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5 Uncoupling-Coupling

In this section we present a detailed examination of the uncoupling-coupling
procedure. We first work out the main ideas of the uncoupling and coupling
for a decomposition into two metastable sets in Sect. 5.1. We next formalize
the two steps of our UC method in a general setting: uncoupling in terms
of restricted sampling (Sect. 5.2) together with a hierarchical decomposition
of the state space by means of annealing (Sect. 5.2.3); and coupling via
extracting information from simulation runs in bridge densities for regaining
coupling factors between decoupled metastable sets (Sect. 5.3). Eventually,
in Sect. 5.3.3, we discuss two ways to set up a weighted sample that is
distributed according to our target distribution. The resulting algorithm is
summarized in Sect. 5.4.

5.1 Bridging the Barrier

Let us examine a decomposition of a state space Ω into two metastable
sets A and B. This is the simplest possible case for which UC can be
employed and will provide us a better understanding of the leading ideas
behind the uncoupling-coupling procedure. To make this more illustrative,
we consider in Fig. 17 again the potential V, which we already know from the
introductory example (see Fig. 2 (a) on page 7). To set the notation for this
example, let Ω = A ∪ B be a decomposition of the state space Ω = [−2, 2]
into the sets A = [−2, 0] and B = (0, 2]. Denote by fhigh(Ω) and flow(Ω)
two canonical densities on Ω corresponding to high and low temperatures
Thigh and Tlow, respectively. In the same way, we write fhigh(A), fhigh(B),
flow(A) and flow(B) for restricted canonical densities on A and B for Thigh

and Tlow, respectively. Thereby, the term restricted density means that the
respective unnormalized densities are identical on the restricted set. Since
f(Ω) = h(Ω)/Zh(Ω), where h(Ω) denotes the unnormalized density, we write
h(A) = 1Ah(Ω). Although V is one-dimensional in our example, nothing
prevents us in the following from thinking of the two sets A and B as a
decomposition of a high dimensional state space.

Suppose, we are interested in expectation values with respect to the tar-
get distribution flow(Ω) or simply in obtaining a (possibly weighted) data
set distributed according to flow(Ω). Let us suppose that all parameters
of a MCMC sampler are fixed, so that the notion of a density f suffi-
ciently characterizes the resulting Markov chain. This enables us to write

X (f) := Xf = X
(1)
f , X

(2)
f , . . . for a Markov chain corresponding to this

MCMC sampler. In our example, we use the HMC algorithm as MCMC
sampler, with fixed trajectory length and internal step size of the Verlet
integrator.

As we have seen in Fig. 2 (c), drawing samples directly from flow(Ω)
via a realization of Xflow(Ω) is much too slow to get a satisfiable result; this
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was reflected by a 2nd eigenvalue of 0.9988 of P (Xflow(Ω)). Yet, we have
also seen in Fig. 2 (d) that drawing samples from flow(A) and flow(B) is
quite efficient, since the 2nd eigenvalues 0.8341 and 0.8129 of P (Xflow(A))
and P (Xflow(B)), respectively, are bounded far away from 1.

To take advantage of these rapidly mixing properties, we write flow(Ω)
as a weighted sum of its restricted densities on A and B:

flow(Ω) = πAflow(A) + πBflow(B) , (56)

with coupling factors

πA =
Zhlow(A)

Zhlow(A) + Zhlow(B)
and πB =

Zhlow(B)

Zhlow(A) + Zhlow(B)
. (57)

Thus expectations wrt. flow(Ω) of a random variable g : Ω → R are given
by

Eflow(Ω)(g) =

∫

Ω
g(x)flow(Ω)(x) dx

= πA

∫

A
g(x)flow(A)(x) dx + πB

∫

B
g(x)flow(B)(x) dx

= πA lim
n→∞

1

n

n∑

k=1

g
(
X

(k)
flow(A)

)
+ πB lim

n→∞

1

n

n∑

k=1

g
(
X

(k)
flow(B)

)
(58)

In other words, we can compute Eflow(Ω)(g) via realizations of X (flow(A))
and X (flow(B)), without the need to compute a realization of the slowly
mixing X (flow(Ω)). Yet, if we really intend to replace the slowly mixing
X (flow(Ω)) by X (flow(A)) and X (flow(B)), or by similar rapidly mixing
Markov chains, we have at least to solve two essential problems:

1. identification of metastable sets A and B, and

2. computation of coupling factors πA and πB

We will address the former problem in the uncoupling step, and the latter
in the coupling step.

Uncoupling Step. We first draw samples xΩ = (x
(1)
Ω , . . . , x

(NΩ)
Ω ) at the

higher temperature Thigh from the canonical density fhigh(Ω) via the Markov
chain XΩ := X (fhigh(Ω)). We assume a realization of XΩ to mix well between
all relevant parts of fhigh(Ω), which at least is the case in our example (see
Fig. 17 (b)).

A discretization of the associated Markov operator P (XΩ) as outlined in
Sect. 3.3.3 by means of our samples xΩ results in a spectrum

j 1 2 3 4

λj 1 0.9820 0.6968 0.6313
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Figure 17: UC simulation of a one-dimensional multiminima potential V with two distinct
wells. (a) The potential V with state space Ω is decomposed into two sets A and B, which
typically turn out to be metastable wrt. the Markov operator under consideration. (b)
Simulation on Ω at an increased temperature. We observe frequent transitions between
the two metastable sets A and B (2nd eigenvalue of P (XΩ) is 0.9820; also cf. with Fig. 2
on page 7. (c) Two restricted bridge density simulations on A and B with 2nd eigenvalues
0.6745 and 0.7744, respectively; the low 2nd eigenvalues and thus fast convergence allows
short simulation runs.

and therefore indicates the existence of two metastable sets. In fact, an
identification of these two sets as outlined in Sect. 3.2.3 would result ap-
proximately in the sets A = [−2, 0] and B = (0, 2], which we have chosen
beforehand in our example. The remarkable point is, that the metastable
sets of P (XΩ) are in principal the same as for P (Xflow(Ω)), only less meta-
stable. Therefore, we can make use of the faster mixing XΩ to identify
metastable sets for Xflow(Ω).

