Chapter 4

Control Pulse Cleaning

4.1 Introduction

Quantum control experiments performed with evolutionary algorithms achieved im-
pressive results in recent years [4, 5, 6], but on the other hand still suffer the con-
sequences of the randomness of the employed search strategies. For example, the
second major goal of optimal control theory and experiments is “learning” from
the optimal solutions instead of purely influencing and “optimizing” molecular dy-
namics. A valid interpretation strongly relies upon reproducibility, accuracy, and
a proper interpretation of the optimal light field’s temporal and spectral features.
Unfortunately, many things can go wrong, as experimental conditions vary and
search algorithms may end up in local optima and there may be numerous other
misjudgements in the general architecture and assumptions of experiment or algo-
rithm. Additionally, problems with (possible multiple) local optima, combined with
a considerable amount of noise might cause solutions not to comply with the de-
sired reproducibility, robustness, power expenditure, or stability requirements. By
repeating feedback-loop experiments many times, key features that are commonly
found in the acquired data can be distinguished from random features, but still, the
impact of features on the overall optimization factor is hard to determine. This is
also partially due to the fact that it is still difficult to experimentally conduct “per-
fect” pulse shaping, and variations of certain parameters (particularly in the time
domain) are predestined to produce more unwanted artifacts as pulse forms become
more complex. As a consequence, unnecessary features might aggravate interpre-
tation and theoretical analysis to a degree of uselessness because one can be easily
fooled by apparent, major features of a waveform [73], if the search algorithm does
not see any particular advantage in removing them, which is generally applicable:
This type of search strategy will yield random values for genes/parameters, which
do not obstruct the overall optimization goal.

Particularly, for free optimization performed with liquid crystal modulators,
where a parameter-per-pixel-encoding is chosen, there is little else to adjust, ex-
cept for the inner workings of the algorithm. It is, however, difficult to predict what
the consequences of tuning (e.g. mutational and crossover rate, method of selection,
etc.) will be as this can be regarded as a quite blindfold adaptation of metaheuris-
tics. Even if the consequences were to provide for example more robustness, there
is no telling if only a particular problem is addressed and enhanced and another
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impaired!.

Another possibility is tailoring the environment by redefining search space to-
wards user-specific goals wherein individuals of the evolutionary algorithm compete
for survival, which has the disadvantage that a reasonable ansatz to reshape the
search space is required [75, 76].

An alternative approach, which is presented in this chapter, interferes in the
selection process and gives individuals a “push” which satisfy particular user-defined
goals. These goals can be constructed to eliminate unnecessary features, just like
biological evolution removes unnecessary features on the long run: for example body
parts due to their energy consumption and increased risk of disease.

The deterministic individual selection process used throughout this work takes a
fixed number of individuals whose fitness values are highest to the next generation,
and discards the rest. As this process is solely fitness dependent, this is the place to
intervene for the so-called “control pulse cleaning”. This method of manipulating the
fitness is a cost-functional which adds an additional cost. Such a cost can be made
dependent on various physically or practically motivated goals such as robustness,
simplicity, or even performance under pressure. Implementing such concerns via
the fitness was first suggested for the field of femtochemistry by Rabitz et al. in a
theoretical study [73]. In this chapter, the first experimental demonstration of this
concept in coherent control will be presented by eliminating less important transition
frequencies for a three-photonic ionization of the NaK molecule.

4.1.1 Overview of the NaK molecule

In recent years, the sodium-potassium molecule, as a model-system alkali dimer, has
been studied extensively by means of coherent control [36, 55], first by pump-probe
spectroscopy and then by closed-loop experiments under numerous aspects such as
frequency dependent optimization [77].

The first investigations [22, 23] of the molecular potentials lead to an oscilla-
tion period of a wavepacket in the first excited A'X T state of T,,.=440 fs (see Fig.
4.1). Today, the molecular potentials are well known [78] and were extended to the
cationic ground state [79]. The main results were an achieved controllability of the
wavepacket dynamics of ionization [24, 25, 26, 27], fragmentation from NayK [36],
and controlled ionization/fragmentation of the two most abundant isotopes 2Na3'K
and »Na*' K [80]. Phase-only optimization brought an ionization efficiency increase
of 1.6 compared to an unshaped pulse [81]. This optimized pulse form featured
sub pulse distances of about 220 fs and 660 fs, which was assigned to a wavepacket
propagation on the A'X* state, leading to a simple model for ionization, with a one-
photon electronic transition from the ground to the excited state, followed a two-
photon ionization from the outer turning point. A joint experimental-theoretical
investigation provided deeper insight into the wavepacket dynamics, where wave-
packet propagation on the intermediate B(3)II state was found to contribute as
well [79].

