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4 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a powerful method of calculating
probabilities or expectations that are intractable by analytical methods or
other numerical approaches [84, 105]. The aim of MCMC is to efficiently
draw samples from a given probability distribution. In many applications
the samples are used afterwards to estimate a variety of integrals wrt.
the probability distribution (e.g., thermodynamical integrals in statistical
physics [36]).

A MCMC method consists of two steps, Modeling and Realization:

1. Modeling : for a given probability density f a Markov chain X is con-
structed with f as its unique invariant density. The crucial point in
this construction is the so-called detailed balance condition, which en-
ables to explore global properties of f by a series of local moves.

2. Realization: The algorithmic part consists of realizing one or several
paths of X . What one obtains is a series of more or less correlated
random samples from f as guaranteed by Markov chain theory.

Essentially, MCMC transforms “simple” random numbers (typically uniform
or Gaussian random numbers) into f -distributed random vectors. Since
f represents a complicated distribution in a high-dimensional state space,
other approaches like the direct Monte Carlo method would fail to produce
f -distributed random vectors. Also note, that the aim of MCMC is somehow
opposite to other algorithms, where for a given Markov chain the focus lies
on the investigation of its invariant distribution.

One of the most prominent representatives of MCMC methods is the
Metropolis (or Metropolis-Hastings) algorithm [66, 89, 90]. We describe its
transition kernel in Sect. 4.1, the resulting Metropolis algorithm in Sect. 4.2,
and discuss convergence diagnostics in Sect. 4.3.

Confronted with the trapping problem, many sophisticated Metropolis-
based MCMC schemes have been proposed; all of them aiming at drawing
samples by means of a rapidly mixing Markov chain. Among these, one out-
standing method is Hybrid Monte Carlo (HMC) [15, 33], which combines
molecular dynamics with the Metropolis algorithm. As we see in Sect. 4.2.2,
HMC enables large moves in the state space by using short molecular dy-
namics trajectories of the underlying Hamiltonian system as proposal steps.
Not surprisingly, HMC is a popular approach to explore the state space of
biomolecules [11]. As a further step to overcome the trapping problem we
introduce Adaptive Temperature HMC (ATHMC) and the related Poten-
tial Scaling HMC (PSHMC) in Sect. 4.4, both designed to draw samples
from simple bridge distributions. Finally, we discuss some state-of-the-art
extensions of the basic MCMC scheme in Sect. 4.5.
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4.1 Metropolis Transition Kernel

We already introduced the general form of a Markov kernel in Sect. 3.3.1. Let
us now turn to the construction of the Metropolis transition kernel, which
will shed light on the underlying mathematical structure of the well-known
Metropolis algorithm.

Let f > 0 be a probability density on the state space Ω. Our goal is
to construct a transition kernel K having f as its unique invariant density
as defined in (30). To this end we define an arbitrary irreducible transition
kernel

Q(x, dy) = q(x, y) dy

on Ω (the so-called proposition kernel), together with the acceptance func-
tion

α(x, y) =

{
min

{
1, q(y,x) f(y)

q(x,y) f(x)

}
for q(x, y) > 0

1 otherwise
. (41)

In order to evaluate α one only needs ratios of the form f(y)/f(x). Since
f(x) = h(x)/Zh(x) is given explicitly and the unknown normalizing con-
stant Zh cancels out, the computation of f(y)/f(x) reduces to the simple
computation of the ratio of unnormalized densities h(y)/h(x).

Together with Q and α we define the transition kernel K by

K(x, dy) = k(x, y) dy + r(x)δx(dy), (42)

that splits into an absolutely continuous part

k(x, y) =

{
q(x, y)α(x, y) if x 6= y

0 otherwise

and a singular component

r(x) = 1 −
∫
k(x, y) dy.

The construction of K guarantees that X is irreducible, provided that Q
is irreducible. Therefore, we can state that f is the unique invariant density
of X , because for all x, y ∈ Ω with x 6= y the detailed balance condition

f(x) k(x, y) = f(y) k(y, x) (43)

holds. Due to (43) the transition kernel K is reversible wrt. f , from which
self-adjointness in L2

π and hence a real spectrum σ(P ) follows for the associ-
ated Markov operator (see Sect. 3.3.2). In practice, we can further assume
X to be aperiodic, which for example would be already guaranteed for an
average acceptance probability below 1 (for details, see e.g. [123]).
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Finite State Space. If the state space is finite, the transition kernel
reduces to a stochastic matrix. Without having to take into account all the
details of a continuous state space and for a better understanding of how
the Metropolis algorithm really works, we proof by the following theorem
the key properties of the resulting transition matrix.

Theorem 10 Let Q = (qij) be an arbitrary irreducible and stochastic ma-
trix, for which (qij 6= 0 ⇐⇒ qji 6= 0) holds.

Let Υ : (0,∞) → (0, 1] be a function for which

Υ(x)

Υ(1/x)
= x for all x ∈ (0,∞) (44)

holds. For a given a probability vector π, the matrices A and T are defined
as follows: A ∈ Matn(R) by

aij =





Υ

(
πj qji
πi qij

)
∈ (0, 1], for qij 6= 0

0 otherwise

and T = (tij) ∈ Matn(R) by

tij =





qij aij , for i 6= j

1 −
n∑

l=1
l6=i

qilail, if i = j
. (45)

Then for T holds:

1. T is an irreducible stochastic matrix;

2. and π′ T = π′.

