
Chapter 6

Parametric Pulse Shaping

This chapter introduces parametric pulse shaping with linearly polarized pulses and
applies them on NaK (isotope) optimization experiments. The next chapters will
treat a parameterization of polarization shaped pulses.

6.1 Introduction

Performing coherent control experiments with a pulse shaper usually brings along
the problem of finding a solution in a nearly unimaginably huge search space. For a
phase and amplitude shaper with N pixels, this space has a dimensionality of 2N .
Therein, the number of possible solutions are indeed enormous, they amount to
P 2N = 10768 for the SLM-2561, or even 17501280 ≈ 104151 for the SLM-6402. Despite
the fact that evolutionary algorithms are supposed to be in their element when
treating highly complex problems, differing runs for free optimization regularly show
different results to various degrees. If a reliable problem inversion is desired, one can
not, for many cases, get around reducing the complexity to a comprehensible level.
Therefore, a reduction of the number of optimization parameters in order to reduce
search space size seems to be a logical way. Realities represented by the search space
might not be physically feasible and can be excluded. Another approach is to omit
certain possibilities for inquisitive purposes, like deliberately finding solutions in a
restricted regime. Such restrictions allow to choose a framework for the algorithm
to work in, it becomes possible to “ask” the experiment certain questions, which
it tries to answer via the closed feedback-loop procedure by finding an optimized
Hamiltonian in the redefined search space.

6.2 Historical perspective

Since the development of pulse shapers capable of modulating the spectral phase
φ(ω), a number of ways of parametrizing it were thought of.

1having P = 1000 different voltage settings within the mandatory 2π retardance range
2because the higher number of pixels (N=640) are even more highly resolved, due to a reduced

modulation depth of only 4π instead of 7π at 770 nm, while having the same 12-bit resolution as
the SLM-256 (with 128 pixels)
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Figure 6.1: Three-parametric search space encoding
of a single pulse. The small cubes represent the indi-
vidual’s solutions at (a) the first generation, and (b)
after 17 iterations, having agglomerated to two niches.
Taken from Ref. [114].

Figure 6.2: Phase pattern with π steps used for binary shaping (taken from Ref. [116])

AOM parameters. The first parametric optimization, to the authors knowledge,
was performed by Bardeen et al. in 1997, who used a parametrization of the radio
frequency of the arbitrary waveform generator of an acousto-optical modulator like
[114]

VRF (b, t0, w) = A exp
(
− (t− t0)2

w2
+ ib(t− t0)2 + ic(t− t0)3

)
. (6.1)

The parameters were the amplitude A, time center of the Gaussian window t0 (which
corresponds to the central frequency of the pulse), the width w (which determines
the spectral width), the linear chirp b and the quadratic chirp c. Their test sample
was the IR125 laser dye molecule and the goal was to transfer population from the
ground to the first excited state. They visualized the progress of the optimization 3D
space for three selected parameters. Fig. 6.1 (a) displays the population distribution
at the first generation and (b) at the 17th generation, where a (parallel) convergence
towards two promising niches can be seen.

Combining pixels/phase discretization. In order to reduce search space, combin-
ing neighbouring SLM pixels to a single control value can help not only determining
the frequency-resolution dependence of the problem (and as a side-effect, even re-
duces temporal complexity [66]) but also improves convergence speed and robustness
under noise. In Ref. [115], a phase discretization reduced 1000 voltage steps to a
manageable few and provided comparable results with no significant decrease in
performance for the observed system.
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Figure 6.3: Periodic phase pa-
rametrization to create bright and
dark pulses in Cs. Taken from Ref.
[59].

Binary phase. A special type of step size reduction is “binary phase shaping” (see
Fig. 6.2), introduced by the Dantus group [116, 117] for applications in two-photon
microscopy, with a clear focus on reliability, convergence speed, and simplicity.

