Chapter 2

Physical Fundamentals and Employed
Methods

In this chapter, a brief summary of the physical fundamentals and optimization
strategies will be given. The molecular systems will be discussed when first encoun-
tered in an experiment.

2.1 A Brief Introduction to Molecular Dynamics

The time-dependent Schrodinger equation

5 0v(x1)
o = Hov(x.1) (2.1)

can be used to describe the dynamics of an isolated molecule. With no external
field applied, the Hamilton operator H, and the molecular potentials are time-
independent. The solution of the time-dependent Schrodinger Equation (TDSE)
can be written as [29]

ianwn x)e~nlnt (2.2)

n=1

describing a wavepacket! whose expectation values change in time. When calculating
the probability density |1 (x,t)|?

X = D7 ahain, (x)in (x)e B (2.3)

m,n=1

it is apparent that at least two different energetic levels (eigenstates) E, and E,,
have to exist for the wavepacket to evolve. For a coherent state, the expectation
value of < Z >, is

< T >= /@D*(x, t)a(x, t)dx (2.4)

lif Gaussian, it is also considered to bear minimum uncertainty as its form satisfies the uncer-
tainty relation Az - At = /2
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which can be considered as the movement of a classical particle, in accordance with
the Ehrenfest theorem.

Irradiating a molecule with a coherent (linearly polarized) laser field leads to a
time-dependent Hamiltonian, which consists of

h2
Hy = —%V2 + Vaur(x) (2.5)

and a time dependent part as
H = H,+ H;. (2.6)

with Vjs(x) as the molecular potential and H; as the disturbance caused by the
laser field. For weak laser fields, this can be stated using the dipole approximation
as Hy = —E(t) - p where the significance of the vectorial nature of light can already
be anticipated which will be exploited for the polarization experiments described in
this thesis.

Using the Born-Oppenheimer approximation, the TDSE can be written as

g (o) = ooy ) (o) 27)

where 1,(t) and v3(t) are the wave functions of the two employed electronic tran-
sitions, with H, and H, as their respective Hamiltonians, which determine the dy-
namics of the electronical states. First order perturbation theory yields for small
disturbances:

t
Y O(x, 1) = % / et O] VR eh B Oy, (x,0)dt. (2.8)
0

A system which resides in the lowest vibrational state of the electronical ground
state at t = 0 propagates according to H,go). An interaction of the light field at
t' with the molecule’s dipole moment transfers the population to an excited state,
spread over many neighbouring vibrational states due to the spectral width of the
pulse. The created wavepacket therefore consists of a superposition of states and
evolves according to Héo and the corresponding phase factors. Eq. 2.8 can also
be expressed in a basis of the vibrational eigenfunctions of the electronically excite
state ¥, 5(x) as

¢(1)(X7 t) = Z 6_%Eb’v/twb,v’ () - oo+ Loy (w, 1) (2.9)
with the time-dependent part

Ly o (w, t) = / F(t')et o =Fan It gy (2.10)
0

where F'(t') is a time dependent amplitude, and a factor which is a product of
transition dipole moment and Franck-Condon integral

oo = [ nn(x)ax [ o) (2.11)
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Figure 2.1: Schematic illustration
A Probe of a pump-probe experiment, where
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A probe pulse after a time duration
At transfers the created population
to the detectable state.

energy

Pump ground state

reaction coordinate

The interaction time from one vibronic to another vibronic state is short (< 107
s) compared to typical vibrational frequencies, and it can be assumed to occur at a
constant nuclear distance. Transitions are also more likely to occur at turning points
where there is a greater overlap of the respective wave functions. The coherence of
the exciting pulse is transferred to the excited state where it imposes its phase factor
to individual vibrational states, which then evolve in time. Shaped laser pulses (with
complicated phase and amplitude factors) can therefore be employed to selectively
induce interference effects in the wavepacket’s propagation.

