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Introduction

For a finite graph G and a natural number n, we are interested in the n-th ordered
configuration space of G. This is the space of n distinguishable, non-colliding particles
in G:

Confn(G) :=
{
(x1, . . . , xn) | xi 6= xj for i 6= j

}
⊂ G×n.

In this dissertation we investigate the singular homology of these spaces.
We construct a concrete generating set for the first homology of Confn(G) and if

G is a tree, we see that the homology is generated by products of these 1-classes. For
general graphs this is far from true, which we observe by describing the following
example:

Conf3
( )

' · · ·

Genus 13

Following the description of these homology groups, we describe how they change
if we alter either the number of particles or the base graph G. We consider fixing
the number of particles and stabilizing the graph with a graph stabilization process,
which is made precise below. We prove that in many cases the sequence of homology
groups that arise in this setting has an eventually uniform description (in the sense
of representation stability as introduced in [CF13]).

If we instead consider a fixed graphG and vary the number of particles, forgetting
the last particle gives us a map

Confn(G)→ Confn−1(G)

for each n > 2. Applying cohomology this gives sequences of groups

· · · → Hi(Confn−1(G))→ Hi(Confn(G))→ Hi(Confn+1(G))→ · · · .

1



Introduction

In [Lü14] we showed that for eachG there exists an i such that this sequence is not
representation stable. In this dissertation we show that for i = 1 and G a 3-vertex
connected graph this sequence does stabilize.

Throughout this dissertation we will use three main ingredients in order to
describe the homology of configuration spaces of graphs:

• configuration spaces with sinks,

• a combinatorial model of these generalized configuration spaces and

• a Mayer-Vietoris spectral sequence comparison argument.

Configuration spaces with sinks — as introduced in [CL16] — are defined for a set
of sinks Z ⊂ G as

Confn(G,Z) :=
{
(x1, . . . , xn) | xi 6= xj or xi = xj ∈ Z for i 6= j

}
⊂ G×n.

For Z = ∅ this specializes to ordinary configuration spaces. The introduction of
sinks allows quotients of the base space to be taken: if H ⊂ G is a subspace then the
quotient map G → G/H does not induce a map on configuration spaces, because
any two particles in H would be sent to the same point in G/H. It does, however,
induce a map

Confn(G)→ Confn(G/H,H/H).

This allows us to collapse subgraphs of G and investigate which homology classes
survive this process.
The introduction of a combinatorial model for configuration spaces with sinks

allows explicit calculations for small graphs, which we later use to describe the
homology for bigger graphs.
These generalized configuration spaces also give a geometric decomposition of

(parts of) the second page of the Mayer-Vietoris spectral sequence for special choices
of open covers of Confn(G). These decompositions allow us to describe parts of the
infinity pages, leading to the results described below.

This work has been published in parts as the arXiv preprints [CL16] and [Lü17].
All results of the joint work with Safia Chettih are cited as such.

Statement of the results

Our study of configuration spaces of graphs consists of four parts. We now describe
the main contents of these parts.
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Chapter 1

We recall the definition of ordered and unordered configuration spaces and their
generalization with added sinks. After elaborating on basic properties of these
spaces we construct a combinatorial model of the configuration space of n particles
in the graph Gwith sink set Z, denoted by Confn(G,Z), for any finite graph G and
Z a subset of the set of vertices of G. This model is a generalization of the model for
Confn(G) constructed in [Św01] and [Lü14]. We then use this combinatorial model
to compute the homology explicitly for small graphs, for example star graphs. This
latter case was already computed by Ghrist in [Ghr01], we recall it due to it being a
main ingredient when constructing the generating sets in Chapter 3.

There are other combinatorial models for ordinary configuration spaces, the most
well-known of which is constructed by Abrams in [Abr00]. Combined with discrete
Morse theory (see [FS05]), the Abramsmodel can be used to investigate the homology
of configuration spaces of graphs. The model in this thesis has an advantage over
the Abrams model due to it being much smaller, both in terms of cell numbers
and dimension: it has dimension min{n, |V(G)|}, whereas the Abrams model has
dimension n.

Chapter 2

We give a short proof of the Mayer-Vietoris spectral sequence for an open cover of
a space and describe the construction of the boundary maps. Following this we
associate to an open cover of a space X an open cover of Confn(X) and describe the
corresponding Mayer-Vietoris spectral sequence. For special choices of open covers
of a graph, we then describe the entries on the first page in terms of configuration
spaces of the open sets in the cover of the base space.

We then introduce the sink comparison argument, which is a technique identifying
parts of the E2-page of such Mayer-Vietoris spectral sequences for two different graphs.
If we understand the homology for one of these two graphs, then this allows us
to transfer that knowledge to the E2-page for the other graph. To illustrate this
technique we compute the homology of configurations in the H-shaped graph, using
only the explicit calculations from Chapter 1.

In [MS17] the authors alsousedMayer-Vietoris arguments todescribe thehomology
of unordered configuration spaces of graphs, which for the first homology leads to an
analogous result. Their method of computation is of a different flavor: they perform
concrete calculations of Mayer-Vietoris long exact sequences and their boundary
maps, whilst we decompose the spectral sequence into parts, whichwe then compute
via geometric considerations.
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Chapter 3

A finite graph G is a tree with loops if it can be constructed by starting with a tree and
taking the iterated wedge with copies of S1 for different choices of base points. For
these graphs we have a much better understanding of the homology of Confn(G)
than for general graphs. We prove that this homology is torsion-free:

Theorem A ([CL16, Theorem A, p. 2]). Let G be a tree with loops and let n be a natural
number. Then the integral homology Hq(Confn(G); Z) is torsion-free for each q > 0.

Furthermore, we describe a concrete generating set in terms of basic classes: Basic
classes are classes in the first homology of configuration spaces of either star graphs,
the circle S1 or the H-graph, considered as classes in Confn(G) by embedding those
graphs into G (see Definition 3.1).

Theorem B ([CL16, Theorem B, p. 2]). Let G be a tree with loops and let n be a natural
number. Then the homology of Confn(G) is generated by products of disjoint basic classes.

We prove these results simultaneously by investigating a particular Mayer-Vietoris
spectral sequence arising from gluing a graph with one essential vertex (meaning it
has valence at least three) to a tree with loops. By explicitly identifying the homology
of configurations in graphs with one essential vertex, we can compute the infinity
page of that spectral sequence.

Similar descriptions of the homology were obtained for unordered configurations:
in [MS17] the authors describe a generating system for the first homology of
unordered configurations consisting of basic classes as definedabove andadditionally
they give concrete formulas for the Euler characteristic in terms of invariants of
the graph. Farley showed in [Far06] that the homology groups of unordered
configurations in any tree are free and he gives concrete rank calculations for specific
graphs. For non-planar graphs, however, Kim, Ko and Park showed in [KKP12] that
the unordered configuration spaces have elements of order 2 in their first homology
groups. We do not expect this to be the case for ordered configurations, and indeed
for the examples of graphs producing torsion in the unordered case in [KKP12] (the
complete graphs K5 and K3,3) one can compute that the ordered configuration space
has torsion-free homology.

For ordered configuration spaces of only two particles, there are results which are
similar to the theorems above: in [BF09] and [FH10] the Betti numbers and generators
of the homology groups of the spaces Conf2(G) are determined for various classes
of graphs G. In [Che16] generators for H1(Conf2(T)) for finite trees T are given in
terms of basic classes as above.

In [Ram17] Ramos considered trees where all vertices are sinks. He proved torsion-
freeness of their homology and computed the homological dimension of those
spaces.

4



Following this, we describe generators of the first homology of configuration
spaces of arbitrary graphs:

Theorem C ([CL16, Theorem C, p. 3]). If G is any finite graph and n a natural number,
then the first homology group H1(Confn(G)) is generated by basic classes.

The proof of this statement uses very similar techniques as the proofs of TheoremA
and Theorem B. The naive generalization of Theorem B to general graphs is false,
whichwe illustrate by describing a configuration spacewhich is homotopy equivalent
to a surface of genus 13. The fact that the homology is not in general generated by
products was already known before: Abrams and Ghrist showed in [AG02] that the
configuration space of two particles in the complete graph on 5 vertices is homotopy
equivalent to an orientable surface of genus 6. Our example has the advantage that
it can be modified to give counter-examples in all dimensions bigger than 2.

In the final part of the chapter we prove the statements above for the case when
arbitrary subsets of the vertex set are turned into sinks. This has two purposes: it
completes the picture for the more general case of configuration spaces with sinks
and the technical tools developed in order to prove the statements are required in
Chapter 4. More precisely, we prove the following:

Theorem D ([CL16, Theorem D, p. 3]). Let G be a finite graph and let Z be any subset of
the vertex set. Then the first homology of Confn(G,Z) is generated by basic classes. If G is a
tree with loops, then H∗(Confn(G,Z)) is free and generated by products of basic classes.

Chapter 4

After reviewing the concept of representation stability and FI-modules (as defined
in [CF13] and [CEF15]) we describe the following construction of graph stabilization.
Given three graphs G0, G1 and K1 such that K1 is a subgraph of G0 and G1, we
denote by Gk the quotient of the disjoint union of G0 and k copies of G1 identifying
all copies of K1 with each other. The symmetric group Σk acts on Gk by permuting
the copies of G1, so we can ask the question whether for fixed natural numbers n
and i the sequence of representations of symmetric groups

· · · → Hi(Confn(Gk−1))→ Hi(Confn(Gk))→ Hi(Confn(Gk+1))→ · · ·

is representation stable.
More generally, for a base graph G0 and an `-tuple

Γ = {(K1 ⊂ G1), . . . , (K` ⊂ G`)}

such that each Ki is also a subgraph of G0, we define an FI×`-space GΓ , which
evaluated at (j1, . . . , j`) is given as the quotient of the disjoint union of G0 and ji
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copies of Gi, identifying for each 1 6 i 6 ` all copies of Ki with each other. Here,
the category FI×` is the `-fold product category of the category FI of finite sets and
injections.
This defines an FI×`-module

HΓq,n := Hq(Confn(GΓ ); Z)

for each q, n in N, and we can ask whether this is finitely generated.
We will answer this question for different restrictions on q, n and the graphs.

Theorem E. If each of the graphs Gi for 0 6 i 6 ` is a tree with loops, then HΓq,n is finitely
generated in degree (ζ, ζ, . . . , ζ) for each q, n ∈ N, where ζ = ζn,q = min{2n, n+ 3q}.

This implies immediately that for G0, G1 trees with loops, the sequence of repre-
sentations of symmetric groups above is representation stable.
For general graphs, we restrict ourselves to the first homology and recover an

analogous statement:

Theorem F. For any choice of graphs Gi and Ki the FI-module HΓ1,n is finitely generated
in degree (n+ 3, n+ 3, . . . , n+ 3) for each n ∈ N.

The proofs of both theorems are based on the knowledge of generators for the
homology from the previous chapter and explicit constructions for basic classes.

We then prove finite generation for the second and third homology of the FI-space
Confn(B•, Z), where Bk is the banana graph on k edges, i.e. the graph given by two
vertices v and w connected via k edges, and Z ⊂ {v,w}.

TheoremG. For eachn ∈ N andq ∈ N the FI-moduleHq(Confn(B•)) is finitely generated
in degree n+ 6. The FI-module Hq(Confn(B•, Z)) is finitely generated in the same degree
for any Z ⊂ {v,w} and q 6 3.

The proof of this statement proceeds by reducing it to the case Z = {v,w} and then
proving that case. As it turns out, the result for Z = {v,w} can more generally be
used to show finite generation for HΓ2,n for arbitrary Γ :

Theorem H. For any choice of graphs Ki, Gi and n ∈ N, the FI×`-module HΓ2,n is finitely
generated in degree (n+ 6, . . . , n+ 6).

In the final part of this chapter we investigate the FI-module Hi(Conf•(G);A) for
an abelian group A and a finite graph G. An injection T ↪→ S determines a map

Hi(ConfT (G);A)→ Hi(ConfS(G);A)

induced by precomposition. In [Lü14] we showed that there exists an i > 0 such that
this FI-module is not finitely generated. Furthermore, Ramos shows in [Ram16b]
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that the rank of the homology groups for unordered configuration spaces of trees
is non-constant in every degree (except zero). This also implies that the ordered
configuration space cannot be representation stable in any degree.

The reason why representation stability fails for trees is that for a given class, there
are many options for changing the positions of the non-moving particles, and in trees
many of these give distinct homology classes. If our graph has enough distinct paths
connecting different vertices, however, all the different positions of the non-moving
particles will give the same homology class. A graph is k-vertex connected if for every
pair of vertices v,w there are k paths connecting v and w which are disjoint (except
for the two ends of the paths). For such graphs, we can prove representation stability
for i = 1:

Theorem I. Let G be a finite 3-vertex connected graph with at least four essential vertices
and without self-loops. LetA be an abelian group such thatH1(Conf2(G);A) is torsion-free.
Then H1(Confn(G);A) is torsion-free for all n and the FI-module H1(Conf•(G);A) is
finitely generated in degree 2. In particular, the sequence n 7→ H1(Confn(G); Q) induced by
forgetting the last particle is representation stable and its dimension is eventually polynomial
in n.

For 3-vertex connected graphs, Theorem I recovers the result of Ko and
Park in [KP12], which shows that for unordered configurations the sequence
n 7→ H1(UConfn(G)) satisfies homological stability. In fact, they prove this for
all 2-vertex connected graphs and we expect the analogous result for ordered
configuration spaces also to be true in this bigger generality. This alongside the case
i > 1 will be the subject of further studies.

Stability for configuration spaces of graphs with respect to the number of particles
was also investigated by Ramos: in [Ram16b] the author shows that the ranks of the
homology groups of unordered configurations in a tree are polynomial in the number
of particles. In [Ram17] he proves that the homology groups of configuration spaces
in graphs where all vertices are sinks satisfy “generalized representation stability”, a
term introduced in [Ram16a].
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Chapter 1

Configuration spaces of graphs
and their combinatorial model

In this chapter we introduce configuration spaces of graphs and discuss their
combinatorial models. For the computations in later chapters, we will need a
modified version of configuration spaces, namely configuration spaces with sinks.
We define this generalization and extend the combinatorial model to this broader
class of spaces.

1.1 Configuration spaces

Before we focus on graphs, let us define configuration spaces in general:

Definition 1.1. Let X be a topological space and let S be a finite set. Define the
configuration space of the particles S in X as the space of injective maps S ↪→ X, i.e.

ConfS(X) := {ι : S ↪→ X} ⊂ map(S, X)

with the subspace topology of map(S, X). For n ∈ N we write n := {1, . . . , n} and call

Confn(X) := Confn(X)

the n-th ordered configuration space of X. 4

This construction is functorial in S and X if we restrict ourselves to injective maps:
an injective map S ↪→ T induces a map ConfT (X)→ ConfS(X) by precomposition;
a continuous injection X ↪→ Y determines an injection ConfS(X) ↪→ ConfS(Y) by
postcomposition. In particular, an isomorphism S

∼=−−→ T of finite sets induces
a homeomorphism ConfT (X)

∼=−−→ ConfS(X). Denote for a finite set S by ΣS the
symmetric group on S:

ΣS := {S ↪→ S} ⊂ map(S, S).

9



1 Configuration spaces of graphs and their combinatorial model

The right action of the symmetric group ΣS on ConfS(X) by precomposition is free.
We again write Σn := Σn and thus get an action of Σn on Confn(X).

Definition 1.2. Let X be a topological space and let n ∈ N, then we define the n-th
unordered configuration space of X as

UConfn(X) := Confn(X)/Σn. 4

Remark 1.3. For a disjoint union of spaces X and Y the configuration space of a finite
set of particles S in X t Y can be described as follows:

ConfS(X t Y) ∼=
∐

SXtSY=S
ConfSX(X)× ConfSY (Y).

Therefore, we will mostly restrict our investigations to configuration spaces of
connected spaces. 4

One important property of configuration spaces is that a map f : X→ Y induces a
map on configuration spaces only if f is injective because otherwise, f could map two
particles of a specific configuration to the same point in Y. In particular, a quotient
map X → X/∼ does not induce a map of configuration spaces. In order to define
such a map we introduced in [CL16] the notion of configuration spaces with sinks.

Definition 1.4. Let X be a topological space, let S be a finite set and let Z ⊂ X be a
subspace. Then the ordered configuration space of S in X with sink set Z is defined as

ConfS(X,Z) :=
{
ι : S→ X | for all s 6= s ′ either ι(s) 6= ι(s ′) or ι(s) = ι(s ′) ∈ Z

}
,

endowed with the subspace topology of map(S, X). Notice that we have
ConfS(X,∅) = ConfS(X). 4

The set of sinks defines special parts of the space X in which particles are allowed
to collide. If we now have an arbitrary map of pairs f : (X,ZX) → (Y, ZY), i.e.
f(ZX) ⊂ ZY , and ZY contains the set of points with at least two preimages under f,
then f induces a map

ConfS(f) : ConfS(X,ZX)→ ConfS(Y, ZY).

Such maps can be used to detect homology classes by collapsing parts of X and
turning those parts into sinks. Notice that we still have a right action of ΣS on
ConfS(X,Z), but this action is not free anymore if Z is non-empty.

Configuration spaces with sinks are functorial under the inclusion of sink sets, i.e.
for Z ⊂ Z ′ we get an injective map

ConfS(X,Z) ↪→ ConfS(X,Z ′).

10



1.1 Configuration spaces

For Z = X we get ConfS(X,X) = map(S, X), so the set of sinks interpolates between
the ordinary configuration space of X and the space of arbitrary maps S→ X:

ConfS(X) = ConfS(X,∅) ↪→ ConfS(X,Z) ↪→ ConfS(X,X) = map(S, X)

Definition 1.5. A space with sinks is a tuple of a topological space X and a subspace
Z. These spaces form a category Topsink, which we call the category of spaces with
sinks, where morphisms between (X,ZX) and (Y, ZY) are given by continuous maps
f : X→ Y such that ZY contains f(ZX) and all points of Y having strictly more than
one preimage under f. This category has an initial object (∅,∅) and a terminal
object (pt,pt). Each morphism set mapTopsink((X,ZX), (Y, ZY)) is endowed with the
subspace topology of map(X, Y). 4

This definition is tailored in such a way that ConfS can be seen as a (continuous)
functor

ConfS : Topsink → Top
(X,Z) 7→ ConfS(X,Z).

If FI is the category of finite sets and injections (see Section 4.1), then we get the
following functor:

Conf• : FI× Topsink → Top

Definition 1.6. A homotopy of maps between spaces with sinks (X,ZX) and (Y, ZY) is a
continuous map

f : [0, 1]→ mapTopsink((X,ZX), (Y, ZY)). 4

Proposition 1.7. A homotopy of maps between spaces with sinks induces a homotopy of the
corresponding maps between configuration spaces with sinks.

Proof. This follows straight from the definition of homotopy by postcomposing with
ConfS, the homotopy is given by

[0, 1]→ mapTopsink((X,ZX), (Y, ZY))→ mapTop(ConfS(X,ZX),ConfS(Y, ZY)).

Corollary 1.8. If f ∈ mapTopsink((X,ZX), (Y, ZY)) is a homotopy equivalence of spaces
with sinks, then the induced map ConfS(f) : ConfS(X,ZX)→ ConfS(Y, ZY) is a homotopy
equivalence of topological spaces.

Definition 1.9. Let X be a topological space and let n ∈ N. The n-th unordered
configuration space with sinks of (X,Z) is defined as

UConfn(X,Z) := Confn(X,Z)/Σn. 4

11



1 Configuration spaces of graphs and their combinatorial model

In this thesis we will almost exclusively be interested in ordered configuration
spaces, so for the sake of brevity, we omit the word “ordered” whenever there is no
possibility of confusion.

Definition 1.10. For a space with sinks (X,Z) and finite sets S ′ ⊂ S we define the
projection to the particles S ′ by

πS ′ : ConfS(X,Z)→ ConfS ′(X,Z)
(ι : S ↪→ X) 7→ (ι ◦ inc : S ′ ↪→ S ↪→ X),

where inc : S ′ ↪→ S is the inclusion. For S ′ = {s} we also write πs = π{s}. 4

1.2 Configurations in graphs

Let us nowdefine the ambient spaces in whose configuration spaces we are interested
in, namely graphs and graphs with sinks.

Definition 1.11. A graphG is a topological spacewith the structure of a 1-dimensional
CW complex. We call the zero-dimensional cells vertices and denote the set of vertices
by V(G). One-dimensional cells are called edges and the set of edges is denoted by
E(G). All graphs considered in this thesis are assumed to be finite, meaning that
the sets V(G) and E(G) are finite. A vertex is called essential if it has valence at least
three.

A graph with sinks (G,Z) is a tuple consisting of a graph G and a subspace Z ⊂ G.
In this thesis we will only be interested in the case where Z is a union of closed edges
and vertices of G, so we will always assume that. The category of finite graphs with
sinks Graphsink is the full subcategory of Topsink consisting of all such graphs with
sinks, i.e. all those objects (X,Z)where X has the structure of a 1-dimensional CW
complex and Z is a union of closed edges and vertices. We will see below that the
most interesting case is when Z only consists of vertices, so if not stated otherwise,
we will assume that Z does not contain any edges. 4

We will always assume that we have the smallest combinatorial model of each
graph G, namely the one without vertices of valence two (except for the circle S1,
which consists of precisely one edge and one vertex of valence two).

As it turns out, there is a special class of graphs whose configuration space
homology we can describe rather explicitly, namely the class of trees with loops:

Definition 1.12. Let X, Y and Z be unpointed spaces. We say that Z is a wedge of X and
Y if there exist base points x ∈ X and y ∈ Y such that the pointed wedge sum X∨ Y

is homeomorphic (after forgetting the base point) to Z. Given k > 2 and unpointed
spaces X1, . . . , Xk we say that Z is an iterated wedge of X1, . . . , Xk if Z is a wedge of
X1 and an iterated wedge of X2, . . . , Xk, where an iterated wedge of two unpointed

12



1.2 Configurations in graphs

spaces is the ordinary wedge from above. There can be multiple spaces Z which are
iterated wedges of fixed spaces X1, . . . , Xk, for example every finite tree on k edges
is an iterated wedge of k intervals. 4

Definition 1.13. A finite connected graph G is called a tree with loops if it can be
constructed as an iterated wedge of star graphs and copies of S1. In particular, every
finite tree is a tree with loops. 4

Wewill see that the difficulties in understanding the homology of the configuration
spaces of a graph G do not depend on the rank of the graph but rather on the vertex
connectivity ofG. Trees with loops are precisely those graphs which disconnect after
removing any single vertex.
As a first simplification, we show that we can collapse contractible edges in the

sink set to point shaped sinks.

Proposition 1.14. Let (G,Z) be a graph with sinks, let e ⊂ Z be an edge which does not
form a self-loop and let S be a finite set. Then the collapse map π : (G,Z) → (G/e, Z/e)

induces a homotopy equivalence

ConfS(π) : ConfS(G,Z)
'−−−−→ ConfS(G/e, Z/e).

Proof. ByCorollary 1.8, we only have to show that (G,Z)→ (G/e, Z/e) is a homotopy
equivalence of spaces with sinks. A homotopy inverse of G → G/e is given by
collapsing the edges of a small star around the vertex e/e to two segments of an
interval and mapping that interval to e, with e/emapping to the midpoint of e, see
Figure 1.1. This gives a well-defined map

φ : (G/e, Z/e)→ (G,Z)

of spaces with sinks. The compositions π ◦ φ and φ ◦ π are each homotopic to the
identity, which can be seen by starting with the identity and pulling the particles
towards the sink edge e or the sink e/e.

Collapsing such edges eventually yields a graph with sinks (G ′, Z ′), where Z ′
consists only of vertices and edges forming self-loops. We will see later that sink
edges forming self-loops are not that interesting (see Proposition 3.12), so unless
stated otherwise, we will always assume that Z consists only of vertices.

For the description of the homology, it will be useful to have the following notion
of a product of disjoint classes:

Definition 1.15. A homology class σ ∈ Hq(Confn(G)) is called the product of classes
σ1 ∈ Hq1(ConfT1(G1)) and σ2 ∈ Hq2(ConfT2(G2)) if it is the image of σ1⊗σ2 under
the map

Hq(Confn(G1 tG2))→ Hq(Confn(G))

13



1 Configuration spaces of graphs and their combinatorial model

−→ −→

π

collapse rescale edges
ee/e

Figure 1.1: The composition of these twomaps is the homotopy inverse of the collapse
map π.

induced by an embedding G1 tG2 ↪→ G.
Analogously, we define iterated products. 4

Notice that q1 or q2 could be zero, so a product in the q-th homology can be a
product with more than q factors.
It will also be useful for subsequent proofs to have a notion for pushing in new

particles from the boundary of the graph.

Definition 1.16. LetG be a graph and let e be a leaf. For a finite set S and an element
s ∈ S, define the map

ιe,s : ConfS−{s}(G,W) ↪→ ConfS(G,W)

by slightly pushing in the particles on e and putting s onto the univalent vertex of
e. 4

Notice that the composition πS−{s} ◦ ιe,s is homotopic to the identity.

1.3 Combinatorial models

For unordered configurations in graphs, Świątkowski introduced a combinatorial
model in [Św01]. In [Lü14] we adapted the argument to give a combinatorial model
for ordered configuration spaces:

14



1.3 Combinatorial models

Theorem 1.17 ([Lü14, Theorem 2.3, p. iii]). Let G be a finite graph and let n ∈ N. Then
there exists a finite cube complex which is a deformation retract of Confn(G). Its dimension
is given by min{n, |V(G)|}.

Let us briefly recall what we mean by cube complex.

Definition 1.18 (Cube Complex, [BH99, Definition I.7.32]). A cube complex K is the
quotient of a disjoint union of cubes X =

⊔
λ∈Λ[0, 1]

kλ by an equivalence relation ∼

such that the quotient map p : X→ X/∼ = Kmaps each cube injectively into K and
we only identify faces of the same dimensions by an isometric homeomorphism. 4

Remark 1.19. In the original definition by Bridson and Häfliger two cubes cannot
be identified along more than one face, so in particular between two vertices there
cannot be two distinct 1-cubes connecting them. This, however, happens in the
complex we want to describe, so we need this slight generalization. 4
In [CL16] we generalized this construction to configuration spaces with sinks.

