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Abstract 

Autosomal recessive primary microcephaly (MCPH) is a rare, genetically 

heterogeneous disease characterized by a reduced head circumference at birth and 

intellectual deficit. Biallelic mutations in the Cyclin-dependent kinase 5, regulatory 

subunit-associated protein 2 gene CDK5RAP2 cause MCPH type 3 (MCPH3). 

CDK5RAP2 function contributes to cellular processes such as centrosome function, cell 

cycle checkpoint control, DNA repair, chromosome condensation, and kinetochore 

attachment to spindles. One current model for the microcephaly phenotype in MCPH3 

invokes a premature shift from symmetric to asymmetric cell divisions and thus 

premature neurogenesis with a subsequent depletion of the progenitor pool. In addition, 

other mechanisms may also play a role. 

   The aim of my PhD thesis work was to better understand the role of CDK5RAP2 in 

physiological brain development and in disease. Specific aims were (i) to characterize 

the spatiotemporal CDK5RAP2 expression during normal murine and human brain 

development, (ii) to characterize the phenotype of a Cdk5rap2 mutant mouse generated 

in our research group, and (iii) to identify further MCPH3 patients with novel CDK5RAP2 

mutations and thereby better characterize the phenotype spectrum of MCPH3. We 

found that in the murine brain Cdk5rap2 expression boosts during early embryonic 

stages, when proliferation rates are high and neocortical development is initiated. In 

human and murine brain, CDK5RAP2 is present in brain structures with high 

proliferative rates and, colocalizes with progenitor cells, glial cells, and early neurons. 

As the brain matures, CDK5RAP2 is refined to specific substructures within regions, 

which correspond to preserved proliferation zones. Moreover, we found concordance 

between regions of high CDK5RAP2 expression in the mouse and sites of pathology 

suggested by neuroimaging studies in humans and mouse. Our findings in human and 

mouse tissue confirm the function of CDK5RAP2 in cell proliferation. In addition, we 

described for the first time in detail the clinical, radiological, and also the cellular 

phenotype of MCPH3 patients with a novel homozygous nonsense mutation in the 

CDK5RAP2 gene. Cells from the patients showed mitotic spindle defects and disrupted 

γ-tubulin localization to the centrosome, which underlines the importance of CDK5RAP2 

in mitotic spindle pole organization and centrosome integrity. These findings suggest 

that MCPH3 pathomechanism is partially due to mitotic spindle and centrosomal 

defects. To further mimic the human mutation and study the function of CDK5RAP2 in 
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vivo, we generated a transgenic Cdk5rap2 mouse. These mice did not display the 

expected microcephaly phenotype. Our further analysis indicated that a previously 

unknown splice variant of the Cdk5rap2 gene exists, which allows translation of 

Cdk5rap2, even in the mutant mice.  

   With our studies, we provide for the first time a systematic description of the 

spatiotemporal expression of CDK5RAP2 in murine and human developing brain. 

Moreover, the cellular phenotype findings we collected from the new MCPH3 patients 

provide a glimpse into processes that could lead to the microcephaly phenotype in 

MCPH.  
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Zusammenfassung 

Die Autosomal-rezessive primäre Mikrozephalie (MCPH) ist eine seltene und genetisch 

heterogene Erkrankung, die sich durch einen kongenital reduzierten Kopfumfang und 

eine mentale Retardierung auszeichnet. Biallelische Mutationen im Cyclin-dependent-

kinase-5-regulatory-subunit-associated-Protein 2 Gen CDK5RAP2 verursachen die 

MCPH vom Typ 3 (MCPH3). Das CDK5RAP2 spielt eine Rolle in zellulären Prozessen 

wie der Funktion von Zentrosomen, der Kontrolle der Zellzyklus-Checkpoints, DNA-

Reparatur, Chromosomenkondensation und Kinetochor Befestigung an Spindeln. Eine 

der Haupthypothesen für die Entstehung des Mikrozephalie-Phänotyps bei MCPH3 

beinhaltet einen vorzeitigen Wechsel von symmetrischer zu asymmetrischer 

Zellteilungen und damit eine vorzeitige Neurogenese sowie eine Depletion des 

Vorläuferpools. Darüber hinaus können auch andere Mechanismen eine Rolle spielen. 

   Das Ziel der vorliegenden Doktorarbeit war es, die Rolle des CDK5RAP2-Proteins in 

der physiologischen Entwicklung des Gehirns und in der Entstehung von MCPH besser 

zu verstehen. Spezifische Ziele waren (i) die zeitliche und örtliche Expression von 

CDK5RAP2 während der normalen Entwicklung des Gehirns von Menschen und 

Mäusen zu veranschaulichen, (ii) den Phänotyp einer in unserer Forschungsgruppe 

erzeugten Cdk5rap2-Mausmutanten zu charakterisieren, und (iii) weitere MCPH3 

Patienten mit bisher nicht beschriebenen Mutationen im CDK5RAP2-Gen zu 

identifizieren und damit das Phänotypspektrum der MCPH3 besser zu erforschen. Wir 

fanden, dass Cdk5rap2 während der frühen embryonalen Stadien im murinen Gehirn 

besonders hoch exprimiert wird, d.h. während einer Zeit in der hohe Proliferationsraten 

auftreten und die Neokortex-Entwicklung bei Mensch und Maus beginnt. In humanen 

und murinen Gehirnen, ist CDK5RAP2 in Hirnstrukturen mit hoher Proliferationsrate 

vorhanden und kolokalisiert mit Vorläuferzellen, Gliazellen und unreifen Neuronen. Mit 

der Entwicklung des Gehirns reduziert sich das Vorhandensein von CDK5RAP2 auf 

spezifische Unterstrukturen, in denen die Proliferation anhält. Darüber hinaus fanden 

wir Übereinstimmungen zwischen Regionen mit hoher CDK5RAP2 Expression in der 

Maus und der durch bildgebene Verfahren beschriebenen Pathologie bei Mensch und 

Maus. Unsere Ergebnisse in Human- und Mausgewebe bestätigen die Rolle von 

CDK5RAP2 in der Zellproliferation. Zusätzlich beschrieben wir zum ersten Mal detailliert 

den klinischen, radiologischen und auch den zellulären Phänotyp von Patienten mit 