Periodic phase functions. The first application of a phase encoding with periodic
functions was for non-resonant two-photon interactions between atomic energy levels
of caesium, parametrized by

φ(ω) = α cos(βω). (6.2)

Using this function (Fig. 6.3) caused an enhancement or cancellation of the
two-photon transition probability by interference effects with so-called bright and
dark pulses. Periodic phase functions were applied for various systems, starting
with bright/dark pulses with atomic sodium [113], ionization of NaK molecules [26],
to more complex biological systems, like the light-harvesting antenna complex LH2
from Rhodopseudomonas acidophila which is a photosynthetic purple bacterium
[118]. In another application, the pulse trains created by a periodic phase function
were employed to reduce the requirements of nonlinear CARS (Coherent Anti-Stokes
Raman Scattering) microscopy to a single source (single-pulse CARS) [119]. A
study of the complexity reducing capacities of parametric shaping was conducted
by Bartelt et al. [26] using symmetrical pulse trains that were created by a sine
parametrization

φ(ω) = a · sin (Ω(ω) + C) (6.3)

that also incorporated Taylor terms such as

Ω(ω) = τ(ω − ω0) + a2(ω − ω0)
2 + a3(ω − ω0)

3 + · · · (6.4)

where the parameters τ and a2 control the distance and the linear chirp, respectively.
Figure 6.4 displays the XFROG trace a pulse form generated by such a phase func-
tion.

Polynomial phase. Another variant is a polynomial phase encoding

φn =
∑

k

ck

(n−N0

N

)k

(6.5)
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Figure 6.4: XFROG traces
of pulses generated by a sine-
parametrization like Eq. 6.3, with
different Taylor terms from Eq. 6.4.
Taken from Ref. [36].

with n as the pixel number, N0 the pixel offset, N the number of pixels, k the
maximum order, and ck as the Taylor coefficients. The first, straightforward appli-
cation was re-compression of a femtosecond pulse that had travelled through a glass
fiber [115], compensating for the time-stretching caused by group velocity dispersion
[120]. A polynomial phase encoding was also recently used optimizing the ground
state vibrational dynamics of polymers [121] and for selective spectral filtering of
vibrational modes of β-carotene in solution [122].

Triangular phase. Similarly as a linear spectral phase shifts one pulse’s envelope
in time, a triangular spectral phase generates a double pulse with different central
frequencies in time [123] as

φ(ω) = sgn
[
ω − (ω0 + δω)

]∆τ

2

[
ω − (ω0 + δω)

]
, (6.6)

with ∆τ/2 as the triangular phase slope connected to half the pulse separation and
(ω0 + δω) as the division point, which determines spectral width and amplitude.
Such double pulses were utilized in Ref. [124] for determining fitness landscapes of
the solvated dye molecule IR140.

Table 6.1 contains an overview of spectral phase parametrizations in the lit-
erature including the systems applied. The “temporal parametrization” from the
bottom of the list will be discussed next in more detail.

6.3 Temporal parametrization

A temporal parametrization looks at pulse generation in a different way as spectral
phase parametrization: It does not ask what the result of a specific phase pattern
will be in the time domain; it constructs a desired waveform in the time domain and
then tries to realize it by calculating an adequate spectral phase filter. A prominent
example is a double pulse in the time domain, which is a known concept from pump-
probe spectroscopy [30, 31], where the distance of two sub pulses is varied while,
for example, a wavepacket propagation on potential energy surfaces of molecules is
studied.

An early time-domain representation [75] describes a double pulse sequence3 of
two sub pulses with the envelope F (t) and the phases ϕ as

3see also Eq. 2.15
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parametrization system bibliography year

single pulse dyes in solution Bardeen et al. [114] 1997

combine pixels SHG Zeidler et al. [115] 2001

reduce phase steps SHG Zeidler et al. [115] 2001

binary phase shaping SHG Comstock et al. [116] 2004
phosphite & pyridine Pastirk et al. [117] 2005

polynomial phase pulse re-compression Zeidler et al. [115] 2001
K2 Hornung et al. [75] 2000

polydiacetylene Zeidler et al. [121] 2006
β-carotene Konradi et al. [122] 2006

periodic phase atomic Na Zeidler et al. [115] 2001
atomic Cs Silberberg et al. [59] 1998