More precisely we defined a deformation retraction r : Confn(G,Z)→ Confn(G,Z)
such that the image of r has the structure of a finite cube complex. Each axis of
such a cube corresponds to the combinatorial movement of one particle. Such a
combinatorial movement is either given by the movement from an essential non-sink
vertex onto an edge or along a single edge from one sink to the other. Each vertex
and each such edge can only be involved in one of those combinatorial movements
at the same time, so the dimension of this cube complex will be restricted by the
number of essential non-sink vertices and the edges connecting two sinks.

Proposition 1.20 ([CL16, Proposition 2.1, p. 4]). Let G be a finite graph, let Z ⊂ V(G)
and let n ∈ N. Then there exists a finite cube complex which is a deformation retract of
Confn(G,Z). Its dimension is given by min{n, |V(G) − Z|+ |Esink(G)|}, where Esink(G)

is the set of edges whose initial and terminal vertices are sinks.

Proof. This proof is the same as the one in [CL16] with some additional details
for the description of the cubes. Give G the path metric such that every edge has
length 1 and choose arbitrary orientations for all edges. The general idea is now the
following: the retraction r only changes the position of particles inside (closed) edges
of the graph. We move as many particles of a given configuration x = (x1, . . . , xn)

as possible into the sinks, so that r(x) has at most one particle in the interior of any
edge incident to a sink. Furthermore, the particles of r(x) on each single edge will be
equidistant, except for the outermost particles, which may be closer to the vertices,
see Figure 1.2. The main difficulty will be to define for each configuration x and
each edge the parameters tιe, tτe ∈ [0, 1] determining the distance from the vertices.
Decreasing tιe to zero represents moving the first particle on the edge towards the
initial vertex ι(e) of e. To avoid multiple particles approaching the same vertex, we,

15



1 Configuration spaces of graphs and their combinatorial model

· · ·
tιe · ce

ce ce

tτe · ce

Figure 1.2: Equidistant particles on e.

therefore, require that for any pair of edges e 6= e ′ with the same initial vertex only
one of the two values tιe and tιe ′ can be strictly smaller than 1.

For fixed (x1, . . . , xn) ∈ Confn(G,Z) we now define the image r(x). Let e be an
edge of G and remove the set of particles sitting in the interior of e. This cuts e into
intervals, and we denote by `ιe and `τe the length of the first and last segment of e,
respectively. Let ke be the number of particles in the interior of e and define δτe as
follows:

δτe :=


`τe if ι(e) is a sink
`τe
`ιe

if ke 6 1 and ι(e) is not a sink

`τe
ke − 1

1− `τe − `
ι
e

else.

This gives a “normalized” distance of the last particle on e from the terminal vertex.
Define διe := δτ−e, where −e is the edge e with opposite orientation.

For each edge e, if

• τ(e) has valence at least three,

• τ(e) is not occupied by any particle,

• δτe < 1 and

• δτe < δ
τ
e ′ for all oriented edges e ′ with τ(e) = τ(e ′),

define tτe := δτe. Otherwise, define tτe := 1. Again, we set tιe := tτ−e.

Given these parameters tτe and tιe for all edges ewe now construct the configuration
r((x1, . . . , xn)). The particles on the vertices are not moved by the retraction, so
it remains to describe the change of position for the particles in the interior of an
edge e. We will not change the order of the particles but only their position within
the edge, and to make the description more concise we choose once and for all an
isometric identification of each edge e with [0, 1].
If e is not incident to a sink vertex the new position of the j-th vertex on e will

be given by (tιe + j− 1) · ce, where ke > 1 is the number of particles in the interior of
e and ce := (tιe + ke − 1+ t

τ
e)

−1 will be the distance between the particles on that

16



1.3 Combinatorial models

edge. This gives all particles on the edge the same distance and only modifies the
distances from the vertices, see Figure 1.2.
If precisely one of the initial and terminal vertices of e is a sink then we can

assume that this sink vertex corresponds to 0 ∈ [0, 1]. All particles on e except the
last one are then moved to 0, the last particle is moved to 1− tτe ∈ [0, 1].
If both the initial and terminal vertex of e are sinks we slide all particles away

from 1/2 ∈ [0, 1] with speed given by their distance from 1/2 until at most one
particle is left in the interior (0, 1) of the interval. This gives a configuration having
at most one particle on e and the rest on the sinks.

More precisely, we apply the flow Φ : [0, 1]× [0,∞)→ [0, 1] given by

(x, t) 7→ 1

2
+

(
x−

1

2

)
et

followed by the collapse R → [0, 1] mapping x > 1 to 1 and x < 0 to 0. There are
at least two particles in the interior of the edge, so let z ∈ [0, 1] be the position of
the particle which is the second closest to 1/2. We flow along Φ until at most one
particle is in (0, 1), which will occur when t = − ln(|1− 2z|).

It is straightforward to check that the describedmap is continuous and a retraction,
i.e. satisfies r2 = r. In the description above we only changed the positions of
particles on individual edges, so there is an obvious homotopy from the identity to r
by just adjusting the positions of the particles on each edge individually.

The image of r has the structure of a cube complex: the 0-cells are configurations
where all particles in the interior of each interval cut the interval into pieces of equal
length, and additionally no particle is in the interior of an edge with one or two
sink vertices. A k-cube is given by choosing such a 0-cell, k distinct particles which
are on a vertex and an adjacent edge to each of those k vertices. The k-cube then
moves each particle from its original position on the vertex onto the chosen edge
(if the other vertex of the edge is not a sink) or onto the sink on the other end of
the edge. Such a choice of kmovements determines a k-cube if and only if we can
realize the movements independently, namely if no two particles move towards the
same non-sink vertex and no two particles move along the same edge incident to
two sink vertices.
Each direction of the cube corresponds to the movement of one of the particles.

The k coordinates of the k-cube [0, 1]k are used as values tτe for the chosen oriented
edges e: if a coordinate is 0, then the corresponding particle sits on the vertex.
Increasing the coordinate, it moves along the chosen edge e, and at coordinate 1 it
arrives at its terminal position, which is either in the interior of e or on the sink ι(e)
(depending on the type of ι(e)). Changing multiple coordinates at the same time
moves the different corresponding particles independently. See Figure 1.3 for an
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1 Configuration spaces of graphs and their combinatorial model

example of a 2-cube.

123

4

Figure 1.3: A 2-cube in the combinatorial model. Each of the two coordinates of
[0, 1]2 corresponds to the movement of one of the two particles along the
arrow. At the top right corner (1, 1), particle 1 will be on the top right
sink, and particles 2 and 3 will both be on the circle.

By the restrictions listed above, each tuple (t1, . . . , tk) ∈ [0, 1]k in such a cube
determines a point in the configuration space, and each point of the image of r can
by definition of the retraction be written uniquely in such a way. In this way the
image has the structure of a cube complex.

By the description of the choices involved for finding k-cubes we immediately get
the restriction on the dimension. For more details about the general construction of
the cube complex (without sinks), see [Lü14].

Notice that this already gives an upper bound on the homological dimension of
Confn(G,Z): all homology groups in dimension k > min{n, |V(G) − Z|+ |Esink(G)|}

are zero. We will later see that if the number of particles is big enough, then this
upper bound is sharp. To show this, we first compute the configuration spaces of a
few small graphs, which will be the content of the next section.

Remark 1.21. In [Abr00] Abrams constructed a different combinatorial model for
configuration spaces of graphs. The idea in his work is to subdivide all edges into
n+1 smaller edges, wheren is the number of particles. He then allows combinatorial
movements of individual particles from one vertex to the next one if it is not occupied
by another particle.
This model is much bigger than the one described above, both in terms of the

number of cells (traversing a single edge in Abrams’ model takes a single particle
n+ 1 steps, in our model it only takes two steps) and in terms of the dimension (the
dimension of Abrams’ model is always precisely n, whereas the dimension of the
model above stays constant for n� 0). 4

The combinatorial model gives an easy proof of the following fact, which will be
useful in later proofs.
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1.4 Explicit calculations

Proposition 1.22. Let (G,Z) be a finite graph with sinks and let e be a leaf of G such that
the valence one vertex of e denoted by v is not a sink. For G ′ = G− {v} and a finite set S the
inclusion

ConfS(G ′, Z) ↪→ ConfS(G,Z),

induces a homotopy equivalence. Therefore, configuration spaces do not see the difference
between open and a closed leaves.

Proof. The deformation retraction from the proof of Proposition 1.20 restricts to the
subspace ConfS(G ′, Z) ⊂ ConfS(G,Z) because particles are only pulled away from
v as this univalent vertex is not a sink. Since both spaces are homotopy equivalent
to the combinatorial model via this deformation, the inclusion is also a homotopy
equivalence.

1.4 Explicit calculations

For small graphs, the explicit combinatorial model from the previous section is
sufficient to determine the homology completely.

Proposition 1.23 ([CL16, Proposition 2.5, p.7]).

Hi(Confn(I,∅)) =

{
ZΣn i = 0

0 else

Hi
(
Confn(S1,∅)

)
=

{
Z(Σn/shift) ∼= Z(n−1)! i = 0, 1

0 else

Hi(Confn(I, {0})) =
{

Z i = 0

0 else

Hi(Confn(I, {0, 1})) =


Z i = 0

Z(n−2)2n−1+1 i = 1

0 else

Hi
(
Confn(S1, {0})

)
=


Z i = 0

Zn i = 1

0 else

Proof. This proof is a slightly extended version of the one in [CL16]. We compute
the homology one example at a time.

First: The combinatorial model of this space is a disjoint union of zero-dimensional
cubes because there is no essential vertex, so there cannot be any higher-dimensional
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1 Configuration spaces of graphs and their combinatorial model

cell. The model has one cube for each ordering of the particles, describing the
bĳection to Σn.

Second: Remember that in this special case we think of S1 consisting of one vertex
and one edge (and we call that vertex essential even though it has valence 2). The
combinatorial model, therefore, consists of zero and one-dimensional cubes. Each of
the vertices of the combinatorial model has valence two, and for each cyclic ordering
of the particles, there is one copy of S1. Moving along one of the copies of S1
corresponds to moving one particle from one end of the edge to the other end via
the vertex, one particle after the other until the initial configuration is restored.

Third: The interval with one sink has contractible configuration space: we can just
pull all particles into the sink.

Fourth: The interval with two sinks has connected configuration spaces by pulling
particles onto one of the sinks. The combinatorial model is one-dimensional, so
we only need to compute the Euler characteristic. There is a zero cube for every
distribution of particles onto the two sinks, which means that there are 2n of them.
We have a 1-cell for each choice of one moving particle and every distribution of the
remaining ones onto the two sinks, so there are n2n−1 many 1-cells. Thus, the Euler
characteristic is (2−n)2n−1, which determines the rank of the first homology group.

Fifth: The configuration space of the circle with one sink is again connected by
pulling the particles onto the sink. It remains to compute the Euler characteristic of
the 1-dimensional model. There is precisely one zero cell, namely the one where all
particles are on the sink. There is one 1-cell for each choice of one particle moving
along the edge, giving n 1-cells and therefore the Euler characteristic 1− n.

The last two examples will play an important role later, so we describe their
homology more concretely.

From the description of the combinatorial model for Confn(S1, {0}) it is clear that
its homology is generated by one particle moving along the edge and the other
particles staying fixed on the sink.
For the interval with two sinks we first consider the cases of few particles: with

only one particle there is no one-dimensional class, and with two particles there
is precisely one 1-class: both particles sit on the first sink, particle 1 moves to the
second sink, particle 2 follows, particle 1 returns to the first sink and finally also
particle 2 moves back to the first sink, see Figure 1.4.
The next proposition shows that this is the only class we need to understand, all

classes in the case of three or more particles can be written as sums of those classes
involving only two particles.
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1.4 Explicit calculations

12

1 2

2 1

1 2

2 1

1 2

2 1

12

Figure 1.4: The combinatorial model of Conf2(I, {0, 1}) consists of four edges.

Proposition 1.24. The map
⊕

s6=s ′∈n

⊕

φ

H1(Conf{s,s ′}(I, {0, 1}))→ H1(Confn(I, {0, 1}))

is surjective. The second indexing set is given by all maps φ : n − {s, s ′}→ {0, 1} and the
maps out of the direct summands are induced by putting the remaining particles onto the
sinks according to φ.

Proof. Let Z be a connected cellular 1-cycle in the one-dimensional combinatorial
model of Confn(I, {0, 1}) (meaning that the union of all 1-cubes with non-trivial
coefficient is connected) and let k ∈ n be a particle. Let ξk and ξk ′ be 1-cubes moving
particles k 6= k ′ along the interval such that they intersect in a single 0-cube. On both
1-cubes, the positions of the particles n − {k, k ′} on the sinks are the same. Using the
corresponding map

H1(Conf{k,k ′}(I, {0, 1}))→ H1(Confn(I, {0, 1}))

the standard generator of H1(Conf{k1,k2}(I, {0, 1})) maps to a class represented by
±(ξk + ξk ′ − ξk − ξk ′), where ξk is given by the 1-cube ξk with k ′ on the other sink,
and analogously for ξk ′ . Using this cycle we can replace the 1-cubes ξk and ξk ′ by
ξk and ξk ′ , which simply changes the order in which the particles k and k ′ move
along the interval. Notice that this does not change the number of summands of Z.
If this process disconnects Z, we look at the connected components individually.

Repeating this, we can arrange that Z is a connected cycle such that the union Zk
of all edges of Z moving k from one sink to the other is connected. The positions
of the particles n − {k} are fixed in Zk and the particle k does not move in Z − Zk.
Therefore, Zk itself is a cycle and hence in the image of a map

0 = H1(Conf{k}(I, {0, 1}))→ H1(Confn(I, {0, 1})),
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1 Configuration spaces of graphs and their combinatorial model

which shows that [Zk] = 0. We are then left with a cycle Z− Zk in which k is fixed.
Repeating this argument for all particles k ∈ n eventually leads to a trivial cycle

by induction on the number of summands of Z.

Remark 1.25. The images of these different maps have lots of relations, and if one is
interested in a concrete basis of the homology one can construct one in the following
way: the combinatorial model of Confn(I, {0, 1}) is a graph, so it is sufficient to
describe a maximal tree in this model to give a basis of the fundamental group
and the first homology. As maximal tree one can take all edges where the label of
the moving particle is smaller than the labels of all particles sitting on the second
sink. The basis for the homology is then given by all edges where the label of the
moving particle x is bigger than the label of at least one of the particles on the second
sink. The corresponding cycle moves x from the first to the second sink, moves the
particle with the smallest label from the second to the first sink until x is again on
the first sink and finally moves those particles back to the second sink (in decreasing
order). 4

Another case which we can compute explicitly is the case of star graphs, or more
generally graphs with exactly one essential vertex.

Proposition 1.26 ([Lü14, Proposition 3.5, p. 36]). Define for k, ` ∈ N the graph Y`k
having one vertex v, k leaves and ` edges forming self-loops. If k+ 2` > 3 we have

Hi
(
Confn(Y`k,∅)

)
=


Z i = 0

Z + (−χ(UConfn(Y`k))) · [ZΣn] i = 1

= Z1+
(n+k+`−2)!
(k+`−1)! (n(k+2`−2)−(k+`−1))

0 else.

The proof works by calculating the Euler characteristic of the combinatorial model:
the combinatorial model is 1-dimensional and the condition k+ 2` > 3 implies that
the configuration space is connected.
In the case n = 2, k = 3 and ` = 0 we have two particles in the Y-shaped graph

and the formula above implies that the first homology group is one-dimensional. A
generating cycle is easy to visualize: start with the two particles on different leaves.
Choose one of the particles and move it to the empty leaf. Now move the other
particle to the leaf that just became empty and repeat this procedure until the initial
configuration is obtained again, see Figure 1.5.
Remark 1.27. These calculations imply that if we have enough particles, then the
dimension of the combinatorial model of Confn(G,Z) is equal to the homological
dimension of the space. Indeed, choose two particles for each essential non-sink
vertex and each edge incident to two sinks. Embed Y-shaped graphs without
sinks into the stars of these essential vertices and copies of (I, {0, 1}) onto the edges
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1
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Figure 1.5: A generator of the first homology of the configuration space of two parti-
cles in the Y graph. The arrows indicate two edges of the combinatorial
model, so the whole cycle is a sum of 12 edges.

connecting sinks. H1(Conf2(Y,∅) and H1(Conf2(I, {0, 1})) are 1-dimensional, so we
can choose the 1-cycles described above in each of those configuration spaces. These
are embedded circles in the respective combinatorial models.
Now take the product cycle (see Definition 1.15) in the combinatorial model

of Confn(G,Z), which is a torus of top-dimensional cells, see Figure 1.6. This is
well-defined since the non-sink vertices and edges incident to two sinks are distinct,
so we can realize any combination of movements simultaneously. This is a cycle,
and since there are no higher-dimensional cells this does not represent the zero
homology class. Therefore, the dimension of the combinatorial model is precisely
the homological dimension, and thus our combinatorial model, in that case, has the
smallest dimension possible. 4

Figure 1.6: A top-dimensional homology class in the configuration space of 4 particles
in this graph G. Take the standard 1-class of the particles 1 and 2 in
the star and the standard 1-class of the particles 3 and 4 in the interval,
then take the product of these two circles. This gives a torus, where
the horizontal and vertical directions on the torus correspond to the
movement of the particles in the star graph and the interval, respectively.
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Chapter 2

The Mayer-Vietoris spectral
sequence for configuration spaces

In this chapter we introduce the main technical tool apart from sinks in our approach
to computing the homology of configuration spaces of graphs: the Mayer-Vietoris
spectral sequence. We first describe the spectral sequence for general open covers
of spaces and then describe how we create such a cover of Confn(X,Z) from an
open cover of X. Then, we describe our main strategy of computing the E2-page via
comparison of these spectral sequences for different graphs.

2.1 The Mayer-Vietoris spectral sequence

In this section we define the Mayer-Vietoris spectral sequence for arbitrary open
covers of a topological space X and prove that it converges to the homology of X.
This spectral sequence is well-known, but since we could not find a source with a
concise, self-contained proof, we provide one here.

Proposition 2.1. LetX be a topological space, let J be a totally ordered (possibly uncountable)
index set and let U = {Uj}j∈J be an open cover of X. Writing Uj0···jp = Uj0 ∩ · · · ∩Ujp ,
there is a spectral sequence

UE1p,q =
⊕

j0<···<jp
Hq
(
Uj0···jp

)
⇒ H∗(X)

converging to the singular homology of X. This spectral sequence is calledMayer-Vietoris
spectral sequence. The boundary map d1 : E1p,q → E1p−1,q is given by the alternating
sum

d1 = Σ
p
i=0(−1)

iδi,
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2 The Mayer-Vietoris spectral sequence for configuration spaces

where
δi :

⊕

j0<···<jp
Hq(Uj0···jp)→

⊕

j0<···<jp−1
Hq(Uj0···jp−1)

is induced by the inclusion maps

Uj0 ∩ · · · ∩Ujp ↪→ Uj0 ∩ · · · ∩ Ûji ∩ · · · ∩Ujp ,

where the hat indicates that Uji is removed from the intersection.

In the proof we need the following standard result.

Theorem 2.2 ([McC01, Thm 2.15, p. 48]). Let {M∗,∗, d ′, d ′′} be a first quadrant double
complex. There are two associated spectral sequences associated withM, one with boundary
maps (d0, d1) = (d ′, d ′′) and one with (d0, d1) = (d ′′, d ′), and both converge to the
homology of the total complex ofM.

Proof of Proposition 2.1. Define

UE0p,q = E0p,q :=
⊕

j0<···<jp
C

sing
q

(
Uj0···jp

)
,

where Csing
q denotes the abelian group of singular q-chains. Let

d ′p,q : E
0
p,q → E0p,q−1

be the direct sum of the differentials of the singular chain complexes

C
sing
q

(
Uj0···jp

)
→ C

sing
q−1

(
Uj0···jp

)
,

multiplied with the sign (−1)p+1, and let

d ′′p,q : E
0
p,q → E0p−1,q

be given by d ′′ = Σpi=0(−1)iδi, where

δi :
⊕

j0<···<jp
C

sing
q (Uj0···jp)→

⊕

j0<···<jp−1
C

sing
q (Uj0···jp−1)

is induced by the inclusion maps (see the definition of d1).
It is straightforward to check that this is, in fact, a double complex, i.e. that d ′2 = 0,

d ′′2 = 0 and d ′d ′′ = −d ′′d ′. Therefore, by Theorem 2.2, this determines two spectral
sequences converging to the same homology.

d0 = d
′: If we first take homology in the d ′-direction, then the first page will be

given by
E1p,q =

⊕

j0<···<jp
Hq(Uj0···jp),
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2.1 The Mayer-Vietoris spectral sequence

and the d1 differential will be induced by d ′′. This is precisely the spectral sequence
we described in the statement, so it remains to show that the homology it converges
to is actually the homology of X. We will do this by computing the other spectral
sequence.

d0 = d
′′: If we first take homology in the d ′′-direction, then we claim that the infinity

page only consists of one single column, namely the zeroth column.
Let CU

• (X) ⊂ C
sing
• (U) be the chain complex of U-small singular simplices, i.e.

singular simplices whose image is contained in one of the open sets U ∈ U. Given a
U-small simplex σ : ∆q → X let Uσ be defined as

Uσ := {U ∈ U |σ ⊂ U}.

The realization of the nerve of Uσ is a (possibly infinite) simplex because the
intersection of all open sets is non-trivial (it contains at least σ), so we denote it by
∆Uσ . If Zσ denotes the free Z-module on the single generator σ, then we have the
canonical inclusion of chain complexes of the cellular chain complex of ∆Uσ with
coefficients in Zσ into the q-th row of the E0-page:

· · ·
⊕

j0<···<jp−1
C

sing
q (Uj0 ∩ · · · ∩Ujp−1)

⊕

j0<···<jp
C

sing
q (Uj0 ∩ · · · ∩Ujp) · · ·

· · · Ccell
p−1(∆Uσ ; Zσ) Ccell

p (∆Uσ ; Zσ) · · ·

Summing over all U-small singular q-simplices σ in X, it is straightforward to
check that this actually gives an isomorphism of chain complexes:

⊕

σ

Ccell
• (∆Uσ ; Zσ)

∼=−−→ E0•,q.

The homology of the left-hand chain complex is concentrated in degree zero, where
it is given by CU

q (X), so the first page of the spectral sequence is concentrated in the
zeroth column:

E1p,q =

{
CU
q (X) if p = 0,
0 else.

The vertical differentials are induced by d ′ and therefore given by the ordinary
singular chain complex boundary maps. By [Hat02, Proposition 2.21, p.119], U-small
singular simplices are enough to compute the homology of X, i.e. the inclusion

CU
• (X) ↪→ C

sing
• (X)

27



2 The Mayer-Vietoris spectral sequence for configuration spaces

induces an isomorphism on homology. Therefore, the E2-page is equal to the
E∞-page and given by

E1p,q =

{
H

sing
q (X) if p = 0,

0 else,

and thus the Mayer-Vietoris spectral sequence as defined in the statement of the
proposition converges to the homology of X.

2.1.1 Higher boundary maps

For concrete calculations later in this thesis, we now give a description of the higher
boundary maps dk for k > 2.
We first describe the map

d2 : E
2
p,q → E2p−2,q+1.

Let Z ∈ E0p,q represent an element [Z] ∈ E2p,q, meaning d0(Z) = 0 ∈ E0p,q−1 and
[d1(Z)] = 0 ∈ E1p−1,q. By this latter equality, there exists an element Z2 ∈ E0p−1,q+1
such thatd0(Z2) = d1(Z). The elementd1(Z2) ∈ E0p−2,q+1 then representsd2([Z]) ∈
E2p−2,q+1, see Figure 2.1. A simple diagram chase shows that this definition of
d2([Z]) is independent of the choice of preimage of d1(Z) underd0. Wewill notmake
a notational distinction between themaps dk on the Ek-page and their corresponding
maps on the zeroth page (which are well-defined only up to choices).

d1(Z2) Z2

d1(Z) Z

Figure 2.1: Constructing the boundary map d2.

The choice of Z2 can be interpreted as follows: the element d1(Z) removes open
sets from the (p+ 1)-fold intersections and maps the cycles into those bigger open
sets. Considered as cycles in a bigger space, some of them might now be hit by a
boundary map and therefore represent zero, see Figure 2.2. Choosing a preimage
Z2 of d1(Z) under d0 is precisely choosing explicit singular chains bounding the
null-homologous cycles of d1(Z).

If we now have Z ∈ E0p,q representing an element [Z] ∈ E3p,q, then we choose a
representative d1(Z2) of d2([Z]) as above. Since [Z] is an element of the third page,
we have d2([Z]) = 0 on the second page, meaning that

[d1(Z2 + Z
′)] = 0 ∈ E1p−2,q+1
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2.1 The Mayer-Vietoris spectral sequence

 

Figure 2.2: The left picture depicts the difference of two 0-cycles in the intersection
of two open subsets of S1. The 0-cycle on the top has sign −1, the other
one +1. Removing an open set from the intersection makes these cycles
homologous, as visible on the picture on the right. The red 1-cell bounds
the two 0-cycles in this contractible space.

for some element Z ′ ∈ E0p−1,q+1 representing an element of E1p−1,q+1. Now choose
an element Z3 ∈ E0p−2,q+2 such that

d0(Z3) = d1(Z2 + Z
′).

Then d1(Z3) represents d3([Z]) ∈ E3p−3,q+2. For higher boundary maps, the process
is the same: add images of all lower boundarymaps until the element represents zero
on the first page, and then choose explicit chains bounding these null-homologous
cycles. Chasing diagrams one again shows that these choices do not affect the final
result.

Often, the addition of images of lower boundary maps (the Z ′ in the description
of d3) is not necessary. Then, computing the boundary maps proceeds by repeated
application of the following two steps:

• forget open sets from the intersections, and

• choose explicit chains bounding the resulting cycles.

