered, as molecular transition dipole matrix elements contain
the scalar product µ ·E. Polarization pulse shaping is still a young, emerging topic
in the field of femtochemistry; the contribution of this thesis will be to study the
means of two recently developed pulse shaper setups in the time domain and to apply
and optimize parametrically shaped polarization pulses on the model system NaK.

7.1 Mathematical tools

7.1.1 Jones Formalism

The Jones formalism, using vectors to represent coherent light fields and matrices
for optical elements, is an elegant and practical approach for describing polarized
light. As a transverse wave, light can be separated in two perpendicular components

E =

[

Ex

Ey

]

= E0 · ei(kz−ωt). (7.1)

The complex vector E0 is called the Jones vector [135] and can be separated in
amplitude and phase1

E0 =

[

a · eiϕx

b · eiϕy

]

. (7.2)

Jones vectors are often used in a normalized form. For polarized light, the phase
difference ε = ϕy − ϕx and the field amplitudes determine the polarization state.

Linearly polarized light, for example, is written in the normalized form as P =

[
1
0

]

,

when horizontally polarized. General, elliptically polarized light is stated as

1√
A2 +B2 + C2

[

A
B ± iC

]

1when the slowly varying envelope approximation can be applied
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where + stands for right-handed elliptical and − for left-handed elliptical light,

with the special case of circularly polarized light

[
1
±i

]

. Linear transformations

of polarized light (carried out by optical elements) can be written [136] as a 2 × 2
matrix L, transforming a light field stated by a Jones vector J by

LJ =

[

l11 l12
l21 l22

]

J = J ′ (7.3)

to become the new state J ′. For a sequence of linear optical elements in the order
1, 2, · · · , K, a compound matrix can be written in the order

L = LK · · ·L2 · L1. (7.4)

For example, a linear polarizer at an angle of θ looks like

Lpol(θ) =

[

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

]

(7.5)

and a (counter-clockwise) rotation of a Jones vector by the angle of θ can be ex-
pressed by the matrix

Lrot(θ) =

[

cos θ − sin θ
sin θ cos θ

]

. (7.6)

A half-wave plate is capable of such a transformation and rotates the polarization
by twice the difference between the orientation of the polarization and the angle of
the fast axis. The general form of a phase retarder with an optical axis angle of θ
that enacts the retardance φ an be stated as

LPR(φ, θ) =

[
eiφ/2 cos2 θ + e−iφ/2 sin2 θ (eiφ/2 − e−iφ/2) sin θ cos θ
(eiφ/2 − e−iφ/2) sin θ cos θ eiφ/2 cos2 θ + e−iφ/2 sin2 θ

]

. (7.7)

A dual-array liquid crystal modulator consists of two (arbitrary) phase retarders
which independently exert φa and φb. With optical axes aligned at ±45◦ it can
be written as LPR(φa, 45◦) · LPR(φb,−45◦). With a horizontally, linearly polarized
input pulse P , the dual array modulator gets the form

Ldual(φa, φb) = e
i
2
(φa+φb)

[
cos φa−φb

2
i sin φa−φb

2

i sin φa−φb

2
cos φa−φb

2

]

(7.8)

whereby the common phase term e
i
2
(φa+φb) must not be neglected (as it is common

for Jones formalism) if pulse shaping is to be conducted where different frequencies

receive different retardances. A 0◦ aligned polarizer

[
1 0
0 0

]

placed after the two

arrays results in

Lph+amp = e
i
2
(φa+φb)

[

cos
(

φa−φb

2

)

0

]

, (7.9)
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Figure 7.1: Ellipse encoding parame-
ters. The bounding box halves a and b
represent the temporal (or spectral) am-
plitudes in the laboratory system, Hb

and Ha are the semi-minor and semi-
major axes, respectively, β/2 is the ma-
jor axis angle.

which describes the phase- and amplitude shaper (Eq. 3.3) used for the previous
chapters. This also means that it can be easily transformed into a phase-and-
polarization capable setup, just by removing the polarizer. Before performing pulse
shaping using the above described formalism, a few words on how to transform arbi-
trarily oriented ellipse parameters to amplitudes and phase shifts in the laboratory
system.

7.1.2 Ellipse parameters

For a given laboratory system, a bounding box can be drawn around a general
ellipse (Fig. 7.1). The relative phase shift ε determines the shape of the ellipse
for a given bounding box, similar to how Lissajous figures are constructed. The
ellipse parameter set E is stated as: {I, Hba, β/2, hel}, whereby I is the intensity,
Hba = Hb/Ha the ellipticity2, or aspect ratio (which is the ratio of minor to major
axis), major axis angle (counter-clockwise from the x-axis), and hel as the helicity
can also be expressed by the parameters from set B: {a, b, ε}.

A transformation can be performed by comparing the coefficients of the equations
which describe the respective ellipses in both sets, as

[x cos β
2

+ y sin β
2

Ha

]2

+
[y cos β

2
− x sin β

2

Hb

]2

= 1, (7.10)

or alternatively,

x2
(cos2 β

2

H2
a

+
sin2 β

2

H2
b

)

+y2
(cos2 β

2

H2
b

+
sin2 β

2

H2
a

)

+2xy

(

cos β
2
· sin β

2

H2
a

− cos β
2

sin β
2

H2
b

)

= 1,

(7.11)
and (x

a

)2

+
(y

b

)2

− 2xy cos ε

ab
= sin2 ε, (7.12)

which also can be written as

x2 ·
( 1

a sin ε

)2

+ y2 ·
( 1

b sin ε

)2

− 2xy · 1

a b
· cos ε

sin2 ε
= 1. (7.13)

2an alternative definition of ellipticity corresponds to the “flattening”, defined as (Ha−Hb)/Ha
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For the transformation, Eq. 7.13 and Eq. 7.10 must be equal, meaning also the
three coefficients x2, y2 and 2xy must be equal:

1

a2 sin2 ε
=

cos2 β
2

H2
a

+
sin2 β

2

H2
b

(7.14)

1

b2 sin2 ε
=

cos2 β
2

H2
b

+
sin2 β

2

H2
a

(7.15)

cos ε

sin2 ε
· 1

a b
= cos

β

2
sin

β

2
·
( 1

H2
b

− 1

H2
a

)

. (7.16)

Transformation B → E The last equation can also be written as

cos ε

sin2 ε
· 2

a b
= sin β

( 1

H2
b

− 1

H2
a

)

. (7.17)

Eq. 7.14 + Eq. 7.15 equals

1

sin2 ε

( 1

a2
+

1

b2

)

=
1

H2
a

+
1

H2
b

(7.18)

and Eq. 7.14 - Eq. 7.15 gives

1

sin2 ε

( 1

a2
− 1

b2

)

= cosβ
( 1

H2
a

− 1

H2
b

)

(7.19)

Eq. 7.17 / (Eq. 7.14 - Eq. 7.15) eliminates Ha and Hb:

2ab cos ε = (a2 − b2) tanβ. (7.20)

Solving (Eq. 7.18 + Eq. 7.19) - which eliminates Hb results in

H2
a =

2a2b2 sin ε

a2 + b2 + (b2 − a2)/ cosβ
, (7.21)

similarly, H2
b yields

H2
b =

2a2b2 sin ε

a2 + b2 + (a2 − b2)/ cosβ
. (7.22)

Eq. 7.20 can be used to eliminate β using the relation cos(arctan ζ) = 1/(
√

1 + ζ2),
so for the individual ellipse major axes

Ha,b =

√
√
√
√

2a2b2 sin2 ε

a2 + b2 ∓ (a2 − b2)
√

1 + 4a2b2 cos2 ε
(a2−b2)2

, (7.23)

using − for Ha and + for Hb. The major axis angle β/2 becomes

β

2
=

1

2
arctan

2ab cos ε

a2 − b2 (7.24)

whereby for cases when a2 − b2 < 0, π/2 has to be added to β/2, and the intensity
is simply I = a2 + b2.
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Transformation E → B The inverse transformation eliminates a and b from the
equation set 7.14 - 7.17 and is of practical importance when an electrical field has
to be constructed from temporally varying angles, ellipticities, and intensities. The
bounding box diagonal (see Fig. 7.1)

χ =
1

2
arccos [cosβ cos (2 arctanHba)] (7.25)

can be used to derive the field amplitudes a and b, employing the intensity I as

a2 = I cos2 χ
b2 = I sin2 χ

.