Now, with A and B identified, we set up bridge densities fhigh,low(A) and
fhigh,low(B) which both encompass the corresponding canonical densities at
Thigh and Tlow. For this task we use bridge densities as defined for ATHMC
(or alternatively bridge densities for PSHMC), and then extract the missing
parameter from xΩ as outlined in Sect. 4.4.2. Regarding our simple one-
dimensional example, the set up of bridge densities may look oversized—
which actually is true for this case. But since in a general high-dimensional
state space flow(A) and fhigh(B) are almost entirely separated by the energy,
the need for bridge densities becomes apparent.

The restricted samplings of XA and XB are shown in Figure 17 (c),
with resulting 2nd eigenvalues 0.6745 and 0.7744 of P (XA) and P (XB),
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respectively. Like Xlow(A) and Xlow(B), the Markov chains XA and XB are
rapidly mixing on the metastable sets A and B, respectively.

In summary, identification of A and B via XΩ enable us via the bridge
densities XA and XB to draw samples in Ω that encompass all relevant parts
of our target distribution. In Sect. 5.2 we generalize and refine this approach
to a hierarchical structure of bridge densities.

Coupling Step. Our aim is to set up an estimator for expectation values

wrt. flow(Ω) from the samples xΩ = (x
(1)
Ω , . . . , x

(NΩ)
Ω ), xA = (x

(1)
A , . . . , x

(NA)
A ),

and xB = (x
(1)
B , . . . , x

(NB)
B ) of XΩ, XA, and XB , respectively.

By reweighting as outlined in Sect. 4.4.1 xA and xB from fhigh,low(A)
and fhigh,low(B) to flow(A) and flow(B), respectively, we obtain weights

wflow(A) =
(
w

(1)
flow(A), . . . , w

(NA)
flow(A)

)

and
wflow(B) =

(
w

(1)
flow(B), . . . , w

(NB)
flow(B)

)
.

With these weights we can rewrite (58), with the only difference that the
approximations of Eflow(A)(g) and Eflow(B)(g) are given in terms of weighted
random variables due to the use of bridge densities:

Eflow(Ω)(g) = πA lim
n→∞

1

n

n∑

k=1

w
(k)
flow(A)g

(
X

(k)
A

)

+ πB lim
n→∞

1

n

n∑

k=1

w
(k)
flow(B)g

(
X

(k)
B

)
(59)

What we still need are the coupling factors πA and πB between these
two weighted samples. The quotient of normalizing constants

c =
Zhlow(A)

Zhlow(B)
(60)

is the key to compute them, since then

πA =
c

1 + c
=

Zhlow(A)

Zhlow(A) + Zhlow(B)
and πB = 1 − πA . (61)

A direct computation of (60) is not possible, but we can build a “bridge”
between flow(A) and flow(B) via fhigh(Ω) by setting

Zhlow(A)

Zhlow(B)
=
Zhhigh(B)

Zhlow(B)

Zhhigh(A)

Zhhigh(B)

Zhlow(A)

Zhhigh(A)
, (62)

thus expanding (60) into three quotients of normalizing constants. The first
and third part can be estimated from the bridge density samples of xA and
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xB, respectively; the middle part from xΩ. However, we postpone the actual
estimation of these quotients to Sect. 5.3.2, where we treat them within the
general coupling step.

Let us for now assume that we already obtained an estimate ĉ of (60) via
(62). Then, we can compute approximations π̂A and π̂B from (61), which
eventually lead to an estimator for (59):

Êflow(Ω)(g) = π̂A
1

NA

NA∑

k=1

w
(k)
flow(A)g

(
x

(k)
A

)
+ π̂B

1

NB

NB∑

k=1

w
(k)
flow(B)g

(
x

(k)
B

)
(63)

Although samples from xΩ are not explicitely part of (63), they play an
important role in the estimation of π̂A and π̂B , thus a good sample from
fhigh(Ω) is nevertheless essential. We will see in Sect. 5.3.3 that it is also
possible to include xΩ explicitely.

The coupling matrix of UC, which we introduce in Sect. 5.3, will turn
out to be a generalized scheme of the coupling steps described here.

Computational Cost. Essentially, we replaced a slowly mixing Markov
chain Xlow(Ω) with λ2(PXlow(Ω)) = 0.9988 by three Markov chains XΩ, XA,
and XB with corresponding 2nd eigenvalues 0.9820, 0.6745, and 0.7744, re-
spectively. There is no doubt for XA and XB to be rapidly mixing, and
even for XΩ we have λ2(PΩ) < 0.9822 = λ2(P

15
Xlow(Ω)), which loosely spoken

indicates that for one step of XΩ one has to perform 15 steps with Xlow(Ω)
to obtain the same mixing behavior. One should be careful, however, in
interpreting this factor, since it is mainly dependent on the choice of tem-
peratures Tlow and Thigh. We will see in Sect. 6, that in general UC can
lead in more complex situations to much higher computational gains. Al-
though important for UC to be successful, the remaining overhead of the
method (like dynamical clustering or reweighting) is negligible in terms of
computational cost.

5.2 Uncoupling of Markov Chains

By the uncoupling step we refer on the one hand to a hierarchical decom-
position of the state space Ω into metastable sets and on the other hand to
restricted bridge sampling in these sets by restarted Markov chains. Yet, we
first investigate a much simpler situation: given a Markov chain X which is
slowly mixing due to n metastable sets, we outline how to set up n rapidly
mixing Markov chains X1, . . . ,Xn on these metastable sets, and analyze
their properties and the effect this imposes on the spectra of the associ-
ated Markov operators PX1 , . . . , PXn . The algorithmic usefulness of these
theoretical investigations will become apparent in a hierarchical context in
Sect. 5.2.3.
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5.2.1 Restricted Sampling

Suppose x = (x(1), . . . , x(N)) to be generated from X and the sets A1, . . . , An

to be the output of our dynamical cluster algorithm. We further assume,
that X is given by a Metropolis type transition kernel K as defined in
Sect. 4.1. To sample separately in each Al, for k = 1, . . . , n we define
restricted Markov chains X1, . . . ,Xn with associated Markov kernels Kl, l =
1, . . . , n by restricting K on Al:

Kl(x, dy) = kl(x, y)µ(dy) + rl(x)δx(dy) (64)

with

kl(x, y) =

{
q(x, y)α(x, y) if x 6= y and y ∈ Al

0 otherwise
(65)

and

rl(x) = 1 −
∫
kl(x, y) dy.