Lwhich is expressed by the famous “No-Free-Lunch theorem of optimization” [74], one of the
most cited single works in the field
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Motivation for pulse cleaning. As Ref. [76] points out, for molecules where a pos-
itive correlation between the pulse peak intensity and total ion yield, such as NaK,
exist an algorithm which maximizes the ionization efficiency senses no improvement
in reducing certain amplitudes and makes no use of this particular control param-
eter [36]. This strongly constricts the amount of additional information which can
be gathered from phase- and amplitude experiments compared to phase-only runs;
they only converge slower due to the increased search space. Gaining no particular
new information for the amplitude other than the profile of the input pulse, another
method has to be thought of to unravel information about the importance of the
employed, but “buried” vibronic transitions. Penalizing individuals for inherent am-
plitudes is a possibility, and in the following, the influence of the penalties on the
ionization path will be studied.

4.1.2 Multi-objective approach(es)

Removing amplitudes from an already found solution does not deem the best answer
because only the final niche will be subject to exploitation. Treating the experiment
as an optimization of two separate goals (maximizing the ion yield while minimiz-
ing involved frequency components) has the advantage to regard the procedure as
a multi-objective evolutionary algorithm (MOEA) [82] allowing to draw upon the
knowledge and experience of this relatively new but rapidly expanding field of re-
search and application?.

The available multi-objective strategies divide into scalarization and Pareto meth-
ods (see Table 4.1.2). The main difference is when a decision about preference of

2a collection [83] holds 2667 bibliographic entries from the last few years
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Scalarization Methods Pareto methods
(a priori preference expression) (a posteriori preference expression)
Compromise Programming Exploration and Pareto Filtering
Weighted Sum Approach Weighted Sum Approach (Weight Scanning)

Multiattribute Utility Analysis Adaptive Weighted Sum method (AWS)
Physical Programming, Goal Pro- | Normal Boundary Intersection (NBI)
gramming
Lexicographic Approaches Multiobj. Genetic Algorithms (MOGA)
Acceptability Functions, Fuzzy | Multiobj. Simulated Annealing (MOSA)
Logic

Table 4.1: Overview of multi-objective optimization strategies (taken from [84]), the
methods written in italics are employed for this work.

goals is made, before or after the optimization. In femtochemistry, bond-selective
optimizations involving product/branching ratios on CHyBrCl [85], CpFe(CO),Cl
(where Cp means CsHs) [86], photofragmentation/ photoionization of Fe(CO)s [87],
chemical conversion using actic acid (CH3CHOHCOOH) [88], and isotope selective
optimization® on Ky [55, 89] can all be regarded as Weighted Sum Approaches.
For control pulse cleaning presented in this thesis, a Weighted Sum Approach
with Weight Scanning, which counts as an a posteriori, Pareto method, is employed.
To the author’s knowledge, this concept has not been employed in the field of co-
herent control?, so a brief introduction to the fundamentals will be given next.

4.1.3 Concept of Pareto-optimality

The idea of Pareto-optimality was brought up by the Italian sociologist, economist,
and philosopher Vilfredo Pareto in the 19" century, defining it as a macroeconomical
state where no individual of a society can be better off, without impairing the welfare
of another.

Fig. 4.2 illustrates this concept for a two-dimensional case, featuring the op-
timization goals f; and f5, which both are to be minimized; for example cost and
accident rate of a hypothetical car part. If to choose between the two manifestations
A and B (of, say, a crankshaft) in the so-called “objective space’®, no immediate
advantage can be made out because one is better in f;, but worse in f; and vice
versa. To decide which part to choose, a meta-criterion would have to be employed
for example safety regulations or ethical concerns. It is, on the other hand, easy to
decide which of the two parts C' and D to mount, because D is better than C in
both objectives. Looking at the overview on the right, the three solutions A, B, and
D can be said to constitute a provisional “Pareto-optimal front” (dashed line) - if
no other solutions are known - they are also the “non-dominated” solutions®.

