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2 Simulation of Biomolecules

Hamiltonian Systems and Statistical Physics forms the basis of mathemati-
cal modeling of biomolecules. After introducing Hamiltonian mechanics, we
describe commonly used force fields to set up a classical Hamiltonian of a
molecular system, and introduce two major approaches to extract statistical
and dynamical information: Molecular Dynamics and Monte Carlo methods.
In Sect. 2.6 we define metastable conformations of a biomolecule in terms of
a canonical ensemble.

2.1 Hamiltonian Mechanics

Biomolecular systems are typically described in terms of classical mechan-
ics [6], which is a good compromise between a detailed and reliable de-
scription of the dynamics of a (bio-)molecule and its computational feasibil-
ity [2, 60].

A broad class of molecular systems with n atoms (or center of forces)
is described via generalized coordinates x € R3" and generalized momenta
p € R3" by a separable Hamiltonian

H(x,p) = T(p) + V(x), (2)

where H(z,p) defines the total energy of the system, which further splits
into a kinetic part 7 (p) and a potential part V(x), respectively.

Hamiltonians that are used to model biomolecules are of a more specific
form: z refers to the Cartesian coordinates of the n atoms and H is of the
form

k
1 Tar—1 3n
H(a,p) = 50 M p+ZIV(z‘)(x), z,peR (3)
1=
where the 3n x 3n diagonal matrix M is a mass matrix that contains the
masses of the respective atoms on its diagonal. In V interaction between
atoms are modeled as sums of various potential parts V;).
From H one can derive the canonical equations of motion

oT ) ov
= 8_;0 and p= T oz (4)

which forms an autonomous system of 6n first order ordinary differential
equations. Since (4) is only dependent on H, the potential V and the mass
matrix M totally determine the dynamics of the molecular system.

Equations (4) together with initial values x¢g = x(0) and py = p(0) for
the coordinates and momenta, respectively, form an initial value problem. If
the right hand side of (4) is locally Lipschitz-continuous, a unique solution
does exist. In that case the phase flow

& (o, po) == ((x(t),p(t)); (0, po0)) (5)
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denotes the state of the system at time ¢ for an initial value (zg,p).
The special structure of the canonical equations implies at least three
remarkable properties of Hamiltonian systems [6]:

1. Conservation of the total energy E = H (xz(t), p(t)), which follows from

3n 3n
dH o0H . o0H . OH O0H O0OH 0H
T (T o) =2 (Gar o ) =

k=1
2. Time-reversibility of the phase flow ®, i.e.,
(2!, —p') = (x,—p)  for ®'(z,p) = (2", p).

Time-reversibility follows from the special structure of (4) and the
general property of a phase flow ® to be symmetric (i.e., ® '@ (x,p) =

(z,p)).

3. Conservation of the phase space volume is known as Liouville’s theo-
rem: a global property of @ is to leave the volume V(4) = [ 4 dx dp of
a subsets A of the phase space invariant, i.e.,

V(®'A) = V(A),

which is a direct consequence of the symplecticness of a Hamiltonian
phase flow.

These three properties will become of special importance in the context of
the Hybrid Monte Carlo method in Sect. 4.2.2.

2.2 Molecular Force Fields

The first step before a simulation can be started for a specific molecular sys-
tem is to set up a Hamiltonian that reflects reasonable well all properties of
interest. Then, in a next step, numerical and stochastic simulations provide
insight into diverse aspects such as the behavior of a single long time tra-
jectory, thermodynamical quantities, or structural information. That way,
computer simulations help to fill the gap between theory and experiment.

The quantities of interest depend largely on the kind of molecular system
under consideration (e.g., gases, liquids, molecules, DNA-segments, small
peptides, large proteins). Gases and liquids are often simulated in order to
investigate thermodynamic quantities when the system undergoes a phase
transition, whereas a primary question concerning biomolecules is to find
out typical three-dimensional structures at a fixed temperature.

Different kind of interactions act between atoms as forces. In quantum
mechanics the motion of atoms is primarily governed by electromagnetic
interactions. These interactions are associated to the general form of a
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classical biomolecule’s potential function, which is often described by the
following parts:

V(.’E) = Z Vbonds + Z Vangles + Z Viorsions

bonds angles torsions

+ Z (VLennard—J ones T VCoulomb)

atom pairs
The potential function V can roughly be classified into three parts:

1. bonded interactions: The bond structure of a molecule determines a
number of short-range interactions. A harmonic representation is used
for bond and bond-angle oscillations, whereas a typically three-minima
potential is used for torsion angles.