2.1.2 Interpreting classes on the E∞-page
Once we computed the∞-page, we have to interpret the classes of E∞p,q as classes in
Hp+q(X). In this section we explain how this works.
Let Z ∈ E0p,q represent an element of E∞p,q, then we know that dk([Z]) = 0 ∈

Ekp−k,q+k−1 for all k > 0. In particular, this is true for k = p, and we get by the
procedure described above an element Zp ∈ E00,p+q such that d0(Zp) represents
dp([Z]) ∈ Ep0,p+q−1. Mapping this element Zp via

E00,p+q =
⊕

U∈U
Cp+q(U)→ Cp+q(X)
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2 The Mayer-Vietoris spectral sequence for configuration spaces

yields a cycle in X that represents the homology class in Hp+q(X) corresponding to
[Z] ∈ E∞p,q, see Figure 2.3.

Z1

Z2

Z3

−+

+−

U1

U2U3 ↪→ ↪→

Figure 2.3: Interpreting elements on the E∞-page. Consider the Mayer-Vietoris
spectral sequence for the open cover of the torus given by Ui a small
neighborhood of Zi for 1 6 i 6 3 as in the picture on the top. The
fundamental class of the torus is represented by the depicted linear
combination of zero-cycles in U1 ∩ U2 ∩ U3, i.e. as an element of E∞2,0.
Lifting this element to the zeroth column is done by forgetting open sets
from the intersection, one at a time. In each of the three open sets this
produces a 2-cube as visualized above, and mapped to the total space
they glue together to give the whole torus.

2.2 A Mayer-Vietoris spectral sequence for configuration spaces

In this section we will recall the Mayer-Vietoris spectral sequence for configuration
spaces as constructed and studied in [CL16]. This, together with the notion of
configuration spaces with sinks, is the main technical tool through which we
understand the homology of configuration spaces of graphs.
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2.2 A Mayer-Vietoris spectral sequence for configuration spaces

Definition 2.3 ([CL16, Definition 2.7, p. 8]). Let (X,Z) be a space with sinks and let
V = {Vi}i∈IV be a totally ordered open cover of X. Then VS is the following open
cover of ConfS(X,Z): there is one open set Uφ for each map

φ : S→ IV

given by
Uφ :=

⋂

s∈S
π−1s

(
Vφ(s)

)
,

where πs is the projection to the position of the particle s, see Definition 1.10. We
have

Uφ0···φp := Uφ0 ∩ · · · ∩Uφp

=

p⋂

j=0

⋂

s∈S
π−1s

(
Vφj(s)

)

=
⋂

s∈S
π−1s



p⋂

j=0

Vφj(s)




=
⋂

s∈S
π−1s

(
Vφ0(s)···φp(s)

)
.

This is a ΣS-equivariant open cover of ConfS(X,Z), meaning that for each U ∈ VS

and permutation η ∈ ΣS the open set U · η is also in VS. Choosing an arbitrary
ordering of S, order the maps φ lexicographically.
The Mayer-Vietoris spectral sequence VSE∗•,• for ConfS(X,Z) associated with the open

cover V of X is defined to be the Mayer-Vietoris spectral sequence for VS as defined in
Proposition 2.1. 4

By the description above, the E1-page is given by

E1p,q =
⊕

φ0<···<φp
Hq

(⋂

s∈S
π−1s

(
Vφ0(s)···φp(s)

))
.

The boundary map can be thought of as weakening the restrictions put onto the
individual particles.

Remark 2.4. Let V1 and V2 be ordered open covers of spaces X and Y, respectively.
If there is a map f : X → Y such that for each V ∈ V1 the image f(V) is contained
completely in precisely one open set in V2, then we get an induced map f∗ : V1 → V2.
If this map is order-preserving, then the induced map VS1 → VS2 is for each S
order-preserving since we order lexicographically.
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2 The Mayer-Vietoris spectral sequence for configuration spaces

Therefore, this induces a map of the corresponding Mayer-Vietoris spectral
sequences as above: On the zero page it is induced by the map f restricted to the
open sets

Uφ0···φp → Uf∗φ0···f∗φp

if all f∗φi are distinct, and the zero map else. In this way, the Mayer-Vietoris spectral
sequence is functorial with respect to such maps f. 4

We will now describe this spectral sequence for the case where (X,Z) is a graph
with sinks and V is a very special kind of open cover. For the rest of this section, we
will rename X to G. Furthermore, we assume that Z is a union of edges and vertices
of G.

Proposition 2.5. Let S be a finite set and let V be an open cover of G such that

• for each V ∈ V the space Confn(V,ZV) for ZV := Z ∩ V is connected for all n, and

• the intersection of two or more open sets is a disjoint union of star graphs and intervals,
such that each essential vertex is a sink and every edge between two sinks is itself a
sink.

Then each intersection
Uφ0 ∩ · · · ∩Uφp

of open sets Uφj ∈ VS is homotopy equivalent to a disjoint union of spaces of the form∏
i∈IV

ConfSi(Vi, ZVi)

for ti∈IVSi ⊂ S.

Corollary 2.6. If additionally IV is finite and the configuration spaces of all (or all but one)
Vi have free homology, then the q-th homology of such a space as above is given by

⊕

Σi∈IVqi=q

⊗

i∈IV
Hqi(ConfSi(Vi, ZVi))

and the module E1p,q of the corresponding Mayer-Vietoris spectral sequence is given by

E1p,q
∼=
⊕

j∈Jpq

⊕

Σi∈IVqi=q

⊗

i∈IV
Hqi(Conf

S
j
i
(Vi, ZVi))

for some index set Jpq and some tuples of sets (Sj•) such that ti∈IVSji ⊂ S.
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2.2 A Mayer-Vietoris spectral sequence for configuration spaces

Remark 2.7. It would require some work to give the index set Jpq explicitly: for each
intersection Uφ0 ∩ · · · ∩Uφp , there are a lot of connected components determining
different distributions of the particles into the intersections. A particle is restricted
to the intersection of two or more open sets either because different φj map it to
different indices or because it is blocked by other particles. In particular, a particle can
be restricted to an intersection in one connected component of such an intersection
while being able to move freely in one of the V ∈ V in another. 4

Proof of Proposition 2.5. In Uφ0···φp each particle is restricted to a certain intersection
of the open sets Vi ∈ V, namely Vφ0(i)···φp(i). Let X be one path component of
Uφ0···φp and let FI be the set of particles which are always in the interior of some edge
for all configurations of X. This might happen either because the particles themselves
are restricted by the maps φj or because they are blocked by another particle, see
the remark preceding this proof. Up to homotopy, these particles do not move at all,
so the projection map πS−FI induces a homotopy equivalence X ' πS−FI(X).
If in πS−FI(X) there are still particles restricted to an intersection of two or more

open sets, then these intersections have to be stars with sinks by the properties of the
open cover. Therefore, we can pull all these particles Fstar onto their corresponding
sinks, showing that the map πS−FI−Fstar induces a homotopy equivalence

X ' πS−FI−Fstar(X) =: X ′.

In X ′ every particle is free to move inside one of the open sets Vi, and we denote the
set of particles by S ′ := S− FI − Fstar. The particles in Vi will be denoted by Si ⊂ S ′.

We will now deform our open sets Vi such that their intersections are contained
in Z. For each edge e incident to a sink vertex v, there is at most one open set Vi
containing both vertices of e by the properties listed in the statement. The intersection
of ewith each of the other open sets of V containing v can be collapsed to the sink by
sliding the particles onto v, see Figure 2.4. Repeating this for all edges incident to
sink vertices we can arrange that the interior of each such edge intersects at most
one of these deformed sets.
If two or more of the deformed open sets now intersect outside of sinks, then

this intersection is on an edge e between non-sink vertices. This can only be the
intersection of precisely two open sets, each containing one of the two distinct vertices
because otherwise, an intersection of two of the open sets would contain a non-sink
vertex. Now shrink the two open sets on that edge e until they are disjoint, pulling
the particles along, see Figure 2.5.
The resulting collection of sets {V ′i } has the property that the intersection of any

two of them is contained in Z, so the particles in V ′i and V ′j for i 6= j do not interact
with each other. This identifies X ′ with a connected component of

ConfS ′
(
tiV ′i ,tiZV ′i

)
,
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2 The Mayer-Vietoris spectral sequence for configuration spaces

Vi

ev w
 

ev w

Figure 2.4: Shrinking one of the Vi containing only a part of the edge e. The right
part of the picture shows the deformed set, which is disjoint from the
interior of e.

1 4 3 2
e

 1 4 3 2
e

Figure 2.5: Shrinking two of the deformed Vi intersecting in an edge e. The particles
1 and 4 are restricted to the left set, the other two particles are restricted
to the right set. The right part of the picture shows the deformed sets,
where the two sets do not intersect inside e anymore.
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2.3 The sink comparison argument

namely we have
X ′ '

∏
i

ConfSi(V
′
i , ZV ′i ).

Since the deformation above is, in fact, a homotopy equivalence as spaces with
sinks (Vi, ZVi) ' (V ′i , ZV ′i ), this shows by Corollary 1.8 that

X ' X ′ '
∏
i

ConfSi(V
′
i , ZV ′i ) '

∏
i

ConfSi(Vi, ZVi).

Remark 2.8. By the result above, we can investigate the spectral sequence by under-
standing the configuration spaces of the open sets Vi. By Proposition 1.22, we can
replace these open sets by closed sets, which turns them into finite graphs again. 4

2.3 The sink comparison argument

In this section we will always assume that (G,Z) is a graph with sinks and Z is a
union of edges and vertices of G.
The number of open sets and their intersections is quite large for the cover VS

as described above, which means that the combinatorics of the corresponding
Mayer-Vietoris spectral sequences are usually quite involved. For this reason, we
will investigate them mostly by comparing the E1- and E2-pages of these spectral
sequences for related configuration spaces. We will describe the general idea for
such comparisons in this section.

Assume we are in a situation as in Corollary 2.6 with V = {V1, V2} and look at the
first page of the spectral sequence:

E1p,q
∼=
⊕

j∈J

⊕

q1+q2=q

Hq1(Conf
S
j
1
(V1, ZV1))⊗Hq2(Conf

S
j
2
(V2, ZV2))

∼=
⊕

q1+q2=q

⊕

j∈J
Hq1(Conf

S
j
1
(V1, ZV1))⊗Hq2(Conf

S
j
2
(V2, ZV2)).

The horizontal boundary map d1 is induced by removing open sets from the
intersections. In particular, the map d1 does not change the degree of the homology
groups, so the rows E1•,q as above split into a direct sum of chain complexes Cq1,q2
with modules of the form

⊕

j∈J
Hq1(Conf

S
j
1
(V1, ZV1))⊗Hq2(Conf

S
j
2
(V2, ZV2)).

for each fixed choice of q1 and q2 satisfying q1 + q2 = q.
Now assume that q1 = 0, then we have

H0(Conf
S
j
1
(V1, ZV1)) = Z
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2 The Mayer-Vietoris spectral sequence for configuration spaces

for all j by the choice of our open cover. If Z̃V1 ⊃ ZV1 is a bigger set of sinks, then
the inclusion of graphs with sinks induces an isomorphism on zeroth homology:

H0(Conf
S
j
1
(V1, ZV1))

∼=−−→ H0(Conf
S
j
1
(V1, Z̃V1)).

In particular, the chain complex C0,q2 is also part of the q2-th row of the E1-page of
ConfS(G,Z ∪ Z̃V1). It turns out that in certain situations one can choose the sinks
in such a way that the q2-th row is actually equal to C0,q2 . If we can compute the
homology of this row by knowledge about the space with more sinks, then we get a
part of the q2-th row of the E2-page of our original spectral sequence.

Example 2.1. Take the H-graph given by gluing together two stars of valence 3 along
one of their leaves. Give H the path metric such that each internal edge has length
1 and each leaf has length 1/2. Consider the open cover Vv, Vw given by the open
balls of radius 1 around the two vertices v and w. Their intersection is the interior of
the horizontal edge of H, so we are in the situation of Corollary 2.6.

In the zeroth row all entries will be direct sums of modules of the form

H0(ConfSv(Vv))⊗H0(ConfSw(Vw)) ∼= Z⊗ Z

for different choices of Sv t Sw ⊂ S. By the arguments above, the zeroth row of the
first page of the analogous spectral sequence for ConfS(H, {v,w}) is exactly the same.
On the first page of that latter spectral sequence, however, all q-th rows for q > 0 are
zero. Therefore, the second page is already the infinity page and the zeroth row of
the E2-pages of both spectral sequences is given by H•(ConfS(H, {v,w})). This is, in
fact, the same as H•([0, 1], {0, 1}) by pulling the particles from the leaves to the sinks.
By Proposition 1.23 we know that this homology is concentrated in the zeroth and
first degree.
The first row of the original spectral sequence splits into two chain complexes,

one with all modules of the form

H1(ConfSv(Vv))⊗H0(ConfSw(Vw)),

and one with modules

H0(ConfSv(Vv))⊗H1(ConfSw(Vw)).

By symmetry, we only need to compute the homology of that first chain complex.
This first chain complex does not change if we turn w into a sink. In fact, the chain
complex is the same as the complete first row of the E1-page of the corresponding
spectral sequence for ConfS(H, {w}). The bottom row of this latter E1-page is the
same as before, so its homology is concentrated in the zeroth and first degree.
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2.3 The sink comparison argument

ConfS(H, {w}) is 1-dimensional, so for dimension reasons the first row of that chain
complex can only have homology in the zeroth column, and therefore the first row
of the E2-page of our original spectral sequence is zero everywhere except for the
zeroth column.
The second row can only have non-trivial homology for p = 0 for dimension

reasons. The chain complex is given by modules of the form

H1(ConfSv(Vv))⊗H1(ConfSw(Vw)),

and by Proposition 1.22 this is the tensor product of the first homology groups of
configuration spaces of star graphs. Therefore, E20,2 is generated by products of two
star classes (see Definition 1.15).

This describes the E2-page and shows that this is already the E∞-page, see
Figure 2.6. Therefore, we were able to deduce the homology of the H-graph from the
knowledge of configuration spaces of star graphs and the interval with two sinks.

2 MYY

1 MY

0 Z MH

0 1 2

Figure 2.6: The E∞-page of the Mayer-Vietoris spectral sequence for the H-graph.
MYY is generated by products of star classes,MY is generated by star
classes andMH is generated by classes in Confn([0, 1], {0, 1}).
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Chapter 3

Torsion-freeness and generators

In this chapter we will investigate the homology of configuration spaces of graphs.
More specifically, we show torsion-freeness in the case of trees with loops, show that
the homology is generated by products of 1-classes in that case and give a description
of the 1-classes for general graphs.
In the proofs of those results it will be useful to consider configuration spaces

with sinks in order to compute specific Mayer-Vietoris spectral sequences. Many
of our proofs will, therefore, be done in this more general setting. At the end of
this chapter, we will — for the sake of completeness — then show that the results
mentioned above also hold for any subset of the vertex set turned into sinks.
All of the theorems and proofs in this chapter appeared already in [CL16]. We

only added a few explanations and adapted the notation.

3.1 Configurations of particles in trees with loops

In this section we will describe the homology of Confn(G) for the case where G is a
tree with loops, see Definition 1.13.

Theorem A ([CL16, Theorem A, p. 2]). Let G be a tree with loops and let n be a natural
number. Then the integral homology Hq(Confn(G); Z) is torsion-free for each q > 0.

The next result gives a concrete generating set for the homology of configuration
spaces of such graphs, namely the set of all products of disjoint basic classes (see
Definition 1.15).

Definition 3.1. For k > 3 let Stark be the star graph with k leaves, let H be the tree
with two vertices of valence three and let S1 be the circle with one vertex of valence 2.
We call a class σ ∈ H1(Confn(G)) basic if there exists a piecewise linear embedding ι
of H, S1 or Stark for some k into G such that σ is in the image of the induced map
H1(Confn(ι)). 4
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3 Torsion-freeness and generators

Theorem B ([CL16, Theorem B, p. 2]). Let G be a tree with loops and let n be a natural
number. Then the homology of Confn(G) is generated by products of disjoint basic classes.

Remark 3.2. Note that in such a product theremay also be degree zero classes involved:
the particles which are not part of any basic class need to be put somewhere on the
graph. Any way of putting them disjointly from the 1-classes determines a product
of disjoint basic classes. 4

We will more generally prove Theorem A and Theorem B for all graphs as in the
statement of the theorems with any (possibly empty) subset of the set of vertices of
valence one turned into sinks, and the proof will proceed by induction on the number
of essential vertices. The generalization of adding sinks to the vertices of valence 1 is
needed in order to prove the induction step. We first prove the base case:

Proposition 3.3 ([CL16, Proposition 3.1, p. 8]). Let G be a finite connected graph
with precisely one essential vertex and Z a subset of the set of vertices of valence 1. Then
H1(Confn(G,Z)) is free and generated by basic classes.

In order to clarify the notion of a “basic class” in a graph with sinkswe make the
following remark:

Remark 3.4. Classes in H1(Confn([0, 1], {0, 1})) can be regarded as classes in the
ordinary configuration space of the H-graph Confn(H), see Figure 3.1. Replace both
spaces by their combinatorial models and define a continuous map as follows: take
a 0-cell of the configuration space with sinks and replace particles sitting on a sink
vertex with them sitting on the corresponding lower leaf of the H-graph in their
canonical ascending order. Moving a particle x from one sink vertex to the other is
then given by moving all particles blocking x’s path to the upper leaf, moving x onto
the horizontal edge, moving the particles on the upper leaf back to the lower leaf and
repeating the same game on the other side in reverse. This determines a continuous
map between combinatorial models and thus induces a map on 1-cycles.

3
5
6

2
4

1 !

6
5

3
4

2
1

Figure 3.1: Comparing Confn([0, 1], {0, 1}) and Confn(H)

This map is injective in homology: composing the map with the map collapsing
the two pairs of leaves to sinks gives a map that is homotopic to the identity, showing
that H1(Confn([0, 1], {0, 1})) is a direct summand of H1(Confn(H)). Compare this
also to the computation of H∗(Confn(H)) at the end of Section 2.3.
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3.1 Configurations of particles in trees with loops

Because of this correspondence, the classes in H1(Confn([0, 1], {0, 1})) are also
called H-classes. When we talk about an H-class in a graph with sinks (G,Z) we
hence allow the corresponding map

H→ G

to collapse some of the leaves to sinks (instead of requiring it to be an embedding as
in Definition 3.1). The notion of basic class in the configuration space of a graph with
sinks is adapted accordingly to include this new type of H-classes. 4
Remark 3.5. Proposition 3.3 is indeed the full homology calculation for graphs with
one essential vertex since the combinatorial model of Confn(G,Z) is 1-dimensional
by Proposition 1.20, so all higher homology groups are trivial. 4

In the proof we will need the following definition:

Definition 3.6. For finite sets T ⊂ S, a finite graph G, a subset K ⊂ G, and sinks
Z ⊂ V(G) write Γ = (G,K) and define

ConfS,T (Γ, Z) = {f : S→ G | f(T) ⊂ K} ⊂ ConfS(G,Z). 4

As a consequence of the definition, we get

ConfS,∅(Γ, Z) = ConfS(G,Z)

and
ConfS,S(Γ, Z) = ConfS(K,Z ∩ K).

Proof of Proposition 3.3. By Proposition 1.20, Confn(G,Z) is homotopy equivalent to
a graph, so the first homology is free. To see that it is generated by basic classes, we
inductively use a Mayer-Vietoris long exact sequence.
For a sink z ∈ Z define the pair of spaces Γz = (G,G− {z}). Notice that

ConfS,∅(Γz, Z) = ConfS(G,Z).

and

ConfS,S(Γz, Z) = ConfS(G− {z}, Z− {z})

' ConfS(G,Z− {z}),

where the last homotopy equivalence follows from Proposition 1.22 and the fact that
z has valence 1. For two sinks z0 6= z1 we therefore have

ConfS,S(Γz0 , Z) ' ConfS,∅(Γz1 , Z− {z0}).

Moving elements from S− T to T and using the above identifications, we will show
by induction on |S − T | and the number of sinks |Z| that the first homology of all

41



3 Torsion-freeness and generators

spaces ConfS,T (Γ, Z) for any Γ = (G,K) and any set of sinks Z is generated by basic
classes.

In the base case we have T = ∅ and Z = ∅, so the space we are investigating is
the ordinary configuration space ConfS(G), which is generated by basic classes by
Proposition 3.10 (this is not a circular argument, the proposition is only stated and
proven later since it is the main step to compute the first homology of configuration
spaces of arbitrary finite graphs). For the induction step, choose an arbitrary s ∈ S−T
and a sink z0 ∈ Z, and take the open covering {U1, U2} of ConfS,T (Γz0 , Z) given by
the subsets

U1 := π
−1
s (G− {z0}) and U2 := π

−1
s ({x ∈ G |dG(x, z0) < 1}).

z0
V1 V2

e

Figure 3.2: The open cover {U1, U2} of the configuration space is definedby restricting
particle s to one of these two open sets V1 and V2, respectively.

The interesting part of the Mayer-Vietoris long exact sequence is the following:

H1(U1)⊕H1(U2)→ H1(ConfS,T (Γz0 , Z))→ H0(U1 ∩U2)
→ H0(U1)⊕H0(U2).

We have U1 ' ConfS,Tt{s}(Γz0 , Z), and U2 is homotopy equivalent to a disjoint
union of the space ConfS−{s},T (Γz0 , Z) and several copies of ConfS ′(G,Z− {z0}) for
different finite sets S ′ ⊂ S− {s}. Those latter components of U2 arise if particles of T
sit between s and z0, preventing s to move to the sink. The set S ′ is then given by the
set of all particles on the other side of s. The remaining component is identified by
moving s to the sink and forgetting it.
The first homology of all these spaces is by induction generated by basic classes.

Therefore, it remains to showthat the classes projecting to the kernelofH0(U1∩U2)→
H0(U1)⊕H0(U2) are also generated by basic classes.

InU1∩U2 the particle s is trapped on the edge e between z0 and the central vertex.
We can represent each connected component by a configuration where all particles
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sit on e. The remaining particles are then distributed to both sides of s. Restricted to
the connected components where there is a particle of T on the z0-side of s, the map

U1 ∩U2 ↪→ U2

is a homeomorphism onto the corresponding connected components of U2 because
those particles in T prevent s frommoving to the sink z0. The image of that restricted
inclusion is disjoint from the image of the remaining components, so to find elements
in the kernel of

H0(U1 ∩U2)→ H0(U1)⊕H0(U2)

we can restrict ourselves to the union X of components of U1 ∩U2 where no element
of T is on the z0-side of s.
The inclusions X→ U1 and X→ U2 map all these connected components to the

same component of U1 and U2, respectively, because we can use either the sink
or the essential vertex to reorder the particles. Therefore, the kernel of the map to
H0(U1)⊕H0(U2) is generated by differences of distinct ways of putting particles
in S − T to the two sides of s, and the lifting process turns these differences into
H-classes involving z0 and the central vertex, proving the claim.

3.1.1 A basis for configurations in graphs with one essential vertex

The key to proving the induction step is choosing for any fixed leaf e a particular
system of bases for the first homology groups H1(Confn(G,Z)) for all n with the
following property: if a representative of a basis element has fixed particles on the
leaf e then changing the order of these particles should give another basis element,
and all these basis elements should be distinct. Furthermore, adding and forgetting
fixed particles of representatives of basis elements should again give elements in the
chosen system of bases. For the description of such a system of bases, fix the graph
G, the set of sinks Z and the leaf e.
We will choose a system of spanning trees TS (indexed by all finite sets S) in the

combinatorial model of ConfS(G,Z). As described in Proposition 1.20, this model is
a one-dimensional cube complex, i.e. a graph. For each 1-cube ξ in the combinatorial
model, the system T• will have the following properties:

• The edge ξ determines a set Fξ of fixed particles on the leaf e. The symmetric
group ΣFξ 6 Σn acts on the combinatorial model by precomposition, and we
want that the orbit ΣFξ · ξ is completely contained in either TS or G− TS.

• Given s 6∈ S we have a map ConfS(G,Z) → ConfSt{s}(G,Z) by adding the
particle s to the end of the leaf e. Then ξ should be in TS if and only if the
image of ξ under that map is contained in TSt{s}.
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3 Torsion-freeness and generators

We now inductively choose the system of spanning trees TS. For S = ∅, we define
T∅ = ∅. Given a non-empty set S, complete the forest

⊔

s∈S
ιe,s
(
TS−{s}

)

to a spanning tree TS in an arbitrary way (recall that ιe,s slides in the particle s
from the univalent vertex of e, see Definition 1.16). If S ′ ⊂ S then TS ′ appears as
subtrees of TS by adding the particles S−S ′ to the leaf e in all different orders. While
completing this forest we only add edges that have no fixed particles on e, otherwise,
one of the trees TS−{s} was not maximal in ConfS−{s}(G,Z). This yields a spanning
tree TS of ConfS(G,Z), inductively describing spanning trees for all finite sets Swith
the properties listed above.

This defines a system of basesB• ofH1(Conf•(G,Z))with the following properties:

• for σ ∈ BS the class ση given by adding a set of particles T in some order η to
the end of the leaf e is an element of BStT ,

• for σ ∈ BS the classes ση and ση ′ for two orderings η 6= η ′ of T are distinct,

• every σ ∈ BS has precisely one minimal representative σmin ∈ BS ′ for some
S ′ ⊂ S such that (σmin)

η = σ for some ordering η of S− S ′ (meaning that the
set S ′ is minimal with respect to this property) and

• we always have (ση)min = σmin.

Given σ ∈ BS and the corresponding minimal cycle C, define S ′ to be the set of fixed
particles of C which are on e. Then πS−S ′(σ) defines the minimal representative
σmin ∈ BS−S ′ . With this definition it is straightforward to check the four properties
described above.

3.1.2 The spectral sequence for the induction step

Let (G,Z) be a tree with loops with any subset of the set of vertices of valence one
turned into sinks, and let v be an essential vertex which is connected to precisely one
other essential vertexw via an edge e. Define the following two open subspaces ofG:

L := {x ∈ G |dG(x, v) < 1}

and
K := {x ∈ G |dG(x,G− L) < 1},

where dG is the path metric giving every internal edge of G length 1 and every leaf
length 1/2. In other words, K is the connected component of G− {v} containing w,
see Figure 3.3.
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K

e

w v

L

Figure 3.3: The two subgraphs K, L of G.

