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3 Markov Chains and Metastability

Stochastic processes change in a random way over time. A Markov chain
describes a stochastic process where transitions between states are governed
by probability distributions. More formally, a Markov chain is a sequence
of random variables X = X (1), X(2), . . . that are dependent on each other
by the “Markov property”. The Markov property implies a simple form of
dependence which often is described as: “the future depends on the past
only through the present.”1 Characterizing properties of Markov chains is
done in two directions:

1. Probability theory provides limit theorems explaining the average be-
havior of a single realization in terms of sums of random variables (e.g.,
the limit behavior of 1/n

∑n
k=1 g(X

(k)) of an observable g).

2. Linear algebra and functional analysis (for a finite and continuous
state space, respectively) characterizes the global behavior of a Markov
chain in terms of the distributions of X (n) (e.g., the limit distribution
of X(n) for n→ ∞).

Both characterizations complement each other, and together they provide a
coherent picture of the stochastic nature of Markov chains.

We first give a short outline of the classical limit theorems like the law of
large numbers (LLN) and the central limit theorem (CLT) for independent
random variables in Sect. 3.1, which are then applied to the static Monte
Carlo method where all random variables are independent of one another.
Next, we review the classical Frobenius-Perron-theory and state versions of
LLN and CLT for the Markov chain case.

We then connect the phenomenon of metastability to dominant eigen-
values of the transition matrix and present a recently proposed idea of how
to identify metastable sets which builds upon the structure of dominant
eigenvectors (Sects. 3.2.2 and 3.2.3). In this context we shortly review the
stochastic complementation technique due to Meyer, which is an approach
for a fast computation of the stationary distribution of non-reversible finite
Markov chains [91, 92].

A Markov chain on a continuous state space shows in many aspects the
same behavior as on a finite state space. Yet, the associated Markov operator
possesses a richer spectral structure (Sect. 3.3). We furthermore discuss
in Sect. 3.3.3 ways to discretize a Markov operator on a high-dimensional
continuous state spaces, which is a prerequisite for identifying its metastable
sets.

1Unless stated otherwise, we use the term Markov chain to refer to a discrete time-
homogeneous Markov chain on either a finite or continuous state space.
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3.1 Classical Limit Theorems

To set the notation, let (Ω,F , ν) be a probability space where Ω is a nonempty
set, F a σ-field of subsets of Ω, and ν a probability measure ν : B → R.

A random variable X is a measurable function X : Ω → R. Its expec-
tation value is given by

Eν(X) =

∫

Ω
X(ω) dν.

In case ν is the Lebesgue measure on Ω ⊆ R
d, we simply write E(X). More

generally, if the quantity E(Xk) exists, it is called the kth moment of X.
The second moment of X − E(X) is called the variance of X and usually
denoted by σ2, i.e.,

Var(X) = σ2 = E[(X − E(X))2].

The square root σ of the variance is the standard deviation of X.

Random variables are independent if for each n and for all measurable
subsets A1, . . . , An ∈ R

ν

(
n⋂

k=1

(
X(k) ∈ Ak

))
=

n∏

k=1

ν
(
X(k) ∈ Ak

)
. (13)

A sequence (X(k))k∈N of random variables is said to be independent when
all finite subcollections satisfy condition (13).

Limit theorems are often stated in terms of sequences of independent
random variables (see, e.g., the textbooks of Billingsley [13] or Feller [35]).

The general form of the strong law of large numbers (LLN) ([82], Chapt. 2,
Sect. 9) states an almost sure convergence of the average sum 1/n

∑n
k=1(X

(k)−
µk) of a series of independent random variables towards zero:

Theorem 1 (Strong Law of Large Numbers (LLN))
Let X(1), X(2), . . . be independent random variables with means µn and vari-
ances σ2

n. Suppose that
∑
σ2

n/n
2 <∞. Then

P

(
lim

n→∞

1

n

n∑

k=1

(X(k) − µk) = 0

)
= 1.

In addition, for random variables with a common distribution the fol-
lowing version of the central limit theorem (CLT) ([82], Chapt. 3, Sect. 16)
states that the limit distribution converges to a normal distribution, which
is given by

Nσ(x) =
1√
2πσ

∫ x

−∞

exp[−u2/(2σ2)] du.
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Theorem 2 (Central Limit Theorem (CLT))
Suppose that X (1), X(2), . . . are independent random variables with a com-
mon distribution having mean µ = E(X (k)) and (finite) variance σ2, and let
Sn = X(1) + · · · +X(n) denote their partial sum. Then, with

Fn(x) = P

(
Sn − nµ

σ
√
n

≤ x

)
,

lim
n→∞

Fn(x) = N1(x).

With µ̂n = 1/n
∑n

k=1X
(k), we can write

Sn − nµ

σ
√
n

=

√
n

σ
(µ̂n − µ),

which lead us to an often used short form of the CLT, namely

√
n(µ̂n − µ)

D−→ Nσ, (14)

where D denotes distributional convergence. From (14) we obtain an O(1/
√
n)-

convergence towards the expectation value µ, which, of course, has to be
interpreted in terms of a distributional convergence.