The pump-probe technique [30, 31] (see Fig. 2.1) is a common tool to study
wavepacket propagation on such electronically excited states, whereby two ultrashort
pulses sequentially irradiate a molecular sample. The first sub pulse excites the
molecule from a ground to an excited state, and the second pulse transfers to a final
state (which is an ionic state in this work). The time difference At = t" — ¢ can
be found in the solution of the time dependent Schrodinger equation using second
order perturbation theory [32]

2 ! i / i o
WO ) = (%) o Jy e O] = g B FAC =y, - E(E)]-

e~ Hat" ), (x,0)dt'dt".
(2.12)
With resonant intermediate states, multi-photon processes may also be incorporated,
this method is called REMPI (resonance enhanced multi-photon ionization process)
with either neutral [33] or ionic [34] target states.
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2.2 Mathematical description of fs-laser pulses

The electrical field of a fs-laser pulse F(t) in the time-domain consists of superposed,
complex frequency components

Bt) = % / "l B(w)e (2.13)

—00

since E(t) is a physical quantity and therefore real. The complex spectral field can
be calculated by inverse Fourier transformation

—+00

E@Q::/: dt E(t)e ™", (2.14)

[e.e]

Excluding the negative frequencies by integrating from 0 to +oo, is called E*(¢),
whereby the remaining integral is sometimes called £~ (t). Using E*(t) and E(w)
ensures that there are only positive frequency components, since E_(w) is by def-
inition zero? for all w > 0. In the following, the © and ~ will be disregarded for
simplicity. For pulse lengths that comprise of several optical cycles (where the slowly
varying envelope approximation can be applied) an envelope, or amplitude F'(t)

E(t) = F(t) - *® (2.15)

can be assigned. The change in I'(¢) defines an instantaneous frequency

dartt) _ 0+ dfl—f). (2.16)

Also, T'(t) can be separated in a fast and a slow oscillating term leading to

E{t)= ¢¢*' . F(t) - ) (2.17)

fast term temp.ampl. temp.phase

Polynomial temporal phase. ¢(t) can be expanded in a Taylor series as

1 1 1
(p(t) = Qo + al(t — t(]) + 5&2@ — t0)2 + éag(t — t0)3 + ﬁa4(t — t0)4 —+ ... (218)

with the coefficients

d’ﬂ
n = o ()]e=to (2.19)

whereby ag is the relative position of the rapid oscillations with respect to the enve-
lope, ay is the central frequency shift, as the so-called linear chirp, which corresponds
to a linear change of the instantaneous frequency in time, etc.

2whereby ET(t) + E~(t) = E(t) still reassembles the original real field
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Polynomial spectral phase. Similarly, F(w) can be written as

E(w) = G(w)e™). (2.20)
A linear filter such as an ideal pulse shaper can be stated as complex filter function

H(w) = R(w) - €@ = \/T(w)e® (2.21)

with R(w) as amplitude modulation, which is the square root of the transmission
T(w). An input pulse E;,(w) that is modulated by the filter H(w) has the form

Eou(w) = Hw) - Egp(w). (2.22)

The spectral intensities can be derived directly from the transmission 7'(w) when
multiplying with the input pulse’s envelope

(@) o< [H(w) - En(@)]* = [Ein(@)* - T(w). (2.23)

The phase “filter” ¢(w) can be expanded in a Taylor series as

1 1
P(w) = bo + b1 (w — wo) + 552(00 —wp)? + 663(w —wo)® + ... (2.24)
with the expansion coefficients
] 2.25)
n — dw™ w=wo* .

The effects of the coefficients on a pulse in the time domain vary; for example b
shifts the field beneath the envelope; b; corresponds to an envelope shift in time,
by is the linear chirp of the pulse which causes a linear increase or decrease of the
instantaneous frequency, by is the quadratic chirp which causes an asymmetric pulse
trail, and bs, the third order chirp, leads to a symmetric offset of the pulse’s baseline;
more examples can be found in Refs. [35, 36].