The intersection L ∩ K is the interior of the edge e. The graph K has strictly less
essential vertices thanG, so by induction we can assume that its configuration spaces
(with sinks) of any number of particles are torsion-free and generated by products of
basic classes.

As described in Proposition 2.1, construct the open cover of Confn(G,Z) associated
to the cover {K, L} and look at the corresponding Mayer-Vietoris spectral sequence
E∗•,•. The open cover has one open set for each mapφ : n→ {K, L}, restricting particle
i to the open set φ(i).

By Proposition 2.5, we have

Uφ0···φp = Uφ0 ∩ · · · ∩Uφp
=
⋂

i∈n

⋂

06j6p

π−1i

(
Vφj(i)

)

'
∐
j∈J

Conf
S
j
K
(K,ZK)× Conf

S
j
L
(L, ZL),

where J is a finite index set, SjK t S
j
L ⊂ n and ZK and ZL are the sinks of K and L,

respectively. Remember that in order to get that description, we forgot the particles
which are fixed in the interior of the edge between v andw. The order of the particles
on this intersection will be important for the face maps.

The E1-page consists at position (p, q) of the q-th homology of all (p + 1)-fold
intersections of the open sets Uφ. By Corollary 2.6, each E1p,q is given as

E1p,q
∼=
⊕

j∈J ′

⊕

qK+qL=q

HqK(Conf
S
j
K
(K,ZK))⊗HqL(Conf

S
j
L
(L, ZL)),

where J ′ is somefinite indexing set. Hereweused thatwe know that the configuration
spaces of L have free homology. Recall that attached to each of those summands
there is an ordering of the particles n − SjK − SjL, which are sitting in the interior
of e. The face maps forgetting one of the open sets from a (p+ 1)-fold intersection
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3 Torsion-freeness and generators

yielding a p-fold intersection only affect the particles restricted to the intersection
K ∩ L: for some (but possibly none) of them the restriction is removed, allowing
them to move in all of either K or L. Under the identification above, these particles
are added to the sets SjK or SjL and put to the edge e of K or L, respectively, in the
order determined by their order on K ∩ L, see Figure 3.4.

  
Uφ1φ2

6

4
1 2 5

3
K L face map−−−−−→

Uφ1

6

4
1 2 5

3

face map−−−−−→× ×
6

4
1 2 5

3

K K ∩ L L

× ×
6

4
1 2 5

3

Figure 3.4: The boundary map d1 of the Mayer-Vietoris spectral sequence under the
identification as above. The maps φ1 and φ2 both map {1, 4, 6} to K and
{3} to L. The map φ1 maps the remaining particles {2, 5} to K, whereas
φ2 maps them to L. The face map to Uφ1 frees those two particles from
K ∩ L to K.

Since the configuration space of L is 1-dimensional by Proposition 1.20 these
summands of E1p,q are only non-trivial for qL ∈ {0, 1}. The horizontal boundary
map d1 preserves qL, so the E1-page splits into two parts (0E1,0d1) and (1E1,1d1)

consisting of all direct summands with qL = 0 and qL = 1, respectively. The key
points why this helps to compute the infinity page are that (as we will show)

• 1E2 is concentrated in the zeroth column,

• we understand 0E∞, and
• the two spectral sequences do not interact.

3.1.3 The homology of 1E1

As described in Section 3.1.1, choose a system of bases B• for H1(Conf•(L, ZL)) for
the edge of L corresponding to e. This determines a direct sum decomposition of the
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3.1 Configurations of particles in trees with loops

direct summands of every module 1E1p,q as follows:

H1(Conf
S
j
L
(L, ZL))⊗Hq−1(Conf

S
j
K
(K,ZK))

∼=
⊕

σ∈B
S
j
L

Zσ ⊗Hq−1(Conf
S
j
K
(K,ZK)).

Here, Zσ is the free Z-module on the single generator σ. By the description of the
face maps above and the properties of the system of bases, the boundary map 1d1
does not change the minimal representative of the first tensor factor. Grouping these
summands by their correspondingminimal representative σ0 yields a decomposition
of each row 1E1•,q into summands denoted by (E1[σ0], dσ01 ), which is a decomposition
as chain complexes. We now compute the homology of one of these chain complexes
E1•,q[σ0] for fixed σ0 and q > 0.

Let a minimal σ0 ∈ BS for some S ⊂ n be given (i.e. (σ0)min = σ0), then every
σ ∈ BS ′ appearing in one of the second tensor factors of the modules in the chain
complex E1•,q[σ0] is given by adding fixed particles S ′ − S to σ0, putting them in
some ordering to the end of e (away from v). Since there are no relations between the
different orderings of the particles S ′ − S, we can forget the particles S and replace L
by an interval:

Let KE∗•,• be the Mayer-Vietoris spectral sequence for Confn−S(K,ZK) correspond-
ing to the cover {K, L} pulled back by the inclusion K ↪→ G. The chain complex
E1•,q[σ0] is isomorphic to the chain complex KE1•,q by forgetting the particles S
involved in σ0 and looking at cycles of the remaining particles, see Figure 3.5.

Conf6(G)

2

5
6 3

σ0

K L  

Conf{2,3,5,6}(K)

2

5
6 3

Figure 3.5: Comparing E1•,q[σ0] to KE1•,q for σ0 ∈ B{1,4}.

The open cover of K is very special: one of the open sets is the whole space itself.
We will now show that because of that, the E2-page is concentrated in the zeroth
column. The open cover of Confn−S(K,ZK) is indexed bymapsψ : n−S→ {K, L∩K}.
For the map ψall sending everything to K, we have Uψall = Confn−S(K,ZK). Hence,
for each tuple (ψ0, . . . , ψp) with ψi 6= ψall for all i the inclusion

Uψ0 ∩ · · · ∩Uψp ∩Uψall → Uψ0 ∩ · · · ∩Uψp
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3 Torsion-freeness and generators

and therefore the face maps

Hq(Uψ0 ∩ · · · ∩Uψp ∩Uψall)→ Hq(Uψ0 ∩ · · · ∩Uψp)

are the identity. Notice that precisely one of the p + 2 face maps with that source
lands in an intersectionwithoutUψall . By adding Kd1 boundaries we can thus assume
that every homology class of the chain complex (KE1p,q,

Kd1) has a representative
which is trivial in all direct summands Hq(Uψ0···ψp) where none of the ψi is ψall.

The composition of maps
⊕

ψ0<···<ψp
∃i:ψi=ψall

Hq(Uψ0···ψp)
Kd1−−→

⊕

ψ0<···<ψp−1
Hq(Uψ0···ψp−1)�

⊕

ψ0<···<ψp−1
6∃i:ψi=ψall

Hq(Uψ0···ψp−1),

where the second map sends all direct summands with one of the ψi equal to
ψall to zero, is injective by the observation above (actually the images of the direct
summands intersect trivially, and restricted to one such summand the map onto its
image is given by either the identity or multiplication by −1). In particular, the map
Kd1 restricted to the intersections including Uψall is injective (unless we are in the
zeroth degree), and the homology is trivial.
Therefore, the homology of E1•,q[σ0] is zero in degrees i 6= 0 and given by

Zσ0 ⊗Hq−1
(
Confn−S(K,ZK)

)

for i = 0, which by induction is free and generated by products of basic classes.
In conclusion the homology of 1E1 is free, concentrated in the zeroth column and

generated by products of basic classes. Denote this bigraded module by E∞[K].
3.1.4 The homology of 0E1 and the E∞-page
The other part, 0E1, is actually the first page of the Mayer-Vietoris spectral sequence
E∗•,•[G/L] of Gwith L− e collapsed to a sink with respect to the image of the open
cover {K, L}n, see Section 2.3. By induction, this spectral sequenceE∗•,•[G/L] converges
to a free infinity page, and the corresponding homology is generated by products of
basic classes.

The E2-page of our original spectral sequence is hence given by the direct sum of
the two bigraded modules E2[G/L] and E∞[K], which differs from E2[G/L] only in
the zeroth column. We will now show that for each 2 6 ` 6 ∞ the E`-page is the
direct sum of E`[G/L] and E∞[K].
For p > 0 and q > 0 look at the map d2 starting in E2p,q. This map is constructed

by representing each class in E2p,q on the chain level (i.e. on the E0-page), mapping it
via the horizontal boundary map to E0p−1,q, lifting it to E0p−1,q+1 and applying the
horizontal map again, landing in E0p−2,q+1. The element of E2p−2,q+1 represented
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3.2 The first homology of configurations in general graphs

by this cycle is the image of the class we started with under d2, see Section 2.1.1.
The lifting of the cycles in L always connects pairs of distinct orderings of particles
on e via a path through the central vertex of L. The end result does not depend on
the choice of such a lift, so we always take the following one: choose (once and for
all) two edges e1, e2 of L that are different from e, then connecting two orderings
ν 6= ν ′ of a set S = {s1, . . . , sm} on e is given by starting with the configuration ν
on e, sliding all particles between s1 and the central vertex to e2, moving s1 to e1,
moving the other particles back to e and repeating this for all particles s2, . . . , sm.
Repeating the same for ν ′ we get two paths which glued together (with opposite
orientations) give a path γ[ν, ν ′] between the two configurations.
By construction it is clear that γ[ν, ν ′] + γ[ν ′, ν ′′] = γ[ν, ν ′′], so the only closed

loop arising in such a way is the trivial path. The construction of the image of a
class under d2 as described above produces segments γ[ν, ν ′] adding up to a cycle,
which hence must be trivial. This shows that d2 maps to zero in E∞[K] and thus that
E3 ∼= E3[G/L]⊕ E∞[K]. By the same reasoning, this is true for all pages, proving that

E∞ ∼= E∞[G/L]⊕ E∞[K].
In conclusion, the E∞-page is torsion-free and the corresponding homology is

generated by products of basic classes.

Proof of Theorem A and Theorem B. For graphs with precisely one vertex of valence at
least three and any subset of the set of vertices of valence 1 turned into sinks the
theorems follow from Proposition 3.3. By induction on the number of essential
vertices, we then use the calculation of the spectral sequence above to prove this
for any graph as in the statement of the two theorems with any subset of the set of
vertices of valence 1 turned into sinks. In particular, this proves both statements for
the case where none of the vertices are sinks.

Remark 3.7. Notice that we needed to introduce sinks at the leaf vertices because
otherwise, we would not be able to describe the infinity page of E∗•,•[G/L], where
L− e was collapsed to a point shaped sink. 4
Remark 3.8. We will later also use that the embeddings of H can be chosen such that
they contain precisely two essential vertices, which can be arranged by splitting an
H-graph containing k essential vertices into k− 1 of them, each containing exactly
two vertices. Also, note that after fixing those two vertices, we can choose the edges
of the embedded H-graph arbitrarily: the cycles given by different choices of edges
differ by cycles in the stars of the corresponding vertices. 4

3.2 The first homology of configurations in general graphs

We know a lot less about the homology of configuration spaces of general graphs.
What we can describe, however, is a generating system for the first homology group
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3 Torsion-freeness and generators

of such configuration spaces.

Theorem C ([CL16, Theorem C, p. 3]). If G is any finite graph and n a natural number,
then the first homology group H1(Confn(G)) is generated by basic classes.

The proof of this statement will be the content of this section. We will formulate the
necessary ingredients in a more general way in order to prove the analogous result
in the case of graphs with sinks later.

For a connected, finite graph G, we choose distinct edges e1, . . . , e` such that
cutting those edges in the middle yields a tree. Fix identifications of [0, 1] with each
of the ei and denote for x ∈ [0, 1] by xei the corresponding point on the edge ei.
Then, define the tree K as

K = G−
⋃

16i6`

[1/3, 2/3]ei ,

where [1/3, 2/3]ei = {xei | x ∈ [1/3, 2/3]}. The idea is now to start with the config-
uration space of K embedded into the configuration space of G and to release the
particles into the bigger graph G one at a time.

For Γ = (G,K) recall the definition of ConfS,T (Γ, Z) (Definition 3.6), which restricts
the particles T ⊂ S to the smaller graph K. We will prove that H1(ConfS,T (Γ, Z))
is always generated by basic classes, see Definition 3.1. We will again proceed by
constructing an open cover and investigating the Mayer-Vietoris spectral sequence.

Let ConfS,T (Γ, Z)with S−T non-empty be given, then choose an arbitrary element
s ∈ S− T and construct the following open cover: for each i, define two open subsets
U+ei and U−ei of ConfS,T (Γ, Z) by

U+ei =
{
f : S→ G | f(s) 6∈ [1/3, 2/3]ej for j 6= i and f(s) 6= 2/3ei

}
U−ei =

{
f : S→ G | f(s) 6∈ [1/3, 2/3]ej for j 6= i and f(s) 6= 1/3ei

}
.

e1

e2

e3

Figure 3.6: The part of Gwhere the particle s is allowed in the open set U+e1 , where
e1 is oriented from left to right.

Let T ′ = T t {s} and let Γ ′ = (G− [1/3, 2/3]ei , K).
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Proposition 3.9 ([CL16, Proposition 4.1, p. 16]). The intersections of those open sets can
be identified as follows:

U±ei ' ConfS,T ′(Γ, Z)
U−ei ∩U+ei ' ConfS,T ′(Γ, Z) t ConfS−{s},T (Γ

′, Z)

U±ei ∩U±ej ' ConfS,T ′(Γ, Z).

Any intersection of at least three of those open sets (which are distinct) is homotopy equivalent
to ConfS,T ′(Γ, Z).
The inclusions induced by going from p-fold intersections to (p − 1)-fold intersections

are homotopic to the identity on the components ConfS,T ′(Γ, Z) and given by adding the
particle s to 1/2ei for the configurations in each component ConfS−{s},T (Γ

′, Z). These latter
components are not hit by any such inclusion.

Proof. If the intersection of any number of these open sets contains open sets U±ei
andU±ej for i 6= j then the particle s is restricted from entering all [1/3, 2/3]ei , so this
intersection is actually precisely the same as ConfS,T ′(Γ, Z). Since every intersection
of > 3 of those sets contains two such open sets, there are only two cases remaining,
namely 1-fold intersections and the intersection U−ei ∩U+ei .
The space U+ei is almost the same as ConfS,T ′(Γ, Z), the only difference is that

the particle s is also allowed in the segment [1/3, 2/3)ei . By sliding s back into the
interval [0, 1/3)ei whenever necessary and moving all particles between 0ei and s
accordingly, we see that this space is homotopy equivalent to ConfS,T ′(Γ, Z). The
analogous reasoning identifies U−ei .
The intersection U−ei ∩ U+ei has two connected components: the component

where s is in (1/3, 2/3)ei and the one where it is in K. The second component is
again on the nose equal to ConfS,T ′(Γ, Z). Modify the first component by a homotopy
moving s to 1/2ei and sliding all other particles on ei away from s into the intervals
[0, 1/3)ei and (2/3, 1]ei , then forgetting the particle s gives an identification with
ConfS−{s},T (Γ

′, Z), proving the first claim.

Byour identification above the description of the inclusionmaps given by forgetting
one of the intersecting open sets is easily deduced. If one of these inclusions would
hit a component ConfS−{s},T (Γ

′, Z), then the particle s would need to be on the
interval (1/3, 2/3)ei for some i, which it never is for any triple intersection.

This allows us to describe generators for the first homology of the configuration
space of any finite graph as follows. We formulate this as a separate proposition in
order to use it for the case where K is a graph with precisely one essential vertex
since this case is needed to prove Theorem B.

Proposition 3.10 ([CL16, Proposition 4.2, p. 17]). LetG be a finite graph, let K ⊂ G be a
tree defined as above and let Z be a subset of the vertex set. If H1(ConfS(K,Z)) is generated
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3 Torsion-freeness and generators

by basic classes for all finite sets S then also H1(ConfS,T (Γ, Z)) is generated by basic classes
for all pairs of finite sets T ⊂ S, where Γ = (G,K).

Proof. We prove this by looking at the spectral sequence constructed from the open
cover described above. To prove the statement we only need to show that moving
one element out of T preserves the property that the homology is generated by basic
classes. We can assume that the configuration space of K is connected since the
only case where this is not true is if G is S1 without sinks, and this case is true by
definition. We will now argue by induction on the number of elements in S− T . The
induction start S = T is precisely that H1(ConfS(K,Z)) is generated by basic classes,
so we only need to check the induction step.

In the induction step 1-classes arise at E∞0,1 and E∞1,0. The module E∞0,1 is a quotient
of E10,1, which is generated by 1-classes of U±ei ' ConfS,T ′(Γ, Z), so by induction by
classes of the required form.
The chain complex E1•,0 is given by the chain complex of the nerve of the cover

(which is a simplex) and one additional copy of Z for each intersection U+ei ∩U−ei .
Restricted to H0(U−ei ∩U+ei)

∼= Z⊕ Z the face maps

Z⊕ Z ∼= H0(U−ei ∩U+ei)→ H0(U±ei) ∼= Z

are given by (x, y) 7→ ±(x+ y). Therefore, all elements (x,−x) are in the kernel of
d1. These elements correspond to S1 movements of s along the edge ei: by mapping
U−ei ∩ U+ei ↪→ U−ei the particle s is allowed to leave (1/3, 2/3)ei via one of the
sides, connecting it to a configuration where s is on the tree K. The other inclusion
allows s to leave via the other side, connecting it to that same configuration with s
on K. Mapping this to ConfS,T (Γ, Z) yields a cycle where s moves along K and ei.
We can choose a representative such that all other particles are fixed and that this
movement follows an embedded circle in G, see Figure 3.7.
Subtracting such kernel elements, we can modify every cycle of (E1•,0, d1) such

that it is zero in all copies of H0(ConfS−{s},T (Γ
′, Z)). Since the remaining part of

the chain complex is the chain complex of a simplex, there are no other 1-classes,
concluding the argument.

Proof of Theorem C. By Theorem B, the group H1(ConfS(K)) is generated by basic
classes for any finite tree K, so the theorem follows from Proposition 3.10.

3.3 Homology groups not generated by product cycles

In this section we describe an example of a homology class of the configuration space
of a graph that cannot be written as a sum of product classes. This example is taken
from [CL16].
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d1−−−−−−−−−→
3 1

4

2

−

U+ei ∩U−ei U+ei

U−ei

3 1
4

2

3 1
4

2

+

3 1
4

2

Figure 3.7: The boundarymapH0(U+ei∩U−ei)→ H0(U+ei)⊕H0(U−ei) producing
a circle movement of s = 2 along ei and the tree K.
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The easiest example we were able to find so far is a 2-class of Conf3(B4), where
B4 is the banana graph of rank three, i.e. two vertices v,w connected via four edges,
see Figure 3.8.

To construct the class, we first construct classes in Conf2(Star4). Let S ⊂ 3 be a set
of two particles, then the first homology group of ConfS(Star3) is one-dimensional,
a generator can be represented by a sum of twelve edges, see Figure 1.5.

v w

Figure 3.8: Including Star3 into the banana graph B4 at v in one of four ways.

Now choose a bĳection of 3 with the leaves of Star3 and of 4 with the leaves of
Star4. This defines four 1-cycles in ConfS(Star4) by including Star3 into Star4 in all
order-preserving ways (with respect to these identifications). Now we add those
four cycles together with the following signs: each inclusion of Star3 is determined
by the edge i ∈ 4 that is missed. The 1-cycle corresponding to this i gets the sign
(−1)i. This sum is actually equal to zero:
The 1-cells of these cycles are given by one particle moving from one edge to the

central vertex and the other particle sitting on another edge. Each such cell appears
precisely twice, once for each way of choosing a third edge from the remaining two
leaves. If these two remaining leaves are cyclically consecutive in 4, the corresponding
cycles have different signs, otherwise, these two cells inside the 1-cycles appear with
different signs, so in both cases, they add up to zero.
Including Star4 into B4 (mapping the central vertex to v) gives a sum of four

1-cycles coming from embedding Star3 into B4 in different ways (see Figure 3.8).
This sum is equal to zero.

Now let t be the third particle, i.e. S t {t} = 3, then take for each of those four
1-cycles in ConfS(B4) the product of the cycle with the 1-cell moving particle t from
the remaining one of the four edges to the vertex w.

Doing this construction for all three choices of S gives a sum of 144 2-cells, and the
claim is that this is, in fact, a 2-cycle in the combinatorial model of the configuration
space. We can think of this cycle as 12 cylinders, where each cylinder is a 1-cycle in
the star of vmultiplied with the movement of another particle to the other vertex w,
see Figure 3.9. The boundary 1-cells of the cylinders get identified in a certain way.
Let t ∈ 3, then one part of the boundary of four of those cylinders is given by

the 1-cycles of the particles 3 − {t} with t sitting on w. By construction, those four
1-cycles add up to zero.
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It remains to investigate the parts where the particle tmoving towards w is in the
middle of the edge. These 1-cells are precisely given by two particles sitting in the
middle of two edges and a third particle moving from another edge to v. Each such
cell appears precisely twice: once for every choice of which one of the fixed particles
moves to w and which one belongs to the star movement. By analogous reasoning,
these two occurrences have opposite signs, so the total contribution is zero.

v w
1

3

2

Figure 3.9: Each of the twelve cylinders making up the cycle is given by twelve two
cells of this form, where all particles are on different edges.

Thus, the boundary cells of the twelve cylinders add up to zero, yielding a non-
trivial cycle. By Proposition 1.20, the combinatorial model is 2-dimensional, so this
does not represent the zero class. Notice that there do not exist any product classes
since every S1 generator uses both vertices and there are too few particles for two
H-classes or star classes. By looking at the identifications and calculating the Euler
characteristic, one sees that the resulting cycle is, in fact, a closed surface of genus
13 embedded into the combinatorial model of the configuration space. In fact, by
pushing in 2-cells where strictly less than three edges are involved (starting with
those involving only one edge, followed by those involving precisely two edges) and
then pushing in the 1-dimensional intervals where particles move to an occupied
edge, it is straightforward to show the following:

Proposition 3.11. Conf3(B4) is homotopy equivalent (equivariantly with respect to the
action of the symmetric group Σ3) to a closed orientable surface of genus 13.

See Figure 3.10 for examples of cells we push in. This is a somewhat degenerate
situation, in generalwedo not expect these configuration spaces to have the homotopy
type of a manifold.

This example can now be generalized to give examples of graphs G such that
Hq(Confn(G)) is not generated by products. We will do this by enlarging the banana
graph above and adding particles.

By adding k disjoint S1 graphs, connecting each of them to v via a single edge and
adding k particles we can take the product of the non-product 2-cycle as described
above with the k-cycle given by the product of the k particles moving inside the
S1’s. This gives a class in the (k+ 2)-nd homology group of the configuration space
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3 Torsion-freeness and generators

1
3 2

3

1 2

Figure 3.10: Two examples of cells we push in to show that the combinatorial model
of Conf3(B4) is homotopy equivalent to the surface of genus 13 we
constructed. The horizontal direction in the cube is the movement of
particle 2, the vertical direction that of particle 3. The red edges are not
incident to any other 2-cell, the dashed arrows indicate how we deform
the 2-cell onto the black 1-cells.
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3.4 Graphs with sinks

of k + 3 particles in this graph, which by analogous reasoning cannot be written
as a sum of product classes. This shows that this phenomenon appears in every
homology degree (except for the zeroth and first, of course).

3.4 Graphs with sinks

The description of the homology of configuration spaces of graphs from the previous
sections generalizes to the case where an arbitrary subset of the vertex set is turned
into sinks. For completeness, we give the missing ingredients to extend our results
to this more general setting. Additionally, some of the results used in the proof will
be useful in the next chapter.

Theorem D ([CL16, Theorem D, p. 3]). Let G be a finite graph and let Z be any subset of
the vertex set. Then the first homology of Confn(G,Z) is generated by basic classes. If G is a
tree with loops, then H∗(Confn(G,Z)) is free and generated by products of basic classes.

To prove this result, we describe the homology of configuration spaces of graphs
which are wedged together along a sink.

Proposition 3.12 ([CL16, Proposition 5.1, p. 19]). Let (G1, Z1), (G2, Z2) be based
graphs with sinks such that each Zi is a union of vertices and edges of Gi, the base points
are sinks and H•(Confn(Gi, Zi)) is free for all i ∈ {1, 2}, n ∈ N. Then for each q, n the
homology Hq(Confn(G1 ∨G2, Z1 ∪ Z2)) is free and generated by products of homology
classes of particles in G1 and G2.

For the proof we need the following result, choosing a system of bases as in the
proof of Theorem A.

Proposition 3.13 ([CL16, Proposition 5.2, p. 20]). Let q ∈ N, let K be a based graph
and let Z be a subset of the vertex set and edges containing the base point b such that
Hq(ConfS(K,Z)) is free for all finite sets S. Then there exists a collection of bases BS of
Hq(ConfS(K,Z)) for each finite set S such that

• for each σ ∈ BS and each set T the element σT ∈ Hq(ConfStT (K)) given by adding
the particles T onto the base point is contained in BStT ,

• every σ ∈ BS has precisely one minimal representative σmin ∈ BS ′ for S ′ ⊂ S
such that (σmin)

S−S ′ = σ (meaning that the set S ′ is minimal with respect to this
property), and

• we always have
(
σT
)

min = σmin.

Proof of Proposition 3.13. For two disjoint sets S and T , define the map

ιT = ιST : ConfS(K,Z)→ ConfS∪T (K,Z)
σ 7→ σT
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3 Torsion-freeness and generators

by adding the particles T onto the base point. Notice that πS ◦ ιST is the identity.
LetS = {s1, . . . , s`} for ` > 1 be given, thenwewant to decomposeHq(ConfS(K,Z))

into direct summands indexed by the set of particles which are not fixed on the base
point b. We have that

π{s1} ◦ ι
{s1}

S−{s1}
: Hq(Conf{s1}(K,Z))→ Hq(ConfS(K,Z))→ Hq(Conf{s1}(K,Z))

is the identity. Therefore, we have a decomposition into free direct summands

Hq(ConfS(K,Z)) ∼= ιS−{s1}(Hq(Conf{s1}(K,Z)))⊕ R{s1}
=: H[s1]S ⊕ R{s1}.