The phase shift between the x- and y-component can be derived by eliminating a
and b from the component comparison 7.14 - 7.17, leading to

ε = ± arctan
tan (2 arctanHba)

sin β
, (7.26)

where the sign has to be selected for left (-) or right handed (+) polarized light. To
yield a continuous ε, π has to be added if the major axis angle β/2 is situated in the
second or fourth quadrant. To recreate the electrical field, the phase sum ϕsum =
ϕx + ϕy is an easy-to-handle parameter as ϕx = 1

2
(ϕsum − ε) and ϕy = 1

2
(ϕsum + ε),

and is also sufficient to fully determine an electrical field when the fast oscillating
part is incorporated.

7.1.3 Parametric polarization transients

A polarization state is denoted by the phase shift between the x and y component
of the electrical field (Eq. 7.2).

For a demonstration, a double pulse3 is constructed by superposing temporal
fields like

Eout(t) = E1(t) + · · ·+ EN(t) (7.27)

whereby one sub pulse has the same zero order phase for both field components, and
for the other4 the field components differ by π/2, which is shown in Fig. 7.2 (a).
Fig. 7.2 (b) shows the electrical field vector, visualized in a three-dimensional way,
whereby the projections to the walls are identical to the constituting fields (a). The
sub pulse having equal x- and y-intensities and no relative phase shift results in a
linearly polarized pulse, tilted by 45◦. The sub pulse with a π/2 relative phase shift
yields a circular pulse, where the rotational direction (helicity) of the field vector
can be tracked by following the field lines in time (see arrows). Fig. 7.2 (c) shows
the spectral amplitudes of the x- and y-component5 and shows that the spectra are
shifted with respect to each other. It is obvious that in order to create complex
temporal fields by superposition, the common phase offsets of x- and y-fields must
not be omitted like for the normalized and phase-stripped Jones formalism. The

3λ0=800 nm, ∆λ=100 nm, ∆tFWHM=9.47 fs
4similarly seen in the third row of Fig. 6.5
5which are similar to Fig. 6.5 where different b0’s were applied
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Figure 7.2: Simulation of a linear (45◦) / circular double pulse sequence, (a) with a
simulated electrical field, (b) as 3D representation including the field projections, and (c)
as the spectral amplitudes.
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phase of a non-vanishing component can be chosen to act as an absolute reference
allowing to define a difference phase ε = ϕy − ϕx for every point in time. For this
work, the x-axis chosen, which means that the zero order phase for the x-component
stays unchanged (b0x = b0) and only the y-component is shifted to obtain a polarized
field (b0y = b0+ε). The calculation of a filter function to obtain a field with a varying
polarization from a linearly polarized input field Ein(ω) does not differ in essence
from the respective calculations for linearly polarized pulses. Following the steps
from Section 6.3.1, a general superposition of, this time, N vectorial fields in the
frequency domain can be expressed as

Eout(ω) = E1(ω) + · · ·+ EN(ω) =
∑

N

EN(ω) = Ein(ω) ·
∑

H̃N(ω), (7.28)

similar to Eq. 7.27. The vectorial filter function H̃N(ω) (the filter for one sub pulse)
is factorized in

H̃N(ω) =

[
RN,x(ω) · eiφN,x(ω)

RN,y(ω) · eiφN,y(ω)

]

(7.29)

and, similarly, the sum of all N sub pulse’s filter functions yield a total filter

H̃(ω) =
∑

N

H̃N(ω) =

[
Rx(ω) · eiφx(ω)

Ry(ω) · eiφy(ω)

]

(7.30)

which can optionally be transformed to the time domain

h̃(t) =
1

2π

∫

dωH̃(ω)eiωt (7.31)

in order to create temporal fields as

Eout(t) = Ein(t) ·
∑

h̃N (t). (7.32)

From Eq. 7.30 it becomes clear that a pulse shaper setup which fully controls the
phase, amplitude, and polarization must be capable of independently modulating
the x- and y-field component’s phase and amplitude.
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Figure 7.3: (a) Poincaré sphere, extended by employing the intensity as radial component
r = I in order to visualize temporally changing polarization states. (b) The T-shaped
path below the surface represents a temporally separated triple pulse, evolving from right-
circular →linear/0◦ →left-circular. The sectional planes and the dashed cross are used to
point out a particular detail on the path.

7.1.4 Extended Poincaré representation

The Poincaré sphere representation (see Fig. 7.3 (a)) is a useful way of visualizing
polarization states [137]. A state is mapped on the surface of a sphere, whose co-
ordinates are closely related to the ellipse parameters. To cover all of the sphere,
the major axis angle times two, β, corresponds to the longitude and the ellipticity
determines the latitude6 as θ = ±2 arctanHba, where − stands for right-handed light
(southern hemisphere) and + for left-handed light (northern hemisphere). Polariza-
tion states which change in time (or in the frequency domain) can be represented as
paths on the sphere, with additional temporal/spectral markers. The development
of femtosecond pulses on the Poincaré sphere was treated in detail in Ref. [138],
where also the temporal derivatives, which represent the maximal “speed” on the
sphere, were derived.

However, the parameters discarded for the usual representation are intensity
and phase. For this work, the intensity I will be incorporated to the description by
representing the radial component. The transformed paths now, mostly, lie inside
the sphere when the maximal temporal intensity is normalized to lie on the surface.
For a better visualization, a transparent sphere (see Fig. 7.3 (b)) is drawn for this
thesis, with additional sectional planes and a cross-like cursor (dashed) to indicate
the point of interest. The depicted sphere has an embedded T-shaped path, which
corresponds to a triple pulse which starts at zero intensity, becomes right-circular
at t=-200 fs, decreases to zero intensity again, changes into to a linear pulse at t=0
fs at 0◦, then again passes zero intensity, and finally becomes left circular (t=200 fs)
before vanishing at the center of the sphere, where I = 0. The chosen representation
is also useful for experimental reasons when noisy signals have to be visualized, as in

6for 0 < Hba < 1
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a pure surface depiction every point in time corresponds to one point on the sphere,
no matter how low the intensity is and how noisy the corresponding polarization
states are.

7.2 Historical perspective

Experimental polarization pulse shaping can be seen as the effort to construct setups
that enact setup-dependent filters H̃(ω) upon light fields in order to obtain control
over polarization transients. Until today, there has been a steady improvement of
the first pulse shaper setups capable of addressing the polarization. Historically, the
first publication carrying out polarization shaping with liquid crystal modulators
was published by Wefers and Nelson in 1995 [16]. They used a newly developed
dual array modulator with two independently controllable arrays, arranged in a
±45◦ fashion (which corresponds to Ldual - Eq. 7.8), and was capable of producing
polarization ellipses with restricted major axis angles. Their setup, a 4-f config-
uration with 1800 lines/mm gratings caused a very strong polarization dependent
diffraction efficiency, with an y-reflectivity of <1%.

