1 Introduction

In this thesis we present the Uncoupling-Coupling Method (UC), a new ap-
proach for drawing samples from high-dimensional probability distributions
based on the Markov Chain Monte Carlo (MCMC) methodology. Applica-
tions in the fields of Statistical Physics and Bayesian Statistics naturally lead
to the investigation of a narrow distribution, located in separated parts of
high probability on a high-dimensional state space, from which it is not fea-
sible to directly generate independent samples. In such cases, the MCMC
method provides a powerful and flexible framework for computer simula-
tions.

Structural properties of biomolecules are often investigated by means
of MCMC, a challenging application which attracts the attention from re-
searches coming from biology, chemistry, physics, bioinformatics, and math-
ematics. Typical three-dimensional structures (so called metastable confor-
mations or metastable sets) determine the functionality of a biomolecule in
an organic environment. Knowledge of metastable conformations can be
used for example in pharmaceutical research to determine the likelihood of
a biomolecule of being developed into a drug. To support such tasks, ana-
lyzing properties of biomolecules by means of computer simulation has been
dramatically enhanced over the last decade. This problem cannot be solved
by sheer computer power; a proper modeling of the physical and chemical
situation together with the development of robust algorithms, which adapt
to the structure of the problem, are of great importance to obtain reliable
results.

We can reformulate the problem of detecting and describing metastable
conformations of a biomolecule by means of statistical physics in terms of the
canonical ensemble, a high-dimensional probability distribution that typi-
cally consists of separated parts of high probability. Metastable conforma-
tions are understood as fluctuations within the canonical ensemble wrt. some
Markov operator, and MCMC provides the basis to actually identify them.
Yet, drawing samples from this distribution by MCMC is hampered by the
trapping problem—the sample path of a Monte Carlo Markov chain jumps
rarely if at all within a finite simulation time between metastable sets, which
causes a slow mixing and thus slow convergence of the chain.

The UC algorithm directly addresses the trapping problem by hierarchi-
cally decomposing the state space into metastable sets. Its characteristic
features are:

e hierarchical and adaptive construction of a patchwork of bridge distri-
butions, which embeds the target distribution in an auxiliary distri-
bution;

e identification of metastable sets based on dominant eigenvectors of
associated Markov operators;
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e combined resampling and annealing via bridge distributions restricted
to metastable sets;

e independent parallel sampling of rapidly mixing Markov chain;
e and a proper reweighting of all samples to the target distribution.

In addition, we proof that Monte Carlo Markov chains restricted by our
method are indeed rapidly mixing on identified metastable sets. From a
MCMC viewpoint UC distinguishes itself from existing auxiliary distribu-
tions or parallel sampling techniques by actually decomposing the state space
into metastable sets. UC can also be looked at from a dynamical systems’
viewpoint: in this context, analyzing the spectrum of Markov operators by
means of associated Markov chains leads to an adaptive domain decomposi-
tion of the state space. In this thesis, we combine the MCMC methodology
with an algorithmic exploitation of spectral properties.

Markov Chain Monte Carlo. The original MCMC method was devel-
oped in physics by Metropolis et al. [89], and later generalized and put into
a statistical framework by Hastings [66]. The Metropolis (or Metropolis-
Hastings) algorithm [34, 63, 84, 105] is the most common form of MCMC
and essentially builds upon Markov chain theory [16, 19, 93].

Suppose that we are interested in a distribution given by a density func-
tion f with values in Q@ C R¢, from which it is practically impossible to
draw independent samples (e.g., this could be the canonical distribution of
a physical system or the posterior distribution in Bayesian statistics). Our
goal is to obtain expectations of some function g with respect to f, i.e.,
computing the integral

I1(g) = / o(x)f (x) d.

The Metropolis algorithm realizes a Markov chain X = X, X&) xG)

having f as its invariant density. A sample x = (fc(l),...,x(")) of X is
obtained by accepting a proposal step xgﬁjpl ) with a probability that only

depends on the ratio of f (xgijpl )) /f(x®), thereby avoiding a computation

of the unknown normalizing constant (which in its integral representation
is typically hard to evaluate). The generated (dependent) random sample x
then enables us to estimate the integral I; as

If(g) = =3 g(e®). 1)
k=1

A special variant of the Metropolis algorithm is the Gibbs’ sampler [52]
(also known as the heatbath method in statistical physics [120]), which is



build upon iterative sampling of conditional distributions (i.e., distributions
that are restricted to a subspace of the target distribution). Its popularity
mainly stems from its easy and often efficient applicability to statistical
inference problems [56].