LH2 Herek et al. [118] 2002
NaK Bartelt et al. [26] 2002

single pulse CARS Dudovich et al. [119] 2002

triangular phase optical investigations Renard et al. [123] 2004
IR140 Vogt et al. [124] 2006

temporal atomic Na Hornung et al. [113] 2000
K2 Hornung et al. [75] 2000

Legendre, Hermite suggested Shir et al. [125] 2006

Table 6.1: Overview of phase parametrizations in optimal control experiments.
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E(t) = eiω0tF (t)eiϕ1 + eiω0tF (t− τ)eiϕ2 (6.7)

and was employed to the one-photon (3s → 3p) transition for atomic Na. The
population created by such a pulse was calculated in Ref. [126] to be proportional
to

|c2|2 ∝ cos (φ1 − φ2 + δω · τ) (6.8)

where δω was the detuning from the (3s → 3p) transition.

6.3.1 Parametric pulse form calculation

For the temporal parameterization presented in this thesis, a complex electrical field
is constructed by overlaying N sub pulses, which can be performed either in the time
or frequency domain.

Spectral Domain. Superposing (adding) the complex electrical fields E1(ω), E2(ω),
· · · EN(ω) to obtain Eout(ω) can be written as

Eout(ω) =
∑

N

EN (ω). (6.9)

Each EN can be expressed by a generating (input) pulse Ein(ω) times an individual
filter function H̃N(ω) like

H̃N(ω) = RN · eiφN (ω) (6.10)

whereby φN is constructed using the Taylor terms from Eq. 2.24; and the constant
RN is used to steer the amplitude (shape) of the sub pulse. R2

N is also proportional
to the relative4 sub pulse energy. The linear phase b1 will then be responsible for
the temporal (envelope) shift of the respective sub pulse, etc. The resulting field
can be written as

Eout(ω) = EinH̃1 + EinH̃2 + · · ·+ EinH̃N = Ein ·
∑

N

H̃N(ω). (6.11)

The frequency dependent filter H̃(ω) can be calculated by dividing

H̃(ω) =
Eout(ω)

Ein(ω)
=
∑

H̃N(ω) = R(ω) · eiφ(ω) (6.12)

whereby T (ω) = |R(ω)|2 becomes the transmission and φ(ω) the phase filter/retardance
to be written on the pulse shaper in order to obtain such a composite pulse.

If the generating sub pulses are not chosen with power restrictions in mind, the
transmission T (ω) might exceed the value of one at some points. This is phys-
ically infeasible, as a pulse shaper can only diminish, not amplify any frequency
component. Therefore, a normalization of T (ω) by finding the maximum

4relative because an eventual normalization, described later
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Tnorm(ω) =
T (ω)

maxT (ω)
(6.13)

has to be performed, reducing5 the total output power to 1/max T (ω). The pulse
form in the time domain Eout(t) can then be obtained by inverse Fourier transfor-
mation.

Time domain. Similarly, temporal sub pulse fields in the time domain E1(t), E2(t)
etc. can be superposed using the same formalism stated above, just by substituting
t → ω, yielding the temporal phase “filter” φ(t) (like Eq. 2.18), the Taylor coeffi-
cients an (Eq. 2.19), and the impulse response h̃(t). The impulse response can be
Fourier transformed as [66]

H̃(ω) =

∫

h̃(t)e−iωt dt (6.14)

in order to yield the corresponding spectral filter function H̃(ω), to be eventually
normalized, and then applied to the pulse shaper.

6.3.2 Double pulse examples

The effect of polynomial, spectral Taylor phase functions on single pulses in the time
and frequency domain have already been pictured in Refs. [36, 71].

To emphasize the to-be-introduced implementation into an evolutionary algo-
rithm, an overview for asymmetrical double pulses6 will be presented (Fig. 6.5).
The two columns to the right depict what to write on the shaper in order to obtain
the two left columns, or the other way around: what the filter function (right) would
have to look like in order to obtain the temporal and spectral traces on the left. The
columns from left to right are: SFG-CC (calculated using Eq. 3.5), spectral intensity
(including the spectral resolution7 using Eq. 3.4), transmission T (ω) (normalized),
and the phase filter φ(ω).