3also described in Sec. 5.4.1

4earlier to [90], except for a recent theoretical investigation [91]
Scontrary to the “decision space” &

6non-domination will be discussed in Sec. 9.2
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Figure 4.2: Compromise solutions in two dimensions, where both goals f; and fo are to
be minimized. (a) shows two equivalent solutions, (b) a clear preference for D, and (c) a
Pareto-optimal front consisting of three solutions that all outperform solution C.

Figure 4.3: A Weighted Sum optimization with the weight vector (w1, ws) yields different
solutions depending on the vector, and fails to provide unique solutions for non-convex
Pareto-optimal fronts (b). The trails in (a) illustrate that the solutions are approached
on different paths.

For a Weighted Sum approach with M goals, a general fitness function F' con-
sisting of a sum of partial fitnesses with weight w; can be written as

F =) w- £ (4.1)

whereby f;(Z) are the functions of the individual objective variables 7.

The effect of the chosen cleaning strength vector w; on the final optimal solution
is outlined in Fig. 4.3. For the case (a), the final result of an algorithm run will be
the unique solution D, as there the weighting will generate the lowest F'. Choosing
(w1, wy) differently would produce other solutions, such as A with (w], wj). Scanning
the angle a = arctan (wy/w;) will therefore yield the full Pareto-optimal front for
repeated runs. Graph (b) depicts a non-convex front where such a weight scanning
would fail to produce unique solutions (A and A’, E and E').
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4.2 Control Pulse Cleaning on NaK

For the experiment, the quadrupole mass spectrometer was set to the more abundant
BNa*K isotope, which was used thoughout this work if no isotope ratio experiment
was conducted. The Spectra Physics Tsunami was used as laser source, having 120
fs to 180 fs pulse duration, a FWHM of 5 - 8 nm, a central wavelength of 770 nm,
and pulse energies of about 10 nJ per pulse. The shaper employed was the SLM-
256, used in phase- and amplitude modulation mode, and the time requirement for
one generation was about 14 seconds. The NaK ion yield as first objective will be
denoted as f(T;, ¢;) or f(Z). To remove the unnecessary frequencies, the second
objective is defined as “average transmission” like

1 N
T, = — T, 4.2
N; (4.2)

where N denotes the number of pixels. A random initialization of the transmissions
within an interval of [0,1] will have an expectation value of T,=0.5. It is the intention
of control pulse cleaning to have a strong impact on the ionizations. There are power
dependencies to the second or third order for two- or three photonic ionization,
respectively, which requires choosing a cost function like

f(@)
Ty

F(7) = (4.3)

where 7 is the cleaning exponent. This still can be considered a classical weighting
approach as in Eq. 4.1 when calculating the logarithm

logF=_1 -logf(¥)+(—1)-~-logT,. 4.4
gF=_1rlogf(?)+(-1) v i (4.4)
w1 f wa 2

As only the T are weighted, w; is always 1, so for the further description w,
can be referred just as —v. Contrary to the above stated minimization example
(the car part’s cost and failure rate), for the following OCE, a maximization of the
ion yield will be performed. In order to maximize both goals, the inverse average
transmission 1/7,) will be used in order to conform with the customary descriptions
in the literature. For the experiments, the weight vector (wi,ws) was varied from
(1,0) (no cleaning) to (1,-2) (strong cleaning) in steps of -0.5.

Fig. 4.4 shows the average transmission T, versus tested individual (sorted by
generation number), where a longer trail means a longer time of convergence. The
curves all start at 7,=0.5 and progress towards lower average transmissions, except
for the v = 0.5 case, which does not seem to be influencing the amplitudes much;
and only a slight increase at the beginning and an otherwise gentle descent can be
seen. There is a noticeable separation between all the cases. For v = 1.5 a relatively
strong decrease can be made out which is not too different than for v = 2, they
differ in their final convergence values, which is reached with much less amplitudes
for the latter.
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4.2.1 Frequency cleaning

An overview of the results in the time and frequency domain is provided by Fig.
4.5. The left column shows the effect of cleaning on the amplitudes for increasing
cleaning strength (from top to bottom), similarly, the right column displays the
resulting SFG-CCs.