Proof.

1. Since π ≥ 0 and Q ≥ 0 per definition, we have A ≥ 0 and hence
T ≥ 0. Moreover, if qij > 0 then aij > 0 and thus tij > 0. Therefore,
irreducibility is inherited from Q to A. Also, for all i ∈ {1, . . . , n} the
rows sum up to 1:

n∑

k=1

tik =
n∑

k=1
k 6=i

qikaik + 1 −
n∑

k=1
k 6=i

qikaik = 1.
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2. We show that

πi tij = πj tji for all i, j ∈ {1, . . . , n} (46)

holds, from which immediately π′ T = π′ follows:

(π′ PM )j =

n∑

i=1

πi tij = πj

n∑

i=1

tji = πj for all j ∈ {1, . . . , n}.

Equation (46) is obviously fulfilled for the case i = j; also for tij = 0
the definition of Q implies tji = 0. For the case tij > 0 all occurring
components of π, Q, and A are positive and due to the definition of Υ
we have

aij

aji
=

Υ
(

πj qji

πi qij

)

Υ
(

πi qij

πj qji

) =
πj qji
πi qij

,

which can directly be transformed into Eq. (46).

�

We call Q the proposal matrix, A the acceptance matrix, and T the
transition matrix of the Metropolis Markov chain. The most commonly
used function for Υ is the Metropolis function

ΥM (x) = min{1, x}, (47)

which we already applied directly in Eq. (41). Equation (47) was originally
proposed by Metropolis et al. [89], and later also by Hastings [66] for the
case of non-symmetric proposal steps. As alternatives to (47) several other
acceptance functions that satisfy (44) have been considered [7, 66], but it was
shown later that the Metropolis function (47) is in some sense an optimal
choice [102].

Theorem 10 makes no assumption about TV to be aperiodic, neither
about a possible aperiodicity of T . This is no problem as long as we focus
on the estimation of expectation values, since for that task aperiodicity is
not required. Nevertheless, for a finite state space the existence of a state i
with tii > 0 is sufficient to guarantee T to be aperiodic. Hence, in practice,
we can assume aperiodicity, which furthermore guarantees the associated
Markov chain to converge to its invariant distribution π.

4.2 Metropolis Algorithm

In the Metropolis algorithm the setup of the transition kernel K (or T for a
finite state space) is directly used to generate a sample from its associated
Markov chain X . This can be done by iterating the following steps:
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1. Let x(k) be the present state.

2. Draw y from the proposal distribution q(x, y) according to the proposal
kernel Q.

3. Compute the acceptance probability a(x, y) by

a(x, y) = Υ

(
f(y) q(y, x)

f(x) q(x, y)

)
.

4. Draw r ∈ [0, 1) uniformly.

5. Set

x(k+1) :=

{
y, if r ≤ a(x, y)

x(k), otherwise
.

The quality of the samples will depend crucially on the relationship be-
tween Q and f . Although any proposal kernel will do the job, a proper
choice of Q is essential to end up with a rapidly mixing X . In practice, find-
ing a suitable Q for a multimodal probability distribution is a challenging
task. A good choice of Q should not only make the computations of steps
(2) and (3) feasible, but also propose large moves in state space and lead to
a high acceptance rate. For high-dimensional problems it is often necessary
to perform some pre-simulations in order to tune parameters determining
Q. Yet, there also exist some general schemes (like HMC, see Sect. 4.2.2)
which can be applied out of the box and often work reasonable well for large
problem classes.

Our initial aim was to compute ergodic averages Ef (g), which we now
can estimate from the sample x. According to the limit theorems from
Sects. 3.2.1 and 3.3.2 we have

Ef (g) ≈ 1

n

n∑

k=1

g(x(k)) (48)

for large n with an O(1/
√
n)-convergence towards Ef (g).

Due to the construction of K via the detailed balance condition, P is
a reversible Markov operator. For that case, we have shown in Sects. 3.2.1
and 3.3.2 how convergence of such averages is connected to the eigenvalues
of P , and that the spectral gap Λ = 1 − λ2 plays an important role.

4.2.1 Examples for Proposal Steps

To illustrate the effect of different proposal steps on the Metropolis algo-
rithm, we apply two simple Metropolis sampler to the canonical distribu-
tion associated to a one-dimensional asymmetric double-well potential. In
Fig. 10 the potential VDW is shown together with its canonical density fβ

for β = 1.
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Figure 10: (a) One dimensional asymmetric double-well potential VDW. (b) Canonical
density of VDW for β = 1.
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Figure 11: (a) A simulation with random walk proposals clearly shows a metastable
behavior. (b) Eigenvalues of the discretized Markov operator Trand for a discretization
into 50 boxes. The 2nd eigenvalue λ2(Trand) = 0.9936 is very close to 1.

Random-walk Metropolis. A simple and widespread method to gen-
erate proposals is to perform a random walk in state space. Samples are
drawn from the correct distribution in that proposals are rejected in the
acceptance step. Since this method makes use of symmetric proposals, the
acceptance step reduces for the Metropolis function to

a(x, y) = min

{
1,
f(y)

f(x)

}
.