2. non-bonded interactions: Non-bonded interactions due to electronic
and nuclear charges are modeled via pairwise interactions of Lennard-
Jones- and Coulomb-type potentials. They have a long-range effect
and make up the biggest part in the computation of larger systems.

3. interactions with an environment: A biomolecule is typically sur-
rounded by water molecules, which additionally lead to long-range
Lennard-Jones- and Coulomb-type interactions between the biomole-
cule and its environment. In many biomolecular simulations, however,
the Hamiltonian solely consists of intra-molecular forces (i.e., simula-
tion is carried out in vacuum).

To choose a suitable Hamiltonian including all of its parameters for a
given molecular system is a formidable task. Parameters for potential parts
are derived from a mixture of experimental sources, physical insight, or
quantum mechanical simulations of small subsystems [2, 60]. We next have
a closer look on some commonly used force field, which allows to set up a
Hamiltonian for a wide range of molecules. We start with a simple model
for n-alkanes, which will serve us as an algorithmic test environment in the
following.

United Atom Representation. Ryckaert and Bellemans [108, 109] pro-
posed in 1967 a simple model for n-alkanes in order to investigate by sim-
ulating a gas or liquid of similar n-alkanes of how the internal structure of
n-alkanes affects thermodynamical quantities and vice versa. An n-alkane

CHz — CHy — - - — CHy — CH;

is a linear chain of single bonded carbon atoms, with remaining valencies
are bonded to hydrogens. In this model, the term “united atom” refers to
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Figure 4: (a) United atom model of n-butane with torsion angle w. (b) Torsion angle
potential Vior. The main minimum corresponds to the trans orientation of the angle, the
two side minima to the *gauche orientations.

the approach to model CHs and CHs groups as single center of forces, which
leads to drastically reduced computational cost for simulations.

To set up a Hamiltonian, let H(z,p) with z,p € R3¢ be the Hamiltonian
for d united atoms, zj,pr € R for k = 1,...,d the respective coordinates
and momenta of one united atom, and M the mass matrix. Then, for a
single n-alkane its Hamiltonian is given by

1

H(x,p) = §pTM_1p kinetic part 7 (p)
+ Zfz_ll Vbonds (Tis Tit1) bond terms
+ 38 Vangle (@i, Tit1, Tit2) bond angle terms

k—3 .
+ Zizl Vior(Zi, Tiy1, Tit2, Tip3) torsion angles

+>° i Vo, xj) Lennard-Jones terms
1<j—3

(6)
The Hamiltonian consists of the kinetic part, and the potential part splits
into bond- and angle oscillations, torsion angle rotations, and Lennard-Jones
terms for non-bonded interactions (for details see [40, 109]).

The Hamiltonian of a single n-butane (see Fig. 4) will serve us as an
illustrative example throughout this thesis. It consists of four united-atom
groups only (two CHz and two CHs compounds), yet it reveals two typical
problems of larger biomolecules: a multiscale dynamics due to fast oscilla-
tions in the bond and bond-angle potentials compared to slow overall struc-
tural changes, which are essentially effected by torsion angle rotations; and
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the formation of metastable conformations, which can also be described in
terms of the torsion angle by its trans and +-gauche orientations.

GROMOS96. For larger biomolecules additional and refined atomic in-
teractions can be taken into account by the GROMOS96 force field [127].
Comparable to the united atoms of the n-alkane model the term “extended
atom” is used to denote that some hydrogens are covered by correspond-
ing heavy atoms. Moreover, GROMOS96 contains an extra covalent energy
term for out-of-plane oscillations.

As an example, Fig. 5 shows the triribonucleotide adenylyl(3-57)cytidylyl
(3°-5’)cytidin [r(ACC)]. The global structure of r(ACC) can be roughly de-
scribed by eight parameters per nucleotide. From a biochemical point of
view, the torsion angles y and the the pseudorotation angle P and its phase
6 [4] are of special interest for conformational analysis.

MMFF. In the all-atom Merck Molecular Force Field (MMFF) [62] all
H-atoms are modeled explicitly. This gives a more detailed description of
atomic interactions but leads in contrast to the other force fields to an
increase in computational cost. One of its distinctive features is to allow the
setup of Hamiltonians for a wide class of molecular system (e.g., Fig. 1 on
page 6 shows the HIV inhibitor VX-478, a small biomolecule that can inhibit
the function of HIV protease). Also, we analyze n-pentane in Sect. 6.2 as
well as a larger biomolecule in Sect. 6.3 by means of MMFF.