Fig. 6.5 displays for six examples, what happens or what is required when one
sub pulse of a double pulse is modified by a spectral phase filter or by a change in
relative energy R2

1/R
2
2. The red/gray lines are a reference ∆t = 200 fs double pulse

and the black curves depict the deviation when changing the respective parameters.

b1. The first row shows a temporal sub pulse shift from t=200 fs to t=400 fs
for the second sub pulse, which corresponds to different modulations of the pulse
spectra. For double pulses, the temporal distance ∆t can also be assessed from the
modulation frequency ∆ν = 1/∆t of the transmission pattern.

5when performing systematic measurements like pump-probe scans with a pulse shaper, such a
normalization has to be taken into account

6which will be frequently used in this and the following chapters
70.55 nm
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Figure 6.5: Double pulse parametrization overview.
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R2
1/R

2
2. The second row shows the impact of an energy-ratio change by choosing

a different R2
1/R

2
2 = 2 : 1 instead of the reference’s 1:1. For this case, the spectra

and transmission patterns are barely changed8. The deciding feature that causes
the temporal redistribution is the phase filter, which is straightened towards higher
energy ratios.

b0. Shifting the electrical field below the envelope (zero order phase) has no impact
on the SFG-CC, but can be measured as a frequency shift of the spectral intensity
modulation where the central frequency will no longer constitute the most promi-
nent peak, as in the b0=0 case. When b0 = π/2 for the pulse at t=200 fs, both
transmission and phase filter are shifted by the same “phase” amount9.

b2, b3, b4. The impact of chirp is presented in the last three rows with a linear,
quadratic, and cubic example. The linearly chirped, second sub pulse (b2=+2000
fs2) has a reduced maximal temporal intensity, but the same sub pulse energy. The
spectra show a distinct asymmetry, with a higher modulation “frequency” at the
lower wavelength end. A quadratic chirp of b3 = 4 ·105 fs3 for one sub pulse creates a
characteristic tail in time and has symmetric spectra, a third order chirp of b4 = 6·106

fs4 creates an offset in the baseline in time and an asymmetric spectrum.

6.3.3 Algorithm implementation

The above stated parameter set can be incorporated in an objective variable ~x for
N sub pulses with spectral Taylor terms up to the order of M as

~x =
{
b0,0, b0,1, · · · , bM,N , R

2
1, · · · , R2

N

}
(6.15)

whereby bm,n is the m-th order phase of the n-th sub pulse. Internally, the employed
algorithm rescales the (in principle) arbitrary boundary conditions to the interval
[0,1]. This has the advantage that a single-step size mutational rate adaptation,
which acts equally on all scaled parameters, can be employed. This speeds up
convergence noticeably, as no second-degree parameters (such as parameter specific
mutation rates [40]) have to be included and self-adapted. When more than two sub
pulses are encoded, the linear phase b1 (position in time) is substituted by a sub
pulse distance ∆tn, counting from the sub pulse that occurs at earliest times.

~x =
{
b0,0,∆tn, · · · , bM,N , R

2
1, · · · , R2

N

}
(6.16)

That way, not only one parameter can be saved, but also, if the distance between
the first and second sub pulse changes, the temporal positions of sub pulse three
and higher are adapted etc., which is reasonable from an experimental point of view
when applied on a molecular excitation scheme. Otherwise, the standard algorithm
settings, as described in Sec. 2.4, and depicted in Fig. 2.2 were used.

8The spectra would converge to a Gaussian when one pulse disappears, as no more interference
occurs.

9This has the advantage that for example different vibrational transitions can be addressed by
such spectral patterns.
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Figure 6.6: Iterative algorithm to
generate predefined pulses in phase-
only mode (taken from Ref. [129]).