The transmission values of the pixels are depicted as gray bars in the left column,
they provide additional insight to the algorithm’s inner working as they are directly
encoded in the genotype”. From the patterns one can more clearly see the algorithm’s
“desire” to keep particular frequencies, even if there is not much intensity available
from the Gaussian input beam®. An example of this behavior can be seen for the
v = 1.5 case, where the gray columns at 13041 and 13079 cm™! do not have a high
effect on the resulting spectral intensities, as similarly observed for the v = 2 case
at 13047 cm™! (marked by arrows).

For the unconstrained optimization v = 0, shown in the top row, almost all fre-
quencies stay at high values, except for a “hole” around 13030 cm™!. As progressing
to higher cleaning strengths, the induced elimination of frequencies narrows the ob-
served spectra and reveals distinct peaks, particularly for the v = 1.5 case. The
peaks can be assigned to transitions between vibrational levels of different elec-
tronic states of the 2*Na*K isotope. Specifically, transitions between the A(2)'%*
—X(1)'ST, B(3)MI « A(2)'ST, and the A(6)'3T « A(2)!ST states can be seen
(marked on the left top of Fig. 4.5 and in Tab. 4.2).

An excitation process via the intermediate B(3)'II state found by the clean-
ing experiment would agree with the results from Ref. [79] where, particularly for
later sub pulses, wavepacket propagation seems to increase the total ion yield, also,
indications of the A(6)!3" state are present. In the temporal measurements and
the cross-correlation traces, there is always one dominant structure for all cleaning
strenghts, while the other features differ. This highlights the substantial influence of

"The spectral intensities can be considered as phenotype (as manifestation of the genetic
makeup) because their shape is obtained by multiplying with input pulse’s spectral distribution.

8The pattern extends further out, over 730 cm~!, which is about three times the displayed
range. The fitness functional was not adapted to the input pulse’s spectrum in order to have a
measure that represents the dimensioning of the shaper setup, not the (varying) laser bandwidth.
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Figure 4.5: Pulse spectra (left column) and SFG-CCs (right column) when increasing
the genetic pressure v (top to bottom). The vertical lines indicate the assigned transitions
between vibrational states of A(2)!XT «X(1)1XF, B(3)'I « A(2)!XF, and A(6)!2F —
A(2)'S+. The gray bars represent the transmissions of the respective pixels.
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frequency / cm™! | transition distinct peak visible for ~ ?
12922 V=9 «— 12 1.5, 2
12962 v,=10 «— 12 | 1.5, 2
12988 UA(G):7 — 12 1, 1.5, 2
13002 va2)=12 « 0 | all, no distinct peak
13041 V=12 «— 12 | all
13079 va@)=13 « 0 | all, faint, from transmission patterns

Table 4.2: Identified vibronic transitions for NaK frequency cleaning.

the genetic pressure on the optimization path, and it is very well possible that the
features that are revealed are brought about by the cleaning itself, and only come for-
ward when the possibility to choose transitional states is strongly restricted. When
surveying the temporal distances, a prominent pulse distance which amounts to 1.5
the oscillation period of the A(2)!XT state is found, implying that the ionization
occurs at the outer turning point of this potential®. For the v = 2 case, where the
spectra are most trimmed, a temporal broadening of the main sub pulse is promi-
nent, which is an expected result when only a few pixels can contribute and little
frequencies can interfere. From the pulse distances, a simple ionization scheme can
be proposed where the population that is generated on the first excited A(2)!3F
state by either a pre-pulse or the main pulse, is ionized at the outer turning point
after 660 fs by another pulse in a two-photonic process, whereby additional wave-
packet dynamics on the B(3)'II and A(6)'~" might contribute, too. Still, a more
detailed theoretical analysis such as [79] would be necessary at this point to grasp
the temporal influence of the cleaning strength and the induced dynamics.

4.2.2 Cleaning strength dependent fitness

The influence of the cost function on the resulting optimization factors is shown in
Fig. 4.6. The error of the optimization factors is determined to be about 10%. For
(a), the final values are normalized to the optimization factor when no cleaning is
applied (relative to an unshaped pulse) which was fo=1.4 for the relatively narrow
bandwidth of the Tsunami. For lower cleaning strengths, the final results do not
differ much from the original factor. At y=1.5, already a significant impact and a
much lower factor of f/fy =0.3 is observed, and even less for v = 2.