Yet, the CLT does not provide a convergence rate towards the normal
distribution. For this task, under the stronger assumption that all third
moments of the random variables are finite, a stronger version of Theorem 2
can be stated ([82], Chapt. 3, Sect. 16):

Theorem 3 (Berry-Esséen Theorem)
Let X(1), X(2), . . . be a sequence of independent random variables with the
same distribution, and suppose that distribution has mean 0, variance σ2 >
0, and finite third moment M = E(|X (k)|3). Then there exists a constant
C ≤ 3 such that for every x ∈ (−∞,∞),

∣∣∣∣P
(
Sn√
n
≤ x

)
−Nσ(x)

∣∣∣∣ ≤
CM

σ3
√
n
. (15)

Since for fixed X (1), the values of M and σ3 are constant, the Berry-Esséen
theorem also states a convergence rate of O(1/

√
n), which denotes how fast

the distributions Fn converge towards the normal distribution Nσ.

Monte Carlo Integration. Let g : Ω → R be a Lebesgue integrable
function on a compact subset Ω ⊂ R

d of arbitrary dimension d. In a variety
of settings one needs to approximate the Lebesgue integral

E(g) =

∫

Ω
g(x) dx, (16)
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which we can write as an expectation value E(g) by interpreting g as a
random variable on (Ω,B(Ω), µ), where µ denotes the normalized Lebesgue-
measure. For low-dimensional Ω ⊆ R

d many good deterministic quadrature
methods are available [29], yet the curse of dimension prevents application
for the case d � 1. For such high-dimensional problems Monte Carlo inte-
gration is the method of choice [34, 44]. By generating a series of random
vectors x(1), x(2), . . . from independent distributed uniform random variables
X(1), X(2), . . . on Ω, we estimate E(g) by averages În =

∑n
k=1 g(x

(k)). A di-
rect application of the LLN and CLT guarantees an O(1/

√
n) convergence

rate, which due to the probabilistic setting shows no explicit dependence on
the dimension d.

Random Numbers. Monte Carlo integration relies on the availability
of random numbers and hence we need some source of randomness. In
practice, randomness is introduced in the form of pseudo-random number
generators [1, 79, 131]. Pseudo-random numbers are not truly random, but
rather computed from a deterministic sequence or simply taken from a pre-
calculated list.

Good algorithms generate pseudo-random numbers that share important
statistical properties of ideal random numbers, which makes them behave
like ideal random numbers and thus suitable for Monte Carlo simulations.
A pseudo-random number generator enables an easy and fast access to a
source of randomness, which due to its deterministic nature can be replayed
for use in several simulations.

Pseudo-random numbers are typically generated in two steps:

1. generation of random numbers uniformly distributed on [0, 1),

2. transformation into random numbers distributed according to the tar-
get distribution.

One of the most popular algorithms for generating random numbers is
the linear congruential method. Its recursion is given by

v0 = seed, vk+1 = (avk + b) mod c

for natural numbers a, b, c, and a seed-value in {0, 1, . . . , c−1}. The sequence
(vk) is then transformed into a sequence of pseudo-random numbers in [0, 1)
by

uk =
vk

c
.

A proper choice of a, b and c based on algebra and statistical tests are nec-
essary to produce reliable pseudo-random numbers. Among others, recom-
mended values are a = 16807, b = 0, and c = 231 − 1 [101].



3.2 Markov Chains on Finite State Spaces 27

To accomplish the second step, transformation rules from uniform dis-
tributed random numbers into other simple distributions do exist. For exam-
ple, Box and Muller proposed a transformation rule that produces random
numbers distributed according to the normal distribution [14]. Yet, if the
target distribution is more complicated and high-dimensional, a much more
sophisticated approach is needed (e.g., coupling from the past proposed by
Propp and Wilson [39, 130]).

Thermodynamical Integrals. In equilibrium statistical physics the com-
putation of thermodynamical quantities of a system is computed via an
integral with respect to a stationary distribution f (e.g., the canonical dis-
tribution fV as in (8)). A thermodynamical integral takes the form

Ef (g) =

∫

Ω
g(x)f(x) dx =

1

Zh

∫

Ω
g(x)h(x) dx, where Zh =

∫

Ω
h(x) dx

(17)
where the observable g and the unnormalized density h can be computed
easily. Yet the integral representation of the normalizing constant Zh pre-
vents a direct application of the Monte Carlo method to the computation of
(17). Much worse, even Zh is not tractable by direct Monte Carlo due to a
large variance of f . In fact, the computation of normalizing constants would
solve many problems in statistical physics but remains up to now (except of
some simple systems) a big challenge for physicists.

Markov chain Monte Carlo (MCMC) provides a way out of this dilemma.
Instead of a series of independent uniformly distributed random variables,
MCMC circumvents the problem of computing Zh by producing a dependent
series of random variables distributed according to f . The density f is
evaluated only via quotients of the form f(x)/f(y), where Zh cancels out.
MCMC can be seen as an extension of the direct Monte Carlo method which
is based on Markov chain theory.

3.2 Markov Chains on Finite State Spaces

For Markov chains the dependence on the past is passed on only through the
present state, which, as will be seen in the following, leads to a rich mathe-
matical structure. We first restrict to the case of discrete time homogenous
Markov chains [16, 19, 76, 99] on a finite state space Ω = {1, . . . ,m}. Let
X = X(1), X(2), . . . be a sequence of random variables with values in Ω.
The sequence X together with a probability vector π(1) ∈ R

m is called a
discrete time Markov chain on the state space Ω, if for every k ∈ N and
j, ik−1, . . . , i1 ∈ Ω the condition

P(X(k) = j |X(k−1) = ik−1, . . . , X
(1) = i1) = P(X(k) = j |X(k−1) = ik−1)

(18)
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is satisfied, and P(X (1) = i) = π
(1)
i for i ∈ {i1, . . . , im}. Equation (18) is

called the Markov property and π(1) the initial distribution.