A solution to the grating problem was presented by Gerber/Brixner six years
later [17] by placing glass plates at the Brewster angle in the beam in order to di-
minish the more intense component to match the weaker one, with an additional
total loss due to the added material. Their “equalized” polarization setup was the
first to be employed in a coherent control experiment of this type, optimizing the
ionization efficiency of potassium molecules [139], resulting in an improved opti-
mization factor compared to phase-only modulation. This setup was also utilized
by other groups to experiment on aligned iodine molecules [140] or to control the
angular momentum distribution in atoms [141]. A more recent study on controlling
nano-structures with polarization shaped pulses [142] uses so-called volume phase
holographic (VPH) gratings [143, 144] which have a greatly reduced polarization
dependent reflectivity for a given central wavelength.

In the field of fiber optics, transformation of polarization states using three subse-
quent nematic crystal cells aligned at 0◦/45◦/0◦ [145] could be successfully employed
to compensate for polarization-mode dispersion (PMD) and polarization dependent
loss (PDL), which are bottlenecks in high-speed optical telecommunication systems.
Such setups consist of three sequential cells, which are able to transform arbitrary
input polarization states into any output state. A double-layer LCM was used in a
90◦/-45◦ arrangement in Ref. [146] which allowed to compensate for PMD and PDL
within a certain wavelength range.

For pulse shaping, a major improvement was made recently by Polachek et al.
[19], who sequentially combined a standard double array modulator, with a single
array modulator which enabled the polarization ellipse’s major axis to be rotated
freely in the spectral domain.

7.3 Serial setup

The polarization setups known from literature still leave room for improvement,
due to their inability to manipulate the spectral amplitude, ruling out full control of



72 Parametric polarization pulse shaping

Figure 7.4: Serial setup which modulates phase, amplitude, and polarization in a double-
pass configuration. Left bottom insets: sketches of achievable polarization ellipses, which
are also scalable by amplitude modulation.

the electrical field. This shortcoming is addressed by two new polarization shaping
setups (nicknamed “serial” and “parallel” setup) which were co-developed with M.
Plewicki [28] and F. Weise [147] in the frame of this work. M. P.’s work focuses on
the shaper’s properties and capabilities in the frequency domain; in this thesis, the
time domain is emphasized.

The serial setup is a double-pass configuration, effectively employing four liquid
crystal arrays, and the input pulse travels twice through the SLM-640 (which is
spacious enough to allow aligning such a beam path), as outlined in Fig. 7.4. The
beam path is indicated by the arrows, whereby first, the “lower” part is traversed.
When the pulse leaves the pulse shaper for the first time, it passes through a hor-
izontally aligned polarizer which enacts the amplitude modulation, the possibility
to additionally modulate the phase in the first pass was not incorporated. Then,
the pulse is sent back through the shaper for a second time when the phase and
polarization are modulated. The insets in Fig. 7.4 shows the possible spectral po-
larization states, with the major axis of the resulting spectral ellipses pointing either
in x- or y-direction. The first-pass amplitude modulation can be employed to scale
the ellipse’s area while upholding its aspect ratio.

The serial setup, as an optical element, can be described by a sequence of Jones
matrices using Eqs. 7.8 and 7.5 as

Lser = Ldual
︸ ︷︷ ︸

second pass

·Lpol(0
◦) · L′

dual
︸ ︷︷ ︸

first pass

. (7.33)

The complex, vectorial output field of the serial setup is therefore
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[
Eout,x

Eout,y

]

= Ein(ω) R(ω)
︸ ︷︷ ︸

amplitude

e
i
2
(φa(ω)+φb(ω))

︸ ︷︷ ︸

phase

[

cos φa(ω)−φb(ω)
2

i sin φa(ω)−φb(ω)
2

]

︸ ︷︷ ︸

polarization

= Ein(ω) · H̃ser(ω).

(7.34)
which can also be written as the effect of a complex, vectorial filter function Hser(ω)
on a given linear input field. In the equation, Ein(ω) is the linearly polarized input
pulse and φa(ω) and φb(ω) are the frequency dependent phase retardances induced by
the second pass. The first-pass amplitude modulation is collected in the term R(ω) =

cos
φa′(ω)−φb′ (ω)

2
with φa′(ω) and φb′(ω) being the respective first-pass retardances.

Depending on the difference retardance, defined as ∆φ = φa − φb, for this work,
the respective frequency component consists of either left (sin ∆φ

2
< 0) or right

(sin ∆φ
2
> 0) handed, polarized light.

7.3.1 Grating effects

To overcome the orientation dependent reflection effectivity of the employed gratings
using the first-pass amplitude is a practical advantage; overcoming the need for
additional elements like glass plates at the Brewster angle [148] which reduces the
output power significantly and introduces a wavelength dependence7, or transparent
holographic gratings [143, 144, 142] which are expensive and also have an efficiency
drop off the custom-tailored wavelength.

Ellipticity selector. An ellipticity (minor to major axis ratio) “selector”, as shown
in Fig. 7.5 (b) can be useful for cases where symmetrical pulses forms are not
required. Finding the right ellipticity can be achieved by using the look-up table
∆φadapt =

√

Px/Py, drawn in Fig. 7.5 (b). For example, if a circular polarization is
required (dashed lines), the experimentally obtained value would be ∆φadapt= 0.518
π instead of 0.5 π.

Amplitude as grating correction. As the ellipticity depends on the difference
retardance, the precompensation in the first pass must be performed according to
∆φ of the second pass. This can be done either for all pixels simultaneously for
unshaped pulses, or on a pixel-per-pixel basis, if more complex waveforms are to be
produced8. The grating efficiency can be determined by recording the output power
while scanning the difference retardance ∆φ of the two arrays (denoted as PWO). To
obtain the correction function it is enough to invert and then normalize PWO(∆φ)
in Fig. 7.5 and use it as a look-up-table9 for every pixel. The obtained table F (∆φ)
then provides corrective factors to be multiplied with the respective transmission
values which are to be applied.

7due to the wavelength dependent Brewster angle, causing a changing attenuation over larger
bandwidths

8such as Fig. 7.11
9an analytical function is derived in Ref. [28]
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Figure 7.5: (a) Grating efficiency scans (taken from [28]), and ellipticity selector (b) for
equalizing the grating effect. With 600 lines/mm gratings, the differences are only about
15 % when placing an x- or y-oriented polarizer after the shaper setup (lines labelled Px

and Py). PWO is a scan performed without polarizer.
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7.3.2 Temporal pulse forms with the serial setup

The two questions: “what can I do with the serial setup” and “how can I construct
a desired waveform with the serial setup” have to be treated separately and with
some creativity, because an analytical inversion of Eq. 7.34 (which would answer
the second question) is not physically feasible, as will be shown next.

When comparing H̃ser(ω) from Eq. 7.34 to the general solution Eq. 7.30 it
becomes obvious that the serial setup does not provide absolute control over phase,
amplitude, and polarization. First of all, the amplitude filter R(ω) from Eq. 7.34
does not fulfill the “vectorial” nature from Eq. 7.30, it can be looked upon as scalar
multiplier to the input pulse’s envelope. The terms which determine the polarization

[
cos φa−φb

2

i sin φa−φb

2

]

(7.35)

are coupled in x and y-direction which means there can be no independent, orthogo-
nal polarization manipulation. The imaginary unit in the y-component furthermore
locks the phase difference between the components to ±90◦, leading to fixed ma-
jor axis angles with 0◦ and 90◦, which becomes apparent when comparing with the

general form of the Jones vector

[
A
±iB

]

of such polarization ellipses.