Another question is how the optimized results would perform if they competed
with an unshaped pulse on the same power level, as all optimized pulse shapes are
reduced in power due to the elimination of amplitudes. For this comparison, the
unshaped reference pulse was reduced in power using a flat transmission function.
As depicted in Fig. 4.6 (b), interestingly, the pulses originating from a higher
cleaning strength perform better as their power-reduced, unshaped counterparts,
highlighting the importance of the induced (or unravelled) wave packed dynamics,

9Distances of 0.5 T,s. would be difficult to resolve with the employed pulse length, but could
be embedded within the more elongated main pulses.
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Figure 4.6: Optimization factors for different cleaning strengths. (a) Optimization factor
[/ fo relative to the factor of an unrestrained run; (b) Optimization factors f/ f. compared
to an unshaped pulse at the same power level.

up to a factor of f/f. = 2.13 for y=2. This means that cleaning goes along with an
increased efficiency; apparently due to the allocation of the available energy to the
most relevant states, emphasizing the usefulness of this method.

4.2.3 Pareto-optimal front for NaK cleaning

Using the translation f/fy as fi, and 1/T, as f, the solutions can be embedded in
objective space in the fashion of Figs. 4.2 and 4.3, whereby here, both objectives
are to be maximized. To observe the progress, the two fitness values were stored for
every tested individual during the experimental runs.

Fig. 4.7 overlays two runs in objective space (gray dots represent individual
solutions from v=0.5, and black dots from v = 1.5) together with the Pareto-optimal
solutions (black rectangles with error bars) for all performed cleaning strengths. The
fact that the Pareto optimal solutions recorded from the last generation do not lie on
the upper slope must be attributed to the experimental noise. The objective space
plot shows which combinations of fitnesses are possible, and therefore provides a
correlation between the conflicting objectives: ion yield and power. The trade-off
between ionization efficiency and the effort to do it with as little amplitudes as
possible can be seen in the location of the solutions in objective space: for v = 0.5,
a high ion yield was achieved, but with effectively no reduction of frequencies, for
v = 1.5, less frequencies are involved (1/7,=3.69) at a reduced ionization yield.

During the experiment, the solutions develop differently, which is visualized in
Fig. 4.8 by calculating the average coordinate (like the center of mass) of one
generation (fy, f2). For v = 0.5, a trend strictly upwards is observed, without paying
much attention to pulse cleaning. For v = 1.5, the curve “bends” at generation 18,
where the highest ion yield for this particular cleaning strength is achieved. Such a
bend is a very good sign of a balanced choice of cleaning strength, because if one
objective is dominant, a much straighter approach to the Pareto-optimal solution is
the case, as observed for v = 0.5.
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4.3 Summary and Outlook

In this chapter a new method of revealing transition frequencies for coherent control
experiments was described. By influencing the selection process, customized objec-
tives can be incorporated as cost functions. An experiment, reducing less important
transition frequency components of a NaK ionization optimization was incorpo-
rated into the framework of multi-objective evolutionary algorithms (MOEA) as a
Scanning Weighted Sum Approach which allowed to display the results from the
experiments in objective space and construct a Pareto-optimal front.

The spectra of the Pareto-optimal solutions revealed transitions between differ-
ent electronical states, which are usually hidden in ordinary optimizations. This
demonstrates that the method is feasible for extracting new information from quan-
tum control experiments, provided that one keeps in mind that genetic pressure
might lead to strong changes to the ionization path. Quantitatively, it was found
that the best cleaning factor for the employed three-step photoionization of NaK lies
around 1 and 1.5, this may of course change with the examined molecular system
and with different, employed non-linearities.

Cost functionals are not restricted to particular deliberations, weight factors
can be chosen with a vast variety of ulterior motives, recently demonstrated by
“cleaning” the signal-to-noise level [92].

Other goals, for example, short term noise versus long term stability could be
improved, or the reproducibility of a solution versus complexity. A local search
in objective space could also be an interesting approach, when a particular area is
selected as a target.

A very promising feature would be the implementation of a modern multi-
objective algorithm. They are able, by design, to retrieve the Pareto-optimal front
within a single run, without the need to specify weightings. The implementation
of such an algorithm for retrieving polarization pulse shapes will be described in
Chapter 9.