That is, we can generate a realization of Xl by a simple alteration of the
Metropolis algorithm for X . One update step for the restricted chain Xl is
then given by:

1. suppose, we are in the state x
(j)
l ∈ Al

2. compute proposal yl for the Metropolis algorithm associated with X

3. reject yl, if yl /∈ Al (i.e., set x
(j+1)
l := x

(j)
l )

4. otherwise, accept (i.e., set x
(j+1)
l := yl) with the same probability as

for the Metropolis algorithm associated with X

Since Al is metastable wrt. X , mixing within Al is fast, and proposal
steps outside of Al (which lead to rejections) will occur only rarely. Intu-
itively, the restricted Markov chain Xl should again be rapidly mixing. But
before we analyze this in more detail, we investigate some general properties
of Xl.

Clearly, the detailed balance condition (43) wrt. fl still holds for all
x, y ∈ Al, so Kl is again a reversible Markov kernel. Now, let hl = 1Al

h
be the restricted unnormalized density on Al (as before, 1A denotes the
indicator function on A). Then, under the assumption that Kl is irreducible,
fl = hl/Zhl

is the unique invariant density of Kl. Therefore, the density fl

is a scalar multiple of the global density f . Thus, we can regain the global
density via

f =

n∑

l=1

πlfl (66)
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in terms of the local densities fl. Only the coupling factors π1, . . . , πn are
unknowns which represent the neglected coupling between the sets Al. As
a generalization of (57), they are again given by

πl =
Zhl∑n

k=1 Zhk

=
Zhl

Zh
.

It is not our aim to estimate these coupling factors in this situation (which
in fact would be intractable here), but postpone this problem after we in-
troduced a hierarchical scheme in Sect. 5.2.3.

Illustration of Restricted Sampling. For ease of presentation we will
now illustrate this procedure in a finite dimensional situation. To this end,
let T̃ again denote the transition matrix of HMC for n-butane associated
with the box discretization in 23 boxes given in Sec. 3.3.3.

The first four eigenvalues of σ(T̃ ), namely

j 1 2 3 4

λj 1 0.9779 0.9733 0.4850
,

clearly indicate the existence of three metastable sets.
Let us denote the associated chain by X in the following. Moreover, let

A1, A2, A3 be a decomposition of the state space Ω = {1, . . . , 23} into three
metastable sets. Applying (64) to T̃ results in a transition matrix T̃restr with
entries

T̃restr,kl =





T̃kl, k, l ∈ Ai for i ∈ {1, 2, 3} and k 6= l
0, k ∈ Ai, l ∈ Aj for i, j ∈ {1, 2, 3} and i 6= j

T̃ll +
∑

i6∈Aj

T̃li, k = l ∈ Aj

Consequently, if we assume the boxes for each subset Al to be in a successive
order, T̃restr has block-diagonal form. The three stochastic matrices T̃l on
the block diagonal of T̃restr are then transition matrices associated with the
uncoupled Markov chains X1, X2, and X3.

Figure 18 illustrates the situation when the sets A1 = {1, . . . , 7}, A2 =
{8, . . . , 16}, and A3 = {17, . . . , 23} are good approximations of the three
metastable sets of X . Figure 18 shows on the left the corresponding de-
composition in the torsion angle of n-butane, in the middle T̃restr, and on
the right the ordered spectra of the three transition matrices Tl. The 2nd
eigenvalues of the three Tl,

λ2(T1) λ2(T2) λ2(T3)

0.5353 0.6707 0.5010
,

are indeed substantially less than 1 (i.e., all three restricted Markov chains
Xl are rapidly mixing).
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Figure 18: Left: Illustration of the entries of the transition matrix T̃restr (as defined in the
text above) for a good choice of A1, A2, A3. Intensity of entries due to logarithmic scale.
Right: Ordered spectrum of T̃ .
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Figure 19: Left: Illustration of the entries of the transition matrix T̃restr for a deterio-
rated choice of A1, A2, A3. Intensity of entries due to logarithmic scale. Right: Ordered
spectrum of T̃ .

Figure 19 now illustrates bad approximations of the three metastable sets
of X , namely A1 = {1, . . . , 9}, A2 = {10, . . . , 15}, and A3 = {16, . . . , 23}.
Again, the right hand side of Fig. 19 shows the ordered spectra of the three
transition matrices Tl. We observe that now the 2nd eigenvalues

λ2(T1) λ2(T2) λ2(T3)

0.8952 0.5215 0.7113

are much closer to 1 (nevertheless, compared to X the three restricted
Markov chains Xl are still rapidly mixing).

A comparison of these two uncouplings of T̃ indicates that the transfor-
mation of T̃ into T̃restr due to (64) is in fact not very sensitive wrt. to the
resulting spectra; at least, as long as the sets Al are metastable wrt. X .

Another important aspect of restricted Markov chains according to (64)
is illustrated in Fig. 20: the invariant density f of the unrestricted chain
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Figure 20: Left: Invariant distribution f . Center: Invariant distributions fl, l = 1, 2, 3, in
the three metastable sets Al (as in Fig. 18). Right: Quotients πl = f/fl in the three sets
Al.

is compared to the invariant densities fl of the three restricted chains from
Fig. 18. As a consequence of (66), we observe f/fl = const = πl on each
subset Al, l = 1, 2, 3.

5.2.2 Eigenvalue Splitting

By defining restricted Markov operators on metastable sets as in Sect. 5.2.1,
the eigenvalue cluster λl, l = 1, . . . , n in the vicinity of 1 of the original
Markov operator P splits up into eigenvalues λ1(Pl) = 1 for the restricted
Markov operators Pl. Figure 21 gives an illustration of this behavior for
n-butane.

We now give a mathematical justification of the assumption that lead
us to the definition of (64), namely, that restricted Markov chains on meta-
stable sets are indeed rapidly mixing (or at least possess increased mixing
properties). Again, we restrict our investigations to a finite dimensional
case.

To that end, let T be an arbitrary primitive and reversible s×s stochastic
matrix with invariant distribution π, which we decompose into

T = D +E =




D11 E12 · · · E1n

E21 D22 · · · E2n

· · . . . ·
En1 En2 · · · Dnn


 . (67)

At this point, we do not make any further assumptions about the size of the
blocks D11, . . . , Dnn, nor do we assume the states of a block to be strongly
coupled or the blocks among each other to be nearly uncoupled.