Inverting the Serial Setup Equation. With the described limitations of the serial
setup the question arises which kind of temporal pulse forms are feasible. A calcu-
lation should start with the desired field Eout and must result the retardances φa

and φb, and the first-pass amplitude R(ω). Without further considerations, one can
start by solving the equation set Eq. 7.34 for the retardances φa and φb. Assuming
the retardances φ are complex, the general solution is

φ̃a(ω) = −i ln Eout,x(ω)+Eout,y(ω)

R(ω)Ein(ω)
= −i ln H̃x(ω)+H̃y(ω)

R(ω)

φ̃b(ω) = −i ln Eout,x(ω)−Eout,y(ω)
R(ω)Ein(ω)

= −i ln H̃x(ω)−H̃y(ω)
R(ω)

. (7.36)

Practically, a single liquid crystal element can not produce an imaginary retardance,
therefore, the general solution is experimentally not feasible. There is a procedure
in the literature [149, 150] describing an experimental feedback routine to obtain
customized polarization profiles which, however, is time-consuming and seems un-
feasible for this work, as the intended integration of tailored pulse shaping into an
evolutionary algorithm demands that a few thousand pulse forms have to be tested
within a limited time frame. Using only the real parts of the retardances

φ(ω)a,b = ℜ
[

−i ln Eout,x(ω)±Eout,y(ω)

R(ω)Ein(ω)

]

= ℜ
[

−i ln
(

H̃x(ω)± H̃y(ω)
)]

(7.37)

is experimentally feasible, but has of course consequences to the obtained field.
The advantage is that this step allows to eliminate R(ω) from the equation as it
comprises a purely imaginary contribution, which, for practical purposes, provides
some freedom in choosing an amplitude.
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Photomultiplier

Waveplate

Delay

BBO

Figure 7.6: TRE-like detection
scheme for polarized pulse forms,
which are rotated by a λ/2-wave
plate and then overlaid with a refer-
ence pulse in a BBO crystal in order
to obtain a set of SFG-CC traces for
different angles.

With Eq. 7.37 it is possible to calculate the frequency dependent retardances
φa(ω) and φb(ω) obtained for a desired field Eout. The result is, however, a different
field E′

out

[
E ′

out,x

E ′
out,y

]

=
1

2
Ein(ω)R(ω)

[

eiℑ[ln(H̃x−H̃y)] + eiℑ[ln(H̃x+H̃y)]

eiℑ[ln(H̃x+H̃y)] − eiℑ[ln(H̃x−H̃y)]

]

(7.38)

where ℑ stands for imaginary part. It is still possible to preselect an adequate
E(ω), which needs only real valued retardances; such fields are, however, strongly
restricted10. In the following, fields which were experimentally generated using the
feasible solution of Eq. 7.37 will be discussed.

7.4 Experimental realization

With all mathematical tools in place, in the following, a range of experimentally ob-
tained polarization pulses will be presented and the procedure to measure, retrieve,
and visualize customized polarization pulse shapes will be explained in a step-by-
step manner. For the analysis, double pulses11 with intended ∆t = 500 fs, consisting
of a 90◦-linear pulse at t0, followed by a circular pulse at t1 will be generated by the
serial setup, for now, without employing the first-pass amplitude.

7.4.1 Pulse detection

For acquiring the polarization transients, the same detection setup as described
in Sec. 3.4 with sum-frequency generated light from a polarization selective (due
to phase matching conditions) BBO crystal is employed. The new element used
to characterize the polarization is a half-wave plate to rotate the polarized pulse.
The technique to measure an array of SFG-CCs is similar12 to TRE (time resolved
ellipsometry) [151]. The more SFG-CCs are recorded within a reasonable angular
range [-90◦,90◦] the more exact the retrieval will be, although three projections
(points) are sufficient to determine the shape (but not the helicity) of an ellipse. The
most sensitive parameter to measurement noise is the ellipticity, if the polarization
state is near-linear and the intensity is low. An array of SFG-CC traces will be used

10one example will be discussed later in Fig. 7.17
11R2

1 = R2
2, at λ0=790 nm and a FWHM of 25 nm, no amplitude modulation was yet applied,

using the grating equalizing described in Sec. 7.3.1
12without the additional recording of all the traces through a quarter wave plate to determine

the helicity
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Figure 7.7: Fitting angle de-
pendent projection intensities
(see Eq. 7.39); demonstrated
for two points in time of the
pulse shown in Fig. 7.8. To
avoid negative intensity val-
ues, as occurred at t0=65 fs
(quasi-linear, dashed line), a
higher weight can be given to
the lowest points for the fit.
Curve (b) at t1=574 fs (straight
line) shows a near-circular state
(Hba=0.893).

to plot the temporal course of the ellipticity Hba(t), major axis angle β(t)/2, and
total intensity I(t).

7.4.2 Ellipse parameter fits

The squared projection of a polarization ellipse to a particular angle can be deter-
mined13. The calculation for set B: {a, b, ε} will be given in Sec. 9.3.1 having a
sinusoidal angular dependence

ISFG(α, t) = a0(t) + a1(t) · sin (2α + a2(t)), (7.39)

with α as the angle of the projection, a0 as the sine offset, a1 as the multiplier, and
a2 as the phase shift.

Fig. 7.7 shows the angular dependence of the intensity for two points in time,
where at t1=574 fs the amplitude of the sine is quite small, resulting in a near-
circular pulse. At t0=65 fs, a quasi-linear polarization state is measured, with the
additional problem that the fit curve reaches negative intensities. As the ellipticity is
defined as the square root of the ratio of the minimal to maximal value, the problem
arises how to reliably determine near-linear states. A way of dealing with this issue
is using different fit weightings, favoring the data points with lower values. If the
weighting fails, data processing of particularly difficult regions might be necessary,
including (in order of preference): low pass filtering (FFT smoothing), a lower cutoff
(eliminating negative signals), a baseline offset, slight pulse-peak centering (of the
order of a few femtoseconds), artificial noise, and a weighting of the highest values.

7.4.3 Fit coefficient transcriptions

The linear and circular nature of the main pulses (at t0=65 fs and t1=574 fs) can also
be made out from the SFG-CC projections in Fig. 7.8 (a), whereby the linear pulse’s
SFG-CC shows one trace that reaches near-zero intensity, and for the supposed
circular pulses, all traces overlap to a good degree which, except for the side pulse

13a detailed derivation for set E is provided by Ref. [28]
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Figure 7.8: Double pulse with an intended ∆t=500 fs. (a) SFG-CC measurements from
0 to 90◦ in steps of 8◦, (b) results for the parameters a0, a1, and a2 for the sine-fit (using
Eq. 7.39), (c) fit mean squared error, (d) resulting polarization ellipse parameters, using
the transcriptions of Eq. 7.40.
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at t=-408 fs, is a good agreement with the desired pulse form. The result of fitting
the traces using Eq. 7.39 is displayed in Graph (b), displaying a0(t), a1(t), and
a2(t). Graph (c) provides the fit mean squared error, which can be used to assess
the reliability of particular points in time.