6.3.4 Phase-only shaping

Although the calculation of compound pulse forms (Eqs. 6.9 to 6.12) has to be
conducted using phases and amplitudes, the parametric NaK optimization experi-
ments of this chapter were performed with phase-only shaping in order to keep the
total pulse power constant during the run to guarantee fair conditions of consecutive
pulse shapes, as amplitude modulation always goes hand-in-hand with a change in
total power, depending which frequencies have to be diminished to obtain particular
pulse shapes. There are only numerical methods to determine a phase filter function
which approximates a given intensity or cross-correlation profile without amplitude
modulation except for trivial cases. The first work calculating such phase filter func-
tions were Ref. [127], followed by Ref. [128], where an experimental feedback was
implemented to fit a measured waveform to the desired.

A fast and reliable way using the Gerchberg-Saxton algorithm [130] was presented
in Ref. [129] (see Fig. 6.6) and was used for the experiments10. The algorithm
iteratively calculates spectral phases and adapts them to the desired temporal shape
using a combination of simplex downhill [132] and simulated annealing [47] methods.

6.3.5 Three-pulse NaK optimization

The “temporal” experiments were performed with the Tsunami oscillator with the
SLM-256 at a central wavelength of 780 nm and a spectral bandwidth of 6.4 nm.
Compared to the free optimization experiments presented in earlier chapters, now,
a distinct reduction of the search space is exercised, and only three sub pulses are
allowed to propagate in order to ionize the NaK molecule.

From the available parameters, the sub pulse distance, their energy, zero order
phase, and linear chirp were used, spanning (only) an eleven-dimensional11 search
space; consequently the convergence speed was much faster, with no experiment

10implemented in the Lab2 [131] program package, available from the authors of Ref. [129]
113× 4− 1 (only two distances)
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Figure 6.7: SFG-CC traces of three optimized pulse shapes from (a) a three- and (b)
a six-pulse parametrization. The dashed line in (b) is the result from free, phase-only
optimization.

requiring more than a few minutes. To avoid sub pulse overlaps with the given tem-
poral pulse length of approx. 150 fs, the distances were encoded to [180,2000] fs. For
the other parameters: [1:1,1:10] was allowed for the energies ratios, [-20000,20000]
fs2 for the linear chirps, and [−π, π] for the zero order phases b0.

The SFG cross-correlations of three experimental runs are plotted in Fig. 6.7
(a). For all cases, a prominent double pulse structure can be seen with another
closely spaced double pulse embedded within the major pulse. The distances of the
major features amount to approximately 650 fs, which corresponds to 1.5 · Tosc of a
wavepacket in the first excited A(2)1Σ+ state.

To demonstrate the reliability and reproducibility of parametric shaping and see
how the parameters evolve in the newly defined search space, a course analysis of
the three runs is performed. Fig. 6.8 shows how the parameters converge, with an
outstanding case (middle column, + 22% ionization efficiency improvement com-
pared to the unshaped pulse) and two sub-optimal results (left and right column,
+14% and +13%, respectively).

The top row displays the XFROGs of the three results, which are quite coin-
cidental in shape, so the differences in optimization factor must therefore result
either from small variations, or from features the XFROG does not reveal, such
as zero order phases. The broad pulse around t=0 fs actually consists of two sub
pulses, which have a distance of about 200 fs, which is close to the resolution limit of
the employed bandwidth. The second row shows the development of the distances,
which show a slow increase for (a) towards the final values. For the other cases, the
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Figure 6.8: Course analysis for three, parametric optimization runs, maximizing the NaK
ion yield using a three-sub pulse encoding. The upper row are the resulting XFROGs, the
next rows (top to bottom) depict the development of sub pulse distance, energy, linear
chirp, and b0.
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final pulse distances are found within the first few generations and stay more or less
constant until the end. In the third row, the sub pulse energy ratios are plotted
versus generation. For a comparison of results, they can be normalized to the final
value of the highest energy ratio12 (dashed horizontal line). For the (a) and (b)
case, the energies develop similarly and parallel to each other. The high amount
of fluctuation at the beginning of the (a) case can be also seen in the next row,
which displays the evolution of the linear chirp. The linear chirp featured different
results for all runs, case (b) shows the least amount of chirp, followed by (c). Pulse
(a) shows symmetrically chirped sub pulses of approx. ± 6500 fs2 (which is also
indicated in the XFROG). The small resulting chirps (± 20000 fs2 were allowed)
and the different results in numbers, but small in effect (as seen in the XFROGs)
indicate a less pronounced importance of chirps for the ion yield. The zero order
phase development is shown in the last row and, qualitatively, shows stable phase
differences throughout the optimization, except for the first few generations (phase
jumps of 2π can be discarded).