Via the row sums of E = (eij), we define the diagonal matrix Ediag by

Ediag = diag




s∑

j=1

e1j , . . . ,

s∑

j=1

esj


 (68)
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σ(P )

Figure 21: Typical splitting behavior of the spectral structure for restricted Markov op-
erators (see also [91]). We here sketch the situation for n-butane, which was already
illustrated in Figs. 8 and 18. Due to reversibility all spectra are real. By uncoupling into
three metastable sets the eigenvalues λ1(P ), λ2(P ), and λ3(P ) split up into the spectra
of the restricted Markov operators Pl, l = 1, 2, 3, each of these eigenvalues apparently
transforms to λ1(Pl) = 1.

and the restricted stochastic matrix

Trestr = D +Ediag =




D̄11 0 · · · 0
0 D̄22 · · · 0

· · . . . ·
0 0 · · · D̄nn


 , (69)

which is still reversible, since the pair(π, Trestr) still fulfills detailed balance.

Our goal is to make a statement about σ(Trestr) in terms of σ(T ). Since
σ(Trestr) is uncoupled in n blocks D̄ll, l = 1, . . . , n (with each block forming
a stochastic matrix), each λ1(D̄ll) = 1 which directly implies λk(Trestr) = 1
for k = 1, . . . , n.

In order to analyze λn+1(Trestr) in terms of λn+1(T ), we need the follow-
ing theorem which is known as Weyl’s inequalities ([12], III.2, pp. 62–63). It
states relations between eigenvalues of symmetric matrices A, B, and A+B.

Theorem 11 (Weyl’s Inequalities) Let A,B be s×s symmetric matrices
with eigenvalues λ1(A) ≥ · · · ≥ λs(A) and λ1(B) ≥ · · · ≥ λs(B). Then, for
j = 1, . . . , s,

λj(A+B) ≤ λi(A) + λj−i+1(B) for i ≤ j ,

λj(A+B) ≥ λi(A) + λj−i+s(B) for i ≥ j.

If we put i = j in the above inequalities, we immediately obtain

Corollary 1 For each j = 1, 2, . . . , s,

λj(A) + λs(B) ≤ λj(A+B) ≤ λj(A) + λ1(B).
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With these preparations, we can state the following theorem, which pro-
vides a bound on λn+1(Trestr):

Theorem 12 Let T , E, and Trestr be defined as in (67) and (69). Then,

λk(Trestr) ≤ λk(T ) + 2 ‖E‖∞, for k = 1, . . . , s. (70)

Proof. With π being the invariant distribution of T , and D the diago-
nal matrix D = diag(

√
π1, . . . ,

√
πs), we define similar symmetric matrices

Tsym = DTD−1, Esym = DED−1, and Trestr,sym = DTrestrD−1.
For the diagonal matrix Ediag as defined in (68) its spectral radius is

obviously given by r(Ediag) = ‖Ediag‖∞. Also, we can bound r(E) by ‖E‖∞,
which can be seen as follows:

Consider the matrix

Emax = E + diag


‖E‖∞ −

s∑

j=1

e1j , . . . , ‖E‖∞ −
s∑

j=1

esj


 ,

which is nonnegative with equal row-sum ‖E‖∞ and satisfies E ≤ Emax.
Since ‖E‖∞−1Emax is stochastic, λ1(‖E‖∞−1Emax) = 1, and therefore

λ1(Emax) = ‖E‖∞. Applying Perron-Frobenius theory (see Theorem 4) with
E ≤ Emax then provides the inequality λ1(E) ≤ λ1(Emax), which directly
translates into r(E) ≤ ‖E‖∞.

Next, consider the decomposition

Trestr = T +Ediag −E, (71)

or in terms of the similar symmetric matrices

Trestr,sym = Tsym +Ediag −Esym. (72)

We first apply Corollary 1 with j = 1 to Ediag −Esym:

λ1(Ediag −Esym) ≤ λ1(Ediag) + λ1(−Esym)

≤ ‖Ediag‖∞ + λ1(−E)

≤ 2‖E‖∞

Applying Corollary 1 once more, we obtain for k = 1, . . . , s

λk(Trestr,sym) = λk(Tsym +Ediag −Esym)

≤ λk(Tsym) + λ1(Ediag −Esym)

≤ λk(Tsym) + 2‖E‖∞.

In terms of the matrices Trestr and E this inequality transforms into

λk(Trestr) ≤ λk(T ) + 2‖E‖∞.

�
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For an arbitrary decomposition T = D + E entries in E will be quite
large (even for a small value of λn+1(T )) and a bound for λn+1(Trestr) given
by Theorem 12 could even be greater than 1. This reflects the situation
that we would not expect rapidly mixing in the blocks D̄ll, l = 1, . . . , n; it
would even be possible that one or all of the restricted Markov chains are
no longer irreducible.

But now suppose that (e.g., as output of a dynamical cluster algorithm)
we obtain a decomposition T = D + E where ‖Esym‖∞ is small. Then,
the bound on λn+1(Trestr) is still bounded away from 1, from which at least
irreducibility for all Dll, l = 1, . . . , n, follows. Depending on the gap be-
tween 1 and λn+1(Trestr), Theorem 12 may help to assess the rapidly mixing
property of restricted Markov chains.

Example. Inequality (70) can become strict. As we can see from the
simple 2 × 2 stochastic matrix

T =

(
1 − ε ε
ε 1 − ε

)
with Trestr =

(
1 0
0 1

)
,

we have λ2(T ) = 1 − 2ε, and Eq. (70) yields

1 = λ2(Trestr) ≤ λ2(T ) + 2ε = 1.

In general, since we made no assumptions on the internal structure of
restricted blocks, inequality (70) has to take into account the worst case
behavior that is compatible with σ(T ). This may lead to actual values of
λn+1(Trestr) much below the bound provided by Theorem 12.

For example, if we return to the discretizations of n-butane illustrated in
Fig. 18, we have to compare the bound provided by (70) with the (probable)
increase of the eigenvalue λ4(T ) = 0.4850 on λ4(Trestr). Yet, even for such
a good metastable decomposition low weighted transition states keep ‖E‖∞
quite large with ‖E‖∞ = 0.3666, so we have

λ4(Trestr) = 0.6707 ≤ λ4(T ) + 2 × 0.3666 = 1.2182,

which is a trivial bound, since λ4(Trestr) is already bounded by 1.