To uniquely transform the fit parameters to ellipse parameters, and restrain them
to the ranges Hba : [0, 1] and β/2 : [−90◦, 90◦], the following transcriptions (using
the auxiliary variables η1 and η2) are to be carried out.

η1 =

√

a0 − |a1|
a0 + |a1|

(7.40)

η2 =

{
a2 a1 < 0
a2 + π a1 ≥ 0

β/2 =

{
1
2
(π

2
− η2) η1 ≤ 1

−1
2
η2 η1 > 1

Hba =

{
η1 η1 ≤ 1
1/η1 η1 > 1

I = 2a0

The above stated conversions lead to the final, temporal parameter courses, plotted
in Fig. 7.8 (d). The intensity is still convoluted with the reference pulse which
broadens it in time; this could for example be addressed by deconvolution14. The
angles for the linear pulse at t0 (desired 90◦, measured 82.7 ◦) and ellipticities (min-
imal Hba < 0.021) were at a quite good agreement, the same can be said for the
circular pulse at t1= 574 fs (maximal Hba=0.893 at -20◦). The side pulse at t=-408
fs has 1/4 of the main, linear pulse’s intensity and lies at 16.9◦ with an Hba of 0.65.

7.4.4 3D amplitude/Poincaré representation

A pulse form can be represented as a path in the extended Poincaré description (see
Sec. 7.1.4). To point out the two main pulses and one side pulse, three spheres
are plotted with identical paths, but with different sectional planes that mark the
corresponding sub pulses (Fig. 7.9 (a)-(c)). The ideal case for the linear/circular
double pulse would be a watch-hand like path15 starting at the sphere’s center; where
one finger (representing the linear pulse) points at the equator (at 0◦ latitude), and
the other straight to the north pole. As the helicity was not explicitly determined
(only implicitly, by incorporating it to the desired pulse form), the respective trails
could also be situated in the other hemisphere. The measured path deviates from
the ideal path to some degree and exhibits a shoelace-like form, meaning that the
maximal temporal intensities are reached differently at the rising and falling edges.
The maximal intensity at the peak of the linear sub pulse is marked by an arrow
in Sphere (b). The main circular pulse does not fully reach the surface as it has a

14A method of retrieving deconvoluted intensity profiles using an evolutionary algorithm will be
introduced in Chapter 9.

15similar to the T-shape in Fig. 7.3 (b) without the lower T-bar
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experiment

(d) (e)

(c)(b) t1=574 fst= - 408 fs t0=65 fs(a)

E
x

Ey

t

simulation

Figure 7.9: (a)-(c) Extended Poincaré representation of an experimental ∆t = 500 fs
linear/circular double pulse generated by the serial setup. Sphere (a) indicates the small
sub pulse, (b) highlights the main linear pulse, and (c) the near-circular pulse. Bottom
row: 3D plot of the temporal amplitude (arbitrary colors) where (d) is a simulation and
(e) originates from experimental data. The dashed arrows connect the Poincaré spheres
with the respective sub pulses. The sphere is rotated azimuthally by 180◦ in order to show
the main pulses at the front.
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reduced intensity compared to the linear pulse - see Sphere (c). The side pulse at
t=-408 fs - Sphere (a) - is depicted as a small, upward tail16.

Three dimensional representations of the temporal amplitude (or even the elec-
trical field) are a visually pleasing way of delivering the encoded information. Fig.
7.9 shows a comparison of simulation (d) and measured pulse form (e). To get more
insight, the projections to the respective planes are drawn as black shadows. The
Poincaré representations, marking the sub pulses, are linked to the 3D plots by the
dashed (red) arrows. The simulation (d) (using Eq. 7.38) is very similar to the mea-
sured pulse form in shape. The most significant (visual) difference is the increased
temporal width of the experimental pulses, which is due to the convolution with the
reference pulse, and a higher energy content of the side pulses than the simulation
states. The (larger) side pulses are not an experimental artifact, but have their ori-
gin within the restrictions of the serial setup17. The simulation also shows that the
side pulses alternate in a periodic linear/circular fashion, mimicking the behavior of
the intended main pulses.

7.4.5 Spectral properties

The pulse spectra of a similar, linear/circular double pulse18 with ∆t=400 fs will be
discussed next. The serial setup requires (Eq. 7.34) for every frequency ω

Ex,out(ω)E∗
x,out(ω) + Ey,out(ω)E∗

y,out(ω) = R(ω)Ein(ω), (7.41)

which for the case of no amplitude modulation results in the spectrum of Ein.
This connection is portrayed in Fig. 7.10 with an experimental (a) and a simulated
spectrum (b). The sum-spectra of the two orthogonal components are shown in
the top right insets, which resemble a Gaussian shape, as Eq. 7.41 predicts. The
simulation also incorporates the angle dependent reflection efficiency of the gratings,
as it was not (yet) corrected, it manifests as small dips in the sum-spectra.

7.5 Pulse forms employing amplitude modulation

The new possibilities of the serial setup provided by incorporation of the amplitude
will be demonstrated in the following. First, amplitude modulation will be used to
compensate for the grating effect on a pixel-per-pixel basis (Sec. 7.3.1), later, the
effects of a stronger amplitude modulation will be inspected.

7.5.1 Application of grating precompensation

Fig. 7.11 (a) shows another linear/circular double pulse with ∆t=500 fs, but with
a grating correction transmission mask as pictured in (b). The fence structure orig-
inates from the difference retardance pattern required to create such a pulse, and

16Simulation tells that this particular side pulse has opposite helicity respective to the main
circular sub pulse and should face downwards.

17which will be discussed in detail in Sec. 7.6, Eq. 7.37
18where the linear pulse points towards 0◦, no amplitude modulation was applied, using the

grating equalizing method
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Figure 7.10: Measured
(a) and simulated (b) spec-
tral intensities for a double
linear/circular pulse form
(∆t=400 fs), created without
amplitude modulation. Right-
top insets: sum spectra of the
two orthogonal components.

Figure 7.11: Lin-
ear/circular double pulse
(a) with ∆φ = −0.5π
and ∆t=500 fs, using an
adequate correction pattern
(b) for such a pulse form,
obtained from the lookup-
table created by inverting
and normalizing the grating
efficiency scan PWO from
Fig. 7.5.
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Figure 7.12: Pronounced amplitude modulation for a ∆t = 500 fs linear/circular double
pulse. Graph (a) is the measured, (b) the simulated SFG-CC intensity, with no significant
distortion when the transmission pattern (c) is applied. The curves (d) and (e) are the
measured and simulated spectra; and (f) is the spectrum, which an unrestricted pulse
shaper setup would produce.

was derived from the look-up-table (see Sec. 7.3.1). This way, no ∆φ adaptation
is necessary to create the correct ellipticities, allowing to use the appropriate ∆φ=
π/2 for circular pulses, demonstrating that it is possible to use the amplitude prec-
ompensation method also for more complex pulse shapes.

7.5.2 Sum-intensity amplitude modulation

As the real parts of the retardances (Eq. 7.37) were determined to be independent
of the amplitude R(ω), there is some choice of selecting transmission patterns. From
all the possible patterns, the one which corresponds to the sum-intensity

R2
sumI(ω) = TsumI(ω) =

|Ex,out(ω)|2 + |Ey,out(ω)|2
|Ein|2

(7.42)

was chosen to be tested experimentally. This pattern is related to the waveform as
it incorporates the same amplitude “modulation frequency” as a double pulse of this
distance19.