In practice, it is hard to construct a Metropolis algorithm for a specific
application such that the Markov chain has good mixing properties, which
is essential for a good convergence rate. At least, it has been shown that a
basic convergence property (which can be expressed via geometric bounds
for eigenvalues of the Metropolis Markov chain [31]) hold for specific problem
classes. For a geometrically ergodic Markov chain its mixing rate depends
on the 2nd largest eigenvalue of its associated reversible Markov operator,
which can serve as an indicator for the sampling lenght in order to estimate
integrals as (1). The bigger the spectral gap in the spectrum of the Markov
operator between A1 = 1 and the 2nd largest eigenvalue Ao, the better is the
mixing property of the Markov chain. If Ay is bounded far away from 1, we
speak of a rapidly mizing Markov chain.

In real applications, MCMC often suffers from an extremely slow mixing
as a result of getting trapped in metastable sets, making it virtually impos-
sible to obtain a reliable sampling. To overcome this notoriously difficult
problem, many researchers from diverse fields contributed over the last two
decades a variety of advanced techniques and extensions to the standard
MCMC scheme (for an overview, see [18, 36, 56, 83, 84]).

Many advanced techniques can be formulated as data augmentation
schemes [69, 122], where new variables are introduced artificially in the
system in order to improve mixing. For example, in Statistical Physics,
Swendsen and Wang invented a cluster algorithm which prevents critical
slowing down for the Ising and Potts model [121], which was further mod-
ified and generalized in [98, 132]. Another important method is Hybrid
Monte Carlo (HMC) [15, 33] by Duane et al., which combines molecular
dynamics with the Metropolis algorithm. HMC enables large moves in the
state space by using short molecular dynamics trajectories of the underlying
Hamiltonian system as proposal steps. Interestingly, HMC is even used in
the statistics community [94, 96]. Both, the Swendsen-Wang algorithm and
HMC, can be regarded as data augmentation schemes.

Instead of drawing samplings directly from the target distribution the
set up of an auziliary distribution which is smoother and enables better
mixing is seen as a powerful approach to attack the trapping problem (e.g.,
by introducing a “temperature” parameter). After drawing samples from
the auxiliary distribution, the samples are reweighted to the target dis-
tribution [37]. Umbrella Sampling [126] by Torrie and Valleau is one of
the first methods that followed this strategy based on modifications in the
Hamiltonian describing the target distribution. The same idea lies behind
generalized ensembles: without introducing expert knowledge in the system
under consideration, Berg and Neuhaus proposed the Multicanonical Monte
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Carlo method [9, 133], which seeks to sample in a flat energy distribution
over a broad temperature range; whereas the 1/k ensemble method [68] by
Hesselbo and Stinchcombe aims at a flat entropy distribution. Connected
to these approaches is Geyer’s Parallel Tempering [53], where Metropolis
Markov chains, which can exchange their actual states, run in parallel at
different temperatures. These and many others popular MCMC methods
have been combined and extended in various ways [36, 65, 75, 84].

To perform bridge sampling in a small temperature range, Fischer et
al. proposed Adaptive Temperature HMC (ATHMC), combining ideas from
umbrella sampling and HMC [42]. We will use ATHMC (or alternatively,
the related Potential Scaling HMC (PSHMC) method, which we introduce
in this thesis) as one of the building blocks for UC.

Metastability. The phenomenon of metastability arises naturally in a va-
riety of systems with complex dynamical behavior (e.g., biomolecules [45],
climate models [48], or computer networks [22]). Mathematical modeling
leads to a (possibly stochastic) dynamical system with a huge number of
degrees of freedom. Suppose, we would observe a single trajectory of such
a dynamical system for a long period of time: the trajectory would re-
main for a certain time in one metastable set (i.e., in one part of the state
space), followed by a sudden and apparently random transition into another
metastable set, and so on. Hence, a reduced description, which essentially
characterizes the system’s behavior, would consist of (a) an identification of
the metastable sets, (b) the probability to stay within these metastable sets,
and (c) transition rates between them.