5.2.3 Hierarchical Annealing

Given a sample x of a Markov chain X , dynamical clustering enables us to
detect its metastable sets. Yet, this presupposes that we already generated
a good sample x which to obtain was our initial algorithmic aim. We cir-
cumvented this problem in the introductory example (see Sect. 5.1) by con-
structing a patchwork of distributions via the canonical density fhigh(Ω) and
the bridge densities fhigh,low(A), fhigh,low(B) of which we have extracted a
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Figure 22: (a) Illustration of a one-dimensional potential V with hierarchical nested meta-
stable sets. (b) Schematic plot of a three level hierarchical decomposition. An initial
sampling of f1 decomposes the state space Ω = A1 into two subsets A2 and A3, which
get further subdivided into {A4, A5} and {A6, A7, A8}, respectively. The three levels are
related to an annealing process; the top level is related to β1, the intermediate level to
β2 > β1, and the ground level to the inverse target temperature β3 = β∗ > β2. (c) The
same three level subdivision is now represented as a graph, where vertices correspond to
canonical densities fk with supp(fk) = Ak, and edges between two vertices i, j correspond
to bridge densities fi,j . By ρ(k) we denote the index of the parent vertice of a density fk.
By drawing vertices as ellipses of different size, we also illustrate the extent of the respec-
tive distributions. As an example, the density φ3,8f3/Zφ3,8f3

corresponds to the hatched
part of f3, and ρ(8) = 3; in UC neither φ3,8f3/Zφ3,8f3

nor f8 is sampled, but rather
the bridge density f3,8 (which sufficiently encompasses the important parts of φ3,8f3 and
f8). The tree structure of the graph guarantees that the coupling matrix C (which we
introduce in Sect. 5.3) is irreducible.
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weighted sample with respect to the target distribution given by the density
f∗ := flow(Ω). We now extend this approach into a hierarchical structure.

A natural way to represent a patchwork of distributions that is built
up via bridge distributions is a graph G = (V,E), whereby densities fk,
k = 1, . . . ,M , are associated with the set of vertices V , and all occurring
bridge densities fi,j with the set of edges E. For a hierarchical annealing
strategy (to which we restrict here) the graph G reduces to a rooted tree,
with the initial sampling becoming its root.

In the following we assume the target density f∗ := f(β∗) to be defined
as canonical density h∗ = exp[−β∗V] wrt. a given potential V. As outlined
in Sect. 4.4, by decreasing β in the canonical distribution we embed f∗ into
a hierarchy of distributions f(β) which become easier to draw samples from.

Let T1 be the temperature at which a given MCMC method can draw
samples from f(β1) without suffering from trapping problems. In most prac-
tical situations T1 � T∗, which prevents a direct bridge simulation as out-
lined in Sect. 4.4. Instead, we introduce a number of intermediate temper-
atures in such a way that bridge sampling between adjacent temperatures
becomes feasible. This results in a hierarchy of temperature levels

T1 > T2 > . . . > TL = T∗,

or in terms of inverse temperatures, β1 < β2 < . . . < βL = β∗.

Our aim is now to build up a hierarchy via a series of bridge distributions
between adjacent temperatures, each bridge distribution restricted to its
higher temperature metastable set. Then, each Markov chain is rapidly
mixing, and each sample will contain a vital piece of information for the
coupling step.

How the hierarchy actually unfolds is illustrated in Fig. 22 for the situa-
tion of a three level decomposition with respect to three inverse temperatures
β1 < β2 < β3 = β∗. Essentially, what happens is a recursion of the following
two steps:

1. Sampling of a bridge density fi,j on the set Aj between two adjacent
temperature levels. The underlying assumption is that, since Xi is
rapidly mixing on Aj , Xi,j is as well. The output is a sample xi,j.

2. Identification of metastable sets wrt. Xj by means of dynamical clus-
ter analysis. For this purpose, xi,j is reweighted towards the lower
temperature.

This procedure is done until we reach the target temperature level T∗.
We end up with samples from bridge distributions, each one covers a certain
temperature range restricted to a metastable set in the state space. Extract-
ing a weighted sample of f(β∗) from these samples is part of the coupling
step, which we describe in detail after the following remarks.
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σ(Phigh,low)

σ(Phigh)

σ(Plow,1) σ(Plow,2) σ(Plow,3)
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Figure 23: Extended splitting behavior of eigenvalues in the context of a hierarchical
uncoupling. The scheme illustrates the spectra for three Markov operators all acting on
the same metastable set A, and spectra resulting from a decomposition of A into three
further metastable subsets. While the 2nd and 3rd eigenvalues of σ(Phigh) are significantly
bounded away from 1 they are closer to 1 in σ(Plow), which results from lowering the
temperature from Thigh to Tlow. In UC we draw samples from fhigh,low via a still rapidly
mixing Markov chain as indicated by σ(Phigh,low). The key point is that reweighting
the fhigh,low-samples to flow allows for detecting strong metastabilities in Plow without
directly drawing samples from flow. The decomposition into three metastable sets results
in a splitting of three eigenvalues into λ1(Plow,l) = 1, l = 1, 2, 3, for the restricted Markov
operators Plow,l.

Spectral Structure. Irrespective of Markov chains being restricted on
metastable sets or not, higher temperatures lead to better mixing rates.
Figure 23 illustrates how this behavior is reflected by the spectra of the
Markov operators associated to temperatures Thigh and Tlow as well as the
bridge distribution Thigh,low.

The situation is as follows: From the previous simulation in the hierarchy
we are given a set A such that the Markov chain Xhigh at temperature Thigh

is rapidly mixing. What we want is to find out about metastable sets wrt.
Tlow. We solve this problem by setting up a bridge distribution, such that
Xhigh,low is still rapidly mixing. Eigenvalues of σ(Phigh,low) will, however,
be somewhat closer to 1, since Xhigh,low also draw samples from the slowly
mixing low temperature region Tlow.