Remarks. As we can see from these three different force fields, the choice
of the Hamiltonian for a model system is not a priori given and is dependent
on many factors as detail of description, range of applicability, or computa-
tional cost.

A big challenge in modeling biomolecules is the inclusion of a solvent in
the model, which makes the introduction of boundary conditions necessary.
Yet, a direct approach (e.g., by explicitly modeling interactions between
the biomolecule and a huge amount of water molecules) leads to a drastic
increase in computational cost. These and further important aspects of
modeling and simulation are discussed in detail in standard text books about
molecular dynamics [2, 46, 60].

2.3 Molecular Dynamics

Now assume that we already have set up a separated Hamiltonian H = 7 +V
by means of one of the force fields described in Sect. 2.2. Then, the canonical
equations are derived as in (4) and the deterministic dynamics of the sys-
tem is given by the trajectory ®!(zg,pg) for some initial values (zg,po). In
practice, it is for all but the simplest Hamiltonians impossible to determine
the exact solution ®*(zg, pp); instead, we have to use some integrator (i.e., a
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Figure 5: The triribonucleotide adenylyl(3’-5’)cytidylyl(3’-5’)cytidin [r(ACC)] in the ex-
tended atom representation of GROMOS96 [127]. A and C denote the bases adenine and
cytosine. Small Greek letters refer to torsion angles, which are necessary for a rough
reconstruction of the molecule’s configuration. The torsion angles of the ribose (i.e., the
five atoms forming a ring structure) can be approximated by the pseudorotation angle P
and the phase 6 [4].

numerical integration scheme), and therefore inevitably introduce some er-
ror by computing a discretized numerical solution (U7)*(zq,pg) at discrete
time steps k7 for k =1,...,n [26].

Leapfrog. A well-known numerical method for separable Hamiltonians is
the Leapfrog (or Verlet) integrator [128]. Its integration scheme for one time
step T is given by

($k+1,Pk+1) =y (.Tk;, Pk):
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where

T 0T
Tyl = Tk + 5 8—1)(1’%),
Pkl = Dk —T %(%r%),
T 0T
Thtl = Tpgl + 5 a—p(l)l)-

Apparently, this scheme consists of a half-step in the coordinates z, a full
step in the momenta p, and another half-step in x; all in all we need only
one evaluation of the force field per time step. For an iterative computa-
tion of WT* the last half-step of 1 can be further combined with the first
half-step of x; 1 resulting in two shifted series of full steps in the coor-

dinates and momenta, respectively. The shift of 7/2, which is due to the
initial and final half-step in x, guarantees the Leapfrog scheme to be time-
reversible. Moreover, the discrete phase flow ¥ : R2¢ — R?¢ is symplectic,
and therefore inherits two important properties of the phase flow ®.

Other sophisticated integrators could be used instead, many of which
are also reversible and symplectic [110]. Reversible and symplectic integra-
tors are also known to reproduce conservation of energy reasonable well.
The Verlet scheme is the simplest representative in the family of so-called
partitioned Runge-Kutta methods [61], with an order of approximation of
2. Higher order integrators produce much better results for the price of a
higher computational cost, at least if one is interested in good discrete ap-
proximations wrt. the exact solution. We will stick to the Leapfrog scheme
in the following, since in the context of MCMC it is sufficient to use a com-
putational inexpensive scheme that is reversible and symplectic.

Interpretation of Simulation Outcome. To start a numerical long-
term simulation we have to determine reasonable initial values for the co-
ordinates xg and momenta pg. It is impossible to get exact values from
experimental measurements, and even if one agrees on (¢ the remaining
energy has to be assigned rather randomly on pg. Long-term dynamics
is known to be chaotic, and even worse, unpredictable errors in long-term
simulations can cause the approximated discrete solution to end up in a to-
tally different part of the phase space than the exact solution; additionally,
preservation of energy is not guaranteed for long time spans and large time
steps. Nevertheless, short-time simulations do not suffer from numerical
problems, and sometimes even long-term simulations can provide valuable
insight, especially for non-equilibrium situations.