Now we repeat the same argument for the particle s2 ∈ S. Since

π{s2} : Hq(ConfS(K,Z))→ Hq(Conf{s2}(K,Z))

maps H[s1]S to zero, the composite

Hq(Conf{s2}(K,Z))→ Hq(ConfS(K,Z))/H[s1]S ∼= R{s1} → Hq(Conf{s2}(K,Z))

is the identity again, so by the same reasoning, R{s1} has H[s2]S as direct summand.
Repeating this for all si ∈ Swe get a decomposition into free modules

Hq(ConfS(K,Z)) ∼= H[s1]S ⊕ · · · ⊕H[s`]S ⊕ R[2]S
=: H[1]S ⊕ R[2]S.

Notice that all classes with a representative having n− 1 fixed particles on bmap to
zero in the R[2]S-summand.

Now take the subset {s1, s2} ⊂ S and look at the composite map

π{s1,s2} ◦ ιS−{s1,s2} : Hq(Conf{s1,s2}(K,Z))→ Hq(Conf{s1,s2}(K,Z)),

which is again the identity. By taking quotients by H[1]{s1,s2} and H[1]S, this gives
the following composite, which is still the identity:

R[2]{s1,s2} → R[2]S → R[2]{s1,s2}.

Therefore, we get a direct sum decomposition

R[2]S ∼= ιS−{s1,s2}(R[2]{s1,s2})⊕ R{s1,s2}
=: H[s1, s2]⊕ R{s1,s2}.

Repeating the arguments from above with all 2-element subsets of S gives

R[2]S ∼= H[s1, s2]S ⊕H[s1, s3]⊕ · · · ⊕H[s`−1, s`]⊕ R[3]S
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3.4 Graphs with sinks

and therefore a decomposition into free modules as follows:

Hq(ConfS(K,Z)) ∼= H[1]S ⊕H[2]S ⊕ R[3]S.

Continuing this process we eventually get a decomposition

Hq(ConfS(K,Z)) ∼= H[1]S ⊕ · · · ⊕H[`− 1]S ⊕H[`]S,

where H[`]S = H[S]S := R[`]S.
Choosing arbitrary bases forH[T ]T for all finite sets T determines bases ofH[T ]S for

all T ⊂ S and therefore a collection of basesB• forHq(Conf•(K,Z)). By construction,
this collection has the required three properties.

Proof of Proposition 3.12. This is very similar to theproofofTheoremAandTheoremB,
so we will omit a few details. Cover the graphG := G1∨G2 by two open setsU1, U2,
where Ui is defined to be the union of Gi and the open ball of radius 1/2 around the
base point of G for the path metric where each edge has length 1. The intersection
U1 ∩U2 is a star graph Starb whose central vertex is a sink, so its configuration space
is contractible. We now look at the Mayer-Vietoris spectral sequence corresponding
to the cover of the configuration space, see Proposition 2.1. The entries on the
E1-page are given by direct sums of the q-th homology of (p+ 1)-fold intersections
of open sets, and by Proposition 2.5 each module E1p,q is a direct sum of modules of
the form

Hq(ConfS1(G1, Z1)× ConfSb(Starb, ZStarb)× ConfS2(G2, Z2))
∼=

⊕

q1+q2=q

Hq1(ConfS1(G1, Z1))⊗Hq2(ConfS2(G2, Z2))

for some S1 t Sb t S2 ⊂ n.
Using Proposition 3.13, choose systems of bases Bq,i• of Hq(Conf•(Gi, Zi)), deter-

mining bases for all entries on the E1-page by the identification above. Then each
row of the E1-page splits into a sum of chain complexes indexed by pairs of minimal
representatives in B

q,1
• and B

q,2
• : for each such pair of minimal representatives take

the graded submodule of the q-th row generated by all pairs in B
q,1
S1
×B

q,2
S2

for any
S1 t S2 ⊂ n having these minimal representatives. This determines a direct sum
decomposition as graded modules. Since the horizontal boundary map under the
identification above only adds fixed particles to the base point and therefore does
not change the minimal representatives, this, in fact, is a decomposition of the q-th
row as chain complexes, see also the proof of Theorem A and Theorem B.

Now look at such a chain complex Cσ1σ2 for some pair of minimal representatives
σ1 ∈ B

q,1
S1

and σ2 ∈ B
q,2
S2

. For σ ∈ B
q,1
T with minimal representative σ1 there exists

a representative of σ where the particles T − S1 are fixed on the base point, and the
analogous statement holds for σ2. Hence, the generators in the chain complex Cσ1σ2
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3 Torsion-freeness and generators

only differ in the subsets of particles in n − S1 − S2 sitting on b which they put into
U1, U2 and the intersection U1 ∩U2.
Let bE∗•,• be the Mayer-Vietoris spectral sequence for Confn−S1−S2(Starb, ZStarb)

for the open cover {U1, U2} pulled back via Starb ↪→ G. Then Cσ1σ2 is isomorphic
to the chain complex bE1•,0, see Section 3.1.3. Since Confn−S1−S2(Starb, ZStarb) is
contractible and bE1p,q is trivial for q > 0, the homology of this chain complex is Z
in degree zero and 0 else.
The same is thus true for Cσ1σ2 , whose zeroth column is then generated by the

product of σ1 and σ2 with the remaining particles sitting on b.

We are now ready to prove Theorem D.

Proof of Theorem D. The proofs of Theorem A and Theorem B worked for any subset
of the set of vertices of valence one turned into sinks. Using Proposition 3.12, the
claims follow for any subset of the vertex set turned into sinks by wedging together
such graphs.
Therefore, the group H1(ConfS(K,Z)) is generated by basic classes for any finite

tree K, so alsoH1(ConfS(G,Z)) is generated by basic classes by Proposition 3.10.

Similarly to the non-sink case, the homology of configuration spaces of graphs
with sinks is in general not generated by product classes. The type of non-product
classes, however, is rather different. We will now construct such a class which does
not have a correspondence in the non-sink case. This example is taken from [CL16].

Let B3 be the theta graph, i.e. two vertices v and w connected by three edges,
and let Z = {v,w}. Then there exists a surface of genus two embedded into the
combinatorial model of Conf2(B3, Z), constructed as follows.
Let e1, e2 and e3 be the edges of the theta graph, then look at the torus T1 in

B3 × B3 given by particle 1moving along the S1 consisting of e1 and e2 and particle
2 moving along the S1 consisting of e1 and e3. Let T2 be the same torus with the
particles 1 and 2 exchanged.
The tori T1 and T2 are not contained in the configuration space of B3: for each Ti

precisely one 2-cell is outside the configuration space, namely the cell where both 1
and 2 are moving along e1 at the same time. The difference of T1 and T2, however,
erases precisely that 2-cell and produces a 2-cycle of genus two in Conf2(B3, Z), see
Figure 3.11. Since there are no three-cells, this represents a non-zero homology class.
There is no pair of embedded circles that does not share an edge, so in particular
there are no product classes, showing that this cycle cannot be written as a sum of
products. In fact, this cycle is precisely the sum of all cubes in the combinatorial
model, so the combinatorial model of Conf2(B3, Z) is precisely this surface of genus
two.

60



3.4 Graphs with sinks

This very different behavior hints at the fact that the notion of sinks might not be
as useful for the investigation of general graphs, at least compared to the tree with
loops case. In the next chapter, however, we will see how to use sinks to deduce
representation stability for the second homology group of configuration spaces of
graphs (where we stabilize the graph), even though we are not able to give a concrete
description of all homology classes.

1

2

1 2

1

2

1 2

Figure 3.11: The surface of genus two in the theta graph B3 with two sinks. All black
opposite intervals are identified pairwise as indicated, giving two tori
with boundary consisting of the red intervals. Gluing the red intervals
together as indicated produces a surface of genus 2. The dotted lines
indicate a 2-cell which is only there in the product B3 × B3, but not in
the configuration space. The lower left corner corresponds in both tori
to the configuration where both particles are on the left sink.
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Chapter 4

Representation stability for
configuration spaces of graphs

In this chapter we will prove stability results for configuration spaces of graphs. We
briefly review the concept of representation stability. Then, we prove representation
stability for a fixed number of particles in a growing graph, where the symmetric
groups act on the graph. In the final part of this chapter we keep the graph fixed
and prove that if this graph has high vertex connectivity the map forgetting the
last particle induces a representation stable sequence of first cohomology groups
H1(Conf•(G); Q).

4.1 Representation stability and FI×`-modules

In [CF13], Church and Farb introduced the concept of representation stability. We now
recall the concept in the case of the symmetric groups Σk, for more details see [CF13,
Section 2.3, p. 19].
Let {Vk}k∈N be a sequence of representations, where Vk is a Σk-representations

over Q, with linear maps
φk : Vk → Vk+1

which are homomorphisms of QΣk-modules. Here we consider Vk+1 as QΣkmodule
by the standard inclusion Σk ↪→ Σk+1.

To describe stability for such a sequence, we need to compare Σk-representations
to Σk ′-representations for k ′ > k. Recall that the irreducible representations of Σk
over the rational numbers are in one to one correspondence to partitions λ of k.
Given a partition λ = (λ1 > λ2 > · · · > λ` > 0) of k—whichmeans λ1+ · · ·+λ` = k
— define for k ′ − k > λ1 the irreducible Σk ′-representation V(λ)k ′ to be the one
corresponding to the partition (k ′−k, λ1, . . . , λ`). Each irreducible representation of
Σk ′ can be written like this for a unique partition λ. If one thinks of the partition λ as
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4 Representation stability for configuration spaces of graphs

a Young diagram with λi boxes in the i-th row, then two irreducible representations
of Σk and Σk ′ for k < k ′ are viewed as “the same” irreducible representation if the
Young diagram of the second one can be obtained by adding boxes to the first row of
the Young diagram of the first representation. For more details, see [CF13, Section
2.1, p. 14] and [FH91].

Definition 4.1 ([CF13, Definition 2.3, p.20]). The sequence {Vk} is (uniformly) repre-
sentation stable if, for sufficiently large k, each of the following conditions holds.

• φk : Vk → Vk+1 is injective.

• The QΣk+1 submodule generated by φk(Vk) is equal to Vk+1.

• Decompose each Vk into irreducible representations

Vk =
⊕

λ

V(λ)⊕cλ,kk

with multiplicities 0 6 cλ,k 6∞. Then there exists anN > 0 such that for each
λ, the multiplicity cλ,k is independent of k > N. 4

This reduces the description of the infinite sequence of Σk-representations to a
finite calculation.

In [CEF15], Church-Ellenberg-Farb introduced the notion of FI-modules, which
we now recall. Let FI be the category with objects all finite sets and morphisms
all injective maps. We often consider the skeleton of this category given by the
restriction to the finite sets n := {1, . . . , n} for n > 0.

Definition 4.2. Let R be a commutative ring. An R[FI]-module V• is a functor

V• : FI→ RMod.

It is said to be finitely generated in degree ` if there exists a finite set X of elements in
⊔

S∈FI
|S|6`

VS,

such that the smallest sub-FI-module containing all these elements is V•. Here, |S| is
the cardinality of S. 4

For finite-dimensional representations over fields of characteristic 0, finitely gen-
erated FI-modules produce representation stable sequences in the following way:

Theorem 4.3 ([CEF15, Theorem 1.13, p. 8]). An FI-moduleV• over a field of characteristic
0 is finitely generated if and only if the sequence k 7→ Vk is representation stable and each Vk
is finite-dimensional.
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This result reduces the uniform decomposition of the representations Vk to finding
a finite set of generators. Furthermore, Church-Ellenberg-Farb proved that the
dimension of representation stable sequences grows polynomially:

Theorem 4.4 ([CEF15, Theorem 1.5, p. 4]). Let V• be an FI-module over a field of
characteristic 0. If V• is finitely generated then the sequence of characters χV• is eventually
polynomial. In particular, dimVk is eventually polynomial in k.

In order to describe stabilization in multiple “directions” we look at the product
category FI×` consisting of ` > 1 copies of the category FI. An FI×`-module is then
a functor FI×` → RMod, the notion of finite generation is defined analogously.
To define such a module, it is sufficient to define it on the skeleton consisting of

the objects (j1, . . . , j`) for ji ∈ N and the morphisms between them.
Clearly, if V is a finitely generated FI×`-module and F : FI→ FI×` is any functor,

then the FI-module F∗V := V ◦ F is finitely generated: each component of F is either
eventually constant or unbounded. The diagonal is one example of such a functor.

4.2 Stability for trees with loops and the first homology group

In the next two sections we investigate the stabilization behavior of configuration
spaces of graphs when we keep the number of particles fixed and stabilize the graph.
We will first define precisely what we mean by graph stabilization and then show
that by the description of the generators for the homology of configuration spaces
of trees with loops in Theorem B we can show that these homology groups indeed
stabilize.

LetG0 be a finite graph and let Ki ⊂ Gi for 1 6 i 6 ` be pairs of finite graphs such
that each Ki is also a subgraph of G0. Denote by Γ = ΓG0 := {(K1, G1), . . . , (K`, G`)}.
Let G = GΓ : FI×` → Top be given by

GΓ (j1, . . . , j`) := G0 tK1 Gtj11 · · · tK` Gtj`` ,

i.e. by gluing the copies of the graphs Gi to G0 via the shared subgraph Ki. To
define the images of morphisms, notice that each summand Gi can be labeled by a
number between 1 and ji. For a map φ : ji ↪→ j ′i we define the induced map to send
the summand with labelm ∈ ji to the summand with label φ(m) via the identity.

Meta Question. For which Gi, Ki, q and abelian group A is the FI×`-module

HAq,nΓ := Hq(Confn(GΓ );A)

finitely generated?

ForA = Z we also write HΓq,n. Part of this question asks how “local” the homology
of configuration spaces in graphs is. In the case of trees with loops we proved a
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4 Representation stability for configuration spaces of graphs

rather strong kind of locality in Theorem B by describing an explicit generating
system of products of 1-classes, and by refining the generating system we can prove
in that case that the answer to the question above includes all trees with loops.

Theorem E. If each of the graphs Gi for 0 6 i 6 ` is a tree with loops, then HΓq,n is finitely
generated in degree (ζ, ζ, . . . , ζ) for each q, n ∈ N, where ζ = ζn,q = min{2n, n+ 3q}.

Corollary 4.5. In the same situation as in the theorem above choose any functor

F : FI→ FI×`,

then the FI-module HΓq,n ◦ F is finitely generated. In particular, the sequence HQ
q,nΓ ◦ F is

representation stable and therefore the dimension of the sequence of vector spaces is eventually
polynomial.

Corollary 4.6. Let G,K be finite trees with loops with base point and define

Gk := G∨ K∨ · · ·∨ K︸ ︷︷ ︸
k times

.

Then the FI-module Hq(Confn(G•)) is finitely generated. In particular, the sequence
Hq(Confn(G•); Q) is representation stable and therefore the dimension of the sequence of
vector spaces is eventually polynomial in k.

Remark 4.7. The fact that the dimension of the sequence in the previous corollary is
bounded from above by a polynomial can be seen more easily: The number of edges of
Gk and the maximal valence of the vertices in the graph Gk are both polynomial in
k. By the description of the combinatorial model in [Lü14], the number of cells is
(for fixed number of particles) bounded from above by a polynomial in these two
numbers. Therefore, the number of `-cells in the combinatorial model and thus the
maximal dimension of the `-th homology group is at most polynomial in k.

The result, however, shows more: it shows that the dimension of the homology is
eventually equal to a polynomial in k, and additionally that the representations of
the symmetric group eventually stabilize. See Section 4.1 for more details. 4

For a general graph we currently only have a description of generators for the first
homology group of its configuration space, see Theorem C. This description allows
us to answer the question completely for q = 1:

Theorem F. For any choice of graphs Gi and Ki the FI-module HΓ1,n is finitely generated
in degree (n+ 3, n+ 3, . . . , n+ 3) for each n ∈ N.

In order to prove those two theorems we first prove Corollary 4.6 for star graphs
by hand.
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Proposition 4.8. Corollary 4.6 is true for G the point and K the interval [0, 1] with 0 as
base point, i.e. the sequence of star graphs with increasing number of leaves. In fact, the
homology is generated by cycles meeting at most n+ 3 many copies of K, so the FI-module is
generated in degree n+ 3.

Remark 4.9. For n = 2 the argument presented below is easily modified to show
that H1(Conf2(G•)) is generated in degree n + 2 = 4. Since n + 3 6 2n for n > 2,
this shows that H1(Confn(G•)) is generated in degree 2n, which will be used in the
proof of Theorem E. 4

Proof of Proposition 4.8. The combinatorial model of this configuration space is a
graph, so we only need to consider 1-cycles. Choose any subgraph Star3 ⊂ Stark.
Let C be a 1-cycle, then the claim is that we can write C as a sum of cycles where
each particle uses at most one edge outside of Star3.

Let x be a particle and choose a 0-cube ν of C where x sits on the vertex of the star.
If this does not exist, then x is fixed and therefore uses at most one edge. Now move
along a path γ of 1-cubes in the cycle until x sits on the vertex again and there exists
a continuation such that the next 1-cube would move x onto an edge of Stark− Star3
for the second time. We denote the corresponding terminal 0-cube of γ by ν ′. Now
choose the following path γ ′ back to ν, during which x always stays in Star3: move x
onto an edge e1 of Star3 and keep it there. Follow γ back ignoring the movement of
x and using the connectedness of the configuration space of Star3 to move x out of
the way if other particles need to move along e1. Finally, move x back to the vertex.

This decomposesC into two cycles: the cycle γγ ′ andCwith γ replaced by γ ′−1. In
the first of those two cycles the particle x only visits one edge not in Star3. Continuing
this process, we eventually exhaust all edges of C and get a sum decomposition of C
where in each summand x visits only Star3 and at most one additional edge.

Since we did not increase the number of edges outside of Star3 visited by any
other particle, we can repeat this for every x and get a sum decomposition of C of
the required form.

Consequently, for eachN > n+ 3we can generate H1(Confn(GN)) by cycles such
that each one of them is supported in some subgraph Starn+3 ↪→ GN. Therefore,
the ZΣN-span of the image of the map

H1(Confn(Gn+3))→ H1(Confn(GN))

is the whole module and the FI-module H1(Confn(G•); Z) is finitely generated in
degree n+ 3.

Proof of Theorem E. Let n > 1 and let (k1, . . . , k`) be such that each ki is at least
ζ = min{2n, n + 3q}. By Theorem B, the homology of Confn(G(k1, . . . , k`)) is
generated by products of basic cycles. By Remark 3.8, we can assume that the
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4 Representation stability for configuration spaces of graphs

embedded H-graphs contain exactly two vertices because ki > 3 and therefore the
valence of all internal vertices is at least three. In the following, we will say that a
particle meets a copy of someGi if it moves into the part not contained inG0, namely
the part Gi − Ki.

Each H-class meets at most 3 copies of each Gi by Remark 3.8. Since each H-class
consists ofm > 2 particles, we have 3 6 ζm,1.

Each star classwithm particles can bewritten as a linear combination of generators
such that each is using only ζm,1 different edges by Proposition 4.8 and Remark 4.9.
Therefore, each summand visits at most ζm,1 distinct copies of each of the Gi.

The only embedded copies of S1 are given by self loops at one of the vertices, so
each S1-class meets at most one of the copies of one of the Gi.

Each of the non-moving particles meets at most one of the copies. Hence, we can
generate the whole homology by classes which each meet at most

ζm1,1 + · · ·+ ζmq,1 + (n−m1 − · · ·−mq) 6 min{2n, n+ 3q} = ζn,q

different copies of each of the Gi. This implies that the Z[Σk1 × · · · × Σk` ]-span of
the image of

Hq(Confn(G(ζ, . . . , ζ)))→ Hq(Confn(G(k1, . . . , k`)))

is the whole module, finishing the proof.

Proof of Theorem F. By Theorem C, the homology group HΓ1,n is generated by basic
classes. Fix (k1, . . . , k`) such that ki > n+ 3 for each i. Each H-class meets at most
three copies of each Gi by Remark 3.8. Star classes involving k particles can be
written as sums of other star classes, each meeting at most k+ 3 copies of each of
the Gi by Proposition 4.8. Every S1-class can be written as a sum of S1-classes such
that each of them meets at most two copies of each of the Gi: choose a spanning
tree for each connected component of G(1, . . . , 1) ⊂ G(k1, . . . , k`) and extend it
to spanning trees for the connected components of G(k1, . . . , k`). The inclusion
G(1, . . . , 1) ↪→ G(k1, . . . , k`) is a π0-isomorphism, so this construction ensures that
this forest restricted to the union of G(1, . . . , 1) and a copy of one of the Gi still gives
a spanning forest. The cycles corresponding to the edges outside of that spanning
forest thus stay inside this copy and G(1, . . . , 1), so they meet at most two copies of
each Gi.

The non-moving particles meet at most one copy each, so each class can be written
as a sum of classes meeting at most n+ 3 copies of each of the Gi.

4.3 Stability for banana graphs

In this section we will prove stabilization for banana graphs, which will be the main
input for proving stabilization of the second homology in general, see Theorem H.
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Definition 4.10. For k ∈ N, the graph Bk given by two vertices v and w connected
via k edges is called the banana graph with k edges. This graph has an action of the
symmetric group Σk given by permuting the edges. 4

In fact, we will view the collection of spaces B• as an FI-space in the canonical
way.

TheoremG. For eachn ∈ N andq ∈ N the FI-moduleHq(Confn(B•)) is finitely generated
in degree n+ 6. The FI-module Hq(Confn(B•, Z)) is finitely generated in the same degree
for any Z ⊂ {v,w} and q 6 3.

Remark 4.11. It is easier to only see that the dimension ofH•(Conf(Bk)) is eventually
polynomial in k. From Theorem C, we see that the first homology is generated by
basic classes – by star classes, H-classes and S1-classes. By Theorem F, the FI-module
H1(Confn(B•)) is generated in degree n+ 3, so dimH1(Confn(Bk); Q) is eventually
polynomial in k. The Euler characteristic of Confn(Bk) is polynomial in k, which can
be seen by the formulas for the number of cells of the combinatorial model in [Lü14,
Section 3.4, p. 38]. Since the zeroth homology is Z for k > 3, this shows that the
dimension of the second homology group is also eventually polynomial in k. This,
however, is weaker than saying that the FI-module given by the second homology is
finitely generated. 4
We will reduce Theorem G to finding a good set of generators for the homology

H∗(Confn(Bk, {v,w})) of banana graphs with two sinks, and then describe such a
set of generators, see Proposition 4.13 and Proposition 4.14.
Remark 4.12. The case Z = ∅will also follow from Theorem H, but we still give the
explicit proof here to illustrate the techniques on a small example. 4

Proof of Theorem G. By Theorem F we only have to prove the statement for q > 2. If
|Z| = 1, the space in question is homotopy equivalent to a 1-dimensional complex,
so there is nothing to prove. The case |Z| = 2 will follow from Proposition 4.13 and
Proposition 4.14, so it remains to handle the case Z = ∅ and q = 2. Furthermore, we
can assume n > 2 because for n = 1 the second homology is trivial.

For fixed k ∈ N, look at the open cover V = {Vv, Vw}with

Vv := Bk − {w} and Vw := Bk − {v}.

Both of these open sets are star graphs (with missing vertices of valence 1). Denote
by E∗•,•[Z] the spectral sequence defined via the open cover Vn of Confn(Bk, Z), as
described in Section 2.1. For Z = ∅, we write E∗•,• = E∗•,•[∅].
We want to prove that the FI-module H2(Confn(B•)) is finitely generated, so we

are interested in the groups E∞0,2, E∞1,1 and E∞2,0. The first one, E∞0,2, is a quotient of
E10,2 and therefore generated by products of star classes. By Proposition 4.8, every
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4 Representation stability for configuration spaces of graphs

such product of n1 and n2 particles forming a star class can be written as sums of
such products meeting at most n1 + 3+ n2 + 3 edges. The remaining n− n1 − n2
particles sit on the edges, so in total we meet at most n+ 6 edges.
We will use the sink comparison argument to compute E∞2,0, see Section 2.3. By

Corollary 2.6, we have

E1p,q
∼=

⊕

qv+qw=q

⊕

j∈J
Hqv(Conf

S
j
v
(Vv))⊗Hqw(Conf

S
j
w
(Vw))

for some finite index set J and Sjv t Sjw ⊂ n. The horizontal boundary map d1 does
not change the degrees qv and qw, so we can split each row of the E1-page into chain
complexes Cqv,qw indexed by tuples (qv, qw) ∈ N2. Again, we write Cqv,qw [Z] for
the corresponding chain complexes of E1•,•[Z].

Each such chain complexes with qv = 0 or qw = 0 stays the same when turning v
or w into a sink, respectively. In particular, the bottom row is independent of Z: we
have

E2p,0[Z]
∼= E2p,0[{v,w}]

∼= Hp(Confn(Bk, {v,w}))

for any subset Z ⊂ {v,w}, where the last isomorphism follows since for Z = {v,w}

only the zeroth row of the first page is non-trivial.

We now use this general idea to describe E∞2,0 and E∞1,1. The module E∞2,0 = E32,0
is given by the kernel of the map

d2[∅] : E22,0[∅]→ E20,1[∅].

By the comparison of E2-pages as described above, we have

E2•,0[∅] ∼= E2•,0[{v}],

and under this identification the kernel of d2[∅] is a submodule of the kernel of
d2[{v}]: the inclusion Confn(Bk) ↪→ Confn(Bk, {v}) induces the canonical projection

E20,1[∅] ∼= C0,1 ⊕ C1,0 � C0,1 ∼= E20,1[{v}].

As Confn(Bk, {v}) has only one essential vertex and no edge connecting two sinks, by
Proposition 1.20 its combinatorial model is 1-dimensional and its second homology
is zero, so this kernel and therefore E∞2,0 are trivial.

It remains to construct generators for E∞1,1 = E31,1. The map d2 sends E21,1 to zero,
so it is sufficient to produce generators for

E21,1
∼= C0,11 ⊕ C1,01

∼= C0,11 [{v}]⊕ C1,01 [{w}] ∼= E21,1[{v}]⊕ E21,1[{w}].