From the three pulse forms, an estimate of the induced wavepacket dynamics can
be provided. The tiny sub pulse at the front is an unintended side pulse (from phase-
only shaping) and causes a small population transfer to the first excited A(2)1Σ+

state. After about 1.5 oscillation periods, the wavepacket is located at the outer
turning point, when the first of the two main sub pulses arrives and ionizes the
molecule, and additionally, transfers more population from the ground state, which
is again brought to the ionic state by the following main pulse after 220 fs at the outer
turning point. After 650 fs, the last major pulse arrives and ionizes the population
previously created by the first of the central double pulse.

To summarize, the three-pulse parametrization showed a greatly improved con-
vergence speed compared to the free optimization experiments, with reproducible
results in shape, however different in optimization factor, demonstrating the sensi-
tivity of this particular experiment to small changes in pulse shape.

6.3.6 Six-pulse NaK optimization

Presented next is a step towards free optimization using a six-pulse-parametrization
in a 23-dimensional search space. With constraints otherwise the same as for the
three-pulse-parametrization, in a sense, a different “question” is asked to the ex-
periment, which is to find an optimized waveform while enjoying a higher degree of
freedom.

Fig. 6.7 (b) shows the result for the six-pulse parametrization (straight line)
which offered an increased optimization factor of +54%, which is quite close to the
results from free phase optimization which featured a 60% increase, consistent with
results from Ref. [77] at this wavelength. By comparing the six-pulse parameteri-
zation to the free optimization result, a great deal of congruence can be made out
in shape and optimization factor.

The six-pulse optimization shows a higher ionization efficiency than the three-
pulse experiment, interestingly, all sub pulse distances amount to approximately 650
fs. Based on these results, a ladder-climbing scheme can be proposed, supported by

12as the sub pulses originate from a phase-only experiment
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theoretical calculations13. This work draws a comparison of theoretically and exper-
imentally optimized pulses, it concludes that the “later” pulses have a significant
impact on the population of the ionic states due to additional wavepacket propa-
gation of the intermediate B(3)1Π state, which likely yields the better optimization
factors. The “convergence” of the six-pulse parametrization to the results of free,
much more flexible, optimization demonstrates the potentiality of the introduced
method which allows to gain knowledge about the treated systems by gradually
increasing the complexity of the search strategy.

6.4 Spectral parametrization

Implementing a “peak finder” follows a similar motivation as pulse cleaning from
Chapter 4. It is a somewhat complementary approach; cleaning removes unnecessary
structures from the spectral domain whereas the peak finder searches for the most
relevant spectral features “from scratch”.

The peak finder algorithm essentially consists of a spectral parametrization with
a problem-adapted encoding which accounts for the spectral particularities observed
for free optimization. One of them is the early convergence of spectral peaks observed
in the course analysis of free optimization (Chapter 5). As there was no special
operator employed to sweep genetic information (such as spectral peaks) across the
genome14 more variety to the probed frequencies could be introduced by a different
parameterization.

The introduced peak finder algorithm parametrizes the transmission T (ω) in a
way that L multiple Gaussian peaks are steered by the algorithm, with a spectral
encoding

~x =
{
T1, δλ1,∆λ1, · · · , TL, δλL,∆λL

}
. (6.17)

Each peak l consists of three parameters, transmission Tl, FWHM width δλl (with
a minimal width of the pixel resolution), and distance to the central wavelength
∆λl. All other transmissions are set to zero, resulting in a search space dimension of
3× L for the amplitude-only case, when a free phase optimization is incorporated,
this number becomes 3× L+N .