If in addition the transition probabilities are independent of k, i.e., for
all i, j ∈ Ω

P(X(k) = j |X(k−1) = i) = tij (19)

holds, the Markov chain is called homogeneous.

In the case of a homogenous Markov chain the matrix T = (tij) given
by the transition probabilities tij forms a stochastic matrix, i.e.,

T ≥ 0 and

m∑

j=1

tij = 1 for all i,

and the initial distribution of X (1) is given by a probability distribution

π(1) where π(1) ≥ 0 and

m∑

j=1

π
(1)
j = 1.

Each homogeneous Markov chain is associated to a transition matrix and
vice versa. This relationship allows many properties of homogeneous Markov
chains to be expressed in terms of linear algebra.

In the following we state some basic facts about Markov chains (for fur-
ther background we refer to [16] and the introduction given in [10], Chap-
ter 8). The distribution of a Markov chain is determined by its initial distri-
bution and its transition matrix. The distribution of X (k) denoted by π(k)

is given by

π
(k)
i = P(X(k) = i).

With the n-step transition matrix T k we can compute π(k) via the relation

(π(k))′ = (π(1))′ T k−1.

Often the Markov chain possesses some additional structure. Two im-
portant notions expressed in terms of its associated transition matrix are
irreducibility and aperiodicity :

• A nonnegative matrix T is called irreducible, if for all i, j ∈ {1, . . . ,m}
there exists a k ∈ N with (T k)ij > 0.

• A nonnegative matrix T is called aperiodic, if for all i ∈ {1, . . . ,m}

gcd
(
k ∈ N | (T k)ii > 0

)
= 1,

where gcd denotes the greatest common divisor.
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A matrix is called primitive if there exists a k ∈ N with T k > 0. A matrix
T is primitive if and only if it is irreducible and aperiodic.

We call π an invariant distribution of X , if its associated transition
matrix satisfies

π′ = π′ T. (20)

Every Markov chain on a finite state space has at least one invariant dis-
tribution. If π(1) equals an invariant distribution, then π(k) ≡ π(1) for all
k ∈ N, and we say that X is started in stationarity.

In general, the Perron-Frobenius theory investigates spectral properties
of nonnegative matrices [76, 116], hence including stochastic matrices as a
special case. The following theorem summarizes some essential facts of the
Perron-Frobenius theory ([16], Chapt. 6.1).

Theorem 4 (Perron-Frobenius) Let T be a nonnegative primitive r × r
matrix. There exists a real eigenvalue λ1 with algebraic as well as geometric
multiplicity one such that λ1 > 0 and λ1 > |λj| for any other eigenvalue.
Moreover, the left eigenvector u1 and the right eigenvector v1 associated with
λ1 can be chosen positive and such that u′1v1 = 1.

Let λ2, λ3, . . . , λr be the eigenvalues of T other than λ1 ordered in such
a way that

λ1 > |λ2| ≥ · · · ≥ |λr|
and if |λ2| = |λj | for some j ≥ 3, then m2 ≥ mj, where mj is the algebraic
multiplicity of λj. Then

T n = λn
1v1u

′
1 + O

(
nm2−1|λ2|n

)
. (21)

If 0 ≤ B ≤ T and β is an eigenvalue of B, then |β| ≤ λ1. Moreover,
|β| = λ1 implies B = T .

If in addition, T is stochastic, then λ1 = 1.

In the case of a primitive stochastic matrix T we have λ1 = 1 with a right
eigenvector v1 ≡ 1 where 1 = (1, . . . , 1), and the stationary distribution π
is identical to the left eigenvector u1. Then, Eq. (21) simplifies to

T k = e π′ + O
(
nm2−1Λn

)
, Λ = |λ2|, (22)

from which follows

lim
k→∞

(π(1))′ T k−1 = lim
k→∞

(π(k))′ = π′

for any initial distribution π(1) with convergence rate Λ.
For a sample path x of the associated irreducible Markov chain X this

means that (independent of the initial state) for k being large enough, x(k)

will be approximately drawn from π. In practice, this process is often de-
noted as convergence towards equilibrium or “burn-in” phase.
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Reversible Markov Chains. Given a transition matrix T and a proba-
bility vector π the pair (T, π) is said to be reversible, if

πi tij = πj tji for all i, j. (23)

This implies that π is an invariant distribution of T . If, in addition, T is
irreducible, then π is the unique invariant distribution, and we simply say
that T is reversible. In terms of some weighting matrix D = diag(

√
πi) we

can write Eq. (23) as D2T = T ′D2, and we may introduce the π-weighted
inner product

〈x, y〉π = x′D2 y. (24)

It is easy to see that a reversible matrix T is symmetric wrt. the inner
product 〈·, ·〉π , since we immediately have 〈x, Ty〉π = x′D2Ty = x′T ′D2y =
〈Tx, y〉π.

As we have seen from Theorem 4, a wealth of information can be said
about the spectrum of an irreducible stochastic matrix T . If, in addition,
the Markov chain is reversible, even more structural properties hold (see [16,
30]):

1. There exists a basis of π-orthogonal right eigenvectors, which diago-
nalizes T .

2. For every right eigenvector u there is an associated left eigenvector
v = D2u, which corresponds to the same eigenvalue.

3. All eigenvalues are real and contained in the interval (−1, 1].

4. T is similar to the symmetric, in general non-stochastic matrix Tsym =
DTD−1.

We will see in Sect. 4.1 that the detailed balance equation (23) is the key
principle to construct transition matrices that have π as its invariant distri-
bution.