To describe metastable behavior precisely in mathematical terms, Dell-
nitz and Junge suggested recently to analyze the global behavior of a dy-
namical system via its associated Perron-Frobenius operator rather than by
a (possibly ill-conditioned) single long-term trajectory [24]. Investigation
of the associated Perron-Frobenius operator revealed intrinsic connections
between dominant eigenvalues of its spectrum and almost invariant sets
(which turn out to be metastable sets in our setting). The application of
this approach to dynamical systems, where the essential part takes place
on a low-dimensional subspace, led to a discretized eigenvalue problem for
the Perron-Frobenius operator, which is efficiently solved by a multilevel
subdivision technique.

By identifying almost invariant sets of the associated Hamiltonian of a
molecule with its metastable conformations, Deuflhard et al. applied the
approach of Dellnitz and Junge to small molecular systems [27]. Yet, the
curse of dimension prevented the application of subdivision techniques for
higher dimensional systems.

A thorough reformulation in terms of statistical physics and Hybrid
Monte Carlo (HMC) sampling by Schiitte et al. in [112, 113] extended



these algorithmic approaches to be applicable for high-dimensional systems.
Therein, metastable conformations are understood as fluctuations within
the canonical ensemble with respect to the Hamiltonian dynamics. This is
achieved by introducing a transfer operator, which (like in the approach of
Dellnitz and Junge) reflects metastable conformations in its spectral struc-
ture. The mathematical justification of this approach is based on the trans-
fer operator to be a self-adjoint Markov operator. Since in the context of
MCMC we simulate by means of reversible Markov chains associated with
self-adjoint Markov operators, transfer operator techniques can be directly
applied to Metropolis Markov chains. Recently, the transfer operator ap-
proach has also been investigated for a broader class of dynamical situa-
tions [71, 114].

The central theme of the approaches by Dellnitz and Junge, and Schiitte
et al. is to exploit information contained in eigenfunctions corresponding
to eigenvalues which are close to the unit circle. In connection to the lat-
ter approach, Deuflhard et al. described a dynamical cluster algorithm for
the identification of metastable sets in nearly uncoupled reversible Markov
chains [30]. Identification of metastable sets is also one of the central pillars
in the UC algorithm, and we will base it in this thesis on the strategies
described in [30, 112, 113].

Biomolecules. Biomolecules are the building blocks of life. The aim of
analyzing biomolecules (by experiment or by computer simulation) is to re-
veal structural, chemical, and biological information in order to understand
its function in an organic environment and its physiological impact on a
living system.

The structure of a biomolecule has a great influence on its chemical and
biological properties. For example, the function of a large protein depends
on certain active sites, which only show up after folding from its primary
to its tertiary structure (the actual three-dimensional structure) has taken
place [17, 97]. In the same way, the structure of a ligand (i.e., a small
biomolecule) determines to a large amount if binding to a receptor (e.g., to
the active site of a large protein) is possible or not.

One main difficulty for understanding such processes is that biomolecules
do not exist in a unique structure. They rather fluctuate and oscillate for
a long time within a metastable conformation, and occasionally perform a
transition to another one (see Fig. 1). Metastable conformations are gener-
ally assumed to exist in a hierarchical order [45]. Getting knowledge about
typical metastable conformations and their hierarchical structure is an im-
portant aspect to reveal the function of a biomolecule.

At this point, computer simulations of (bio-)molecular systems can help
to fill the gap between theory and experiment [2, 46, 60]; they provide in-
sight into the dynamics of molecules not accessible otherwise. A typical
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Figure 1: A small biomolecule (inhibitor VX-478 of the enzyme HIV-protease) is shown
in a ball and stick representation modeled by the Merck molecular force field. (a) and (b)
show two distinct metastable conformations. Thereby, the foggy parts indicate flexibility
within the respective metastable conformation.

framework for simulations is a statistical description in terms of the canon-
ical distribution (which reflects the experimental situation) by setting up
a classical Hamiltonian that is then analyzed by either Molecular Dynam-
ics or Markov Chain Monte Carlo (MCMC) methods. Yet, the construc-
tion of appropriate force fields, its highly nonlinear dynamics which causes
long term trajectories to be ill-conditioned, the multi-timescale nature of
biomolecular processes (ranging from 1 femtosecond up to several seconds
for proteins [59, 97]), and last but not least the existence of metastable
conformations make computer simulations a formidable task.