Fig. 7.12 gives a demonstration for a linear/circular ∆t = 500 fs double pulse;
the transmission pattern which is applied, is drawn in (c). The temporal pulse form
- (a) measured and (b) simulated - is not significantly distorted when comparing to
the amplitude-free cases presented earlier, there is “only” a loss of circularity for the
pulse at t=520 fs, with still all side pulses present. The intensity sums of the two

19see also Fig. 6.5, third row
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perpendicular component spectra do no longer match the input pulse’s shape alone,
but are modulated with the transmission pattern.

Involving the amplitude can be seen as a step towards an unrestricted setup
which is able to invoke the filter from Eq. 7.30 (which would also produce a side
pulse-free temporal pulse form), depicted in Graph (f). The unmodulated Gaussian
shape for the y-component (gray) originates from the orthogonality of the linear
pulse for this component. As it lies in the x-plane, it has no component in y, and
therefore causes no spectral interference. Comparing (e) and (f) and the amplitude-
unmodulated case from Fig. 7.10 (whose sum-intensity must yield a Gaussian for
every frequency), the advantages of the serial setup become more transparent as the
applied transmission reduces the picket-structure of the y-component, letting it look
like more like the unrestricted case.

7.6 General temporal pulse forms with the serial setup

The serial shaper’s capabilities to create more general temporal pulse forms will
be studied in the following. Spectral restrictions do not prohibit interferences of
different pixels/frequencies to other states when rejoined in the time domain [148].
This effect is abundantly utilized in the literature while performing free optimization
experiments which result in very complex waveforms in time [139, 142]. As it is the
focus of this work to generate custom-tailored pulse forms, a study of the effects of
the spectral restrictions in the time domain is required.

7.6.1 Attempt at arbitrary pulse forms

To explore the limitations of temporal shapes of the serial setup, an arbitrary, para-
metric pulse in time is created in order to learn about the serial response E′

out (Eq.
7.38) which transforms the desired input parameter set {I, Hba, β/2} → {I ′, H ′

ba,
β ′/2}. For the following, amplitude modulation was omitted, so the results also
represent a single-pass through a ±45◦ setup.

Fig. 7.13 shows snapshots (top to bottom) of parameter scans of the (simulated)
three-dimensional electrical field for three different parameters, major axis rotation
(a), intensity (b), and ellipticity (c). For all cases, a double pulse20 is constructed,
one parameter of the sub pulse P1 at t=200 fs (yellow, marked by an arrow) is
changed, and the effect on the pulse form E′

out is studied.

Axis rotation. Fig. 7.13 (a) shows the simulated results for E ′
out for a major axis

rotation, with snapshots taken in 10◦ steps. When going through the pictures, it
becomes apparent that P2, which is not supposed to change, varies in orientation;
it skews around the x-axis and only shows correct results for 0◦ and 90◦; similarly
happening to the side pulses. Quantitatively, the parameter couplings for this par-
ticular double pulse are depicted in Fig. 7.14. In Graph (a), the angle skewing and
the P1 dependent major axis angle of P2 are pictured; whereby the dashed lines rep-
resent the weaker side pulses. It can also be seen that the desired angle for P1 could

20∆t= 200 fs, λ0=786.7 nm, and FWHM=22 nm
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Figure 7.13: Simulated scans for (a) major axis angle, (b) intensity, and (c) ∆φ - the
restricted case - for a double pulse scenario. The two major features P1 and P2 are marked
by arrows and discussed in the text.
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Figure 7.14: Angular scan
of P1. The resulting angles of
the other pulses are plotted
in (a), the intensity response
in (b). Thick black line: P ′

1,
gray line: P ′

2; dashed thin
lines: side-pulses (labelled
s−2 to s2).

be achieved except for some slight deviation (black, slightly twisted, but otherwise
straight line). P2 can be seen to pivot around the x-axis with a maximum elongation
of 24◦. The simulations also show that there is an ongoing redistribution of all sub
pulse energies, which is shown in Fig. 7.14 (b), which means that also the sub pulse
energies are coupled to each other.

Intensity/Energy change. Fig. 7.13 (b) is intended to show the transition from
the multi-pulse to the unshaped single pulse “domain”. Starting with an (intended)
0◦ and 30◦ linear/linear double pulse (P1 and P2), respectively, r = R2

1/R
2
2 is changed

until P1 disappears. This can be similarly seen in Fig. 7.15 (a): when P1 diminishes
(black line) and P2 grows in intensity due to energy conservation as no amplitude
modulation was applied. More interesting is the angular “collapse” of P2 towards
0◦ (small arrow), as shown in Graph (b), where the pulse form is “closing in” to the
single-pulse angular restriction, and the desired 30◦ could only be upheld till some
point.

Restricted parameters, ellipticity scan. The spectral limitations of the serial
setup increase the difficulty of systematic parameter scans by a substantial degree,
so for the implementation into the evolutionary algorithms, arbitrary major axis
were, as a consequence, not utilized. When the pulse’s major axes are restricted to
0◦ and 90◦, Eq. 7.1.2 has to be rewritten to read
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Figure 7.15: Single-pulse
limit for arbitrary major
axes: (thick black line: P1,
gray line: P2; dashed, thin
lines: side-pulses s−2 to
s2). Graph (a) shows the
desired intensity ratio ver-
sus obtained intensity ratio
while one P1 is “turned off”
and (b) depicts an angular
“destabilization” when the
intensity of P1 is no longer
high enough to allow inter-
ference to other major axis
angles than 0◦ or 90◦ (see
arrow).

a2 = I · cos2 ∆φ
2

b2 = I · sin2 ∆φ
2

ε = sgn(sin ∆φ
2

) · π
2
.

(7.43)

Similar to the parameter scans before, the ellipticity is changed, but this time
with the above stated restrictions. For the demonstration, a ∆t = 200 fs ellipti-
cal/elliptical double pulse is used, with an elliptical P2 (∆φ=0.8 and Hba=0.325),
while P1’s ∆φ is changed.

The outcome is shown in the snapshots in Fig. 7.13 (c) from ∆φ=0 - π, and
as parameter scan in Fig. 7.16. The outcome is that now, for the restricted para-
metrization, P1 and P2 are no longer linked. Except for the behavior of the side
pulses (where the largest is about 1/10 of the main pulse’s intensity), the differ-
ence retardance maps nicely on the ellipticity (thick, triangular black curve), while
the ellipticity of the first pulse stays unchanged (flat gray line) at Hba = 0.325, as
intended.
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Figure 7.16: Elliptical
major axis locked to 0◦ and
90◦ degrees, except for the
side-pulses. Thick black
line: axes ratio of the pulse
to be changed (double el-
liptical - see text), thick
gray line: ellipticity of the
other major pulse, thin
dashed lines: side-pulses.

7.6.2 Side pulse-free fields

Fig. 7.17 (a) shows the 3D electrical field of an overlapping, near-linear double pulse
in the ±45◦ system, where one of the sub pulses is also negatively chirped with -1400
fs2, resulting in a change of major axis angle in the overlapping part. Interestingly,
there are no signs of side-pulses, even on the prolonged t axis. The explanation is as
follows: For fields where the general solution of Eq. 7.34 for the retardances obeys

ℑ[φ̃a,b(ω)] = ℑ
[

−i ln Eout,x(ω)± Eout,y(ω)

Ein(ω)

]

= 0 (7.44)

(see also Eq. 7.36), meaning if all imaginary retardance components for a supposed
field vanish, it can be obtained exactly with the serial setup, as it automatically
obeys the limitations of the spectral domain. For experimental purposes it might
suffice if the imaginary term is small; to demonstrate that the depicted waveform
is indeed a special case, one sub pulse is changed to +55◦ - Fig. 7.17 (b) - and as
a matter of fact, a small side pulse appears on the opposite side (indicated by the
arrow).