2.3 Birefringence and Liquid Crystal Modulators

In isotropic and linear media like glasses, light propagates the same for all directions,
yielding the relation between the displacement field D and the electric field E

D = gE+P

P —  weoE (2.26)

where g is the permittivity of free space and P the vector field that is related to
the electric dipole moments present in the medium. This leads to D = ¢E with
e = go(1 + x). For anisotropic media that have preferential directions such as
crystals, P is not inevitably aligned along E. The former relationships have to be
expressed by P = gox - E, where x is called the electric susceptibility tensor. It can
be concluded that D and E are also related tensorically as

D=cgE+P=cE+cox -E=¢o(1+x) x E=¢pe-E. (2.27)
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whereby € is called the dielectric tensor, which means that also the refractive index
of the medium must be a tensor, leading to the phenomenon called birefringence.
A liquid crystal modulator uses nematic crystals which are elongated molecules
that have a preferred spatial orientation, but are not fixed in space (unlike a crys-
tal), meaning that the liquid has an anisotropic dielectic tensor. Rotation of the
molecules, induced by an electric field (which is created by applying a voltage V)
therefore goes along with a change of the index of refraction. A liquid crystal cell
acts upon an incoming light field as a birefringent crystal with a fast and a slow
axis. The glass plates are brushed to provide an initial alignment of the molecules?,
with different indices of refraction along these axes. The phase retardance* between
the extraordinary and the ordinary index beam of a liquid crystal with thickness d
at a wavelength )\ is

T = 2% (0(0) — no) = ——n(V), (2.28)

whereby n (V) is the voltage dependent index of refraction that is obtained by cali-
bration [37, 36, 38].

2.4 Evolutionary Algorithms

Evolutionary algorithms (EAs) are used for combinatorial optimization [39] and are
appointed to problems which are expected to be hard to solve, and when no other
methods have proved efficient or successful.

The optimization technique employed throughout this work is the so-called evo-
lution strategy which originates from the German word “Evolutionsstrategie”. It is
based on concepts from biological evolution, mutation, recombination, and survival-
of-the-fittest [11]. To solve a problem, evolution strategy, usually applied for prob-
lems with smooth fitness landscapes, uses a set of individuals which together con-
stitute a population. Each individual has a genome, which is represented by the
real-valued objective variables . The individuals undergo change like mutation and
recombination to adapt to their “environment” which is quantified by a “fitness”
function. The fittest individuals survive, until, if successful, an optimal solution is
found after a certain number of iterations. Like in biology, there is a distinction
between the genetic encoding (genotype) and the actual physiological manifestation
(phenotype).

Evolution strategy is only a sub-class of the more general, evolutionary algo-
rithms which differ in the preferred way of implementing the above mentioned types
of natural principles [40]. Genetic algorithms (GAs) [12, 41, 42] are popular for
binary-coded problems, evolutionary programming (EP) [43] allows the numerical
parameters of the program to evolve, and genetic programming (GP) [44] has sub-
programs which compete for the best ability to solve a problem.

All these variants are embedded in the more general scheme of so-called meta-
heuristic algorithms [45]. A heuristic® algorithm is more or less an educated guess

3which was £45° for this work
4in the linear regime, where intensity changes do not influence the phase modulation
5Ancient Greek “heurisko” means “I find”
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that directs the search for solutions in areas that are poorly understood. Meta-
heuristic strategies provide “meta” methods to direct heuristic algorithms toward
the optima, and are very generally applicable, but not always efficient. They include
local search [46], simulated annealing [47], Tabu search [48, 49], Ant Colony Opti-
mization [50], the Greedy Randomized Adaptive Search Procedures (GRASP) [51],
but also cover topics such as self-organization, artificial life, and swarm intelligence.
The central focus of meta-heuristics is finding the right balance between “diversi-
fication” which enforces novelty and “intensification”, which enforces quality. In
a biological analogy, the problem of exploiting a niche for “resources”, which is a
short-term optimization goal, can very often conflict with the more long-term goal
of exploration of other, more distant and possibly more fertile niches. If too much
exploring is carried out, the algorithm starts to resemble a random search with no
convergence; if too much exploitation of niches is performed, a convergence to local
optima is likely to be the case.