A wide range of MCMC methods, which are aiming to draw samples
from the canonical distribution (and therefore trying to tackle the trapping
problem), have been constructed for biomolecular systems [11, 36]. For
biomolecules modeled in terms of a Hamiltonian system, methods based on
HMC [33, 15] seems to be a natural choice; and in fact, they have been
proved to be efficient (e.g., by a combination with Multicanonical Monte
Carlo as described in [65]; or by ATHMC bridge sampling [42] which we use
as part of UC). Another reason why we choose a HMC-based Metropolis
algorithm is its intriguing connection to the transfer operator approach,
which aims at identifying metastable conformations. That way, metastable
sets of a HMC-based Markov chain are strongly connected to metastable
conformations of the biomolecule [112].

The computational task we address could be treated in pure mathemat-
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Figure 2: (a) A one-dimensional potential V with two distinct wells. We can think of them
as the two metastable conformations shown in Fig. 1. (b) Sample path of a slowly mizing
Markov chain on the whole state space that draws samples from a canonical distribution;
the 2nd largest eigenvalue 0.9988 of the associated Markov operator is close to 1. (c) The
potential V is separated in two metastable sets A and B. (d) Sample paths of restricted
rapidly mizring Markov chains on A and B, respectively. The 2nd largest eigenvalues
(0.8341 and 0.8129, respectively) of the associated restricted Markov operators are both
bounded away from 1.

ical terms. Yet it should be clear, that knowledge about the underlying
physical model are vital to understand the output of computer simulations
when applied to real applications. Therefore, this thesis starts with some
background information about biomolecular modeling, which illustrates the
role of our algorithmic approach in this challenging application field.

Uncoupling-Coupling. Uncoupling-Coupling (UC), which was first pre-
sented in [41, 43], is based on the MCMC methodology and integrates as-
pects from stochastic complementation [91], simulated annealing [78, 81],
macrostate dissection [20], bridge and path sampling techniques [42, 50],
high-dimensional discretization [47, 72], transfer operators [112, 113], and
dynamical cluster algorithms [30]; it provides a general framework to auto-
matically build up and draw samples from a patchwork of distributions by
means of rapidly mixing Markov chains.

The trapping problem we are confronted with is illustrated in Fig. 2
(a) and (b) for the situation of two metastable sets. In contrast, Fig. 2
(c) and (d) demonstrates the rapidly mixing of Markov chains restricted on
the metastable sets. In UC, we exploit algorithmically these rapidly mixing
properties. The basic idea of UC for this non-hierarchical situation con-
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Figure 3: Scheme of the UC algorithm.

sists of the following steps: (i) drawing samples from a high-temperature
distribution, (ii) identifying metastable sets from the sample, (iii) setting
up bridge distributions on the identified metastable sets (which allow for
reliable reweighting to the target distribution at low temperature), and (iv)
computing a coupling factor between these two metastable sets by build-
ing a “bridge” between them with the help of the initial high-temperature
simulation.

In general, we have to deal with a hierarchy of metastable sets. Figure 3
shows the UC scheme for a hierarchical extension of this basic idea. The
uncoupling step starts with an initial sampling at sufficiently high temper-
ature. Next, the state space is decomposed into metastable sets, and re-
stricted Markov chains (which draw samples from bridge distributions that
are annealed towards the low temperature target distribution) are restarted
in parallel. This procedure is recursively applied until all annealed bridge
distributions have reached the target distribution. That way, we obtain
a patchwork of overlapping bridge distributions (for details see Fig. 22 on
page 77), which is then analyzed in the coupling step. All samples can be
reweighted to the target distribution by means of a global auxiliary distri-
bution, which then allows for the computation of expectation values or free
energy differences.

By UC we provide a general framework which is not dependent on a
particular method for one of its constituent parts (e.g., high-dimensional
discretization, identification of metastable sets, choice of bridge distribution,
MCMC method,...). For example, one could think of replacing ATHMC
bridge sampling by restricted versions of more sophisticated (but also more
complex) MCMC methods like multicanonical sampling, parallel tempering,
or whichever method one prefers. At the end of Sect. 5, we give a detailed
summary of the algorithmic realization used in this thesis for numerical



investigation.