7.7 Restricted example pulses

As custom-tailored polarization pulses will be incorporated into the evolutionary
algorithm, a short overview with a few selected pulse forms will be given, whereby
the polarization control parameter ∆φ, with the restrictions of Eq. 7.43 shall be
emphasized.

Fig. 7.18 presents a selection of example pulses, where for reasons of simplicity,
only the x− and y− projections of the SFG-CCs are shown. The example pulses
are all double pulses with varying distances, intensities, chirps, and some special
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Figure 7.17: Simulation of a side pulse-free double pulse using the serial setup, consisting
of two overlapping, ±45◦ aligned linearly polarized pulses; one of them has a linear chirp
of -1400 fs2. (b) A slight rotation to 55◦ of one of the sub pulses already produces a side
pulse (see arrow).
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Figure 7.18: Selected experimental example pulses created by the serial setup, demon-
strating a few of the new possibilities with the polarization control parameter ∆φ = φa−φb.

features; the respective parameter values are also noted in the respective graphs.

In (a), the ratio R2
1/R

2
2 of the sub pulses was chosen to be 2:1, resulting in a

weaker circular pulse at t=400 fs. Alternating, orthogonal linear pulses are demon-
strated in (b); note that the side pulses show a similar, alternating behavior. (c)
shows alternating chirps of b2 = ∓5000 fs2 for the linear first and circular second sub
pulse, respectively, which shows that both linear and circular pulse are broadening
in time by the same amount. Graph (d) demonstrates a quadratic spectral chirp
of b3 =106 fs3 of the circular pulse, which manifests itself by a short, circular pulse
train following the pulse. The next two examples go beyond the implemented para-
metrization, but indicate interesting possibilities. Graph (e) shows the potentiality
to shift sub pulse components separately in time, in this case, the y-component of
the circular pulse was displaced by 100 fs which creates intriguing intra-pulse el-
lipticity states. For the last example, the y−component of the circular pulse alone
was brought to exhibit a linear chirp of +6000 fs2 and a time shift, which results in
simultaneous ellipticity and instantaneous-frequency changes within a single pulse.
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7.8 Parametric polarization shaping on NaK

Having polarization shaped femtosecond laser pulses opens a new dimension for
coherent control experiments, as it provides light fields which can be tailored to
ideally interact with molecule’s dipole moments. It enhances transitions which would
otherwise have a low ionization probability as the projection of the electrical field
at the dipole moment would be small.

7.8.1 Interaction of polarized pulses with linear molecules

The disturbance of the time-dependent Hamiltonian H1 depends on the scalar prod-
uct of the electrical field and the molecular dipole moment −E(t)·µ. To calculate the
excitation probability, the projection of the field on the dipole moment is the deci-
sive factor. Transitions in dimers may require polarizations which are either parallel
or perpendicular to the molecular axis. This is governed by parity selection rules;
the odd parity of the electric dipole moment operator requires that the initial and
final orbitals have a different parity, otherwise the matrix element < ψi|E · µ|ψk >
vanishes. If the quantum number Λ, the projection of the total electronic angular
momentum onto the internuclear axis, is a good quantum number and does not
change during a transition, the transition is said to be parallel, like for Σ ← Σ or
Π ← Π transitions; if Λ changes by ±1, a perpendicular transition (respective to
the internuclear axis) is at hand.

When a sample of randomly aligned molecules is irradiated with linearly polar-
ized light, an ensemble is selected which has their transition dipoles aligned to the
incoming polarization [152] which is called photoselection. For NaK, the ionic state
can be reached21 by a two-photonic transition from the first excited A(2)1Σ+ state
via the resonant, intermediate A(6)1Σ+ state (a Σ→ Σ transition), or via the B(3)1Π
state (which is a Σ → Π transition). A polarization shaped pulse which changes
its polarization direction on a femtosecond timescale, is too fast for the molecule to
adapt (align) to the field, and is considered to be a non-adiabatic transition.

The alignment of molecules has been shown to be accessible by the polarization of
high-intensity pico- and femtosecond pulses, for example N2, where the multiphoton
ionization was found depend on the ellipticity [153]. A pre-aligned molecular sample
would result in a better controllability [140, 154, 155], but even with more or less
isotropic starting conditions as in a molecular beam, an effect can be established
when multi-photon transitions are involved. Starting with the transition dipole
matrix element

Mik =

∫

ψierψkd
3r (7.45)

it can be shown that for for single photon transitions using linearly polarized light,
the transition probability is proportional to

P ω
lin ∝ MikE

2
0 cos2 θ (7.46)

whereby θ is the angle between the field direction and the dipole moment. When
integrating probability over all polar and azimuthal angles the number of excitations

21for a potential scheme see Fig. 4.1 from Chapter 4
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can be estimated. For single photon transitions, however, linearly or circularly
polarized light of the same intensity yield the same result, when the sample is
initially randomly aligned, the difference lies only in their final distribution, whereby
the linear excitation is directionally selective.

For molecules that feature transitions that require different polarizations during
multi-photon processes on a femtosecond timescales where there is not enough time
for the molecule to adiabatically align it can be shown that the effect of polarized
light is not averaged out. If a ‖→⊥ transition is irradiated with a linear, perpendic-
ular double pulse (with the right distance to match the Franck-Condon conditions
at the outer turning point), a theoretical improvement by the factor of two could be
reached when compared to a double pulse which is only linearly polarized [139].

7.8.2 Free and PAP optimization of NaK

For the comparisons, the following abbreviations will be used: Depending on the
employment of phase, amplitude, and polarization, three letters (like PAP for phase,
amplitude, and polarization, or just phase PXX) will designate the type of exper-
iment. As a light source, the amplified laser system at the center wavelengths of
782 nm and 794 nm (FWHM bandwidth 22 nm) was employed, using the Coherent
RegA with pulse energies of about 400 nJ per pulse at the apparatus.

For a first experiment, a phase-only optimization is performed to yield a reference
optimization factor to compare with the results from polarization-enabled optimiza-
tions. The obtained waveform is displayed in Fig. 7.19 (a) and had the factor 1.79±
0.04. This is already quite high compared to earlier results which were obtained
with non-amplified pulses and at narrower bandwidths [77]. The pulse structure
obtained (measured by two orthogonal SFG-CCs) shows a central complex with
many small, temporally not fully separated sub pulses, whose peaks can indeed be
assigned to multiples of 1/2 · Tosc of a wavepacket on the first excited state, which
has been observed throughout this work, and is theoretically well established due to
resonance conditions and Franck-Condon factors [133], and it is safe to attribute it
to a stepwise excitation scheme [79].

For the next, free optimization experiment, a PAP encoding is used which is
potentially able to generate very complex pulse forms in time by interference, in-
cluding major axes angles besides 0◦ and 90◦ in the time domain. The results are
shown in Fig. 7.19 (b), offering an additional 19% increase to the factor of 2.130
± 0.005 compared to the already high PXX factor. Interestingly, the outcome can
be interpreted as a multi-step excitation with alternating, and predominantly lin-
early polarized pulses with major axes of 0◦ and 90◦, which was neither an explicit
nor implicit requirement22. Every sub pulse is followed by an orthogonal pulse, in
total seven times. The perpendicular sub pulse’s distances all fit very well to 1/2 ·
Tosc which suggests a scheme of a repeated, stepwise excitation, including to a high
degree of certainty the orthogonal B(3)1Π ← A(2)1Σ+ and A(2)1Σ+ ← X(1)1Σ+

transitions to obtain the higher optimization factor.