By symmetry, we can further reduce the problem to finding generators for E21,1[{v}].
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4.3 Stability for banana graphs

By the description above, E1p,q[{v}] is non-trivial only for q 6 1 and the space
Confn(Bk, {v}) is homotopy equivalent to a 1-dimensional complex. Therefore,
E∞1,1[{v}] = E31,1[{v}] = 0 and

d2[{v}] : E
2
3,0[{v}]→ E21,1[{v}]

is surjective. The description of the bottom row above gives

E23,0[{v}]
∼= E23,0[{v,w}]

∼= H3(Confn(Bk, {v,w})).

By Proposition 4.14, the module E23,0[{v}] is generated by classes meeting at most
8 6 n+ 6 edges. The corresponding classes in the zeroth homology groups can be
represented by configurations without particles on the vertices v and w by moving
all those particles onto one of the eight edges. Mapping such a class via d2 to get
the image in E21,1[{v}] (see Section 2.1.1) can be done without using more than those
eight edges: the lifts we need to choose connect different 0-cycles involving only
eight of the edges via one of the vertices. All such cycles can be connected by using
only those edges because the configuration space of Star8 is connected.

By the same argument, lifting the corresponding class to the zeroth column to get
a representative in Confn(Bk) can be done in a way that only 8 6 n + 6 edges are
met.

Therefore, the second homology of Confn(Bk) can be generated by classes involv-
ing at most n+ 6 edges, which proves the claim.

It remains to show the following two results:

Proposition 4.13. For each k ∈ N the groupH2(Confn(Bk, {v,w})) is generated by classes
meeting at most 4 edges.

Proposition 4.14. For each k ∈ N the groupH3(Confn(Bk, {v,w})) is generated by classes
meeting at most 8 edges.

Both proofs proceed by investigating the Mayer-Vietoris spectral sequence for the
following open cover V of Bk: for each edge e ∈ E(Bk), let Ve be a small contractible
open neighborhood of the edge e. Denote by E∗•,•[Z] the Mayer-Vietoris spectral
sequence for Confn(Bk, Z ∪ {v,w}) with Z ⊂ Bk, corresponding to the open cover
Vn, see Section 2.1. Notice that we now allow the sink set Z to contain edges, and the
two vertices are always sinks.

We will investigate the infinity page of the spectral sequence for Confn(Bk, {v,w})

E∗•,• = E
∗
•,•[∅] = E∗•,•[{v,w}].

The main technique will be to turn whole edges into sinks and to compare the
corresponding spectral sequences.
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4 Representation stability for configuration spaces of graphs

Remark 4.15. The fact that all vertices are sinks has the following implication: lifting
elements of the infinity page to the zeroth column to interpret them as classes of
H∗(Confn(Bk, Z)) can be done without using any additional edges. In each step (see
Section 2.1.1), the lifting along d0 is given by choosing a k-chain in the star of one
vertex whose boundary is the difference of two (k−1)-cycles. Since the configuration
space of a star with any number of leaves such that only the central vertex is a sink is
contractible, this chain can be chosen to not meet any new edges.
Therefore, it suffices to show that we can generate the modules on the infinity

page by classes meeting only the claimed number of edges. 4

4.3.1 The bottom row of the second page

Before going into the proofs, let us inspect the bottom row of the E2-page of this
spectral sequence. By the sink comparison argument again (see Section 2.3), the
bottom row E2•,0 is isomorphic to the bottom row E2•,0[Z] for Confn(Bk, Z) for any
subset {v,w} ⊂ Z ⊂ Bk. In particular, it is the same for Z = Bk, for which we have
Confn(Bk, Bk) = Bnk . The intersections of the open sets consist only of contractible
connected components in this case, so all rows except the zeroth row are trivial
already on the E1-page. Therefore, the bottom row of the E2-page is for any Z given
by

E2p,0[Z]
∼= E2p,0[Bk]

∼= E∞p,0[Bk] ∼= Hp(Bnk ).
The homology group Hp(Bnk ) is generated by products of p particles moving along
embedded circles in Bk, without restrictions regarding collision. Using the relations
in H1(Bk) we can choose generating systems of such products that have nice
intersection patterns:
Remark 4.16. For k > 3 every circle given by edges e1e2 can be written as a difference
of two circles e1e3 and e2e3, see Figure 4.1. If we now have a product of particle 1
and 2 both moving along the circle e1e2, then we can write this class of H2(Bnk ) as
the difference of the two classes given by moving 1 along e1e2 and 2 along e1e3 or
e2e3. Therefore, this product can be written as a sum of products where the circles
share only one edge instead of two.

More generally, using the same idea we can find for k > 2p−1 a generating system
of Hp(Bnk ) consisting of such products such that

• each of the circles shares at most one of its two edges with any other circle, and

• all non-moving particles are on the sink v.

The restriction on p ensures that for each generator where the intersection of the
circle factors is not as described above, there is an edge that is not contained in any of
the embedded S1, allowing us to resolve one of the intersections by writing a circle
as the sum of two circles involving this free edge.
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=

e1

e2

e3

+

Figure 4.1: Replacing the movement of one particle along the circle e1e2 by two
movements of this particle along e1e3 and e2e3.

In particular, at most bp2 c edges are contained in two or more circles of one such
product. 4

We now describe how these product classes are represented in the chain complex
E1•,0[Bk], see Section 2.1.1 for the description of how to interpret elements of the
infinity page as classes in H∗(Confn(Bk, Z)).
The movement of a particle j ∈ n along an embedded circle given by two edges

e 6= e ′ is represented in E21,0[Bk] as the difference of the 0-classes given by putting j
onto the two sinks in the intersection Ve ∩ Ve ′ . Forgetting Ve from the intersection
yields the trivial zeroth homology class ofVe ′ , and the lift connecting the two 0-cycles
is given by moving j along e ′ from v to w (or from w to v). Forgetting Ve ′ leads to
the analogous lifting along the edge e, and combined they precisely give the 1-cycle
moving j along the circle ee ′, see Figure 2.2.

The product of two S1movements alongpairs of edges e1e ′1 and e2e ′2 is represented
as follows: for easier description assume we only have two particles and particle j
moves along the sequence of edges eje ′j for j = 1, 2. To give the representation of this
class in E22,0[Bk] we have to give classes in the zeroth homology of the intersection
of three open sets. There are four open sets Uφ involving the edges ej and e ′j: one
for each choice of φ(j) ∈ {ej, e

′
j} for j = 1, 2. In the nerve of the open cover of the

configuration space there is a 2-dimensional cube on those four vertices, realized
as the sum of two triangles. In both intersections corresponding to those triangles
particle j is fixed in the intersection Vej ∩ Ve ′j , so we can form the tensor product
of the classes representing the individual S1 movements as described above, see
Figure 4.2. Mapping this sum via d1 cancels the diagonal in the interior of the cube,
and in each face on the boundary of the cube one of the two particles is freed. Hence,
this maps to zero and lifting the class to the zeroth column shows that it realizes
the product of the two S1 movements as desired, see Section 2.1.1. If we have more
than those two particles, we put all remaining particles onto the sink v in the open
neighborhood of the first edge of Bk (for some arbitrary ordering of the edges).
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4 Representation stability for configuration spaces of graphs

e1, e2

e1, e
′
2

e ′1, e2

e ′1, e
′
2

σ1 ⊗ σ2

σ1 ⊗ σ2

Figure 4.2: Representing a product of S1-movements in E22,0. The rectangle lives
in the nerve of the open cover, the labels at each vertex indicate that
the corresponding vertex is the open set Uφ for φ determined by the
label φ(1), φ(2). In both triangles, the particles 1 and 2 are restricted
to the intersection of the open neighborhoods of their respective edges,
and we take the class σ1 ⊗ σ2 given by the tensor product of the classes
representing the S1 movements of the individual particles. The wiggly
line cancels under d1, the class σ1 ⊗ σ2 restricted to the remaining faces
represents zero because one of the two particles is freed.

Higher products of kmovements along embedded S1 are similarly presented by
choosing a triangulation of a cube on 2k vertices in the nerve of the open cover.

Given a product as described above in E2p,0[Z] for p > 2, we can look at its image
under d2[Z]. We will be most interested in the situation where Z is the union of some
of the closed edges of Bk, so we will only describe those images in such a situation.
The map d2[Z] is constructed by choosing a representative in E0p,0[Z], mapping it
once via d1[Z], choosing a preimage under d0[Z] and again mapping it under d1[Z].
The first map d1[Z] either frees precisely one of the particles or keeps all of them
fixed. The latter parts have to sum to zero (already on the zeroth page), so they lift
to zero under d0[Z], meaning that we only care about the parts where one of the
particles is freed. The lifting along d0[Z] then is given by choosing a path of the freed
particle between v and w. Mapping the result again via d1[Z] possibly frees another
particle in each of the summands. If the two freed particles are freed to different
edges or if the edge they are freed to is contained in Z, then this maps to zero. If
they are freed to the same non-sink edge, then there are four non-trivial summands
adding up to an H-class of the two particles on e. Recall that homology classes of
ConfS([0, 1], {0, 1}) are also called H-classes, see Remark 3.4.
The higher boundary maps are defined similarly. The product of q H-classes

on different edges and p circle classes is represented in E1p,q in the same way: the
H-classes are given in the tensor factors H1(Conf

S
j
e
(e, {v,w})), and the circle classes
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4.3 Stability for banana graphs

are represented as above.

4.3.2 H-classes are stably trivial

The general idea for the description of generators for H∗(Confn(Bk, {v,w})) is that
H-classes are stably trivial, meaning that for k � q, the product of q H-classes
is trivial. For banana graphs with many edges we use this idea to show that the
homology is assembled from circle classes. The following propositions make these
ideas precise and will be the main ingredients for proving Proposition 4.13 and
Proposition 4.14. For brevity, for a set of edges ξ ⊂ E(Bk) we write

Bk − ξ = Bk −
⋃

e∈ξ
e̊.

Proposition 4.17. For ξ ( E(Bk) and each q > 0 we have E∞p,q[Bk − ξ] = 0 for all p.
Proof. Since ξ 6= E(Bk) there exists at least one sink edge, and slowly collapsing this
edge to a point shaped sink the space Confn(Bk, Bk − ξ) is homotopy equivalent to
the configuration space of a (pointed) wedge of circles where all but |ξ| of the circles
are sinks, see Figure 4.3 and Corollary 1.8. By Proposition 3.12, the homology of
the latter space is generated by products of configurations in the individual wedge
summands.
Hence, the homology of Confn(Bk, Bk − ξ) is generated by products of particles

moving along embedded circles that do not intersect in the interiors of the edges in
ξ. These products are all realized in the bottom row E∞•,0[Bk − ξ] by the description
in Section 4.3.1, showing that E∞p,q[Bk − ξ] = 0 for all q > 0.

v w

e ′

e

�
[v] = [w] = [e ′]

Figure 4.3: Collapsing a sink edge e ′ induces a homotopy equivalence on configura-
tion spaces. The homology of the configuration space of the collapsed
space is generated by products of particles moving along individual S1
wedge summands such that no non-sink circle is used by more than one
particle.

Proposition 4.18. Let q > 0. Every product of H-classes and circle classes in E2p,q[Bk − ξ]
such that
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4 Representation stability for configuration spaces of graphs

• each edge met by at least two factors of the product is a sink edge, and

• we either have ξ 6= E(Bk) or there are at least two edges not met by the product

is contained in the image of d2. In particular, for all k > q+ 2 we have E∞0,q = E30,q = 0.

Proof. The product of two circle classes sharing precisely one non-sink edge emaps
under d2 to the H-class of the two particles on e. Assume that we have a product
in E2p,q[Bk − ξ] as described in the statement with an H-class of particles x and x ′
on the edge e. We can replace this H-class by the product of x and x ′ moving along
circles intersecting in e and possibly one sink edge, see Figure 4.4. For this, we used
that there is either a sink edge or two non-sink edges not met by the product. This
determines an element of E2p+2,q−1[Bk − ξ]. By the conditions on the product, this
maps under d2 to the product we started with.

X3,4

2

1

7→
d2

E22,1

X3,4

X1,2

E20,2

Figure 4.4: Constructing a d2-preimage of a product of two H-classes X1,2 and X3,4
involving particles {1, 2} and {3, 4}, respectively. We use two free edges in
order to form a product of circle classes of the particles 1 and 2 intersecting
in precisely one edge.

Since every H-class can be written as a sum of H-classes involving only two
particles by Proposition 1.24, this proves the claim.

Proposition 4.19. LetΣi∈IαiXi ∈ E2p,q[Bk − ξ] such that eachXi is a product ofH-classes
and circle classes.
(i) Let for {e1, . . . , eq} ⊂ E(Bk) the index set I{e1,...,eq} ⊂ I be given by those in-
dices i such that Xi has H-factors on each of those edges. Then Σi∈IαiXi = 0 implies
Σi∈I{e1,...,eq}αiXi = 0.
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4.3 Stability for banana graphs

(ii) If each H-class of each Xi involves precisely two particles, then we have the following: for
S ⊂ n of cardinality 2q+p denote by IS the index set of all i such that the set of non-moving
particles of Xi is given by n − S, then Σi∈IαiXi = 0 implies Σi∈ISαiXi = 0.

Proof. The first claim follows immediately from the decomposition

E1p,q[Bk − ξ]
∼=
⊕

Σqe=q

⊕

j∈J

⊗

e

Hqe(Conf
S
j
e
(e, Ze))

as described in Corollary 2.6, and the fact that d1 preserves the homology degrees
qe. Here, Ze = {v,w} for e ∈ ξ and Ze = e otherwise.

We nowprove the second claim. Recall that all fixed particles are fixed on the sink v.
The projection map πS and the one-sided inverse given by adding the particles n− S

to the sink vmap the open sets onto each other in an order preserving way because
we ordered the open sets lexicographically. By a slight variation of Remark 2.4 they
induce maps of Mayer-Vietoris spectral sequences, sending elements which would
land in a degenerate simplex of the nerve of the open cover to zero. The variation
is the following: for the inverse map we have a choice in which open set we put
the fixed particles on v instead of having one canonical choice, and we just fix an
arbitrary edge and put all fixed particles into the open set containing that edge.

Given a linear combination as in the statement, the map induced by the projection
πS to the particles S kills all Xi where the set of moving particles is not precisely
given by S: if one of the particles of n− S is part of a circle class then the simplices of
the 2p-cube in the nerve of the open cover map to degenerate simplices, so they map
to zero. If one of those particles is part of an H-class then the corresponding H-class
maps to zero because Conf1([0, 1], {0, 1}) ' [0, 1] is contractible.

The image of Σe∈IαiXi under the induced map on the E2-page of the composition
of those two maps is therefore precisely given by Σe∈ISαiXi. Since this composition
of maps also induces a map on the E3-page, this is an element of the kernel of d2 as
claimed.

4.3.3 Generators for banana graphs with sinks

We are now ready to give generators for H2(Confn(Bk, {v,w})).

Proof of Proposition 4.13. Assume k > 5 since for k 6 4 there is nothing to prove.
Wewill show that themodules E∞p,q forp+q = 2 are generated by classes involving

at most 4 edges of Bk. By Remark 4.15, this is enough to produce a generating system
for Confn(Bk, {v,w}) meeting at most 4 edges.

The module E∞0,2 is trivial by Proposition 4.18.
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4 Representation stability for configuration spaces of graphs

The module E∞1,1 is a quotient of E21,1, so we give generators for

E21,1
∼=

⊕

e∈E(Bk)
E21,1[Bk − e].

By Proposition 4.17, we have for each e0 ∈ E(Bk)

E31,1[Bk − e0] = E
∞
1,1[Bk − e0] = 0,

and therefore that

d2[Bk − e0] : E
2
3,0[Bk − e0]→ E21,1[Bk − e0]

is surjective. The module

E23,0[Bk − e0]
∼= E23,0[Bk]

∼= H3(B
n
k )

is generated by products of three particles moving along embedded circles. As
described in Remark 4.16, we can choose a generating system consisting of such
products where the circles only intersect in one edge. If the circles meet in an
edge that is not e0, such a product maps to zero under d2[Bk − e0]. The remaining
products map to something non-trivial, but because they do not intersect in any
other edge, the image of the corresponding element under

d2 : E
2
3,0 → E21,1

∼=
⊕

e∈E(Bk)
E21,1[Bk − e]

is zero in all direct summands E21,1[Bk − e] for e 6= e0, and the following square
commutes for each e0 ∈ E(Bk):

E23,0 E21,1

E23,0[Bk − e0] E21,1[Bk − e0]

d2

d2

This implies that d2 = d2[∅] is surjective onto each of its direct summands
E21,1[Bk − e0], so we have E∞1,1 = 0.
The module E∞2,0 is the kernel of the map

d2 : E
2
2,0 → E20,1.

The source of this map is given by H2(Bnk ), so it is generated by products of two
particles following embedded circles. By Remark 4.16 again, we can generateH2(Bnk )
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by products where the embedded circles share at most one edge. Products along
circles only meeting at the vertices are elements of E∞2,0 meeting four edges, so it
remains to investigate linear combinations of products sharing precisely one edge.
Let such a linear combination ΣαiXi in the kernel of d2 be given. Each Xi maps

under d2 to an H-class, so by Proposition 4.19, we can assume that n = 2 and that
the two circles of each Xi intersect in the same edge e0. Changing one of the edges
which is only met by one of the two circles does not change the image under d2, so
any choice of doing that produces a kernel element meeting four edges. Adding
these kernel elements we can arrange that each of the two particles moves for all Xi
along the same pair of edges (one of which is e0). This means that the Xi are (up to a
sign) all the same class, and since that class does not map to zero under d2 we have
reached the trivial linear combination.

This shows that the second homology of Confn(Bk, {v,w}) is generated by classes
meeting at most four edges.

We will now prove Proposition 4.14. This proof works along the same lines as the
previous one, so we omit a few details. Recall the definition of the Mayer-Vietoris
spectral sequences E∗•,•[Z] for Confn(Bk, Z ∪ {v,w}) with Z ⊂ Bk a union of edges.
The open cover of Bk used in the construction is given by contractible neighborhoods
of the edges.

Proposition 4.20. The module E∞0,3 is trivial for k > 5.
Proposition 4.21. The module E∞2,1 is trivial for k > 7.
Proposition 4.22. The module E∞1,2 is trivial for k > 9.
Proposition 4.23. The module E∞3,0 is generated by classes meeting at most 6 edges.

Remark 4.24. Despite some effort, we were not able to show that E∞p,q is trivial for
all k � q > 0. We were able to prove this for a few more cases, but since we are
not aware of any implications of such a result for ordinary configuration spaces, we
decided not to include those rather technical arguments. 4

Proof of Proposition 4.14. By Remark 4.15, this follows from the four propositions
above.

We will now prove the four propositions above.

Proof of Proposition 4.20 (E∞0,3). This follows from Proposition 4.18.

79



4 Representation stability for configuration spaces of graphs

Proof of Proposition 4.21 (E∞2,1). Assume that we have k > 7, because otherwise there
is nothing to show. We need to show that E∞2,1 = E32,1 = 0. As in the proof of
Theorem G, we have

E22,1 = E
2
2,1[{v,w}]

∼=
⊕

e∈E(Bk)
E22,1[Bk − e].

By Proposition 4.17, the map d2[Bk − e] landing at position (2, 1) has to be surjec-
tive, and a generating system for E24,0[Bk − e] determines a generating system for
E22,1[Bk − e] via d2[Bk − e].

By Remark 4.16, we can choose for fixed e0 a generating system for E24,0[Bk − e0] ∼=
H4(B

n
k ) given by products of four particles moving along embedded circles in Bk

meeting in at most two edges.
Amongst these generators there are some where at most one of the four embedded

circles meets e0. These classes map to zero under d2[Bk − e0], so to produce a
generating system for E22,1[Bk − e0] we can ignore them. The remaining generators
now come in two different types: For the first type of generator, the edge e0 is
contained in at least two circles and all other edges are contained in at most one circle.
For the second type, e0 and precisely one additional edge e1 are each contained in
precisely two circles. For a schematic picture of the two types see Figure 4.5.

Type 1

e0

or

e0

Type 2

e0 e1

Figure 4.5: A schematic picture of the two types of products of particles moving
along circles. A wiggly edge is contained in multiple circles, the other
edges are contained in exactly one circle. Note that this is only schematic,
in reality the circles all meet at the vertices v and w.

These two types do not map to zero under d2[Bk − e0], so their images rep-
resent generators for E22,1[Bk − e0]. This describes a generating set for E22,1 ∼=⊕
e E
2
2,1[Bk − e0], and we will now use that description to show E32,1 = 0.

Each generator given by the image of a product of the first type is also in the image
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4.3 Stability for banana graphs

of
d2 : E

2
4,0[{v,w}]→ E22,1[{v,w}]

because the corresponding products sharing only one edge are mapped in precisely
the same fashion as in E2•,•[Bk − e0] for the corresponding e0. Therefore, they
represent zero in E32,1[{v,w}] and we only have to consider generators coming from
products of the second type.

A generator coming from a product of the second type is a product of an H-class
and two circles sharing another edge. Each such generator maps under d2 to a
product of two H-classes at these edges. Hence, given a linear combination ΣαiXi of
such generators in the kernel of d2, we can by Proposition 4.19 assume that these
two edges are the same for all Xi, and we call them e0 and e1.
The image of a product of four circles X of the second type maps under

d2 : E
2
4,0[{v,w}]→ E22,1[{v,w}]

∼=
⊕

e∈E(Bk)
E22,1[Bk − e]

to d2[Bk − e0](X) + d2[Bk − e1](X), so by adding d2[{v,w}]-boundaries we can
assume that all Xi are in E22,1[Bk − e0].

Given one fixed Xi where the two circle classes have free edges e2 and e3 we can
look at X ′i, defined as Xi with e2 replaced by an edge e ′2 which is distinct from the
other four edges. The difference Xi − X ′i is (up to d1-boundaries) the product of an
H-class at e0 and two disjoint circle classes along e2e ′2 and e1e3. By the fact that we
have at least seven edges and Proposition 4.18, it is in the image of d2 and represents
the trivial class on the third page.
Adding those d2-boundaries we can arrange that all Xi are the same, and since

d2(Xi) 6= 0, we have reached the trivial linear combination. This shows that
E∞2,1 = E32,1 = 0.
Proof of Proposition 4.22 (E∞1,2). Assume k > 9 because otherwise, there is nothing to
show. We will show that E`1,2 is a quotient of

⊕

e1 6=e2
E`1,2

[
Be1e2k

]

for all ` > 2, where we write Be1e2k := Bk − e̊1 − e̊2. Since by Proposition 4.17 we
have E41,2

[
Be1e2k

]
= 0 for all choices of e1 6= e2, this will prove that E∞1,2 = 0.

For ` = 2 this is true (even without the quotient):

E21,2 = E
2
1,2[{v,w}]

∼=
⊕

e1 6=e2∈E(Bk)
E21,2

[
Be1e2k

]
,

so we need to show the claim for ` = 3 and ` = 4.
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4 Representation stability for configuration spaces of graphs

As a first step, we will investigate the image of

d2 : E
2
3,1

[
Be1e2k

]
∼= E23,1

[
Be1k
]
⊕ E23,1

[
Be2k
]
→ E21,2

[
Be1e2k

]
.

By Proposition 4.17 again, we see that

d2 : E
2
5,0[B

e
k]→ E23,1[B

e
k]

is surjective for each e, and we can choose a generating system of E23,1
[
Bek
]
by

mapping a generating system of E25,0
[
Bek
]
via this map. We choose this system such

that at most two edges are contained in two or more circles, see Remark 4.16. Here,
we used that we have at least nine edges. The corresponding elements of E23,1

[
Be1k
]

where at most one circle moves along e2 are also in the image of

d2 : E
2
5,0

[
Be1e2k

]
→ E23,1

[
Be1e2k

]
,

so they map trivially to E21,2
[
Be1e2k

]
. The remaining classes have at least two circles

moving along e2, so by the choice of basis the circles do not intersect in any edge
other than e1 and e2. Therefore, they map in precisely the same way under

d2 : E
2
3,1[{v,w}]→ E21,2[{v,w}].

Repeating this argument for all choices of edges e1 and e2 we get that E31,2[{v,w}] is
a quotient of ⊕

e1 6=e2
E31,2

[
Be1e2k

]
.

Therefore, it suffices to realize all elements in the image of the surjective map

d3 : E
3
4,0

[
Be1e2k

]
→ E31,2

[
Be1e2k

]

as images under the map

d3 : E
3
4,0[{v,w}]→ E31,2[{v,w}].

Each element in E34,0
[
Be1e2k

]
= ker

(
E24,0

[
Be1e2k

]
→ E22,1

[
Be1e2k

])
can be written as

a sum of generators of E24,0
[
Be1e2k

]
. These generators can be taken to be products

of circle classes meeting in at most two edges by Remark 4.16, which is possible
since we have at least 9 edges. There are four types of such products, differing in the
intersection pattern of the four embedded circles:

• two circles share one of the two edges e1 and e2 and the other edge is contained
in at most one circle,

• two circles share e1 and two circles share e2,
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4.3 Stability for banana graphs

• three circles share one of the two edges and

• all four circles share one of the two edges.

For a schematic representation of these four types see Figure 4.6. It remains to
show that each element of the kernel can be written as a linear combination of these
products such that there is no product of the second kind of type 1: this is enough
because the remaining classes do not intersect outside of the edges e1 and e2, so
these classes of E34,0

[
Be1e2k

]
∼= E34,0[{v,w}] map in the same way under

d3 : E
3
4,0[{v,w}]→ E31,2[{v,w}],

showing that E41,2[{v,w}] is a quotient of the trivial module
⊕

e1 6=e2
E41,2

[
Be1e2k

]
=
⊕

e1 6=e2
E∞1,2[Be1e2k

]
= 0.

Type 1

e1 or e2
or

neither
e1 nor
e2

Type 2

e1 e2

Type 3

e1 or e2

Type 4

e1 or e2

Figure 4.6: A schematic picture of the four types of products of movements of
particles along circles. A wiggly edge is contained in multiple circles,
the other edges are contained in exactly one circle. Note that this is only
schematic, in reality the circles all meet at the vertices v and w.