Applied to the double-well potential, Fig. 11 shows how local updates
make it difficult to move from one well into the other. That each well forms
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Figure 12: (a) A simulation with independent proposals is not affected by the energy
barrier. (b) Eigenvalues of the discretized Markov operator Tindep for a discretization into
50 boxes. The 2nd eigenvalue λ2(Tindep) = 0.8471 is bounded far away from 1.
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a metastable set is reflected by the spectral structure, with λ2 = 0.9936 close
to 1 followed by a spectral gap (λ3 = 0.7912). The energy barrier in VDW is
in fact a dynamical barrier for the Markov chain.

Independence Sampler. The name of this Metropolis sampler refers to
the fact that the proposal distribution does not depend on x (i.e., q(x, y) =
q(y)). For our example we apply the independence sampler in its simplest
form with q(y) being uniformly distributed on the state space [−1, 1].

For independent proposals energy barriers of a potential have no impact
on transitions between different parts of the state space, which is illustrated
in Fig. 12 for VDW. A second eigenvalue of λ2 = 0.8471 confirms the absence
of metastability in the Markov chain.

The independence sampler is a good choice, if it is possible to draw
samples from a proposal distribution q(y) that is close to f(y) (for q(y) ≡
f(y) the Markov chain would reduce to a sequence of independent random
variables). Although finding good proposal distributions may be easy for
many low-dimensional problems, it becomes more and more problematic in
higher dimensions.

4.2.2 Hybrid Monte Carlo

Hybrid Monte Carlo (HMC) is a sophisticated sampling scheme that com-
bines the theory of MCMC with the power of molecular dynamics in appli-
cations to molecular systems. It was invented in the late 80ies by Duane
et al. for problems arising in quantum chromodynamics [33], and was soon
thereafter applied to classical molecular systems [15, 87].

As outlined in Sect. 2.4 and Eq. (8), for a separable Hamiltonian H(x, p) =
V(x) + T (p) the canonical distribution separates into the potential part fV
and momenta part fT .

For HMC, the momenta p serve as augmented variables in order to pro-
vide better mixing properties in position space. A Markov chain is realized
in position space by propagating the system through state space by a series
of trajectories, with new momenta drawn from the multidimensional Gaus-
sian fT before each step. For a given temperature the HMC Markov chain
draws samples from fV(β). More precisely, the steps required for one update
from x(k) to x(k+1) are as follows:

1. Generate new momenta p from the Gaussian distribution

p ∝ exp

[
−β

d∑

i=1

p2
i

2mi

]
.

2. Run a time-reversible and volume preserving integration scheme with
initial values (x(k), p) and l iterations of time-step τ :

(x′, p′) = (Ψτ )l(x(k), p).
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The vector x′ is the new proposal for the Markov chain.

3. Compute the energy difference ∆H in phase space, i.e.,

∆H = H(x′, p′) −H(x(k), p).

4. Accept the proposed state x′ (i.e., set x(k+1) = x′) with probability

min{1, exp[−β∆H]},

otherwise set x(k+1) = x(k).

Reversibility and volume preservation of Ψ is crucial for satisfying de-
tailed balance, a rigorous proof is given in [84].

If we would propagate the system with the phase flow (i.e., Φ ≡ Ψ), we
have exp[−β∆H] = 0 due to energy conservation (see Sect. 2.1), and the
acceptance probability would be 1. In practice, however, we have to resort to
an integration scheme which inherits reversibility and volume preservation.
A well-known time-reversible integration scheme is the Leapfrog algorithm,
which due to its symplecticity is also volume preserving (see Sect. 2.3).
The only requirement for HMC is to keep the energy difference exp[−β∆H]
small, which lead to a reasonable acceptance rate; there is no need for the
integrator to be close to the analytical solution. Therefore, although much
more sophisticated schemes that are time-reversible and volume preserving
do exist, Leapfrog turned out to be very efficient in the context of HMC.

Extensions of HMC. Since its invention, HMC has been extended and
combined with other advanced MCMC methods in a variety of ways. For
example, it is possible to generate a new proposal by integrating wrt. an
arbitrary Hamiltonian H̃. The method is still valid if the acceptance prob-
ability is computed wrt. H. Yet, in practice it is a difficult task to find a
smoother or more suited H̃ other than H.

Another idea is to vary the trajectory length τl by drawing l from some
distribution before each HMC step. More sophisticated is the “windowing”
method proposed by Neal [95]. The trajectory is computed a fixed number
of steps longer (the “window”), and the same number of additional steps
backwards from the current state. The actual proposal state is then chosen
from the window samples according to the Gibbs distribution; together with
the additional “backward steps”, which have an influence on the acceptance
step, detailed balance is preserved. Furthermore, it is possible to incorporate
HMC into other sampling approaches (e.g., multicanonical sampling [65]
described in Sect. 4.5.1 or adaptive temperature HMC in Sect. 4.4.2).
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4.3 Convergence Diagnostics

Deciding when to stop a Markov chain X is an important matter in practice.
In general, one aims at generating a (finite) sample x = (x(1), . . . , x(n)) being
well distributed according to the invariant density f of X .