22it should be mentioned that similar alternating, perpendicular structures were also observed
to a major part of the inferior runs
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Figure 7.19: Optimization results for NaK at 782 nm with free PXX (a), free PAP (b),
and a parametric PAP encoding (c), with the factors (d). Graph (a) and (b) were already
shown in Ref. [28].
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7.8.3 Parametric PAP optimization

To avoid too complex results, only double pulses will be employed for the following
experiments. More complex shapes like triple pulses could lead to collisions - mean-
ing interferences - of side pulses with intended pulses, leading to greatly distorted
polarization states and additional parameter couplings. As a result of the experi-
ments and considerations conducted earlier in this chapter, the parametrization used
for the NaK ionization experiments with polarized pulse forms will be

~x =
{
b0,1, b0,2, b1,1, b1,2, R

2
1, R

2
2,∆φ1,∆φ2

}
, (7.47)

which implicitly contains the axis restriction23. As parallel and perpendicular elec-
tronical transitions should be preferred as ionization paths for the examined molecule,
the restriction should not pose a fundamental obstacle. The amplitude was incor-
porated using the sum-intensity (Eq. 7.42). The limits for the encoding were two
sub pulses, while P1 was supposed to stay at t=0 fs. The position of P2 was limited
to [-1000,-100] fs, R2

1/R
2
2 was set to lie within [0.1,1], the zero order phase b0 within

[−π; π], and ∆φ1,2 within [−π; π].

Already after 28 generations (instead of 126 for the free optimization), conver-
gence was reached. The optimized SFG-CC pulse form is shown in Fig. 7.19 (c)
having a factor of 2.08 ± 0.04, which is quite close to the one from free optimization,
2.13, but with a greatly reduced temporal complexity. The pulse distance of the main
sub pulses is about 170 fs, which is less than 0.5 Tosc, with side pulse distances of
each 190 fs. Their x- and y-component at peak are nearly mutually exclusive, which
implies a high degree of orthogonality; there is a qualitative similarity to the results
from the PAP optimization with respect to the orthogonal, sequential sub pulses
(dashed vertical lines). The parametric pulse manages a high ion yield with only
four distinguishable sub pulses (including the side pulses) instead of eight, which
the PAP optimization provided. The different shapes and therefore quantitatively
different wavepacket dynamics initiated by the parametric solution are to the most
part due to the implicit restrictions of the parametric case, locking the side pulses
to the main pulses and prohibiting, for example, asymmetric side pulse locations24.
It having still a very high optimization factor therefore would make this particular
shape worthy of further (theoretical) study.

When comparing the convergence speed of the parameters with a course analysis,
the sub pulse’s ∆φ, related to the ellipticity, is the one to converge the earliest -
Fig. 7.20 (d). The ∆φ =±π “jumps” until generation 15 can be interpreted as
undecidedness towards left- or right-handedness, which is, however, of no great
importance for near-linear polarization states. The b0 development (c) seems to be
quite steady, the pulse’s relative energies (b) need 18 generations to settle down
to the final value and are still exhibiting a certain “jumpiness”, which probably
originates from the fact that two competing niches/solutions with different peak
intensities have approximately the same ion yield. The pulse distance (a) seems to
only gradually converge to the final value, which is most likely due to the strong
coupling to the side pulse distances and intensities (as discussed in Section 7.6).

23when substituting ∆φN into Eq. 7.43, whereby the R2
N correspond to I

24see also Fig. 7.9
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Figure 7.20: Course
analysis for the optimiza-
tion depicted in Fig. 7.19
(c). Graph (a) shows
the development of the sub
pulse distance between the
main pulses, (b) the sub
pulse intensity (propor-
tional to R2

N ), (c) the zero
order phase, and (d) the
difference retardance ∆φ,
which is closely connected
to the ellipticity; showing
orthogonal, linearly polar-
ized states (∆φ=0, ±π).

7.8.4 Parametric PXP optimization

For the next optimization, another central wavelength (λ0=794 nm) is chosen, where
optimization factors generally are lower, as known from Ref. [77]. The difference to
the previous parametrization is the disabled amplitude modulation; all other bound-
ary conditions are the same as before. As always, the side pulses take part in the
optimization process, resulting in a triple-pulse structure (Fig. 7.21) with perpen-
dicular, not too elliptical sub pulses, and offering an optimization factor of 1.390 ±
0.004. The optimized pulse again admits a simple ionization scheme because the sub
pulse distances of 260 fs and 270 fs are again not too far - considering their length
- from 0.5 Tosc. The first pulse (t=60 fs) excites a ground state wavepacket to the
A(2)1Σ+ state, the second perpendicular sub pulse (t=320 fs) ionizes the molecule
via the intermediate, perpendicular B(3)1Π state at the outer turning point, while si-
multaneously creating population, which is again ionized by the perpendicular third
pulse (t=590 fs).

Inner turning point exclusion. In the last example for parametric shaping, the
freedom of choosing physically motivated boundary conditions will be put into ac-
tion by restricting the pulse distance to exclude ionization at the first wavepacket
round-trip. This can be seen as “question” to the system which it tries to solve by
optimizing the ionization with a [-1000,-400] fs distance restriction, with otherwise
the same settings as in Fig. 7.21 (a).
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Figure 7.21: Paramet-
ric PXP optimization re-
sults, featuring near-linear,
orthogonal sub pulses with
distances of 260 fs and 270
fs. The left top inset is the
learning curve, displaying
the best, mean, and worst
individual during the run.

Figure 7.22: Paramet-
ric PXP optimization, with
temporal boundary condi-
tions set in order to ex-
clude the first round-trip of
the wavepacket, featuring a
distance of 710 fs, close to
1.5 · Tosc.
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Fig. 7.22 shows the result, which yields an optimization factor of 1.28±0.003.
As consequence of the restriction, a sub pulse distance of 1.5 · Tosc is obtained,
permitting an ionization scheme where the population created by the first pulse is
ionized by a two-photon transition at the outer turning point after 1.5 round trips
by the perpendicular, more intense pulse.

7.9 Summary

In this chapter, polarization shaping with an emphasis on the time domain using
a recently developed pulse shaper setup that incorporates phase, amplitude, and
polarization was presented. The added amplitude was shown to be a manageable
parameter which provides a new degree of control for femtosecond polarization shap-
ing experiments, for example by addressing specific vibrational transitions. Except
for the occurrence of side pulses (which are due to the spectral phase lock of the
x- and y−component), it was shown that the coupling of pulse parameters can be
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reduced if specific restrictions to the major axes are upheld. The findings from
the optical studies were taken into account when choosing new control parameters
for the evolutionary algorithm. The different parametrization experiments demon-
strated a controllability of the experimental outcome and the ionization path, while
still upholding relatively high optimization factors, and most importantly, simplicity
of the obtained waveform. They also featured customized search space restrictions
and an improved convergence speed. The resulting pulse shapes allow to assign
an interesting ladder-climbing process with alternating, orthogonal sub pulses at
multiples of half the oscillation period of the first excited Σ state of NaK, strongly
indicating consecutive Σ↔ Σ to Π↔ Σ transitions along the ionization path. The
experiments with the serial setup including its potentialities and shortcomings mo-
tivated the construction of another pulse shaper setup which will be discussed in
the next chapter.