18 2 Simulation of Biomolecules

2.4 Canonical Ensemble

Statistical physics provides an elegant way to get rid of the problem of
initial values and erroneous long-term simulations. The focus shifts towards
a global view of the molecular system involving the entire phase space rather
than the part sampled by a single energy preserving deterministic trajectory.
By probabilistic modeling it is possible to obtain averages of observables or to
identify typical three-dimensional structures defined in a statistical setting.
The canonical ensemble (other frequently used terms are: canonical dis-
tribution, Gibbs-, Boltzmann-, or Gibbs-Boltzmann distribution) is given on
a continuous state space §2 by its density
fH(-T,p) _ h')—((l’,p) _ exp[—ﬁH(x,p)] ’ (7)
Zhy, Jo exp[-BH(z,p)] dx dp
where hy(z,p) = exp[—BH(x,p)] is the unnormalized density, Zp,, its nor-
malizing constant, and § = 1/(kpT') the inverse temperature depending on
the temperature 7" and Boltzmann’s constant kg. From a physical point
of view the canonical ensemble is associated with a simulation in a heat
bath (i.e., a simulation with constant volume, temperature, and number of

particles).
Since H is separable we can split f into its potential and momenta part:
exp[—(V(x)] exp[—07 (v)]
)= ———7-—-= and =——% 8
fV( ) Zhv(x) fT(p) th[(x) ( )

The momenta part fr is a multivariate Gaussian distribution and can
therefore be treated analytically. The real challenge is to extract information
from the potential part fy.

Typical observables are the energy or the energy of some potential part.
The probability of a biomolecule to have some special structural property
can be stated as

[ ra@p@de= [ joia)ds

where the subset A C  could for example express restrictions on some
internal degrees of freedom.

Example of a Canonical Ensemble. Let us again consider the united
atom representation of n-butane. In order to illustrate two characteristics
typical for the canonical ensemble we have a closer look at the 12-dimensional
probability density function fy for temperatures at 300 K and 1000 K.

1. In Fig. 6 (a) the two distributions are plotted versus the torsion angle
(see Fig. 4). The probability clearly concentrates in low energy regions;
an effect that becomes more apparent for decreased temperature (in
fact, in the limit 8 — oo all probability will be concentrated around
the set of global minima).
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Figure 6: Canonical distribution at 7' = 300K and 7" = 1000 K. (a) Plotted versus the
torsion angle. (b) Energy distribution of fy.

2. In Fig. 6 (b) the energy distribution of fy is plotted. We observe a
relatively small overlap between the two distributions. The overlap
decreases for higher dimensions and larger temperature differences.

In summary, by decreasing the temperature 1" the density concentrates more
and more in the local minima of V and therefore in lower energy regions.
Although the canonical densities gives the impression of a big overlap in
Fig. 6 (a), one should have in mind that in fact the actual overlap can be
very small.

Remark. Depending on the modelled experimental situation and the ap-
plication in mind, other ensembles than the canonical one are used in sta-
tistical physics (e.g., the microcanonical or grand-canonical ensemble). Yet,
for simulations in our context (an ensemble of a system consisting of a single
molecule with or without embedding in a solvent) where one aims at an un-
derstanding of internal structures rather than interactions between different
molecules the canonical ensemble is the method of choice.

2.5 Sampling Schemes

In order to extract (thermo-)dynamical quantities one needs to gather infor-
mation about the canonical distribution, which is usually done by drawing
samples from fy,. Two main approaches for this task are Molecular Dynam-
ics and Markov chain Monte Carlo.

2.5.1 Canonical Molecular Dynamics

A simple application of a discrete phase flow ¥ to a molecular system would
at best draw samples from a microcanonical ensemble (provided that dis-
cretization errors can be neglected and the physical ergodic hypotheses is
valid for the molecular system under consideration). Yet, by appropriate
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(stochastic) remodeling it is possible to draw samples from a canonical en-
semble by means of molecular dynamics. However, one should keep in mind
that pure molecular dynamics approaches are always prone to errors due to
numerical integration.

Nosé-Hoover Thermostats. In Nosé-Hoover thermostats [70, 100] ad-
ditional degrees of freedom are introduced which act as an external system
on the physical system. Central to this approach is that the microcanonical
distribution in the augmented set of variables is equivalent to a canonical
distribution, which is obtained by projecting on the original coordinates and
appropriate scaled momenta.

Langevin Dynamics. Another possibility to extend the canonical equa-
tions is to introduce a stochastic term that aims at resembling a stochastic
interaction with a heat bath [67]. A stochastic differential equation of that
kind is the Langevin equation

<£>:<—VV($)—Z)VP+JW>’ (9)

where v > 0 is some friction constant and ¢W some white noise given in
terms of a standard Brownian motion W. One can show that (9) defines
a continuous time Markov process on the phase space with the canonical
distribution f7; as its invariant distribution; the temperature 3 given by
3 = 2v/0? is the result of an equilibration between the friction constant +
and stochastic excitation regulated by o [104].