For ergodic averages 1/n
∑n

k=1 g(x
(k)) we outlined in Sect. 3 the limiting

behavior for n → ∞ in terms of the asymptotic variance σa. Knowledge
of σa would be quite helpful in setting the sample size n, yet obtaining
estimates for σa seems to be as difficult as for the ergodic average itself.
In practice, the only source of information are the already drawn sample
points (x(1), . . . , x(n)), and one has to decide from different kind of estimators
whether or not to simulate further.

A big problem for all diagnostics tools is that they can falsely indicate
convergence, which can happen when (maybe due to metastability) relevant
parts of the state space were never visited. Therefore, it is surely advisable
to run the chain at least a minimum number of steps (e.g., a certain amount
of time or a fixed number of steps), which decreases the probability of false
diagnostics. It is also often suggested to discard steps from the beginning
(the so-called burn-in phase), in order to start the chain in equilibrium (i.e.,
one wants to have x(1) ∼ f).

Two main approaches for convergence diagnostics are single chain [54]
and multiple chain [51] diagnostics. A general overview of MCMC conver-
gence diagnostics is given in [23]. In view of the central limit theorem it
seems advisable to run a single chain as long as possible, since this is what
MCMC really is about. Although questionable, it is often argued that in
the presence of metastability it is more likely to observe a transition in a
single long chain than in multiple shorter ones. On the contrary, multiple
shorter runs can also be of diagnostic value. If the chains get stuck in dif-
ferent metastable sets, it is easy to diagnose lack of convergence. Especially,
when overdispersed starting points are available, multiple chains seems to be
favorable. Moreover, running several chains in parallel is much easier than
implementing a parallel version for a single chain. The question of whether
running one long chain or several smaller chains is discussed controversially
(see [51, 54] and discussions therein), but it is generally acknowledged that
no method works well in every situation. The choice depends on the partic-
ular problem as well as the computing facilities available. Since we later on
use a multiple chain approach we shortly outline the steps needed to set up
an estimator.

Multiple Chain Diagnostics. The general idea behind this approach is
to run multiple Markov chains in parallel (ideally from overdispersed starting
points), and analyze the samples at fixed time intervals until all estimates
of interesting observables do agree adequately.

A popular estimator of that kind has been proposed by Gelman and
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Rubin [49, 51]. Suppose that we started m (say, m = 5) Markov chains
and run each of them for n steps. For each scalar observable g we label the
m chains of length n as (gij), j = 1, . . . ,m; i = 1, . . . , n, and compute the
between-sequence variance B and the within-sequence variance W :

B =
n

m− 1

m∑

i=1

((ḡi·) − (ḡ··))
2, where ḡi· =

1

n

n∑

i=1

gij, ḡ·· =
1

m

m∑

i=1

ḡi·

W =
1

m

m∑

i=1

σ2
i , where σ2

i =
1

n− 1

n∑

j=1

(gij − (ḡi·))
2.

The within-sequence variance W is assumed to be an underestimate of
Var(g). From B and W another estimator of Var(g) is constructed,

V̂ar(g) =
n− 1

n
W +

1

n
B,

which is an overestimate under the assumption that the starting points are
overdispersed. With these two estimates of Var(g), the so-called estimated
potential scale reduction is given by

√
R̂ =

√
V̂ar(g)

W
.

The value of R̂ converges to 1 in the limit n→ ∞ and should start declining
to 1 from above if all parallel chains are essentially overlapping. A criterion
to stop the simulation automatically would be to wait until R̂ decreased
below a given threshold (say, 1.1) for all observables.

Remark. It is advisable to apply convergence diagnostics to a variety of
suitable observables (e.g., the total energy and all important torsion angles
for a biomolecular system). The computational cost for convergence diag-
nostics is typically negligible in comparison to obtaining the samples (this
is especially true for methods like HMC). Therefore many practitioners rec-
ommend to monitor convergence by different methods in order to get the
most out of these sometimes controversially discussed diagnostic methods
(cf. discussion in [51]). Within UC, we use the multiple chain diagnostics
proposed by Gelman and Rubin. This allows for simple parallel implemen-
tation, and we can benefit from available overdispersed starting points from
previous bridge samples at higher temperatures, which makes estimation
more robust and lowers the probability of overlooking important parts of
the state space.
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4.4 Bridge Distributions

The MCMC methods presented so far directly draw samples from a (canoni-
cal) distribution f(β) for a given inverse temperature β, without embedding
f(β) into a series of tempered distributions (or any other form of auxil-
iary distributions). A practical way to extend f(β) are the so-called bridge
distributions, which can be thought of as elementary auxiliary distributions.

Suppose, we are interested in drawing samples at a low temperature
Tlow = 1/(kBβlow), and that the (to our knowledge) best available MCMC
method for flow = f(βlow) is still slowly mixing. Let us further assume that
by increasing the temperature to Thigh = 1/(kBβhigh) the MCMC method
becomes rapidly mixing for fhigh = f(βhigh). Unfortunately, a sample xhigh

from fhigh provides only very limited information about the situation at flow,
since it mainly draws samples from different parts of the state space.

At this point bridge distribution techniques come into play, which en-
able to combine drawing samples from flow with the mixing properties of
fhigh. The most direct way to define a bridge distribution is in terms of the
normalized densities (say, fhigh,low = σfhigh +(1−σ)flow). Yet, for practical
purposes it is more natural to define fhigh,low via its unnormalized bridge
density hhigh,low in terms of the unnormalized densities hlow and hhigh.