6.4.1 Transition peak finder for NaK

For the first experiment on NaK, an amplitude-only encoding is chosen (meaning a
flat phase filter) in order to identify the otherwise precluded vibronic pathways15.
Amplitude modulated pulses are time-symmetric and usually consist of a main peak
with smaller side pulses.

Fig. 6.9 (a) displays the obtained pulse spectrum after a run of the peak finder
algorithm in amplitude-only mode. Several of the original eleven Gaussian peaks
(33 parameters) conglomerate to a broader peak around the central wavelength

13at a wavelength of 770 nm [79]
14operators which intentionally induce such cross-gene interactions are sometimes called “creep”

[93] or “copy mutate” [36]
15as argued in Chapter 4
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Figure 6.9: Transition finder applied on NaK ionization with a flat phase (left column)
and with an additional free phase (optimization), shown in the right column. Graph (a)
and (d) show the resulting spectra including the identified transitions, (b) and (e) are
optimization courses for the peak central frequencies, while (c) and (f) depict the XFROG
traces of the optimized pulses.



58 Parametric Pulse Shaping

around 12820 cm−1, and there are two single peaks at 12867 cm−1 and 12899 cm−1.
Both A(6)1Σ+ ←A(2)1Σ+ and B(3)1Π ←A(2)1Σ+ transition frequencies can be
identified. To observe how the spectral parametrization works, the parameter course
is plotted in Fig. 6.9 (b). There, the development of the peak wavelength ∆λl versus
generation (from bottom to top) is shown, whereby a convergence towards the final
result (a) can be seen at the upper end. The initial chaos lasts for 25 generations,
from then on, only a slow adaptation to the final values is observed, except for the
12867 cm−1 line, which shows an “undecided” behavior and can be treated as such
when interpreting this particular spectral line. The result in the time domain (c)
shows a structure with a major central peak and symmetrical, vanishing side pulses.
The transition to the ionic state is most likely to be found at the inner turning point
in a direct three-photonic process, due to the hindered temporal evolution (with only
faint side pulses at approx. ±3 and ±1 ps).

Peak finder/free phase. To evaluate the interplay of amplitude and phase with
this particular kind of parametrization, in another experiment, the phase was allowed
to freely evolve, permitting a temporal waveform expansion.

Fig. 6.9 (d) displays the resulting spectrum. Except for the central structure
around 12825 cm−1, different transition frequencies can be found, compared to the
amplitude-only case, which can easily be ascribed to the incipient wavepacket dy-
namics which can now utilize the outer turning point of the A(2)1Σ+ state and its
favorable Franck-Condon window [133]. The parameter course (e) shows an uniform
evolution from generation 23 on, with only slight changes until the final result is
reached. The increased convergence time compared to the amplitude-only case is
attributed to the additional free phase modulation. The XFROG (f) shows a more
extended and more complex temporal pulse structure.

6.4.2 NaK isotope selective ionization

The next experiments using the peak finder will be isotope selective ionization for
the NaK molecule. Studies of free optimization experiments on isotope selective ion-
ization on 23Na39K / 23Na41K molecules are available in Refs. [80, 134], including a
joint theoretical/experimental study [110]. Here, results from parametric optimiza-
tion will be presented and discussed. The motivation to employ the peak finder
algorithm for wavepacket isotope separation are the highly structured frequency
patterns which were regularly observed. For isotope selective optimization of NaK,
different premises apply as for the 39,39K2 / 39,41K2 system [89, 101]. The main dif-
ferences to the potassium dimer lies in the resonant, intermediate potential energy
surfaces and their isotope shifts. For K2, two equal potentials are involved to obtain
a high selectivity; NaK on the other hand features two potentials at approximately
the same energy, namely A(6)1Σ+ and B(3)1Π. Transitions via the B(3)1Π state are
favorable at the outer turning point due to Franck-Condon factors and resonance
conditions, whereas for the A(6)1Σ+ state, ionization may occur also at smaller
nuclear distances [81].