3.2.1 Pathwise Limit Theorems

We now turn our focus to the limit behavior of sums of random variables,
which is the typical objective in a MCMC setting.

For an observable g : Ω → R with Ω = {1, . . . ,m} the expectation value
of g is given by

Eπ(g) :=
m∑

i=1

g(i)π(i).

Essential for the whole concept is that the law of large numbers and the
central limit theorem also hold for Markov chains. The strong version of LLN
(also denoted as ergodic theorem for Markov chains) now states [93, 99]:
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Theorem 5 (Law of Large Numbers for Markov Chains)
Let X(1), X(2), . . . denote an irreducible and aperiodic Markov chain with
finite state space Ω and unique invariant distribution π. Furthermore let
g : Ω → R be a real-valued random variable on Ω. Then the convergence

lim
n→∞

1

n

n∑

k=1

g(X(k)) = Eπ(g)

happens almost surely.

Almost sure convergence guarantees that it is sufficient to generate one
sufficiently long sample of the Markov chain to compute expectation values.
Again, for convergence properties we have to resort to the CLT [77, 93]:

Theorem 6 (Central Limit Theorem for Markov Chains)
Let X(1), X(2), . . . denote an irreducible and aperiodic Markov chain with
finite state space Ω and unique invariant distribution π. Moreover, let an
observable g : Ω → R be given and denote the associated expectation value by
µ = Eπ(g), and the associated partial sums by Sn = g(X(1))+ · · ·+ g(X(n)).
Then, the so-called asymptotic variance σ2

a satifies

σ2
a := lim

n→∞

1

n
Var

(
n∑

k=1

g(X(k))

)
< ∞, (25)

and the distribution

Fn(x) = P

(
Sn − nµ

σa
√
n

≤ x

)

converges to a standard normal distribution with mean 0 for n→ ∞:

lim
n→∞

Fn(x) = N1(x).

With µ̂n = 1/n
∑n

k=1 g(X
(k)), we thus again get the short form of the

CLT, namely √
n(µ̂n − µ)

D−→ Nσa . (26)

There also exist Berry-Esséen estimates for Markov chains in the same
spirit as in Theorem 3 for the independent case [85]. But in contrast to
the independent case, the dependence between the random variables of the
Markov chain leads to a dramatic increase of the constant C, which makes
the bound achieved so far still not applicable for practical purposes.

The CLT characterizes the long run behavior by the asymptotic variance
σa. For a reversible primitive Markov chain with m ×m transition matrix
T , m eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λm with associated left eigenvectors
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vk, k = 1, . . . ,m, and stationary distribution π, the asymptotic variance for
an observable g can be expressed in terms of its spectral decomposition [16]:

σa = σa(g, T, π) =
n∑

i=2

1 + λi

1 − λi
|〈g, vi〉π|2 (27)

We can see from this equation that measuring the quality of an estimate
by means of the asymptotic variance includes all eigenvalues. However, the
asymptotic variance can become extremely large whenever there is at least
one eigenvalue close to λ1 = 1. Negative eigenvalues, even those close to
−1, are helpful in that they reduce the asymptotic variance. In Sect. 3.3.2,
a more general version of (27) is given.

The CLT again seems to indicate that the rate of convergence along
single pathwise realizations is of the form C/

√
n where the constant C may

become large with large asymptotic variance; since C ∝ σa it may become
large if there is at least one eigenvalue close to λ1 = 1.

The CLT is closely related to the following large deviation result :

P

(
| 1
n
Sn − Eπ(g)| > ε

)
≤ C exp

(
− ε

σ2
a

n

)
, (28)

that holds asymptotically for n→ ∞ for sufficiently small ε and a constant
C that does not depend on n (for a detailed discussion of the conditions
under which this statement may be valid see [80]). This shows that the
probability to observe an error larger than ε is decreasing exponentially fast
with n with decay rate ε/σ2

a.

Summary. Distributional convergence describes the evolution of the ini-
tial distribution of a primitive Markov chain to the stationary distribution
π as described by the Perron-Frobenius Theorem. Large positive as well as
negative eigenvalues prevent the initial distribution to become almost sta-
tionary after a few iterations. This behavior is characterized in Eq. (22)
by Λ. If, however, we are interested in pathwise convergence of expectation
values, we have to resort to the CLT or large deviation results, (26) and (28),
respectively. Therein, convergence is mainly influenced by the asymptotic
variance σa, a constant which might be extremely large if the spectral gap
1 − Λ is significantly small.

3.2.2 Metastable Sets

If λ2 is close to λ1 = 1, we often find that the reason for the undesirably slow
convergence is that the Markov chain remains for a long time in a metastable
region (also called mode or conformation) of the phase space, before it moves
on to another one. Such metastable behavior can be analyzed via the concept
of almost invariant sets [24, 113].
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We herein will exploit the following observation concerning metastabil-
ity: If there are n eigenvalues close to λ1 = 1 (including λ1 itself) and a
significant spectral gap to all remaining eigenvalues, then there also are n
disjoint metastable sets and vice versa [91, 115]. If this is the case, the chain
is rapidly mixing within the corresponding metastable subsets and the un-
desirably slow overall convergence results from the rareness of transitions
between these metastable sets. This behavior is illustrated in Fig. 8, where
entries in the 23×23 matrix T reflect spatial transitions probabilities in the
torsion angle of n-butane (see Fig. 4).