Simply using the sum hhigh +hlow would be unbalanced with the effect of
putting most of the probability on one of its parts. To avoid this undesirable
effect one has to introduce shift parameters that enables to balance the
probability of the two canonical distributions. A generic form of a bridge
density is

hhigh,low = σ1hhigh + σ2hlow, (49)

where suitable values for σ1 and σ2 enable to equalize the influence of the
two distributions on hhigh,low. In particular, by defining fhigh,low as in (49)
we expect to satisfy:

1. The Markov chain Xhigh,low associated with fhigh,low is rapidly mixing.

2. A sample x of fhigh,low allows a statistical reasonable reweighting to
fhigh and flow; this presupposes that all important parts of fhigh and
flow are covered by fhigh,low.

3. Estimation of ratio of normalizing constants Zhhigh
/Zhlow

by reweight-
ing (this will become important in Sect. 5.3).

The algorithmic steps necessary to apply bridge simulation techniques is
to (a) define a “suitable” bridge density fhigh,low, (b) draw a sample x from
fhigh,low, and (c) reweight the sample to flow afterwards. For step (a), making
a good choice of the parameters becomes easier if the two distributions
are closer to each other. For canonical distributions this means that the
temperature difference Thigh − Tlow cannot be chosen arbitrarily high. We
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discuss the important task of parameter estimation for concrete situations
in Sects. 4.4.2 and 4.4.3.

Remark. Bridge distributions have been used in the statistics commu-
nity [50, 55, 88] to combine samples from two different distributions in order
to compute the ratio of normalizing constants by an a-posteriori estimator.
In contrast, our use of bridge distributions aims at determining a-priori a
bridge density fhigh,low, and then directly draw samples from fhigh,low by
some adopted MCMC method.

4.4.1 Reweighting

Bridge sampling and a variety of other extended MCMC methods are based
on reweighting techniques. Suppose, that we are given a sample x dis-
tributed according to an auxiliary distribution faux. We are not directly
interested in faux, but rather about some “nearby” target distribution f∗
in order to extract from x valuable information about f∗ (in the context of
bridge distributions we would have faux = fhigh,low and f∗ = flow). The
key idea is to estimate from a sample x = (x(1), x(2), . . . , x(n)) weights

w∗ = (w
(1)
∗ , w

(2)
∗ , . . . , w

(n)
∗ ) such that the weighted sample (w,x) is dis-

tributed according to f∗.

The estimator for w∗ is given by

w
(k)
∗ =

h∗(x
(k)) / haux(x

(k))∑n
l=1 h∗(x

(l)) / haux(x(l))
for k = 1, . . . , n. (50)

With these weight factors we can estimate Ef∗(g) for some observable
A. By using A(x)w∗(x) as an observable wrt. faux the unnormalized den-
sity haux as well as the normalizing constant Zhaux cancel out (though in a
different way), and we end up estimating A(x) wrt. f∗:

lim
n→∞

1

n

n∑

k=1

A(x(k))w
(k)
∗ =

limn→∞
1
n

∑n
k=1A(x(k))h∗(x

(k)) / haux(x
(k))

limn→∞
1
n

∑n
k=1 h∗(x

(k)) / haux(x(k))

=

∫
A(x) [h∗(x) / haux(x)] faux(x) dx∫

[h∗(x) / haux(x)] faux(x) dx
(51)

=

∫
A(x)h∗(x) dx∫
h∗(x) dx

= Ef∗(g)

Equation (51) states an asymptotic result, but provides no information
about the quality of estimates for Ef∗(g) given a finite sample of faux. If
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f∗ is not covered sufficiently by faux, the weighted sample (w,x) will be
statistically unreliable.

Reweighting is a standard tool for many MCMC-based algorithms, and
plays an important role in analyzing bridge distributions in statistics [50,
55, 88]. In statistical physics reweighting between nearby canonical distri-
butions was proposed by Ferrenberg and Swendsen [37]. In the context of
UC we make extensive use of reweighting in Sect. 5.3.2 (including estimation
of quotients of normalizing constants). Ferrenberg and Swendsen also pro-
posed a reweighting scheme for combining samples from different but partly
overlapping distributions [38]. We consider this more complicated case of
reweighting mixtures in Sect. 5.3.3.

4.4.2 Adaptive Temperature HMC

Adaptive Temperature HMC (ATHMC) [42] provides a HMC scheme for
bridge distributions constructed out of two canonical distributions. Suppose
we are interested in the (unnormalized) canonical distribution given by

hlow(x) = exp[−βlow(V(x)]

for a given potential V and temperature Tlow = 1/(kBβlow), and that we
face the sampling problem described at the beginning of Sect. 4.4. Let us
consider bridge densities faux = haux/Zhaux of the form

haux(x) =
1

2
(exp[−βlow(V(x) − ν)] + exp[−βhigh(V(x) − ν)]) , (52)

which we denote as mixed-canonical distribution in the following. The
mixed-canonical distribution consists of the sum of two canonical distribu-
tions with temperatures βlow and βhigh, respectively, whereby the constant
ν determines which of the two distributions dominates faux.

Clearly, for βlow = βhigh, the mixed-canonical distribution reduces to
flow. Furthermore, for βlow > βhigh the mixed-canonical distribution haux

converges to fhigh or flow if ν tends to ∞ or −∞, respectively.