Reweighting the bridge distribution’s sample to Tlow directly provides
a reliable statistical representation of its canonical distribution. Regarding
our goal of identifying metastable sets wrt. Plow, a perfectly reweighted
version of our dynamical cluster algorithm is not possible. The reason is
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that dynamical transitions in higher temperature regions cannot be correctly
reweighted to low temperature transitions. Yet, we can use an approximate
scheme that practically identifies the same metastable sets. Suppose, that
we have already computed weight factors w for a sample x. Then, for a
given discretization we use the same approximation via relative frequencies
as in (38), (39), or (40), but additionally incorporate the weights w =
(w(1), . . . , w(n)). A reasonable choice is to weight a transition from x(j) to
x(j+1) with the arithmetic mean of both weights, i.e., (w(j) + w(j+1))/2.
With the notation from Sect. 3.3.3 Eq. (38) then turns into

κ(Bk, Bl) ≈
∑n−1

j=1 (w(j) + w(j+1)) 1Bk
(x(j)) 1Bl

(x(j+1))
∑n−1

j=1 (w(j) + w(j+1)) 1Bk
(x(j))

,

and analogue equations can be derived from (39) and (40).
In summary, we are able to identify new metastable sets that emerge at

Tlow via the rapidly mixing Markov chain Xhigh,low. This effect is exploited
during the whole uncoupling procedure, thus avoiding the initial problem of
analyzing the state space before a simulation even has been started.

Essential Hierarchy. What we described so far is an uncoupling strategy
that produces a non-decreasing series of numbers Mk of metastable sets for
each new hierarchical level βk, k = 1, . . . , L. This strategy can result in
a strong increase of metastable sets due to identification of new emerging
metastable subsets. Since all metastable sets are treated equal irrespective
of their probability wrt. to f(βk), we would spend more and more compu-
tational effort on parts of the state space of low probability.

One way to avoid a possible computational explosion is to concentrate on
the most probable metastable sets by discarding metastable sets of low prob-
ability. This can be achieved, e.g., by introducing a threshold on each tem-
perature level βk. The influence of discarding low weighted metastable sets
on f∗ = f(βL) is small, since these sets tend to become even less weighted
during annealing anyway. We will see in Sect. 5.3.1 that discarding meta-
stable sets causes no errors for the remaining sets in the coupling process.

5.3 Coupling Matrix

In the coupling step we will show that it is possible to regain information
about a global density f =

∑M
k=1 πkfk in terms of a patchwork of densities

fk by defining a coupling matrix C with π as its stationary distribution and
estimating the entries of C from random samples of the fk’s.

5.3.1 Setup and Analysis

Now suppose that arbitrary unnormalized densities h1, . . . , hM are given.
We denote by Ak = supp(fk) the support in the state space Ω and by
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φij = 1Ai∩Aj
the indicator function of the common support of the densities

fi and fj; µ denotes the underlying measure on Ω.

To obtain information about the density f corresponding to the global
unnormalized density h =

∑M
k=1 hk, it is sufficient to know the ratios of

normalizing constants πk = Zhk
/Zh, because then we can reconstruct f

from the fk’s by

M∑

k=1

πk fk =

M∑

k=1

Zhk

Zh

hk

Zhk

=
h

Zh
= f.

Having in mind an algorithmic realization, we have to compute the πk’s
(or at least approximations of them) without directly referring to Zh. This
resembles the standard MCMC method, where one avoids the normalizing
constant by evaluating ratios depending only on the unnormalized density.
In the same way we define the coupling matrix C = (cij) ∈ R

M×M by

cij =





1
M

Zφijhi

Zhi

min

{
1,

Zφjihj

Zφijhi

}
for i 6= j and µ(Ai ∩Aj) > 0

0 for i 6= j and µ(Ai ∩Aj) = 0

1 −∑M
k=1(k 6=i) cik otherwise

(73)

Obviously, C is a stochastic matrix, because for i 6= j we have 0 ≤ cij ≤
1/M , while due to the diagonal entries the sum of each row is 1. The Markov
chain corresponding to C is also aperiodic, simply because cii ≥ 1/M for
each diagonal entry.

Furthermore, let us assume in the following that each Ai is connected to
any Aj in the sense that there exists a sequence of sets

Ai = Am1 , Am2 , . . . , Amk−1
, Aj = Amk

,

such that µ(Aml
∩Aml+1

) > 0 for l = 1, . . . , k− 1. Then for all i and j there
exists a path from the state i to the state j in C, which makes C irreducible.

The key point in the construction of C is that

π =
1

Zh
(Zh1 , . . . , ZhM

)

is the unique stationary distribution due to the aperiodicity and irreducibil-
ity of C. This follows immediately from the detailed balance condition

πi

Zφijhi

Zhi

min

{
1,
Zφjihj

Zφijhi

}
= πj

Zφjihj

Zhj

min

{
1,
Zφijhi

Zφjihj

}
, (74)

which in addition shows the reversibility of C.
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Expectation Values. If we suppose that we can estimate expectation
values for each fk and we know the stationary distribution π of C, we are
able to estimate expectation values wrt. f , which are then given by

Ef (g) =

M∑

k=1

πk

∫

Ak

g(x)fk(x) dx. (75)

In general, we are more interested in expectation values wrt. f∗. Now sup-
pose, that h∗ =

∑M
k=m hk (i.e., the sum of the unnormalized densities be-

longing to the hierarchical level β∗). Then, we can restrict (75) to f∗ by

Ef∗(g) =

M∑

k=m

π∗k

∫

Ak

g(x)fk(x) dx. (76)

where

π∗l =
πl∑M

k=m πk

for l = m, . . . ,M.

Example. Equation (73) defines the coupling matrix in a general setting
for a patchwork of overlapping densities. In our setting, the hierarchically
nested fk’s are reflected in the structure of C. For example, the decomposi-
tion of Fig. 22 results in a coupling matrix C ∈ R

8×8, where non-zero entries
show the pattern

C =




• • •
• • • •
• • • • •

• •
• •

• •
• •
• •




.

The hierarchy of the decomposition clearly shows up. By setting m = 4 and
M = 8, we can estimate expectation values wrt. f∗ by means of (76).

Essential Hierarchy. At the end of Sect. 5.2.3 we discussed the possibility
to discard low weighted metastable sets during hierarchical annealing. We
now investigate the influence of this procedure on the remaining metastable
sets of high probability.