In the high friction case (v > 1) the Langevin equation can be approxi-
mated by the Smoluchowski equation

. 1 o
Xx=—=VV(x)+-W, (10)
v v
which similar to the Langevin equation defines a continuous time Markov
process with the canonical distribution fy as its invariant distribution, this
time restricted on the coordinate space.

2.5.2 Monte Carlo Schemes

In a Markov chain Monte Carlo simulation one aims at drawing samples
from fy irrespective of any dynamical information. In short, one needs to
perform the following two steps:

1. Modeling
Construct a transition kernel K with fy being its unique stationary
distribution. The crucial point is to find a K that leads to a rapidly
mixing Markov chain.
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2. Simulation
Realize a Markov chain X associated with K. Markov chain theory
guarantees that for n — oo (where n is the number of update steps)
we obtain samples from fy.

Due to its generality and simplicity Markov chain Monte Carlo is a powerful
approach to draw samples from high dimensional probability distributions
like fy. On the other hand, only few of them (e.g., HMC) are accurate
to cope with problems arising from high-dimensionality and rugged energy
landscape of biomolecules. Like in our UC approach, often a well established
MCMC method serves as the basis for more sophisticated approaches which
draw samples from generalized ensembles. With the notable exception of
HMC, Markov chain Monte Carlo does not provide dynamical information
wrt. the Hamiltonian, but rather makes use of the freedom to propose non-
physical updates to improve mixing properties.

2.6 Metastable Conformations

Given a Hamiltonian H and an inverse target temperature § we can start
a simulation in the canonical ensemble by either a molecular dynamics or
Monte Carlo method. If metastability is present in the system a simulation
will remain for a rather long time in some subset A of the state space 2
before a sudden change moves the system on to another subset B.

Let us denote by k(A, B) the transition probability from A to B wrt.
the canonical density fy. With K being the transition kernel of the Markov
chain under consideration we have

w(AB) = [4 K(z,B)fv(x) da:, (11)

f A f V(x ) dx
where K (x, B) denotes the probability to move from the point z € € to the
set B C () in one step of the Markov chain.
Thus, metastable conformations are sets A C 2 with

k(A A) =~ 1. (12)

By definition, the term “metastable conformation” refers to a subset A of the
state space () within the molecule can move around freely and from which it
will exit only with low probability. Typically, in a metastable conformation
the overall structure of a biomolecule is well preserved whereas other parts
(e.g., bonds and bond angles) can oscillate freely.

Metastable conformations are dependent not only on the potential V of
the molecular system, but also on the temperature 3 of the canonical density
and the underlying dynamics. In contrast to that, we use the term “meta-
stable set” to refer to non-physical dynamics or to emphasize the Monte
Carlo viewpoint. For example, Hybrid Monte Carlo (HMC) can be regarded



22 2 Simulation of Biomolecules

(a) w (b) W

Figure 7: (a) A n-butane configuration with an explicit representation of H-atoms as in
MMEFF (torsion angle w = 0°). (b)—(d) Foggy representation of three metastable confor-
mations (by alignment of three of the C-atoms) induced by the torsion angle potential
Vior (cf. Fig. 4). The metastable sets (b), (c), and (d) correspond to the —gauche-, trans-,
and +gauche-conformations of n-butane, respectively.

as a sophisticated Metropolis algorithm, where metastability is interpreted
due to non-physical sampling in the usual Monte Carlo context; yet it is
also possible to use the dynamical information of a HMC sample to directly
identify metastable conformations [113].

We already outlined in the introduction that the most probable three-
dimensional structures of a molecule determine the functionality of a biomo-
lecule in an organic environment. Although the probability to be within a
metastable conformation is not part of its characterization, metastable con-
formations of high probability represent the biggest portion of the canonical
distribution and are therefore the most important ones.

Figure 7 illustrates n-butane in three different metastable conformations.
Conformations are separated by its torsion angle, which in fact is the only
internal degree of freedom of structural importance for this simple molecule.
In Fig. 1 we already illustrated two conformations of a much larger biomo-
lecule, the inhibitor VX-478 of the enzyme HIV-protease.

Metastable sets are understood in terms of dynamical fluctuations within
the canonical ensemble; a purely geometric approach to identify metastable
sets by clustering the sample points according to geometric similarity is
therefore insufficient to describe the dynamical situation. In Sect. 3.2.3
we present an identification strategy which is based on a dynamical cluster
algorithm.