By setting

σ1 = 2 exp[βlow ν] and σ2 = 2 exp[βhigh ν]

we see that Eq. (52) is a special case of (49). However, the form of Eq. (52) is
better suited to determine the parameter ν such that flow and fhigh are both
well represented by faux. Drawing samples with potential energies above ν
is similar to drawing samples from fhigh, and the same holds for energies
below ν and flow. By setting

ν ≈ 1

2

(
Eflow

(V) + Efhigh
(V)
)

(53)
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an approximately equal balance between flow and fhigh can be assumed.
Equation (53) let us presume that we already need samples xlow and xhigh

in order to estimate ν. Fortunately, it is already sufficient to have some
sample xhigh (e.g., from some short preliminary simulation of fhigh or as
part of a more complex sampling strategy like UC); instead of (53) we can
use the similar (though not equivalent) expectation value

ν ≈ Efavg(V) where βavg =
2βlowβhigh

βlow + βhigh
(54)

wrt. the averaged temperature βavg. If the temperature difference is not
too high, reweighting of xhigh to favg is possible, from which one obtains an
estimation of ν.

ATHMC Scheme. Suppose, that all parameters are set to reasonable
values, and that we now want to draw samples from faux. For a general
MCMC method we could directly start the simulation, but in the context of
HMC we face the problem of choosing the “right” temperature in order to
draw the momenta in dependence of a fixed β. We could use βavg as defined
in (54), yet it is more appropriate to adapt the temperature in dependence
of the potential energy by the inverse temperature function (see Fig. 13 (a))

β(x) = − lnhaux(x)

V(x) − ν
. (55)

With this adaptive temperature choice one update step with ATHMC con-
sists of (for details and a justification of the modification see [42]):

1. Initialization of momenta p at the inverse temperature β(x(k)), i.e.,

p ∝ exp


−β(x(k))

d∑

j=1

p2
j

2mj


 ,

where d denotes the number of degrees of freedom.

2. Calculation of new coordinates and momenta

(x′, p′) = (Ψτ )l (x(k), p).

3. Computation of β(x′).

4. Acceptance of new coordinates x′ (i.e., set x(k+1) = x′) with probability

min

{
1,

haux(x
′) exp[−β(x′) T (p′)]

haux(x(k)) exp[−β(x(k)) T (p)]

(
β(x′)

β(x(k))

)d/2
}
,

otherwise set x(k+1) = x(k).
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Figure 13: (a) Temperature function T (x) = (kBβ(x))−1 in dependence of the potential
energy with Tlow = 295 K, Thigh = 400 K and ν = 0. The temperature function reflects
the locale structure of the mixed-canonical distribution. By changing ν the temperature
function is shifted and faux is altered. (b) ATHMC for r(ACC) in a mixed-canonical distri-
bution. The simulation was performed for T = 295 K, T = 400 K and ν = −1121 kJ/mol.
The temperature T and the torsion angle γ are displayed at every tenth step over the first
10000 steps. The transition in γ is induced from drawing samples at higher temperatures.
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Figure 14: Representatives from two metastable sets of r(ACC), whereby differences show
up in the torsion angle χ and ring structure P. (a) To state this more precisely in
biochemical terms, the χ angle around the first glycosidic bond is in anti position (−175◦)
and the terminal ribose pucker P is in C(3’)endo C(2’)exo conformation. (b) The χ angle is
in syn position (19◦ degrees) and the terminal ribose in C(2’)endo C(3’)exo conformation.
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Figure 15: Reweighting of the ATHMC simulation from the sample of the mixed-canonical
distribution (- - -) to the canonical distribution at βlow (—).

Example. We illustrate by a simulation of the triribonucleotide r(ACC)
(see Fig. 5 on page 16) how ATHMC helps to induce transitions between
metastable sets in a biomolecule.

The simulation was performed over 5 × 105 steps with parameter set-
tings Tlow = 295K, Thigh = 400K and ν = −1121 kJ/mol, whereby ν was
obtained from short preliminary runs. In Fig. 13 (b), the first 104 steps of
the simulation are shown for the temperature and the torsion angle γ. We
observe frequent fluctuations between low and high temperature, and hence
between low and high energy regions. A transition between metastable sets
is indicated by γ, which happens while the simulation draws samples in high
temperature regions. In Fig. 14 two metastable conformations are shown,
which distinguish from one another by the orientation of the χ angle and
the ribose pucker P.

The probability distribution of energy for faux and flow (i.e., before and
after reweighting) is shown in Fig. 13. Without reweighting we observe two
maxima around the averaged potential energies at flow and fhigh. ATHMC
stretches the energy range, but still puts high probability on flow, as indi-
cated by the large overlap of canonical and mixed-canonical distribution.

A detailed analysis of the ATHMC simulation for r(ACC) is given in
[42], a conformational analysis based on the reweighted sample was done in
[72].