In a complete hierarchy, we have

h∗ =

M∑

k=m

hk and f∗ =

M∑

k=m

π∗kfk,
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where π∗ is derived from C.
In contrast, in an essential hierarchy we have only an incomplete repre-

sentation of f∗ with d missing densities, which we denote as f∗,ess. For ease
of notation, we suppose these d densities to have indices m, . . . ,m+ d − 1.
Then, h∗,ess =

∑M
k=m+d hk, and we would like to set up

f∗,ess =

M∑

k=m+d

π∗,essk fk,

with accordingly renormalized coupling factors π∗,ess
k from π. In an essential

hierarchy we cannot derive π∗,ess
k from π, since we would not set up C but

an “essential” coupling matrix Cess. Yet, the detailed balance condition (74)
guarantees that essential coupling factors computed via Cess are identical to
the ones derived from C. This means that by discarding some metastable
sets during annealing we do not introduce any other errors in the estimation
of (76) than neglecting the contribution of the low weighted discarded parts
of f∗.

5.3.2 Approximation of the Coupling Matrix

Equation (73) defines the analytical form of the coupling matrix C. Clearly,
C cannot be evaluated analytically. Instead, we have to estimate its entries

cij =
1

M

Zφijhi

Zhi

min

{
1,
Zφjihj

Zφijhi

}
for i 6= j and µ(Ai ∩Aj) > 0.

(77)
from the given random samples. We will show in the following how to
obtain an estimation Ĉ = (ĉij) of C. Note, that as a consequence of the
hierarchical subdivision, only non-diagonal entries cij of C linking a density
fi to its “child” densities or “parent” density fρ(i) as well as their respective
symmetric entries cji are non-zero (see Fig. 22).

Reweighting. In order to estimate the first quotient of normalizing con-
stants in (77), we have to compute weight factors for bridge samples at first.
For all bridge densities fij let

xij =
(
x

(1)
ij , . . . , x

(Nij )
ij

)
(78)

be the samples from the Markov chains Xij. We define with

wij =
(
w

(1)
ij , . . . , w

(Nij )
ij

)
(79)

weight factors for an unnormalized density φijhi by reweighting each sample
xij to the lower temperature via

w
(k)
ij =

φij(x
(k)
ij )hi(x

(k)
ij )/hij(x

(k)
ij )

∑Nij

m=1 φij(x
(m)
ij )hi(x

(m)
ij )/hij(x

(m)
ij )

. (80)
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Since our sampling xij was already restricted to Ai ∩Aj , the indicator func-

tion φij is always 1, i.e., φij(x
(k)
ij ) = 1 for all k, and could therefore be

omitted from (80). No reweighting is necessary for the initial sampling

x11 = {x(1)
11 , . . . , x

(N11)
11 }, therefore w

(k)
11 = 1/N11 for k = 1, . . . , N11.

Statistical weight of a Metastable Set. For fj being a child density
of fi, and fi being a child density of fl (i.e., Aj ⊆ Ai ⊆ Al), the expectation
value Efi

(φijhi) = Zφijhi
/Zhi

can be approximated by the bridge density
sample xil due to

Zφijhi

Zhi

= lim
Nil→∞

Nil∑

k=1

w
(k)
il φij(x

(k)
il ) (81)

by means of x and w. This ratio can be interpreted as the probability to be
in the set Aj wrt. fi.

Ratio of Normalizing Constants. We can estimate the ratio of normal-
izing constants solely by the samples xij from the bridge density fij:

Zφjihj

Zφijhi

= lim
Nij→∞

∑Nij

k=1 hj(x
(k)
ij )/hij(x

(k)
ij )

∑Nij

k=1 hi(x
(k)
ij )/hij(x

(k)
ij )

. (82)

For finite Nij one needs a reliable sampling as described in Sect. 4.4 in order
to obtain a satisfactory estimation.

Remark. With (81) and (82) an estimation Ĉ of C is given, of which we
can directly compute its unique invariant distribution π̂. In general Ĉ will
not be exactly reversible as it is the case for C, but since each entry ĉij is
an non-negative estimate of cij it converges to the reversible matrix C for
Nij → ∞ for all i, j which come into question.

5.3.3 Reweighting

We describe two reweighting methods, which both allow us to set up estima-
tors for expectation values. The first method restricts to bridge distribution
samples connected to the lowest hierarchical level βL, the second method
allows to incorporate all samples from all levels β1, . . . , βL. As introduced
in Sect. 5.2.3, ρ(i) denotes the index of the parent density in the hierarchy.

Simple Reweighting. The samples that are closest to f∗ are obviously
the samples drawn from the bridge distributions connected to the lowest
hierarchical level βL. We denote by π̂∗ estimated normalized coupling factors

π̂∗l =
π̂l∑N

k=m π̂k

for l = m, . . . ,M, (83)
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for the densities fm, . . . , fM belonging to βL, i.e., f∗ = f(βL) =
∑M

k=m π̂∗kfk.
The corresponding samples xρ(i)i and weight factors wρ(i)i then allows

us to set up the estimator

Êf∗(g) =

M∑

i=m

π̂∗i




Nρ(i)i∑

k=1

w
(k)
ρ(i)i


 g

(
x

(k)
ρ(i)i

)
, (84)

which is a discrete counterpart of (76).

Reweighting Mixtures. Equation (84) provides an estimator for expec-
tation values wrt. the target density f∗ by using sample points from the
samples of the UC hierarchy that best represent the high probability parts
of f∗. Yet, expectation values in dependence of the temperature or free en-
ergy differences are sensitive to a reliable sampling in low weighted parts of
f∗ (i.e., higher energy regions). If we want to estimate such quantities we
should include the sample points of all bridge samples in order to improve
the statistics in low weighted parts of f∗.

A direct and simple way to include these samples would be to reweight
each sample separately to the respective restricted part of f∗, and then stick
them together in a similar way as in (84). Unfortunately, this approach is
not feasible in practice, since reweighting between distributions that do not
overlap well is prone to error.

A much more promising approach is to construct a mixture distribution
in which all samples contribute to a more or less equal part. That way,
our sample points are spread equally all over the sampled parts of the state
space; reweighting from that distribution results in reliable weight factors,
which are the basis for a good estimator.

A suitable mixture distribution is given by the density

fmix =
M∑

k=1

Nρ(k)k

N
fk =

M∑

k=1

Nρ(k)k

N

hk

Zhk

(85)

where N =
∑M

k=1Nρ(k)k is the total number of sample points from all sam-
ples.