Now assume we have a linear combination X = ΣαiXi of products of these types
that maps to zero under d2. Our claim is that none of the Xi is given by a product of
the second kind of type 1. By Proposition 4.19, we can assume n = 4.
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4 Representation stability for configuration spaces of graphs

All Xi of the second kind of type 1 with circles sharing e1 and one other fixed
edge e can be modified in the following way: by adding products of the first kind
of type 1 we can change the free edges of the two circles sharing the edge e, see
Remark 4.16. Since we have more than seven edges, we can thus arrange that for
each edge e 6∈ {e1, e2} and each pair of particles x 6= x ′ there is at most one Xi of the
second kind of type 1 consisting of circles sharing e1 and e such that x and x ′ meet e.
By the same argument, we can assume the same for e2 instead of e1.
Assume that Xi0 is such a product involving (after renaming) the particles {1, 2}

moving along e1 and {3, 4} moving along e 6∈ {e1, e2}. We will now show that αi0
has to be zero. Look at the map

Conf4(Bk, Be1e2k ) ↪→ Conf{1,2}(Bk, Be1k )× Conf{3,4}(Bk, Bk)

given by the product of the projection maps π{1,2} and π{3,4}. We can define the
analogous open cover of the right hand side by open sets indexed by φ : 4→ E(Bk)

restricting particle i to the open neighborhood of the edgeφ(i). This defines a Mayer-
Vietoris spectral sequence, and since the map above maps an open set Uφ0···φp by
the inclusion into the open set in the product with that same label φ0 · · ·φp, this
inclusion induces a map of spectral sequences, see Remark 2.4. Denote by Xi the
image of Xi in the spectral sequence of the product denoted by E∗•,•.

Each Xi where the circles of particles 1 and 2 do not intersect in e1 are elements of
the infinity page, so after removing all those elements from the linear combination
the rest will still be in the kernel of d2. Therefore, we assume that all Xi move 1 and
2 along e1. We have for each p > 0

E
1
p,1

∼=
⊕

Φp

H1
(
UΦp

)

∼=
⊕

Φp

H1

(
U
12
Φp
×U3,4Φp

)

∼=
⊕

Φp

H1

(
U
12
Φp

)
⊗H0

(
U
34
Φp

)
⊕H0

(
U
12
Φp

)
⊗H1

(
U
34
Φp

)

∼=
⊕

Φp

H1

(
U
12
Φp

)
⊗H0

(
U
34
Φp

)
,

where the sum is over all triples Φp = {φ0 < · · · < φp}, the open set UΦp is
the open set in the product corresponding to Φp, and U

xy
Φp

:= π{x,y}(UΦp). The
last line is true because all intersections of open sets in Conf{3,4}(Bk, Bk) have
contractible path components and therefore do not have first homology. The module
H1(U

12
φ0···φp) is only non-trivial if φi({1, 2}) = {e1} for all 0 6 i 6 p, and then it is

given by H1(Conf{1,2}(e, {v,w})) ∼= Z. This shows that E2•,1 is isomorphic (as chain
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4.3 Stability for banana graphs

complexes) to the bottom row of the analogous Mayer-Vietoris spectral sequence for
Conf{3,4}(Bk, Bk). Therefore, we have

E
2
2,1

∼= H2

(
B
{3,4}
k

)
∼= H1(Bk)⊗H1(Bk).

The Xi map under this identification to products of the particles 3 and 4 moving
along embedded circles. By assumption, only Xi0 maps to such a product where
both particles move along the fixed edge e, all other products are either disjoint
or share an edge which is not e. In order to add to zero in H1(Bk) ⊗ H1(Bk), we
therefore must have αi0 = 0.

Repeating this argument with all Xi of the second kind of type 1 shows that all
these coefficients are zero, which proves the claim.

Proof of Proposition 4.23 (E∞3,0). Let k > 7, because otherwise there is nothing to show.
By Proposition 4.18, we have E30,2 = 0, which implies E33,0 = E∞3,0. It remains to
give generators for the kernel of d2 : E23,0 → E21,1. Since k > 7 > 5, we can choose a
generating system of E23,0 ∼= H3(B

n
k ) such that the circles meet in at most one edge,

see Remark 4.16. As described above, d2 maps the products without shared edges to
zero, the other Xi create H-classes at that shared edge. By Proposition 4.19, we can
further assume n = 3 and that all intersecting circles intersect only in one fixed edge
e0.

Let Σi∈IαiXi ∈ E23,0 be a linear combination of such generators that maps to zero
under d2. The Xi mapping to zero meet only 6 edges, so we can assume there
are none. For a schematic description of all such products sharing one edge, see
Figure 4.7. Recall that an edge of one of the circles is called free if it is not shared
with any other circle class in the product.

Type 1 Type 2

Figure 4.7: A schematic picture of products of type 1 and 2. The wiggly edge e0 is
met bymultiple circles, the other edges are met by exactly one circle. Note
that this is only schematic, in reality the circles all meet at the vertices v
and w.

Choose three distinct edges e1, e2, e3 such that none of them is equal to e0. We can
change the free edges of the three circles of each product of type 2 by adding type
1 products such that particle imoves along edge ei for 1 6 i 6 3, see Remark 4.16.
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4 Representation stability for configuration spaces of graphs

Here, we used that we have at least five edges. Therefore, all products of type 2 are
the same (up to a sign), and by combining the corresponding αi we can assume that
there is precisely one Xi0 that is of type 2. We will now show that we must have
αi0 = 0.

The image d2(ΣαiXi) contains precisely one summand Zwith an H-movement of
the particles {1, 2} on e0 and particle 3moving along the circle e0e3. The coefficient
of this product is ±αi0 , and it is represented by an element in the direct summand
H1(Uφ1φ2) ⊂ E11,1 for φ1({1, 2, 3}) = φ2({1, 2}) = {e0} and φ2(3) = e3. Now let
Y = Σj∈JβjYj ∈ E12,1 be such that

d2(ΣαiXi) + d1(Y) = 0 ∈ E11,1.

The summandZ is the only onewhich is contained in a direct summandwith particles
1 and 2 forming an H-class on e0 and particle 3 moving along a circle involving
e0. Therefore, the element d1(Y)must be non-trivial in that direct summand. This
summand is only hit by d1(Yj) if Yj is the given by the H-class of the particles 1 and
2 on e0 with the third particle in the intersection of the neighborhoods of e0, e3 and
one additional edge ej. It is straightforward to see that by adding d1-boundaries of
the analogous classes where particle 3 is in the intersection of four instead of three
edge neighborhoods, we can assume that

• for each Yj given by an H-class of 1 and 2 on e0 and particle 3 in the intersection
of the neighborhoods of a triple of edges, two of these three edges are e0 and
e3, and

• for each edge e ∈ E(Bk) there is at most one such Yj as above such that ej = e.

The image d1(Yj) of such a Yj has a summand given by the product of an H-class
of 1 and 2 on e0 and particle 3 moving along e0ej. By the conditions above, Yj is
the only element landing in the direct summand of E11,1 containing that element,
and since d2(ΣαiXi) does not hit that direct summand either we must have βj = 0.
Therefore, the direct summand of Z is not hit by d1 and we must have αi0 = 0, so
we can assume that all Xi in our linear combination are products of type 1.

To cancel in E21,1, the products Xi of type 1 have to at least land in the same direct
summand, so we can assume that all Xi map to elements where the H-class on e0
involves the particles {1, 2}. Now fix an edge e3. Changing one of the free edges of
one Xi gives a class X ′i with the same image image under d2, so by adding such
differences Xi − X ′i we can again arrange that particles 1 and 2 never move along a
circle involving e3. The elements we added are kernel elements meeting at most six
edges, so we can forget about them. Using Remark 4.16 again we can assume that
for each Xi particle 3moves along a circle e3ei for some edge ei. Note also that none
of the ei is equal to e0 since the Xi are of type 1.
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4.4 Stability for the second homology group

Eachd2(Xi) is now the product of anH-class on e0withparticle 3 in the intersection
of the neighborhoods of e3 and ei. Changing the free edges of particles 1 and 2
again and combining coefficients we can assume that each such product only comes
from one Xi. It is straightforward to check that these elements of E21,1 are linearly
independent, so

d2(ΣαiXi) = Σαid2(Xi) = 0

implies αi = 0 for all i.

This shows that E∞3,0 is generated by classes meeting at most six edges.

4.4 Stability for the second homology group

In this section we will prove the following theorem, showing stabilization for the
second homology group. Recall the definition of HΓq,n from Section 4.2.

Theorem H. For any choice of graphs Ki, Gi and n ∈ N, the FI×`-module HΓ2,n is finitely
generated in degree (n+ 6, . . . , n+ 6).

Given Γ = {(K0, G0), . . . , (K`, G`)} we now define a generalization of HAq,nΓ
including sinks. Let Zi ⊂ V(Gi) for 0 6 i 6 ` and write Z = (Z0, . . . , Z`). Given this
data, define the following generalization of HAq,nΓ :

HAq,n(Γ ,Z) := Hq(Confn(GΓ , ZGΓ );A),

where ZGΓ is given by the union of all vertex sets Zi in all copies of the Gi in GΓ .
We will prove the following generalization of Theorem H.

Theorem 4.25. For any choice of Γ and Z and each n ∈ N the FI×`-module HZ
2,n(Γ ,Z) is

finitely generated in degree (n+ 6, . . . , n+ 6).

Proof of Theorem H. This follows from the special case of Theorem 4.25 where we
have Zi = ∅ for all 0 6 i 6 `.

Proof of Theorem 4.25. Let n > 2, let ki > n + 6 for each 1 6 i 6 `, let G =

G(k1, . . . , k`) and let Z = ZG be as defined above. We will prove that the ho-
mology of the configuration space of (G,Z) is generated by classes meeting only
n+ 6 copies of each of the Gi. Here, meeting a copy of Gi means meeting the part
which is not contained in G0, i.e. Gi − Ki.

We inductively argue by removing some of the vertices in V(G0) and turning
other such vertices into sinks. We will denote by (G ′, Z ′) a result of taking (G,Z)

and applying any number of these two operations. Each vertex and edge of G ′ still
belongs to a copy of one of the Gi. We will show that for each such pair (G ′, Z ′) the
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4 Representation stability for configuration spaces of graphs

second homology group H2(Confn(G ′, Z ′)) is generated by classes meeting at most
n+ 6 copies of each Gi. We will construct cycles where the moving particles meet
only a bounded number of copies and argue that the non-moving particles only
meet at most one copy of one G◦i each. Therefore, we will from now on assume that
there are no isolated vertices or isolated edges without sinks, as the configuration
spaces of these components have contractible connected components. Denote by G◦i
the graph G ′ ∩Gi where we removed all edges of Ki and all vertices which are not
incident to an edge of Gi − Ki.
The induction is based on the number of essential non-sink vertices of G0 ∩ G ′.

For each 1 6 i 6 ` order the copies of G◦i in an arbitrary way, denoting the copies
by G◦ij for 1 6 j 6 ki. We may then talk about the first m copies of G◦i using this
ordering. For eachm 6 n + 6 the intersection of G ′ with the union of G0 and the
firstm copies of all G◦i will be called them-th base graph Lm ⊂ G ′. In particular, we
have L0 = G0 ∩G ′.

Induction start: The base case is that every essential vertex of L0 is a sink. We
will now describe a generating set for the second homology of configurations in
the graph G ′ consisting of classes meeting only n + 3 copies of each G◦i . We will
construct this by describing a generating set consisting of classes represented by
cycles where the moving particles meet at most five copies, and since we need at
least two moving particles to form a 2-class this will imply that we in total meet at
most 5 + n − 2 = n + 3 copies. Recall that we forgot about the isolated edges and
vertices because they always contain only fixed particles.

Look at the open cover of G ′ given by small contractible neighborhoods Ve of the
edges e ∈ E(L0) and for each G◦ij the union of that graph and small open balls on
the vertices in V(L0) ∩ V(G◦ij). We now describe the entries E∞2,0, E∞1,1 and E∞0,2 of
the corresponding Mayer-Vietoris spectral sequence for Confn(G ′, Z ′). Notice that
the configuration space of the chosen neighborhood of each G◦ij can be shrunk to the
configuration space of G◦ij because all vertices V(L0) ∩ V(G◦ij) are sinks, so we can
pull the particles outside of G◦ij onto those sink vertices, see Figure 4.8.

The module E∞0,2 admits a surjection from E10,2, which is generated by

• 2-classes in some G◦ij,

• products of two 1-classes in some G◦ij and G◦i ′j ′ ,

• products of a 1-class in some G◦ij and an H-class in L0, and

• products of two H-classes in L0,

tensored with zero-dimensional classes. The moving particles of these classes meet
at most two copies of each G◦i because each H-class in the list above is contained
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4.4 Stability for the second homology group

Neighborhood of G◦
i

Figure 4.8: Pulling particles onto the sinks to show that the configuration space of a
small neighborhood of G◦ij is homotopy equivalent to the configuration
space of G◦ij.

in L0, so the vertices involved in the H-class are sinks. There are at most n − 2

non-moving particles, and they could possibly all be on different copies of the G◦i .
Hence, we meet at most 2+ n− 2 = n copies.

The module E∞2,0: The module E12,0 is given by direct sums of the tensor products
of the zeroth homologies of configuration spaces of the open sets. Each connected
component of G◦ij contains a sink vertex or an essential vertex, so it has connected
configuration spaces. This does not change ifwe turn thewhole connected component
into a sink. Furthermore, H0 does not see the loops inside G◦ij, which is why we now
replace each G◦ij by a smaller graph.
We construct the following modified versionM of G ′, which replaces each G◦ij

by a smaller graph Ĝ◦ij that still connects the same vertices of G◦ij ∩ L0 with each
other as G◦ij: replace for each G◦ij each connected component intersecting L0 in a set
of vertices by the star graph given by the cone on those vertices. Each connected
component of each G◦ij whose intersection with L0 is empty is collapsed to a point
(recall that each such component is assumed to contain an essential vertex or a sink
vertex). It is straightforward to check that the module E22,0 is the same as the module
ME22,0 of the spectral sequence for Confn(M,M) with the analogous open cover
given by small neighborhoods of edges in L0 and small neighborhoods of the Ĝ◦ij, the
graphMwas constructed in such a way that this is true. The configuration spaces of
these open sets and their intersections have by construction contractible connected
components, so all rows except for the zeroth rowME1•,0 are trivial. Therefore,ME22,0
is H2(Confn(M,M)) = H2(M

n), and thus generated by products of two particles
moving along embedded circles. This implies that also E22,0 is generated by all
products of two particles moving along embedded circles inG ′, represented as linear
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4 Representation stability for configuration spaces of graphs

combinations of the particles being fixed in the intersections of open sets. We can
choose a generating system consisting of such products where each circle meets only
L1 and at most one other copy of one of the G◦i . Mapping such a product via d2
produces H-classes (one for each segment of the intersection of the two circles) and
star classes (one for each isolated vertex in that intersection).

Now assume that we have a linear combination ΣαiXi of such elements in the
kernel of

d2 : E
2
2,0 → E20,1.

By splitting this linear combination we can assume that each particle is for all Xi
in the same path component of G ′. Furthermore, each non-moving particle in the
path component of L0 can be assumed to be on one arbitrarily chosen sink vertex in
L0. Fix i0 > 0 and j0 > 3. The sum of all αiXi with Xi having two moving particles
in G◦i0j0 has only classes inside L1 because none of the other Xi produce classes in
G◦i0j0 : the intersection of all other pairs of circles intersectsG◦i0j0 in a subset of the set
of vertices L0 ∩G◦i0j0 , and since all vertices of L0 are sinks there are no star classes
at these vertices. Now look at the same sum of elements with the moving particles
moved to the second copy G◦i02 instead of G◦i0j0 , then this produces the same sum of
classes in L1. Therefore, their difference is an element of the kernel, and subtracting
such elements we can assume that all Xi having both moving particles in the same
copy of any G◦i only meet the second base graph L2. The moving particles of the
kernel classes we subtracted meet at most three copies of each G◦i , and together with
the n− 2 non-moving particles these classes meet not more than 3+ n− 2 = n+ 1

copies.
Fixing two distinct copies G◦i0j0 6= G

◦
i1j1

we now look at an Xi where two particles
move in those copies, one particle per copy. Under d2, this again only produces
classes in L1 because the intersection of the two circles is contained in L1. The same
product moved to the second (and for i0 = i1 also third) copies produces the same
sum of classes in L1, so their difference is an element of the kernel. The moving
particles meet in this difference at most five copies of each G◦i , and together with the
non-moving particles the difference meets at most 5+ n− 2 = n+ 3 copies.
By subtracting such kernel elements we can arrange that the moving particles

of each Xi meet only L3. By grouping the Xi according to the path components in
which the different particles are we can write ΣαiXi as a sum of kernel elements
meeting at most 3+ n− 2 = n+ 1 copies of each G◦i .

This shows that E∞2,0 ∼= E32,0 is generated by classes meeting at most n+ 3 copies of
each G◦i . By their description, it is straightforward to check that the lifting required
to interpret these as homology classes in H2(Confn(G ′, Z ′)) does not increase the
number of copies met, see Section 2.1.1.

The module E∞1,1 is a quotient of E21,1, so we only have to give generators of that
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latter module. LetM be defined as above, and defineMij in the same way, except
that G◦ij is left untouched. By the same arguments as in the previous case we get

E21,1
∼=

⊕

e∈E(G0)

MeE21,1 ⊕
⊕

i,j

MijE21,1,

whereMeE∗•,• is the spectral sequence for Confn(M,M− e̊) andMijE∗•,• is the spectral
sequence for Confn(Mij, (Mij−G

◦
ij)∪ (ZG ′ ∩G◦ij)). The open covers are again given

by neighborhoods of edges and neighborhoods of the G◦ij and Ĝ◦ij. We now give
generators of the modules on the right-hand side. For easier description, we will in
the following say that a particle meets some G◦ij even if we replaced that graph and
the particle meets Ĝ◦ij.

To calculate the homology of Confn(M,M − e̊), let F be a forest consisting of
maximal trees in the connected components ofM− e̊ and collapse all components
of the resulting spanning forest of M to point shaped sinks. Via this collapse,
Confn(M,M− e̊) is homotopy equivalent to the configuration space of the disjoint
union of isolated sinks, wedges of copies of (S1, S1), and either

• the wedge of (S1,pt) and copies of (S1, S1) or

• the wedge of ([0, 1], {0, 1}) and copies of (S1, S1) at 0, 1 ∈ [0, 1],

see Figure 4.3 and Figure 4.9. All wedges above are taken at the points 1 ∈ S1
and 0, 1 ∈ [0, 1]. By Proposition 3.12 the homology of these configuration spaces is
generatedbyproducts of classes of configurations in the individualwedge summands.
In Confn(M,M− e̊), this gives products of H-classes and circle classes such that at
most one of them meets the edge e.

· · ·

Figure 4.9: Collapsing a forest of sink edges.

The classes involving an H-class at e are realized in MeE21,1, and to generate all
such classes it suffices to take those where the moving particles meet only 2 copies
of each G◦i : the H-part is in L0 and we meet two copies for the circle part (as above,
circle classes can be assumed to meet only the first base copies and one additional
copy). All other classes are realized in the bottom row, so the remaining part of
MeE21,1 is hit by the boundary map

d2 :
MeE23,0 → MeE21,1.
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4 Representation stability for configuration spaces of graphs

The moduleMeE23,0 is isomorphic to H3(Mn) by comparing it to the corresponding
module of the spectral sequence for Confn(M,M), and is therefore generated by
products of three particles moving along embedded circles. We can again assume
that each of those embedded circles meets apart from the first base copies at most
one G◦ij, so the moving particles of each such product meet at most 4 copies of each
G◦i .

Therefore, the direct summand of E21,1 corresponding to MeE21,1 is generated by
elementsmeeting atmost 4+n−2 = n+2 copies of eachG◦i . Again, the interpretation
as homology classes in H2(Confn(G ′, Z ′)) does not increase the number of copies
met, see Section 2.1.1.

To computeMi0j0E21,1, collapse a maximal forest inMi0j0 − (Gi0j0 − Ki0), yielding
a disjoint union of isolated vertices, wedges of copies of (S1, S1), and the wedge sum
of a quotient G◦i0j0 of G

◦
i0j0

and copies of (S1, S1), see Figure 4.10. Here, the circle S1

is always wedged at 1 ∈ S1. We will call the union of L0 and all Ĝ◦ij such that j 6 m
and (i, j) 6= (i0, j0) them-th base graph Lm ofMi0j0 . We choose the maximal forest
above such that restricted to each connected component of the first base graph it is a
spanning tree. As above, the second homology of the configuration space of this

G◦
ij

�

G◦
ij

Figure 4.10: Collapsing a forest of sink edges.

quotient of (Mij, (Mij −G
◦
ij) ∪ (ZG ′ ∩G◦ij)) is generated by

• 2-classes in G◦i0j0 ,

• products of 1-classes in G◦i0j0 and circle classes in the copies of S1, and

• products of two circle classes in the copies of S1,

with the remaining particles fixed somewhere in the graph. The classes in G◦i0j0 are
represented inMi0j0 by classes whose moving particles meet only Gi0j0 and the
base graph L1 by the choice of maximal forest. The moving particles of the circle
classes meet at most one copy of one G◦i outside of the base graph L1. Therefore,
the moving particles of all classes above meet at most two copies outside of the base
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4.4 Stability for the second homology group

graph L1. We will now describe how these classes are distributed onto the different
modules of the infinity pageMi0j0E∞•,•.

The products of the third kind are elements inMi0j0E∞2,0. We now look at products
of the second kind. The 1-class in G◦i0j0 can by Theorem D assumed to be a star class,
an H-class or a circle class. All star classes and H-classes in G◦i0j0 come from star
classes and H-classes in G◦i0j0 . Therefore, such products are represented as elements
inMi0j0E∞1,1. For circle classes coming from circle classes in G◦i0j0 the same is true.
All other circle classes move inside G◦i0j0 and L1 by construction of the forest. The
product of such a class with a circle class in one of the S1’s is represented inMi0j0E∞2,0.

Therefore,Mi0j0E∞1,1 is generated by the products of circle classes in the copies of
S1 with 1-classes coming from 1-classes in G◦i0j0 as described above, and possibly
elements representing the first kind of classes listed above. The moving particles
of all these elements meet at most three copies of each G◦i . Since the image of d2
landing at position (1, 1) is generated by elements whose moving particles meet
the image of at most four copies of each G◦i as above, this shows that the direct
summand of E21,1 corresponding toMi0j0E21,1 is generated by classes meeting at most
4+ n− 2 = n+ 2 copies of each G◦i .

Therefore, E∞1,1 is generated by classes meeting at most n + 2 copies of each
G◦i , and the same is true for the corresponding classes in the second homology of
Confn(G ′, Z ′).

Induction step: Assume that we have an essential vertex v in L0 which is not a sink
vertex. Look at the open cover given by a small contractible open ball Vv around v
and Vr := G ′ − {v}.
We describe generators for the second co-diagonal of the corresponding Mayer-

Vietoris spectral sequence for the induced cover of Confn(G ′, Z ′).

The module E∞0,2 is generated by 2-classes in Vr and products of 1-classes in Vv
and Vr. By induction, the 2-classes in Vr can be written as sums of elements meeting
only n+ 6 copies of each of the G◦i . The products of 1-classes consisting of k1 and k2
particles with k1 + k2 + k3 = n can be chosen to each meet at most kj + 3 copies of
each of the G◦i by Theorem F. The remaining k3 particles are part of zero-classes
and therefore meet at most k3 copies in total, so such a product meets at most
k1 + 3+ k2 + 3+ k3 = n+ 6 copies of each G◦i .

The module E∞2,0: The module E22,0 is the same as the module vE22,0 of the spectral
sequence vE∗•,• for the quotient where all edges disjoint from Vv and incident to an
essential vertex or a sink vertex are collapsed to sink vertices, see Figure 4.11. This is
the disjoint union of

• isolated sink vertices,
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...

...

v

Figure 4.11: Collapsing edges contained in Vr gives a disjoint union of vertices, edges
and one wedge of pointed banana graphs. The dashed lines indicate the
image of Vr under the collapse map.

• isolated edges not incident to sink vertices, and

• the wedge of pointed banana graphs (possibly with only one or two edges)
where all essential vertices except the central vertex v are sinks. Banana graphs
with one or two edges can either have one or zero sinks.

Therefore, by Proposition 1.20 the configuration space of this quotient is 1-
dimensional. Under this identification the kernel of

d2 : E
2
2,0 → E20,1

is contained in the kernel of

d2 :
vE22,0 → vE20,1.

But this latter kernel has to be trivial by the dimension estimate from above, which
means that E∞2,0 = E32,0 = 0.

The module E∞1,1 is a quotient of E21,1, which is given by the direct sum of the
modules vE21,1 and rE21,1, where rE∗•,• is the spectral sequence for (G ′, Z ′ t {v}) and
vE∗•,• is defined as in the previous case.
As described above, the spectral sequence vE∗•,• converges to the homology of a

configuration space with homological dimension 1, so vE21,1 is given by the image of
the map

d2 :
vE23,0 → vE21,1.
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To compute vE23,0 we can turn the only non-sink vertex v into a sink as well. The
spectral sequence for that graph is only non-trivial in the zeroth row, so vE23,0 is the
third homology of the graph described in the previous case with v turned into a
sink. This is (after forgetting the isolated intervals and vertices) the wedge sum
of pointed banana graphs (possibly with only one or two edges) with all essential
vertices sinks, so by Proposition 3.12 the third homology is generated by products
of classes of configurations in the individual banana graphs. By Proposition 4.14,
the 3-classes in one such banana graph can be written as sums of classes where the
moving particles meet at most 8 edges. By Proposition 4.13, the second homology of
configurations in one banana graph is generated by classes meeting at most 4 edges.
The first homology is generated by H-classes and S1 classes by Theorem D, so it can
be generated by classes where the moving particles meet at most 2 edges. Taking the
at most n − 3 non-moving particles into account, vE23,0 and therefore vE21,1 can be
generated by classes meeting at most 8+ n− 3 = n+ 5 edges.
To interpret those classes as elements in the configuration space of (G ′, Z ′), we

have to lift a class in E21,1 by mapping a representative on the zeroth page via d1
and lifting the result along d0, see Section 2.1.1. The corresponding lifting in vE∗•,•
exchanges particles over one of the newly added sinks, so in E∗•,• we have to move
and reorder fixed particles along the connected components that we collapsed to
sinks. It is straightforward to check that this can be done by meeting only the n+ 5

copies of each G◦i from above and one additional copy for each i. Therefore, these
classes meet at most n+ 6 copies of each G◦i .