4.4.3 Potential Scaling HMC

Our goal is to reformulate the idea of ATHMC as a potential scaling method.
This is motivated by (a) making the adjustment of bridge distribution pa-
rameters more flexible, and (b) providing an approach that has the potential
to incorporate other parameters than the temperature for the construction
of faux. In combination with HMC we call this method Potential Scaling
HMC (PSHMC).
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Suppose, we are interested in βlow, and our high (inverse) temperature
is βhigh. Then we can express fhigh in terms of βlow via potential scaling,
i.e.,

fhigh(x) = exp[−βhighV(x)]

= exp[−βlow s(V(x))]

with 0 < α = βhigh/βlow ≤ 1 and s(y) = α y.
Our aim is to extend this relationship to a bridge distribution that en-

compasses given canonical distributions flow and fhigh. To that end, we set
up a bridge distribution via a nonlinear scaling function s : R → R for some
fixed temperature β∗ (not necessarily βlow).

The nonlinear scaling function is subdivided into three parts:

s(x) =





αlow x for x < a

g(x) for x ∈ [a, b]

αhigh x+ (αlow − αhigh)a+b
2 for x > b

,

where g denotes the spline function

g(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3

with parameters

c0 = αlow a

c1 = αlow

c2 =
3

(b− a)2

(
αhigh b+ (αlow − αhigh)

a+ b

2
− αlow a

)

− 1

b− a
(αhigh + 2αlow)

c3 =
2

(b− a)3

(
αlow a− αhigh b+ (αhigh − αlow)

a+ b

2

)

+
1

(b− a)2
(αlow + αhigh)

With these settings, g fulfills the boundary conditions g(a) = αlow a, g(b) =
αhigh b + (αlow − αhigh)(a + b)/2, g′(a) = αlow, and g′(b) = αhigh; i.e., s is
differentiable.

The bridge distribution is now defined as

faux(x) = exp[−β∗ Vaux(x)] with Vaux(x) = s(V(x)).

In Fig. 16 the scaling function s(x) and its derivative is plotted for a = 50,
b = 100, αlow = 0.8 and αhigh = 0.4. Drawing samples from faux shows
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Figure 16: (a) Scaling function s for a = 50, b = 100, αlow = 0.8 and αhigh = 0.4. (b)
First derivative s′.

the following characteristics: below a the unnormalized density of faux is
identical to flow (up to a normalizing constant), and above b it is identical to
fhigh; between a and b the system moves from low to high temparature. Since
s is strictly monotonic decreasing, no artificial local minima are introduced
by this scaling procedure.

For fixed low and high temperature (i.e., scaling factors αlow and αhigh)
we need to determine suitable parameters a and b. It is more appropriate
to describe a and b by the arithmetic mean ν = (a + b)/2 and σ = b − ν.
Similar to ATHMC, a short pre-simulation at fhigh is sufficient to estimate
the parameters ν and σ. The parameter ν is evaluated via

ν ≈ Ef∗(αavgV) where αavg =
αlow − αhigh

2
,

which is analogue to Eq. (54) for ATHMC. A suitable choice for σ is

σ ≈ Ef∗(αhigh V) − Ef∗(αavg V) − 2 [Varf∗(αhigh V)]1/2,

which is a compromise between a broad energy range for transitions between
βlow and βhigh, and a big overlap of faux with flow and fhigh.

With all parameters set, a sample x from the bridge distribution is ob-
tained by applying standard HMC to Vaux. The only extension is that in
order to evaluate V ′

aux(x) = s′(V(x))V ′(x), each MD step of the integration
scheme now also requires the evaluation of the original potential function
V. Then, by applying (51) to the sample x, reweighting from fβ(Vaux(x))
to fβ(V(x)) is straightforward.

Remark. The additional parameter σ makes PSHMC more flexible than
ATHMC. Moreover, in ATHMC detailed balance is obtained via a modified
acceptance step, which can result in a decrease of the acceptance ratio. In
contrast, the trajectories of a PSHMC simulation are directly computed in
Vaux, thus the acceptance ratio is comparable to HMC. On the other hand, an
advantage for ATHMC is that all trajectories are computed wrt. V, whereas
computation wrt. Vaux is more expensive. We incorporate PSHMC as bridge
sampling method into UC, and therefore postpone applications of PSHMC
to biomolecular systems to Sect. 6.
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4.5 Extended MCMC Methods

Most of the methods that try to tackle the trapping problem introduce con-
siderable overhead, e.g., in form of presimulations for paramter estimation,
reweighting, additional data analysis, or simply costly update steps as in
HMC. Yet, in terms of efficiency they often outperform simple strategies up
to some orders of magnitude [18, 36, 56, 83, 84].

Improved Updating. A direct way is to build intriguing update proce-
dures that accelerate the mixing behavior of the Markov chain while still
having the target distribution as its invariant distribution. There exist nu-
merous methods of that kind, some popular ones are HMC [33], Swendsen-
Wang algorithm [121], multigrid Monte Carlo [57], reversible jump MC [58],
or configurational bias MC [117], to name a few. The efficiency and ap-
plicability often depend heavily on the actual problem at hand, and some
methods are tailored to special application fields (e.g., discrete or continuous
models).

Auxiliary Distributions. A Markov chain need not necessarily have the
target distribution as its invariant distribution. A more general strategy,
which further extends the concept of bridge distributions, is to make use
of auxiliary distributions. An auxiliary distribution faux provide a very
powerful framework that not only allows to obtain estimates wrt. the target
distribution f∗, but also enables free energy computations and estimation of
observables in dependence of some paramter range.

In general, extended MCMC methods based on an auxiliary distribution
consist of the following steps:

1. Construction of an auxiliary ensemble faux, where a Markov chain
can move around freely; faux should contain all regions in f∗ of high
probability.