The close connection between a separated cluster of dominant eigenval-
ues and the existence of metastable subsets has another very important al-
gorithmic consequence: it has been shown for reversible Markov chains that
one can identify the n metastable subsets only on basis of the eigenvectors
associated with the n dominant eigenvalues [113, 115]. This insight leads to
a significantly general identification algorithm [30] used for the detection of
biomolecular conformations.

For sets A,B ⊆ Ω the transition probability between A and B is given
by

κ(A,B) =

∑
i∈A

(
πi
∑

j∈B tij

)

∑
i∈A πi

, (29)

which can be interpreted as the probability to move from the set A to the
set B wrt. T . With this definition, clearly κ(Ω,Ω) = 1 (i.e., all probability
remains in the state space Ω). We will denote a set A as metastable wrt. T , if
the transition probability from A to itself is close to one, i.e., if κ(A,A) ≈ 1.
Furthermore, we denote by A = {A1, . . . , Ad} a metastable decomposition
of Ω wrt. T , if κ(Ak, Ak) ≈ 1 for all k = 1, . . . , d.

How to measure the quality of a metastable decomposition will depend
on the specific application. For example, one could aim at maximizing the
average sum

max
A

1

d

d∑

k=1

κ(Ak, Ak).

Remark. For general non-reversible Markov chains, eigenvalues anywhere
near the unit circle correspond to an almost cyclic behavior [24]. We will not
pursue the existence of almost cyclic behavior further; we are only concerned
about reversible Markov chains, and in that case the typical spectrum we
will have to deal with in the following consists of a well-separated cluster of
eigenvalues near 1 and no eigenvalues near −1.
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Figure 8: Discretized Markov operator of n-butane at T = 300 K (details of discretization
are discussed in Sect. 3.3.3). (a) Illustration of the entries of the transition matrix T .
Intensity of entries due to logarithmic scale. (b) Ordered spectrum of T with a cluster of
three eigenvalues close to λ1 = 1 and a significant gap to all remaining ones.

3.2.3 Identification of Metastable Sets

Although the block dominant structure in T illustrates the corresponding
metastable sets, the states belonging to a metastable set are in general not
ordered (one could think of analyzing a stochastic matrix with randomly
permuted states). We will present here only the main characteristics of
the algorithm; a detailed description together with its motivation emerging
from a perturbation analysis for the block dominant structure can be found
in [30].

In the unperturbed case one would have a k-fold Perron-eigenvalue 1,
and corresponding right eigenvectors are constant on their blocks. By inter-
preting a reversible irreducible matrix as the perturbed case it follows from
perturbation theory that the k-fold eigenvalue 1 transforms into a simple
eigenvalue 1 and k − 1 eigenvalues close to 1 (which is also referred to as
the Perron cluster); right eigenvectors now have to be almost constant on
metastable sets, and are pairwise orthogonal.

The key algorithmic idea is to identify metastable sets via the sign struc-
ture of the right eigenvectors u1, . . . , uk corresponding to the dominant k
eigenvalues. The sign structure is defined as

sj = (sign((u1)j), . . . , sign((uk)j)), for j = 1, . . . ,m

Our aim is to find a map a : Ω → {1, . . . , k}, where Ω = {1, . . . ,m} and
k ≤ m (usually k � m), which assigns each state to its metastable set.

If the number of sign structures equals k, all states having the same
sign structure form a metastable set and we are done. However, in practice
we typically face the situation of having more sign structures than k, and
our task is to merge sign structures which only differ slightly from each
other. Based on the perturbation theory this is achieved by introducing
equivalence classes of sign structures wrt. some threshold parameter ε that
allows to interpret small entries in the eigenvectors to change their signs; we
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Figure 9: Subfigure 1–3: Right eigenvectors of the three dominant eigenvalues of the
transition matrix T shown in Fig. 8. Subfigure 4: The three metastable subsets are
characterized by three different sign combinations of these eigenvectors.

identify the smallest ε for which exactly k equivalence classes exist, which
then again uniquely define the states for each of the k metastable sets.

Figure 9 illustrates the key idea of the algorithm for identifying meta-
stable sets via these eigenvectors: For each state j = 1, . . . , 23, we denote by
sj ∈ {+,−}3 the 3-tuple of signs of the jth components in each of the three
eigenvectors, the so-called sign combinations. The forth subfigure in Fig. 9
shows that there are only three different sign combinations, and that all
states j with the same sj belong to the same metastable set (in this simple
example we do not face the more complicated case where we have more sign
structures than metastable sets). Thus, metastable sets can be identified as
sets of states with identical sign combination.

Alternative Approaches. We briefly want to mention some alternative
methods for identifying metastable sets. Instead of using the sign-structure
of dominant eigenvectors it is also possible to perform a fuzzy decomposition
of the set S [129]. In terms of graph theory, our problem can be stated as
an edge-weighted graph G(V,K), where a vertice vi corresponds to a state
si, and an edge kij is assigned the weight πitij with T being the transition
matrix. Done that, algorithms for graph partitioning can be applied [103].
These algorithms can be roughly divided into two groups: The first group,
the so-called greedy algorithms, try to find a good decomposition into a
given number of k sets of vertices by letting grow k initial empty sets and
afterwards rearranging these sets by a given optimization criterion or cost
function. The second group, often denoted as spectral graph partitioners,
computes eigenvectors of the corresponding Laplacian matrix and tries to
extract information from the “important” eigenvectors by a geometrical clus-
tering of eigenvector data [3, 119]. In fact these kind of algorithms possess
a structural similarity to our identification algorithm sketched above. More
recently, it was also suggested to use the congestion of a graph, a notion
which refers to a quantity specifying bottlenecks in a graph [25].