The spectral sequence rE∗•,• converges to the homology of configurations in
(G ′, Z ′ t {v}). By induction, the second homology of that space is generated by
classes meeting only n+ 6 copies of each G◦i . We now want to show that the same is
true for rE21,1 by showing that this holds for rE∞0,2 and rE∞2,0.
It is true by induction for rE20,2 and therefore rE∞0,2 since the former only consists

of 2-classes of particles in Vr, so it remains to show this for rE22,0.
Collapsing the edges disjoint from Vv as above, we see that rE22,0 is the second

homology of the configuration space of a disjoint union of isolated vertices, isolated
edges without sinks and the wedge of pointed banana graphs (with possibly only
one or two edges) with all essential vertices sinks. The isolated vertices and edges
can only be involved in zero-classes, so we can focus on the wedge of banana graphs.
By Proposition 3.12 and Proposition 4.14, the module rE22,0 is thus generated by
products of classes in the individual wedge summands. We will now show that the
kernel of

d2 :
rE22,0 → rE20,1

can be generated by classes meeting at most n+ 6 copies of each G◦i .
A product of two 1-classes (either circle classes or H-classes) in different wedge
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summandsmaps to zero underd2 and therefore represents an element of the∞-page.
Interpreting it as a class in Confn(G ′, Z ′ t {v}) we end up with a class where the
moving particles meet at most five copies of eachG◦i , so considering the non-moving
particles the class meets at most 5+ n− 2 = n+ 3 copies.

It remains to understand the 2-classes in one fixed banana graph. We can assume
that no fixed particle is in any other banana graph by moving them onto the
sink v. From the proof of Proposition 4.13 we get a description of generators of
H2(Confn(Bk)) as generators for the modules of the infinity page of the spectral
sequence used there.
If the banana graph has at most four edges, then by ki > n + 6 > 4 we see that

all of these edges must be edges of L0. Assume that we have an element of the
infinity page withm > 2 particles in the banana graph. We want to interpret it as
an element of H2(Confn(G ′, Z ′ t {v})), for which we have to choose lifts. Since we
have an element of the infinity page, we know that these lifts exist. Choosem copies
of each of the G◦i , one copy for each particle in the banana graph. We can modify
each of these lifts in the following way: whenever a particle moves along some edge
of some G◦ij, we replace this movement by the movement in the copy of G◦i we just
chose for this specific particle. It is straightforward to check that this still bounds the
same cycle, and additionally the final result only meets at mostm copies of each G◦i .
Together with the n−m particles in the other connected components of (G ′, Z ′t {v}),
this gives classes meeting at most n copies of each G◦i .

If the banana graph has five or more edges, then only the module at position (2, 0)

of the spectral sequence in Proposition 4.13 is non-trivial, and it is generated by
tori and surfaces of genus 2. These come from products of two particles moving
along embedded circles, and in the genus 2 surface case we glued two of those
together where each product has one edge used by both particles, see the proof of
Proposition 4.13. In particular, for each of those classes the remaining n− 2 particles
sit on the vertex v or on the isolated vertices and edges. For two of these classes to
land under d2 in the same direct summands the fixed particles have to define the
same zero-class in the graph, so we only need to consider kernel elements given
by linear combinations of such classes where the fixed particles all determine the
same zero-class. Therefore, by projecting to pairs of particles we can assume that we
actually have n = 2, the general case follows by adding the fixed particles again.
Let ΣαiXi be a linear combination of elements of these two types in the kernel

of d2. We will now see that this linear combination can be decomposed into linear
combinations in the kernel of d2 such that each of those linear combinations uses
edges of at most seven copies of each G◦i . Fixing two distinct edges e1 and e2 of
the banana graph contained in L2 and adding tori to exchange free edges of the
circles we can arrange that each Xi meets e1, e2 and at most two more edges, see
Remark 4.16. Now assume we have i0 such that Xi0 meets two edges ei01 , e

i0
2 not
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contained in L4. Define for each particlem ∈ {1, 2} a continuous map ξm : G ′ → G ′

sending every G◦ij via the identity to G◦i(m+2). Now define the following continuous
self-map Conf2(G ′, Z ′ t {v})→ Conf2(G ′, Z ′ t {v}): if particle m is in a copy of some
G◦i outside of L2 and not containing one of the two edges ei01 , e

i0
2 , then change its

position by applying ξm. This induces a self-map of the Mayer-Vietoris spectral
sequence because ξ1 and ξ2 map Vv, Vr and Vv ∩ Vr into themselves, so the image
of our element in the kernel of d2 is again a kernel element. By construction, all Xi
meeting only L2 and the copies containing ei01 or ei02 are mapped by the identity. The
images of the remaining Xi meet at most one copy of oneG◦i outside of L4. Therefore,
we can replace all elements meeting both copies containing ei01 and ei02 by elements
meeting only one copy outside of L4, and in this replacement we added a kernel
element meeting at most six copies of each G◦i . Repeating this argument, we can
assume that all Xi meet at most one edge outside of L4.

By an analogous argument we can subtract kernel elements meeting at most seven
copies of each G◦i to arrange that all Xi only meet edges in L6, thus meeting at most
six copies of each G◦i . To interpret such a class with two moving particles as a class
in H2(Confn(G ′, Z ′ t {v})) we have to choose lifts in Vr again. The classes meeting
at most seven copies already come with a choice of copies of each G◦i for each of the
two particles such that this copy is not met by the other particle. The other classes
meet at most six edges and we choose for each of the two particles one additional
copy of each G◦i , so that we have at most eight copies. We can then use the same
technique as for the case of banana graphs with at most four edges to see that we
can modify the lifts to not meet more than these eight copies.

The fixed particles each meet at most one copy of one G◦i each, so we constructed
generators meeting at most 8+ n− 2 = n+ 6 copies of each G◦i .

This shows that also rE∞2,0 = rE32,0 is generated by classes meeting at most n+ 6

copies of each G◦i , so the same is true for rE31,1 = rE∞1,1. By a similar argument as for
vE∞1,1, the image of

d2 :
rE23,0 → rE21,1

is generated by classes meeting at most 8 + n − 3 = n + 5 copies of each G◦i , and
therefore rE21,1 is generated by classes meeting at most n+ 6 copies of each G◦i . To
interpret these classes in the configuration space of (G ′, Z ′), we have to lift them by
choosing paths of particles inside Vv. We only have to connect different zero cycles
in Vv, and to do this we need at least three edges. These edges can be chosen to be in
copies of G◦i we already met, or if we did not meet three copies of any G◦i we choose
three edges at random and still meet at most n+ 6 copies of each G◦i .

Hence, the module E21,1 is generated by classes meeting at most n+ 6 copies of
each G◦i , concluding the induction step.
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4.5 Stability for increasing number of particles

In this section we will prove that for highly connected graphs the map forgetting
the last particle induces in first cohomology a representation stable sequence of
representations of the symmetric group.
Let G be a graph, let S, T be finite sets and let ι : S ↪→ T be an injection. Then we

get an induced map
ConfT (G)→ ConfS(G)

by precomposition. This gives Conf•(G) the structure of an FIop-space. The
cohomology functor H1(−;A) for an abelian group A turns this into an FI-module

H1(Conf•(G);A)

over A. Recall that a graph is k-vertex connected if every pair of vertices (v,w) can
be connected by k distinct paths intersecting only in their endpoints.

Theorem I. Let G be a finite 3-vertex connected graph with at least four essential vertices
and without self-loops. LetA be an abelian group such thatH1(Conf2(G);A) is torsion-free.
Then H1(Confn(G);A) is torsion-free for all n and the FI-module H1(Conf•(G);A) is
finitely generated in degree 2. In particular, the sequence n 7→ H1(Confn(G); Q) induced by
forgetting the last particle is representation stable and its dimension is eventually polynomial
in n.

High vertex connectivity has the following implication: letG be k-vertex connected
for k > 1 and let v, v ′, w1, . . . , wk−1 ∈ V(G) be all distinct. Then there exists an
edge path between v and v ′ not meeting w1, . . . , wk−1: there exist at least k paths
between v and v ′ only intersecting in their endpoints, and at most k− 1 of them can
meet one or more of the wi.
For the proof of Theorem I, we need the following results.

Proposition 4.26. Let G be as in Theorem I, then the first homology H1(Confn(G);A) is
generated by basic classes with at most two moving particles.

Proof. By Theorem C, the first homology group H1(Confn(G);A) can be generated
by S1-, H- and star classes. Since we have G 6= S1, we saw in the proof of that
theorem that we in fact only need S1-classes involving one moving particle. By
Proposition 1.24 it suffices to take H-classes with two moving particles, so it remains
to show that we can write every star class as a linear combination of classes with two
moving particles.

Let Z be a cellular 1-cycle in the combinatorial model of ConfS(G) representing
a non-trivial star class at vwhose image is an embedded circle in the 1-skeleton of
ConfS(G). Let 0 6 ` 6 n− 3 be the number of non-moving particles of Z, then we
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will show that we can write Z as a linear combination of classes where at least `+ 1
particles are fixed. Fix one edge e0 which is not contained in the star of v and move
all fixed particles onto that edge. This edge exists because of connectivity and the
fact that we have at least three vertices.
Let s ∈ S be any particle and look at a connected segment γ of Z such that the

0-cube at the beginning of the segment denoted by γ0 has the particle s on v, the
next 1-cube moves it onto an edge e and the particle s is back on v for the first time
at the end of the segment, which we denote by γ1. If F is the smallest closed interval
in e0 containing all fixed particles, then by the connectivity assumption the graph
G− {v}− F is connected and contains at least one essential vertex, so it has connected
configuration spaces. Therefore, we can choose a path γ ′ in ConfS(G) connecting the
configurations γ0 and γ1 such that s is fixed on v and the ` particles which are fixed
for Z are also fixed for γ ′. The path γ followed by the inverse of γ ′ is homologous
to a cycle where s is fixed on the edge e: s is already fixed on e for γ, except for the
very first and last 1-cubes. The path γ ′ extended by those two cubes is homologous
relative endpoints to the same path γ ′ with smoved from v onto the edge e. This
gives a class with `+ 1 fixed particles.
The path Z ′ given by Zwith γ replaced by γ ′ moves s strictly less, so repeating

this process we eventually reach a cycle that does not move s at all and therefore has
at least `+ 1 fixed particles as claimed. Notice that Z ′ may not be a circle anymore,
but we can always write it as a sum of embedded circles in the combinatorial model
without increasing the number of movements of s. Furthermore, the particle s never
leaves the star of v, which allows the repetition of the argument above.

Each of those classes with at least `+ 1 fixed particles can now be written as linear
combinations of basic classes with at least ` + 1 fixed particles: For a class with
m > `+ 1 fixed particles move all those fixed particles onto edges, cut the graph at
those m positions and project to the configuration space with only the non-fixed
particles. This gives a new class in the cut graph, and we can write it as a sum of
basic classes. Then, we include this graph into G again and add the fixed particles to
their original positions. All circle classes involve one moving particle again and every
H-class can be written as a sum of H-classes with two moving particles. For star
classes, repeat the argument above until there are at least n− 2 fixed particles.

Proposition 4.27. Let G be as in Theorem I. Then there exists a basis of H1(G) consisting
of embedded circles such that none of the circles meets all vertices.

Proof. To see this, it is sufficient to construct a spanning treewith a vertex of valence at
least three, the corresponding basis of the homology then has the required property.
Choose four distinct vertices v1, v2, v, v ′ such that v1 and v2 are connected by an
edge e1. We can find a path from v1 to v not meeting v2. Let e2 be the first edge in
that path and v3 the other vertex incident to e2. Now choose a path connecting v1
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and v ′ without meeting v2 and v3, and let e3 be the first edge in that path. Then
e1 ∪ e2 ∪ e3 is a star graph with three edges, and by extending it to a spanning tree
we get a spanning tree with a vertex of valence at least three.

Proposition 4.28. Let G be as in Theorem I. Let X be a cycle representing a circle class
[X] ∈ H1(Confn(G)) with one particle s moving along an embedded circle in G and n− 1

fixed particles. For each edge e denote by Fe the set of fixed particles on that edge. If the
complement of the circle contains apart from e at least two more edges, then [X] = [σX] for
each σ ∈ ΣFe .

Proof. Choose two distinct edges e1, e2 in the complement of the embedded circle
which are also distinct from e. Let v and w be the two vertices incident to e. Choose
paths γ1 and γ2 from v to e1 and e2, respectively, ending in vertices we denote by
v1 and v2. By connectivity, we can choose these paths such that the complement of
each γi containsw and at least one vertex of each e1 and e2 (if γi meets both vertices
of ei, then we can restrict to a subpath that does not).
Every reordering of fixed particles on e can now be done (ignoring the moving

particle s for now) by moving individual fixed particles back and forth along γ1 and
γ2 and the edges e, e1 and e2. Since we are only changing the order of fixed particles
inside the edge e, each particle moves the same number of times γi as the inverse of
γi. The corresponding paths in the configuration space moving a particle along γi
and the inverse of γi only differ in the positions of the other fixed particles.
It is straightforward to check that each of these changes of position creates

• at each edge in the intersection of γi and the embedded circle an H-class of s
and the fixed particle whose position we change, and

• at each isolated vertex in this intersection a star class of those two particles, see
Figure 4.12.
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Figure 4.12: Moving a fixed particle along a path intersecting the circle class creates
a star class at that vertex. Moving it back creates the additive inverse of
this class.

If we ignore the other fixed particles, then the classes arising by moving back and
forth along one of the γi cancel each other out. For star classes, the position of the
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other fixed particles does not matter because Gwithout any vertex has connected
configuration spaces, so those homology classes also cancel when we take the fixed
particles into account. By construction, none of the H-classes meet both vertices of
any of the edges e, e1 or e2. Therefore, we can find paths from the edges e1 and
e2 to e which do not meet the vertices involved in the H-class. Along these paths
we can move all fixed particles onto e and change their order by using one of the
vertices v and w not involved in the H-class without changing the homology class.
Hence, we can arrange that the position of all fixed particles of these H-classes is
always the same, so the H-classes cancel as well when taking the fixed particles into
account.

Proposition 4.29. Let G be as in Theorem I. Then each H-class in H1(Confn(G)) can be
written as a linear combination of star classes with two moving particles.

Proof. By Proposition 1.24, it suffices to show this for H-classes with two moving
particles. Let such an H-class on an edge e incident to vertices v andw be given, and
let ef be an edge which is neither incident to v nor to w (this exists by connectivity
and the fact that we have at least four vertices). We will first show that we can move
all fixed particles onto the edge ef by only adding star classes with two moving
particles. By connectivity, we can move all fixed particles which are not on an edge
incident to both v and w onto ef without changing the homology class by moving
them in the complement of a small neighborhood of e. We now describe what
happens when we move a fixed particle s on an edge e1 incident to v and w onto the
edge ef. Let u be one of the vertices of ef, then there exists an edge path from v to u
which does not meet w. Moving s onto the edge eu given by the first edge in that
path produces a star class at v of the following kind:
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The central vertex in these pictures is v, the top left edge is eu, the top right edge is
e1, the bottom right edge is e, and s = 3. Notice that this picture shows the special
case where the valence of v is four and the H-class involves the two edges on the
left, but by adding star classes with two moving particles we can always arrange this
situation (forgetting about the remaining edges at v). Once s is moved to eu, we can
move it to ef without changing the H-class. We will now show that the star class
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above can be represented by a star class with two moving particles, which proves
that up to adding such star classes every H-class can be assumed to have all particles
on ef.

By connectivity, there exists a path from v towwhose first edge is eu, which meets
v and w only at its endpoints and which does not meet the interior of ef. Moving s
along this path from eu to e1 we see that the star class can be written as the sum of a
star class with s fixed on e1 and two classes moving s along a circle with the two
particles of the H-class fixed on e in the two different orderings:

1 2

3

2
1

3

1
2

3

Thefirst of these classes is a star classwith twomovingparticles, sowe can forget about
it. Since we have at least four vertices of valence at least three and therefore at least
three edges in the complement of any embedded circle, we see by Proposition 4.28
that the latter two classes are the same with different signs, so they add to zero.

Therefore, we can assume that the H-class has all fixed particles on ef. We now
show that each such H-class can be written as a linear combination of star classes
with two moving particles.

There exist by connectivity two disjoint paths connecting v andwwithout meeting
the interior of e. This gives an embedded theta graph (the banana graph with three
edges) with trivalent vertices at v and w. If ef is contained in this theta graph then
choose a different edge e ′f whose interior is disjoint from the theta graph and which
is not incident to both v and w. This exists because we have at least four vertices of
valence at least three. Connecting ef and e ′f via a path not meeting v and wwe can
move all fixed particles onto e ′f without changing the homology class. Therefore, we
can forget about the fixed particles and just show that an H-class of two particles in
the theta graph can be written as a linear combination of star classes. Adding star
classes we can arrange that one particle only uses the first two edges of the theta
graph and the other particle only uses the last two edges. For each movement of
one particle along e, move the fixed particle into the middle of the edge of the theta
graph it is on. It is straightforward to see that this gives four circle classes which add
to zero. Therefore, we reached the trivial class.
This shows that the H-class in G can be written as a sum of star classes with two

moving particles.

Proof of Theorem I. By Proposition 4.5, the homology is generated by basic classes
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with at most two moving particles. We can further assume that the circle classes only
have one moving particle, and by Proposition 4.29 we do not need H-classes.
When we say that the first homology is generated by these types of classes, we

always have to add the particles not involved in the 1-classes onto the graph in all
possible ways: an embedding of one of those graphs K into G determines maps

H1(ConfS(K);A)⊗H0(Confn−S(G− K);A)→ H1(Confn(G);A). (4.1)

All these maps for |S| 6 2 together generate the first homology. We will now argue
that by the connectivity assumption it suffices to add the fixed particles in one single
way instead.

Assume we are given a circle class moving one particle along an embedded circle
and keeping the remaining n − 1 particles fixed. We can move one of the fixed
particles from one position to any other position in the complement of the circle via
a path γ because G is connected. As described in the proof of Proposition 4.28, this
creates H-classes and star classes in the intersections of γ and the embedded circle,
see Figure 4.12. Therefore, we can choose for each embedding S1 ↪→ G an arbitrary
way of putting the remaining n− 1 particles into the complement of the circle. Since
the H-classes can again be written as linear combinations of star classes, these circle
classes together with the star classes will still generate the whole homology.
For star classes it is clear that all ways of adding fixed particles give rise to the

same homology class by the fact that G− {v} has connected configuration spaces for
all vertices v.

Each H1(Conf{s1,s2}(G);A) splits into modules of circle classes and star classes.
More precisely, there is a map

H1(Conf{s1}(G);A)⊕H1(Conf{s2}(G);A) ∼= H1(G;A)⊕2 → H1(Conf{s1,s2}(G);A)

given as follows: using Proposition 4.27 we choose a basis of H1(G;A) consisting of
embedded circles such that none of them meet all vertices ofG, and for each of those
circles we choose an essential vertex in its complement. We now send each element
of this basis of H1(G;A) to the same element with the other particle added to the
chosen vertex. The composition of this map with the direct sum of the projection
maps

πs1 ⊕ πs2 : H1(Conf{s1,s2}(G);A)→ H1(Conf{s1}(G);A)⊕H1(Conf{s2}(G);A)

is the identity, so we have

H1(Conf{s1,s2}(G);A) ∼= H1(Conf{s1}(G);A)⊕H1(Conf{s2}(G);A)⊕H[2]{s1,s2}
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4 Representation stability for configuration spaces of graphs

for some module H[2]{s1,s2}. By the discussion above, this module is generated by
star classes and maps to zero under the projections to a single particle.

Fixing a finite set Swe now construct a map
⊕

s1∈S
H1(Conf{s1}(G);A)⊕

⊕

{s1,s2}⊂S
H[2]{s1,s2} → H1(ConfS(G);A) (4.2)

as follows: choose bases of allH1(Conf{s1}(G);A) by pulling back the basis we chose
above for H1(G;A) under the canonical isomorphisms. Each circle class in these
bases is mapped by adding the fixed particles onto an edge in the star of the vertex
we chose above. For each summand H[2]{s1,s2} choose a basis consisting of linear
combinations of star classes. Fix an arbitrary edge ef of G and map each such basis
element by adding the fixed particles onto the interior of the edge ef.

We now want to show that this map is surjective. For this, it suffices to show that
every star class involving two moving particles is in the image of this map by the
discussion above. Given a cycle representing such a star class with moving particles
{s1, s2} we can forget about the fixed particles. This cycle is then homologous to
a linear combination of cycles in C1(Conf{s1,s2}(G)) representing the chosen basis
elements of H[2]{s1,s2}. It is now sufficient to show that if we add for each of those
cycles the fixed particles onto ef, then the corresponding cycles in C1(ConfS(G)) are
still homologous. We will therefore show that whenever we have a chain bounding
a linear combination of star cycles in Conf{s1,s2}(G), we find a chain bounding the
corresponding cycle in ConfS(G) with the fixed particles n − {s1, s2} added to ef.

For easier description we subdivide the edge ef by adding a vertex vf of valence 2,
andwe denote the two parts of ef by e1f and e2f . The combinatorial model constructed
in Proposition 1.20 works in the same way if not every vertex is essential, and we
will use this 2-dimensional combinatorial model of Conf{s1,s2}(G) to prove the claim.
Let a linear combination X = ΣαiXi of cellular cycles representing star classes in
this combinatorial model and a cellular chain Y bounding X be given. Remove the
interior of all cells of Y where a particle moves from e1f to vf, giving a new chain Ỹ.
Since for no star class any particle moves towards vf, this does not remove any cells
in the boundary of Y. The new boundary has four parts, each of which is determined
by the particle that is fixed and the position of this particle, which is either on vf or
on e1f . In each of these components the other particle moves along a 1-cycle in G,
and each such cycle appears with different signs once with the fixed particle on vf
and once with the fixed particle on e1f .
Since in this modified chain Ỹ no particle moves from e1f to vf, this determines

a well-defined chain in C1(ConfS(G)) by putting the fixed particles n − {s1, s2}

onto e1f . This chain bounds X with the fixed particles added to ef and the linear
combination of circle classes with one of s1 and s2 fixed on vf or e1f . Therefore, it
is sufficient to show the following: given a 1-cycle in C1(Conf{s1}(G)) not meeting
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4.5 Stability for increasing number of particles

ef, the 1-cycle in C1(ConfS(G)) given by the difference of putting the remaining
particles onto ef in two different orderings is null-homologous. Writing the 1-cycle
as a linear combination of cycles represented by embedded circles, this follows from
Proposition 4.28.
Therefore, the map (4.2) is surjective.

The composition of (4.2) with the sum of the projection maps to one and two
particles

H1(ConfS(G);A)→
⊕

s1∈n
H1(Conf{s1}(G);A)⊕

⊕

{s1,s2}⊂n

H[2]{s1,s2}

is by construction the identity, which shows that (4.2) is in fact an isomorphism.
Therefore, H1(ConfS(G);A) is torsion-free.

It is straightforward to check that this is actually an isomorphism of FIop-modules
with the obvious FIop-module structure on the source of (4.2): for each of the basic
classes above all fixed particles are in the star of one vertex which is disjoint from
the paths of the moving particles, so permuting fixed particles does not change the
homology classes in H1(ConfS(G)). Therefore, the map (4.2) is compatible with
permutation of fixed particles, and since it is also compatible with inclusions this
shows that this isomorphism is an isomorphism of FIop-modules.

Applying HomA(•, A) to this map shows that

H1(ConfS(G);A) ∼=
⊕

s1∈n
H1(Conf{s1}(G);A)⊕

⊕

{s1,s2}⊂n

HomA(H[2]{s1,s2}, A).

Varying n, this gives an isomorphism of FI-modules. The right hand side is clearly
finitely generated in degree 2, so the same is true for H1(Conf•(G);A).

In the proof, we in fact identified the first homology group explicitly:

Proposition 4.30. For a graphG and amoduleA as in Theorem I, there exists an isomorphism
of AΣn-modules

H1(Confn(G);A) ∼=
⊕

s1∈n
H1(Conf{s1}(G);A)⊕

⊕

{s1,s2}⊂n

H[2]{s1,s2}

for modules H[2]{s1,s2} ⊂ H1(Conf{s1,s2}(G);A) generated by star classes.
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Abstract

For a finite graph G and a natural number n we study the homology of the configu-
ration space Confn(G) of n particles in G. A graph is called a “tree with loops” if it
can be constructed from a tree by taking the iterated wedge sum with copies of S1
for different choices of base points. We prove that if G is a tree with loops then the
homology of Confn(G) is torsion-free and generated by products of 1-dimensional
classes. For general graphs Gwe give a generating set for the first homology group
H1(Confn(G)). Using these results and the techniques used in their proofs we then
prove representation stability for specific sequences of configuration spaces of graphs
given by either enlarging the graph or increasing the number of particles.





Zusammenfassung

Für einen endlichen Graphen G und eine natürliche Zahl n untersuchen wir die
Homologie des Konfigurationsraums Confn(G) von n Partikeln in G. Wir nennen
einen endlichen Graphen einen “Baum mit Schleifen” wenn er durch Ankleben
(per Wedge-Produkt an verschiedenen Basispunkten) von Kopien des Kreises S1
an einen Baum konstruiert werden kann. Wir beweisen, dass für einen Baum mit
Schleifen G die Homologie von Confn(G) torsionsfrei und erzeugt von Produkten
1-dimensionaler Homologieklassen ist. Für allgemeine Graphen G geben wir ein
Erzeugendensystem für die erste Homologiegruppe H1(Confn(G)) an. Mit diesen
Resultaten und den in den Beweisen benutzten Techniken zeigen wir anschließend
Darstellungsstabilität für bestimmte Folgen von Konfigurationsräumen von Graphen,
welche entwederdurchVergrößerungdesGraphen oderErhöhungderPartikelanzahl
definiert werden.
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