Outline. In Sect. 2 some methodological background about biomolecular
computer simulations is introduced. Our framework is a statistical descrip-
tion of a biomolecule in a canonical ensemble. By setting up a Hamilto-
nian of the biomolecule via a generic molecular force field various Monte
Carlo as well as molecular dynamics based methods can be employed to
extract expectation values, dynamical information, or structural properties.
A phenomenological description of metastable conformations illustrates the
trapping problem associated with a direct application of these sampling
methods.

Section 3 starts with the development of the mathematical theory. At
first, we introduce the basic notation from Markov chain theory for a fi-
nite state space together with the classical limit theorems and their rate
of convergences, which form the basis of the Monte Carlo method. When
generalized to a continuous state space the transition matrix of a Markov
chain is replaced by a transition kernel and some associated Markov oper-
ator. We describe our concept of metastability, which leads us to a char-
acterization of metastable sets via the eigenvalues and eigenvectors of the
associated Markov operator. We combine discretization techniques for high-
dimensional continuous state spaces with an identification strategy for finite
state spaces, which eventually enables us to identify metastable sets.

In Sect. 4, we introduce Markov Chain Monte Carlo (MCMC). We con-
centrate on the Metropolis-Hastings algorithm, and we have a closer look on
convergence rates and convergence estimators. As a MCMC variant, which
is a combination of molecular dynamics with the Metropolis-Hastings algo-
rithm, we describe the Hybrid Monte Carlo (HMC) method; HMC turns
out to be especially suitable for simulation of molecular systems. Since
we need an easily manageable bridge sampling method later on as part of
UC we also introduce two bridge sampling methods at this point: Adaptive
Temperature HMC (ATHMC) and Potential Scaling HMC (PSHMC). Ad-
ditionally, we give an overview of popular extensions to MCMC algorithms
like Multicanonical Monte Carlo or Parallel Tempering.

After these intensive preparations we eventually come in Sect. 5 to the
core of the UC algorithm. First, the principal idea of UC and the use of
bridge distributions is illustrated by a simple example. Then, we describe
the hierarchical Uncoupling procedure, where identification of metastable
sets plays a decisive role. To provide a better understanding of the uncou-
pling strategy, we investigate the spectra of restricted Markov operators in
Sect. 5.2. Our aim in the Coupling step is to compute coupling factors be-
tween identified metastable sets. To that end we define a coupling matrix
such that the desired coupling factors form its invariant distribution. We
show how to estimate entries of the coupling matrix via quotients of normal-
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izing constants, which in turn are derived from bridge distribution samples.
Altogether, this leads us to an overall convergence of expectation values wrt.
the target distribution. At the end of this section, we present an overview
of the UC scheme.

We apply UC to biomolecules in Sect. 6. First, we give a detailed illus-
tration of the algorithm by analyzing n-butane and n-pentane, which allow
to demonstrate the potential advantages and the accuracy of the method.
Next, a small alteration in the uncoupling step results in an improved ro-
bustness by decomposing the state space into an essential hierarchy. Finally,
a constituent of green tea, epigallocatechin gallate, leads our investigations
towards the goal of analyzing biomolecules of pharmacological interest.

Acknowledgment. First and foremost I thank all the people from the
Biocomputing Group at the Free University and the Molecular Dynamics
Group at the Konrad-Zuse-Zentrum for their support, encouragement, and
company.

Among all these people it is my greatest pleasure to thank one of my
advisors, Professor Christof Schiitte, for his support and wise advise, as well
as his incredible patience. I owe him special gratitude. I also have to express
my very special thanks to my advisor Professor Peter Deuflhard, who guided
me towards the fields of applied mathematics and interdisciplinary research.
As president of the Konrad-Zuse-Zentrum he gave me constant support.
The many fruitful discussions with both of my advisors during my time at
the Konrad-Zuse-Zentrum were the starting point for this thesis. My spe-
cial thanks goes to my room-mate Wilhelm Huisinga for helpful comments,
questioning theory, and contributing to the pleasant working atmosphere.
Also, it is my pleasure to thank Illia Horenko for his encouragement and
friendship.

I am indebted to Frank Cordes for collaborative work that enabled the
theory presented here to be applied towards real-world problems. I also want
to express my thank to Johannes Schmidt-Ehrenberg for producing pictures
with Amira, Christian Salzmann for fixing computer problems, Eike Meer-
bach for pointing out literature, and Ralf Forster and Sonja Waldhausen for
proofreading.

Last but not least I want to thank my parents for always supporting me
over the years.