Stochastic Complementation. The connection between eigenvalues close
to 1 and metastable sets is also described by Meyer [91] in the context of
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a given (not necessarily reversible) irreducible stochastic matrix T . Meyer
introduces the concept of stochastic complementation in order to address the
problem of determining the stationary distribution of an irreducible Markov
chain T with a large number of states by uncoupling it into several smaller
independent Markov chains. This can be thought of as the inverse problem
that we described so far, namely identifying metastable sets of a given sta-
tionary distribution via spectral properties of a reversible transition matrix
T .

In [91], a coupling matrix C = (cij) is constructed by aggregation of
states in such a way that the stationary distribution π of C contains the
correct weighting factors for the aggregates. This is achieved by using global
information to set up the stochastic complements cij . The coupling matrix C
can be interpreted as a coarsed grained stochastic version of T . The applica-
tion in mind by stochastic complementation are aggregation-disaggregation
techniques [22, 118], which perform a fast computation of the stationary dis-
tribution of T for large finite state spaces, where a suitable decomposition of
the state space is known in advance. Like UC, stochastic complementation
makes use of coupling factors, although in a different context.

3.3 Markov Chains on Continuous State Spaces

Markov chains are also considered on general state spaces where Ω is an
arbitrary topological space [93]. For our purpose we restrict to the case of
a continuous state space Ω ⊆ R

d. All Markov chains are still considered as
a discrete time stochastic process.

We will see that versions of the limit theorems from Sect. 3.2.1 also exist
for continuous state spaces [32, 93, 107]. Especially, under some further as-
sumptions resulting from the richer structure of continuous state spaces, we
can draw analogous conclusions between the spectral gap and convergence
rate as we have done in the finite case.

3.3.1 Transition Kernel

To set the notation, let (Ω,B, λ) be the underlying measure space and π a
probability measure on (Ω,B). We suppose in the following, that λ is the
Lebesgue measure on Ω ⊆ R

d, and that π possesses a density

f(x) dx = π(dx)

with f > 0 where dx denotes integration wrt. the Lebesgue measure λ.

A transition kernel 2 K : Ω × B → [0, 1] defines a chain X = (X (k))k∈N

through the relation

P{X(k+1) ∈ A|X(k), . . . , X(1)} = K(X(k), A)

2For an exact definition of commonly used terms as transition kernel, irreducibility or
aperiodicity, we refer to the monograph [93].
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where K(x,A) denotes the probability to move in one step from the point
x into the set A.

We call f an invariant density of X , if

∫

A
f(x) dx =

∫

Ω
K(x,A)f(x) dx (30)

holds for all A ∈ B.

The Markov chain is reversible, if the transition kernel satisfies the de-
tailed balance condition:

∫

A
K(x,B)f(x) dx =

∫

B
K(y,A)f(y) dy, for all A,B ∈ B.

If the kernel K possesses a density k(x, y) wrt. the invariant measure π, i.e.,

K(x,A) =

∫

A
k(x, y)f(y) dy for all A ∈ B, (31)

then this simplifies to

k(x, y) = k(y, x)

for every x, y ∈ Ω.

3.3.2 The Markov Operator

In the following we want to understand the global behavior of a Markov
chain with unique invariant density f given by f(x) dx = π(dx) via the
spectral structure of its associated Markov operator on the space L2

π; the
spaces Ls

π, 1 ≤ s <∞, are herein defined via

Ls
π = {u : Ω → C |

∫

Ω
|u(x)|s f(x) dx <∞}.

L2
π then is a Hilbert space with the scalar product

〈u, v〉π =

∫

Ω
u(x)v(x)f(x)dx, ∀u, v ∈ L2

π.

The transition kernel K induces a Markov operator P : L2
π → L2

π, u 7→
Pu, also called propagator, that is defined by

Pu(y) f(y) dy =

∫

Ω
K(x, dy)u(x) f(x) dx, (32)

where the notation means that
∫

A
Pu(y) f(y) dy =

∫

Ω
K(x,A)u(x) f(x) dx, ∀A ∈ B,
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and simplifies to

Pu(y) =

∫

Ω
k(x, y)u(x) f(x) dx,

if the kernel K possess a density k(x, y) wrt. the invariant measure π.
Instead of generating a series of states as one does when computing a

realization of the Markov chain X , P describes the propagation of densities.
Two important properties of the so-defined operator are [112, 113]:

(i) P is a Markov operator: for all u ∈ L1
π we have

∫
|Pu(x)| dx =∫

|u(x)| dx and from u ≥ 0 follows Pu ≥ 0.

(ii) P is a symmetric operator in L2
π wrt. the scalar product 〈·, ·〉π due to

the reversibility of K.

From (i) and (ii) follows that in L2
π the spectrum σ(P ) of P is real and

bounded in modulus by 1, so we have σ(P ) ⊆ [−1, 1]. Similar to the well-
known Frobenius-Perron theorem for finite state spaces, irreducibility and
aperiodicity of K implies that P has a simple eigenvalue λ1 = 1, for which
the constant function 1, 1(x) = 1, for all x ∈ Ω is an eigenfunction, i.e.
P1 = 1. Thus, by introducing the orthogonal space of the eigenspace of the
eigenvalue λ1 = 1, i.e.,

L2,0
π = {u ∈ L2

π : 〈u,1〉π = 0},

we can decompose P into two parts via

Pu = 〈1, u〉π + P0u, (33)

where P0 acts and is self-adjoint on L2,0
π .