Employed algorithm. There are two types of gene-encodings for this thesis, the so-
called “free optimization” will be presented here, as it is a prerequisite for Chapters
4 and 5. “Parametric optimization” will be explained in detail in Chapter 6. Free
optimization makes use of every possible parameter, which in the case of a liquid
crystal modulator are all its N single pixels, and an assignment pixel «<» gene seems to
be very straightforward. For phase shaping the objective variables are defined as ¥ =
{¢1, -+ ,on}; adding the amplitude can be stated as ¥ = {14, -+, Tn, o1, - , 0N}
whereby the transmissions 7; and phase filter values ¢; are set by the respective
shaper pixels.

If not stated otherwise, the algorithm (Fig. 2.2) and the following settings have
been used throughout this work:

The algorithm starts with a population of the size A with a random distribution
of the gene values within the encoding boundaries (initialization), which leads to
expectation values of ¢ = 0 and T = 0.5 due to their encoding range T: [0, 1] and
¢: |—m,m]. The population is then probed (evaluation), for example by measuring
a molecular ion signal, and one® fitness value f(Z) is assigned per individual.

The individuals, at this point called parents, will procreate; deterministic selec-
tion permits the u parents with the highest fitness values to do so. Another variant,
tournament selection, would select parents probabilistically, where each parent has
a chance that is directly proportional (or modified with some cost function) to its
fitness.

The selected parents are then recombined to produce a A-sized offspring (by
choosing two random parents A times) by uniform crossover. There, the genes of
the two parents are randomly shuffled (without changing index) with a chance of
fifty percent to originate from either parent A or B; similarly to the sketch below
(using G, R, and B as possible values).

(GRBGBRBGGBGBAG)

(RRBRGBRGRBEGE) } — (GRBRGBRGRBGGB)

Other characteristics of the new offspring individual, like fitness, will be randomly

Sor more fitnesses, if multiplhavinge goals are to be optimized (see Chapters 4 and 9)
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Figure 2.2: Sketch of the employed evolution strategy.

inherited from one of its parents. Compared to other methods of recombination
like two-point crossover where two cut points in the chromosome are selected, and
intermediate crossover, where the specific genetic values of the parents are averaged,
uniform crossover produces a massive amount of randomness, but outperforms the
others in many cases [52].

For the next iteration, all parents are discarded, except for the best individual.
This improves the performance under noisy conditions, as noise may Kkill off the best
individuals and advance inferior solutions, which, to a degree, introduces “elitism”.
For an environment without noise (like test problems), elitism may cause the pop-
ulation to become stuck in local optima because an once-found solution will only
be replaced if an individual with a higher fitness emerges. On the other hand, cer-
tain global optima are more easily found when elitism is involved, as certain “lucky
guesses” will not be discarded so easily.

The final step is self-adapted mutation, which adds a random number from a
Gaussian distribution N;(0,0) with the width o and the expectation value 0 to
every gene as

z, = x; + N; (0, 0). (2.29)

Mutation, in the presented algorithm, is not parameter specific, it affects the trans-
mission at the same rate as the phases (except for a factor of 27), which is called
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Figure 2.3: Capability of an evolutionary
algorithm to climb two hills (explore two
niches) at the same time, illustrated for a 1D
fitness landscape, where each dot constitutes
an individual.

single step size self-adaptation’.

The self-adaptive mutation is implemented by evaluating the progress of the
child population compared with the parent’s. For the adaptation of the mutation
width, Rechenberg’s one-fifth rule [11] is applied, meaning that if more than 20%
of the offspring perform better, the mutation stepwidth o is counterintuitively (but
ingeniously) increased by the factor of 1.25 for the next generation and otherwise
decreased by the factor of 0.8.

The balance between exploration and exploitation is upheld by crossover on the
one hand where unlike in nature, the mating pool is usually not limited to a specific
niche, and a mutation operator, which is adapted according to the improvement of
a current individual respective to its parent. After that, the mutated individuals
are passed on to the next iteration, where they are evaluated, selected, etc., until
the termination criterion is reached.

"The strategy to assign an individual mutation parameter o; or an rotation angle in a co-
variance matrix to every gene/pixel was not employed for this work as the used parameters are
conceptionally similar.