If we replace the Zhk
’s by the coupling factors πk we obtain an unnor-

malized mixture density

hmix =

M∑

k=1

Nρ(k)k

N

hk

πk
. (86)

Using the estimate π̂ instead of π we are actually able to evaluate (86).
Expectations wrt. f∗ are then computed by

Êf∗(g) =

M∑

k=1

Nρ(k)k∑

l=1

w
(l)
mix,ρ(k)k g

(
x

(l)
ρ(k)k

)
, (87)
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where weight factors are given by

w
(j)
mix,ρ(i)i =

w
(j)
ρ(i)ih∗(x

(j)
ρ(i)i)/hmix(x

(j)
ρ(i)i)

∑M
k=1

∑Nρ(k)k

l=1 w
(l)
ρ(k)kh∗(x

(l)
ρ(k)k)/hmix(x

(l)
ρ(k)k)

. (88)

Equation (88) is the usual reweighting formula, only this time applied to a
mixture density for already weighted sample points.

Remarks. Reweighting from multiple Markov chains was introduced in
the field of statistical physics by Ferrenberg and Swendsen [38], where they
proposed an iterative procedure to combine the data. In the setting of math-
ematical statistics Geyer [55] proposed to determine normalizing constants
by using reverse logistic regression in order to reweight from a mixture dis-
tribution. The difficult part in both approaches is to compute quantities
that allow to combine the data. In our UC framework it is fairly easy to
reweight from a mixture distribution, since the coupling factors πk are in
fact the unknown quantities needed for an overall reweighting.

5.4 Uncoupling-Coupling Scheme

The problem that we address by UC is to draw samples from a target distri-
bution given by its density f∗. We still assume f∗ to be a canonical density
restricted to the potential part of a separable Hamiltonian H = T + V with
state space Ω at some inverse temperature β∗. We further assume that the
chosen Metropolis Markov chain is slowly mixing due to a hierarchy of meta-
stable sets. Putting together the different steps described in this section, we
arrive at the following hierarchical scheme of the UC algorithm (see also
Fig. 3 on page 8):

1. choose an initial inverse temperature β1 and an annealing scheme β1 ≤
β2 ≤ . . . ≤ βL = β∗

2. draw initial sampling x11 from f1 = f(β1) on A1 = Ω with Hybrid
Monte Carlo (HMC); set l := 1

3. perform a cluster analysis of each sample xρ(k)k in question and iden-
tify metastable sets wrt. fk via a dynamical cluster algorithm

4. derive suitable parameters from previous samples to set up bridge den-
sities between βl and βl+1

5. draw samples from restricted bridge distributions (e.g., by means of
ATHMC or PSHMC) between βl and βl+1 in all identified metastable
sets; set l := l + 1
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6. iterate 3. to 5. until the target temperature βL is reached

7. set up the coupling matrix Ĉ, thereby

• estimate normalizing constants

• compute its stationary distribution π̂

8. estimate expectation values by means of simple reweighting or mixture
reweighting

This algorithmic scheme is not dependent on a specific realization of any
of its constituents (MCMC method, cluster algorithm, annealing scheme,
. . . ), but rather provides a general framework for uncoupling and coupling
of Markov chains. We want to conclude this section with discussing some
implementation issues as well as obvious generalizations. Issues concerning
dynamical clustering and identification of metastable sets have already been
discussed in Sect. 3.

MCMC Scheme. All our numerical experiments for biomolecules are
based on Hybrid Monte Carlo (HMC) [15]. HMC is used for initial sam-
pling at fixed temperature, and ATHMC or PSHMC discussed in Sect. 4.4
as bridge sampling methods. The symplectic and reversible Leapfrog inte-
grator is used to calcute the trajectories as part of HMC and its variants.
Yet, UC is by no means dependent on HMC; we can replace it by any suitable
method that draw samples via a reversible Markov chain. The same applies
to the choice of bridge distributions; one could think of replacing ATHMC
or PSHMC by more sophisticated methods like multicanonical sampling or
parallel tempering.

For convergence assessment we use an estimator proposed by Gelman
and Rubin based on parallel chains [51, 49], which we described in Sect. 4.3.
This estimator is especially suitable in the context of UC, since (except from
the initial sampling) we can choose well distributed initial values from the
parent sample in the hierarchy.

Annealing Strategy. The temperature parameter β in f∗ is used to em-
bed the target density in a family f(β) of smoothed densities. A compro-
mise has to be made between the number of levels in the annealing scheme
β1 ≤ . . . ≤ βL and the overall computational cost. More temperature levels
lead to more bridge samplings, but allow for a better set up and easier sam-
pling of bridge distributions. The initial temperature should be high enough
to overcome all metastabilities. Yet, no a-priori rule exists for determining
β1, which therefore has to be adjusted on the basis of some preliminary runs.

In our hierarchical annealing scheme we use a sequence of fixed tempera-
tures. A possible extension would be to use a more flexible annealing scheme
in which the temperature is estimated together with other bridge sampling
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parameters. This would allow for a better adaptation to the local structure
of the potential.

Essential Hierarchy. The use of an essential hierarchy instead of a com-
plete hierarchy has been discussed in Sects. 5.2.3 and 5.3.1. Metastable
sets of low probability are discarded by introducing a threshold wrt. the
total probability of the current hierarchical level. To check such a criterium,
we need to set up a coupling matrix on each hierarchical level after the
corresponding bridge samplings. Extraction of normalizing constants from
a bridge sampling need only be computed once, since they do not change
their value in the sequel of coupling matrices.

Parallelization. Generating samples is by far the most time consuming
part of UC, therefore parallelization should focus on this task. Since we make
use of multiple Markov chains for convergence assessment, parallelization
is straightforward. In our simulations, five chains of the same length run
in parallel for each sample. Information exchange between these parallel
processes is limited at simulation points where the convergence criterion
is checked. In addition, Markov chains restricted to different metastable
sets on a temperature level are mutually independent. They can be run in
parallel as well, though they are not necessarily of the same length.

Analyzing Samples. Ending up with samples xρ(k)k, weights wρ(k)k, and
estimated coupling factors π̂k for each fk the samples can be analyzed in
different ways: For simply computing averages at the target temperature it
is sufficient to construct a weighted sample from the lowest level in the hier-
archy. To compute quantities that need information from a broader energy
range (e.g., free energy differences, or quantities in dependence of the tem-
perature) we have to set up a mixture distribution and employ the method
of mixture reweighting. Moreover, reweighting is the first step to determine
physical relevant metastable conformations together with its transition rates
(for details see [72, 112, 113]).