To further investigate the spectral structure we define the discrete spec-
trum σdiscr(P ) to consist of all isolated eigenvalues of P with finite multi-
plicity and the essential spectrum by σess(P ) = {λ ∈ σ(P )|λ 6∈ σdiscr(P )};
the essential spectral radius is given by ress(P ) = supλ∈σess(P ) |λ|.

If ress < 1, the Markov chain X is called geometrically ergodic [93], which
is a desirable property for the rate of convergence of the MCMC algorithm as
we will see next: According to [77, 123] the central limit theorem in its form
(26) also holds for Markov chains on continuous state spaces under the ad-
ditional assumptions that we consider observables g ∈ L2

π. The asymptotic
variance σa is given by [54, 106]

σ2
a = lim

n→∞

1

n
Var

(
n∑

k=1

g(X(k))

)
(34)

= 〈b, b〉π + 2
∑

k=1

〈b, P kb〉π, (35)

where b = g − π(g) ∈ L2,0
π with π(g) = 〈1, g〉π =

∫
g(x)f(x) dx.
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The following theorems given in [77] show how (like in the case of a
finite state space) the asymptotic variance can be computed by means of
the spectral decomposition of the self-adjoint Markov operator P in L2

π:

Theorem 7 Let P be the operator associated with a reversible, irreducible
Markov chain X , and let P0 be defined according to (33). Moreover, let
Eg,P0(·) be the spectral measure associated with g ∈ L2

π and P0. Then

lim
n→∞

1

n
Var

(
n∑

k=1

g(X(k))

)
=

∫

σ(P0)

1 + λ

1 − λ
Eg,P0(dλ).

Theorem 8 Let P be the operator associated with a reversible, irreducible
Markov chain X , and let Λ = Λ(P0) = supλ∈σ(P0) λ . Then

lim
n→∞

1

n
Var

(
n∑

k=1

g(X(k))

)
≤ 1 + Λ

1 − Λ
π(g2) <

2

1 − Λ
π(g2).

If we assume that the chain is geometrically ergodic, then the spectral gap
1−Λ(P0) > 0 is closely related to the asymptotic variance. If we furthermore
assume that there is a second eigenvalue λ2 ≥ ress(P ) then 1−Λ(P0) = 1−λ2.
Then (due to our discussion of the central limit theorem) X converges with
geometric rate due to λ2, i.e., with increasing λ2, we need exponentially
increasing sampling length for X to produce good samplings of the density
f . If the above assumption wrt. ress holds, a Markov Chain X is therefore
called slowly mixing if λ2 is close to 1, and rapidly mixing if λ2 � 1.

The upper bound given in terms of 1−Λ(P0) is a universal upper bound
for any function g ∈ L2

π. For a particular function, however, it may also
happen that 1 − Λ(P0) has only a slight impact on the asymptotic variance
(also see [54]).

3.3.3 Metastable Sets of a Markov Operator

Our aim is to extend the concept of transition probabilities from Eq. (29)
and the identification strategy for metastable sets as presented in Sects. 3.2.2
and 3.2.3 to the continuous case.

Metastable Sets. Suppose, that we consider a transition kernel K of the
form (31). Then, for two sets A,B ⊆ Ω the transition probability between A
and B within an ensemble distributed wrt. the density f and after one step
of the Markov chain is given by

κ(A,B) =
1∫

A f(x) dx

∫

A

∫

B
k(x, y)f(x) dy dx =

〈1B , P1A〉π
〈1A,1A〉π

. (36)

where 1A denotes the indicator function of some set A, i.e., 1A(x) = 1 if
x ∈ A, and 1A(x) = 0 otherwise.
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The last formula allows to give a mathematical statement relating dom-
inant eigenvalues, the corresponding eigenfunctions and a decomposition
of the state space into metastable subsets. For later reference we define
the metastability of a decomposition D = {D1, . . . , Dm} as the sum of the
metastabilities κ(Di, Di) of its subsets Di. The next result can be found
in [73]; a version for two subsets was published in [71].

Theorem 9 Let P : L2
π → L2

π denote the Markov operator of a reversible
and geometrically ergodic Markov chain. Then the spectrum of P has the
form

σ(P ) ⊂ [a, b] ∪ {λn} ∪ . . . ∪ {λ2} ∪ {1}

with −1 < a ≤ b < λn ≤ . . . ≤ λ1 = 1 and isolated, not necessar-
ily simple eigenvalues of finite multiplicity that are counted according to
multiplicity. Assume that n > 1 in this representation, i.e., there are at
least two isolated dominant eigenvalues with modulus larger than the es-
sential spectral radius. Denote by vn, . . . , v1 the corresponding eigenfunc-
tions, normalized to ‖vk‖2 = 1. Let Q be the orthogonal projection of L2

π

onto span{1A1 , . . . ,1An}. The metastability of an arbitrary decomposition
D = {A1, . . . , An} of the state space Ω can be bounded from above by

κ(A1, A1) + . . .+ κ(An, An) ≤ 1 + λ2 + . . . + λn,

while it is bounded from below according to

1 + η2λ2 + . . .+ ηnλn + c ≤ κ(A1, A1) + . . .+ κ(An, An)

where ηj = ‖Qvj‖2
π and c = a (1 − η2) . . . (1 − ηn).