The frequency shift of the shown transitions between the isotopes (see the double
lines in Fig. 6.10 on the right) is about -7 cm−1 and increases for higher energies
[112, 80], which is approximately the employed shaper resolution of the SLM-256.
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Figure 6.10: Potential curves for NaK (taken from Ref. [78]), including an excerpt
(right) which highlights the energy spacing of the vibrational states of two most abundant
isotopes of the B(3)1Π and A(6)1Σ+ potentials (taken from Ref. [112]).

The peak finder will be used to increase the ratio of the lighter isotope versus the
heavier isotope, starting with the regular isotope ratio of an unshaped pulse (in the
beam) of about 13.6:1.

6.4.3 Peak finder / NaK isotopes

At a wavelength of 780 nm, amplitude-only and phase- and amplitude isotope ratio
maximizations were carried out in order to compare parametric optimizations with
the peak finder with the results from free optimization.

Amplitude-only. Fig. 6.11 (a) and (b) compares the results from free amplitude-
only (39,39K2 / 39,41K2 ratio of 28:1) to parametric amplitude-only (20:1) measure-
ments. The differences, two additional major peaks for the free optimization and its
higher factor have to be contributed to the high amount of experimental noise which
is even more critical as a ratio of two noisy signals is taken. It requires repeated
runs to determine the highest possible optimization factor and to obtain a reliable
result16. An association of peaks to vibrational transitions of different electronic
states is possible, whereby the most distinct peak around 12825 cm−1 corresponds
to three transitions within its frequency range, namely the A(6)1Σ+ (3 ← 10 and
2 ← 9) and B(3)1Π (3 ← 10) transitions. Another side peak is located at approx.
12900 cm−1 and can be ascribed to other transitions. Although there are no perfect

16as shown for the three spectra in Fig. 6.11 (d)
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Figure 6.11: Transition finder algorithm, applied on NaK isotope selective optimization.
(a) and (b) were performed with amplitude-only modulation, (c) and (d) used phase- and
amplitude modulation. The numbers below the optimization types are the optimization
factors, the dashed vertical lines indicate corresponding transitions found by the differing
methods.

matches, the parametrization case, in any way, manages to increase the isotope ratio
with a less complicated spectral structure than the free optimization.

Phase and amplitude. Graphs (c) and (d) were recorded using combined phase
and amplitude modulation. There is a good agreement of the major features which
consist of the two central peaks (marked by the vertical dashed lines), while having
considerably lower factors, closely above the isotope ratio of an unshaped pulse. In
(d), three subsequent experiments with different spectral results from phase and
amplitude measurements were overlaid to provide an insight to the reproducibility
of the experiments. They exhibit substantially different temporal structures, but
still agree to a large part in the spectral domain, which highlights the difficulties
and ambiguities the algorithm has to face in the highly noisy environment. The
two most prominent features (at 12790 cm−1 and 12830 cm−1) are also detected by
the peak finder, whereby one of them could be assigned to the A(6)1Σ+ (3 ← 10)
transition.
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6.5 Summary

The aim of this chapter was to introduce and test new parametrizations on molec-
ular systems, presenting them as tools for investigating molecular dynamics. The
improved convergence speed together with customized and physically motivated pa-
rameters helped enquiring the (isotope selective) ionization of the NaK molecule with
femtosecond pulses under different constraints. A comparison with results from free
optimization showed a gradual convergence in yield and shape for the single isotope
(three-pulse→six-pulse→free optimization).

The temporal parametrization, unlike other encodings from the literature, allows
unsymmetrical pulse forms, customized restrictions and boundary conditions which
can be chosen by physically relevant criteria. Apart from the expanded shaping
capabilities, say, versus sine-parametrization, also a more distinguished experimental
profile can be incorporated; asking the experiment specific questions, which the
feedback loop tries to answer by finding the optimal Hamiltonian. The spectral
parameterization was able to locate relevant transition frequencies in only a matter
of a few generations.