2. Determination of parameters for faux via initial sampling or some kind
of iterative procedure. This is a crucial part for all extended ensem-
ble methods, since a reasonable specification of faux needs information
from the actual system under consideration.

3. A long simulation run by a (rapidly mixing) Markov chain that draw
samples from the then fully specified faux.

4. Reweighting the sample from faux to f .

Historically, Torrie and Valleau [124, 125] were one of the first who inves-
tigated auxiliary distributions by their umbrella sampling method, mainly
to determine free energy differences. Auxiliary distributions which are used
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in umbrella sampling are understood to span up a substantial range of differ-
ent physical situations. Under this general description the bridge sampling
methods ATHMC and PSHMC from Sect. 4.4 belong also to the category
of umbrella sampling.

If f∗ is a canonical distribution, the most natural way to construct faux

is via the temperature. Methods based on such tempered distributions are
simulated tempering [53, 86], where the Markov chain jumps between dif-
ferent canonical distributions, and simulations in a multicanonical [9] or
1/k-ensemble [68]. All of these approaches can be used in connection with
HMC [64].

We shortly outline two popular extended MCMC methods in the following,
namely multicanonical sampling and parallel tempering.

4.5.1 Multicanonical Sampling

Multicanonical sampling proposed by Berg and Neuhaus [8, 9] aims at sam-
pling the state space over a wide energy range by one long simulation run.

For a canonical distribution f(x) = exp[−βH(x)]/Z with Z being the
normalizing constant and H ≡ E, the density in terms of the energy is

f(E) = n(E) exp[−β E]/Z,

where n(E) is the density of states (the canonical energy distribution with
typically one single peak is illustrated in Fig. 6 (b)).

In contrast, the multicanonical method seeks to sample from a flat energy
distribution. In order to define a multicanonical distribution a finite energy
range is divided into L small segments, and we have

fmult(E) =
exp[−S(H(x))/kB ]

L
,

where kB is Boltzmanns’ constant and S(H(x)) = kB lnn(H(x)) is the en-
tropy of the microcanonical ensemble at energy level H(x). In other words,
the energy is uniformly distributed over the L energy segments. In prac-
tice, one has to determine a weight for each energy segment. Two step are
required for the multicanonical method:

1. parameter estimation: Estimation of the weights is done in an itera-
tive procedure of short preliminary simulations. The thereby defined
density fmult need not to produce a perfectly flat energy distribution,
since a rough approximation does not affect the quality of reweighting
from fmult.

2. multicanonical simulation: A single Markov chain (or multiple inde-
pendent Markov chains) draws samples from fmult by some MCMC
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method. A statistically correct and reliable reweighting of the result-
ing sample xmult is possible to any canonical distribution that lies
within the energy range covered by fmult.

The flat energy distribution helps to overcome energy barriers. Yet, it still
could happen that globally determined weights produce locally distorted en-
ergy distribution; the Markov chain would then be hindered to move freely
over the energy range. Multicanonical sampling has been applied to con-
tinuum peptide models [133], and also combined with molecular dynamics,
Langevin dynamics, and HMC [65].

4.5.2 Parallel Tempering

Parallel Markov chains that exchange information during simulation are an-
other promising framework to attack the trapping problem. An established
method of this kind is parallel tempering [53]. The method is also sometimes
referred to under the name exchange Monte Carlo, when it was reinvented
in [74].

In this method N Markov chains X1, . . . ,XN run in parallel on the state
space Ω, each one associated to a canonical density fk at temperature Tk

for k = 1, . . . , N , such that

T1 < T2 < . . . < TN

span up a broad temperature range with T1 associated to the target distribu-
tion. The resulting algorithm consists of a mixture of parallel and swapping
update steps, which are chosen according to some iterative or random pro-
cedure:

• parallel step: Each Markov chain Xk performs an ordinary update step

from x
(l)
k to x

(l+1)
k via its respective MCMC scheme.

• swapping step: Two neighboring temperature levels, say k and k + 1,

are chosen by random, and the respective states x
(l)
k and x

(l)
k+1 swap

between the Markov chains Xk and Xk+1 with probability

min

{
1,
fk(x

(l)
k+1) fk+1(x

(l)
k )

fk(x
(l)
k ) fk+1(x

(l)
k+1)

}

Swapping allows to transfer states from slow mixing low temperature levels
to rapidly mixing high temperature levels and vice versa, hence improving
mixing at low temperatures. Without such swapping steps, one would simply
run N independent Markov chains in parallel.

An analysis of this approach is done by directly dealing with the product
space Ω1 × · · · × ΩN together with the joint probability distribution of the
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canonical distributions on the product space. That way, one can show that
both, parallel and swapping steps, fulfill detailed balance in this extended
setting, and that each Markov chain Xk draw samples from the canonical
distribution at Tk. Therefore, parallel tempering provides statistical infor-
mation over the whole temperature range between T1 and TN .

An advantage of parallel tempering over other extended methods is that
once the temperature values are chosen, a simulation can directly be started
without further adjustments of parameters. Decisive for a fast mixing at T1

is to choose a proper number of Markov chains; too few prevent neighbor-
ing Markov chains to exchange their state in the swapping step, too many
prevent a fast mixing between low and high temperatures.