Theorem 9 highlights the strong relation between a decomposition of the
state space into metastable subsets and dominant eigenvalue close to 1 (in
almost the same manner as in the case of a finite state space). It states that
the metastability of an arbitrary decomposition D cannot be larger than
1+λ2 + . . .+λn, while it is at least 1+η2λ2 + . . .+ηnλn +c, which is “large”
whenever the dominant eigenfunctions v2, . . . , vn are almost constant on the
metastable subsets A1, . . . , An implying ηj ≈ 1 and c ≈ 0. The term c can
be interpreted as a correction that is small, whenever a ≈ 0 or ηj ≈ 1.
It is demonstrated in [73] that the lower and upper bounds are sharp and
asymptotically exact.

Discretization. In order to eventually compute the dominant eigenmodes
of the Markov operator P given byK we have to discretize the corresponding
eigenvalue problem [113, 114]. This can be done by coarse graining the
Markov chain given by K with an arbitrary box decomposition of the state
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space Ω into m disjoint sets B1, . . . , Bm ⊂ Ω with ∪Bj = Ω. Based on this
box decomposition, we introduce the new finite phase space {B1, . . . , Bm}
and define the transition function K̃ on {B1, . . . , Bm} via

K̃(Bk, Bl) = κ(Bk, Bl). (37)

The finite dimensional Markov chain defined by K̃ again is reversible wrt.
its stationary density π̃ given by π̃k = π(Bk) =

∫
Bk
f(x)dx. Whenever f is

unique for K, π̃ is also unique for K̃.
Since after discretization the state space is finite, P becomes an m ×

m transition matrix T which simply is the column stochastic matrix with
entries Tlk = K̃(Bk, Bl) = κ(Bk, Bl).

The eigenmodes of P (if associated with isolated eigenvalues) can be
approximated by eigenmodes of T ; self-adjointness and boundedness of P
allow to prove convergence in the limit of arbitrary fine box coverings, i.e.,
m→ ∞.

In order to set up T we have to estimate κ(Bk, Bl) for arbitrary box
numbers k and l from a realization x = (x(1), . . . , x(n)) of X . Then, the
relative frequencies approximate κ(Bk, Bl) in the sense that

κ(Bk, Bl) = lim
n→∞

∑n−1
j=1 1Bk

(x(j)) 1Bl
(x(j+1))

∑n−1
j=1 1Bk

(x(j))
. (38)

For a reversible Markov chain we can also take the reversed sample path
(x(n), . . . , x(1)) for approximating relative frequencies:

κ(Bk, Bl) = lim
n→∞

∑n
j=2 1Bk

(x(j)) 1Bl
(x(j−1))

∑n
j=2 1Bk

(x(j))
. (39)

Putting together all transitions (forward and reversed) results in

κ(Bk, Bl) = lim
n→∞

∑n−1
j=1 1Bk

(x(j)) 1Bl
(x(j+1)) +

∑n
j=2 1Bk

(x(j)) 1Bl
(x(j−1))

∑n−1
j=1 1Bk

(x(j)) +
∑n

j=2 1Bk
(x(j))

,

(40)
which best reflects reversibility of X . Estimation due to (40) has the nice
property that the resulting discretization T is reversible for any finite sam-
pling length n, which in (38) and (39) is only true for the limit n→ ∞.

3.3.4 Dynamical Clustering

In practice, we have to determine a suitable box discretization from a given
sample x. For this task, two problems has to be taken into account: (a)
discretization of a high-dimensional state space and (b) a given finite sample
size. Concerning problem (a) a discretization of P should be as fine as
possible. In view of (b), an evaluation of an entry tij of T between two
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boxes Bi and Bj are based on the finite sample size; hence good statistics
requires a small number of boxes.

A straightforward identification strategy consists of two separate steps:

1. Geometric discretization of the Markov operator P by pre-clustering
the sample x into boxes; this enables to set up a transition matrix T .

2. Identification of metastable sets as outlined in Sect. 3.2.3.

Further enhancement can be obtained by intertwining steps (1) and (2).
If the state space Ω would be low dimensional, a direct discretization of

Ω would cause no problems. In order to discretize a high-dimensional state
space, a variety of approaches has been proposed. Among them, some were
especially designed to be applied to a geometric discretization of the state
space of biomolecules:

Essential Degrees of Freedom. In many situations the number of de-
grees of freedom can be reduced by using a-priori knowledge about the sys-
tem under consideration. Biomolecules are typically described in terms of
their torsion angles (e.g., the single torsion angle of n-butane, see Fig. 4),
and even from these only a subset is sufficient to describe the large-scale
dynamics (e.g., the two essential torsion angles of n-pentane, see Fig. 25).
Further reduction of the number of coordinates is possible via Principal
Component Analysis (PCA) [5, 72].

Self Organizing Neural Networks. Neural networks are often used for
cluster analysis. The task of clustering a large amount of sample points
distributed in a high-dimensional continuous state space into clusters with
geometrical similar sample points is often done by means of self organizing
maps. The so obtained clusters could then be used to set up a transition
matrix T , whereby each cluster represents one state of T . An extension of
this approach are the so-called self-organizing box maps [47]. In addition
to the clusters, boxes are assigned to each cluster (which are needed, e.g.,
for restricted sampling in identified metastable sets). We make use of this
approach as part of the UC algorithm in Sect. 6.2 for simulations of n-
pentane.

Combined Geometric and Dynamic Clustering. The above two ap-
proaches follow a strict separation of pre-clustering and identification. In
order to obtain a discretization that already reflects metastability, it is also
possible to intertwine steps (1) and (2). For the simulations of the biomole-
cule presented in Sect. 6.3 we employ such an approach, where a dynamical
clustering on torsion angles identifies the most metastable coordinates in a
hierarchical manner, which then gives rise to a Galerkin discretization on
the whole state space [21].