MCPH3 mit einer bisher nicht beschriebenen homozygoten Nonsense-Mutation im 
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CDK5RAP2-Gen. Wir fanden, dass Zellen von Patienten eine abnorme Morphe ihrer 

mitotischen Spindelapparate sowie eine gestörte Lokalisation des γ-Tubulins am 

Zentrosom aufwiesen. Diese Ergebnisse unterstreichen die Bedeutung von CDK5RAP2 

in der Organisation der mitotischen Spindel und der Zentrosomintegrität. Diese 

Ergebnisse legen nahe, dass der MCPH3-Pathomechanismus teilweise auf Defekte der 

mitotischen Spindel und der Zentrosomen zurückzuführen ist. Um die Auswirkungen 

einer CDK5RAP2-Mutation im Menschen weiter zu imitieren und die Funktion des 

CDK5RAP2-Proteins in vivo zu untersuchen, generierten wir eine transgene Cdk5rap2-

Mausmutante. Diese Mäuse bildeten aber nicht den erwarteten Mikrozephalie-Phänotyp 

aus. Weitere Analysen zeigten, dass es eine bisher unbekannte Spleißvariante des 

Cdk5rap2-Gens gibt, die selbst in den Mausmutanten die Translation von Cdk5rap2 

ermöglicht. 

   Diesen Studien bieten zum ersten Mal eine systematische Beschreibung der 

CDK5RAP2-Expression während der Entwicklung muriner und humaner Gehirne. 

Darüber hinaus geben unsere am Patienten erhobenen Ergebnisse des zellulären 

Phänotyps einen Einblick in Prozesse, die zum Mikrozephalie-Phänotyp bei MCPH 

führen könnten. 
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1. Introduction 

1.1 Microcephaly definition and epidemiology 

Microcephaly is defined by a reduction of the occipito-frontal head circumference (OFC) 

of more than two standard deviations (SD) below the mean for age, gender, and 

ethnicity (severe microcephaly is defined by an OFC below -3 SD). Microcephaly can be 

caused by genetic and/or environmental factors and classified as primary (congenital) or 

secondary (postnatal). About 2-3% of the general population are microcephalic, 

depending on the population and the applied SD threshold to define microcephaly. 

Moreover, primary, nonsyndromal microcephaly has an incidence of 1:30,000 to 

1:250,000 live-births (reviewed in (1-3)). 

1.2 Autosomal recessive primary microcephaly (MCPH) 

Autosomal recessive primary microcephaly or MCPH for MicroCephaly Primary 

Hereditary is a rare and genetically heterogeneous disease reported in about 200 

families world-wide. MCPH is considered as a model disorder for understanding the 

mammalian evolutionary brain size expansion, especially the expansion of the cerebral 

cortex (reviewed in (1, 3, 4)). 

1.2.1 Phenotype  

MCPH patients display a pronounced reduction in brain volume at birth and simplified 

gyration of otherwise architectonical normal brains on magnetic resonance imaging 

(MRI) studies (Figure 1; reviewed in (1, 2, 5)). In addition, patients suffer from mental 

retardation of various degrees. Individual patients with periventricular neuronal 

heterotopias as an indication of a neuronal migration defect have been reported (2, 5, 

6). Further cerebral abnormalities are now known (7). Moreover, a short statue can 

occur in MCPH patients, particularly in those with subtypes MCPH1 and MCPH5 

(reviwed in (1)). 
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Figure 1. MCPH patient phenotype.  

(A) MCPH patient with microcephaly and typical sloping of the forehead. (B) Typical reduction of the brain 

volume, particularly of the cerebral cortex, as well as simplified gyration in an MCPH patient compared to 

a healthy control on magnetic resonance (MRI) studies. Adapted from (1).  

 

1.2.2 Genotype  

MCPH subtypes 1-11 are caused by mutations in genes encoding microcephalin 

(MCPH1; MIM#251200 (8, 9)), WD repeat-containing protein 62 WDR62 (MCPH2; 

MIM#604317 (10, 11)), cyclin-dependent kinase 5 regulatory associated protein 2 

CDK5RAP2 (MCPH3; MIM#604804 (12, 13)), cancer susceptibility candidate 5 CASC5 

(MCPH4; MIM#604321 (14)), abnormal spindle-like microcephaly associated ASPM 

(MCPH5; MIM#608716 (15-17)), centrosomic protein J CENPJ (MCPH6; MIM#608393 

(13, 18)), SCL/TAL1 interrupting locus STIL (MCPH7; MIM#612703 (19)),135 kDa 

centrosomal protein CEP135 (MCPH8; MIM#614673 (20)), centrosomal protein 152 

kDa CEP152 (MCPH9; MIM#604852 (21, 22)), and polyhomeotic-like protein 1 ZNF335 

(MCPH11; MIM#615414 (23)). In addition, linkage to chromosome 10q11.23 has been 

reported (24). MCPH genes are highly conserved among species and have been 

suggested to be involved in the evolutionary enlargement of the human brain ((2, 25, 

26). Mutations in CENPJ and CEP152 have not only been identified in patients with 
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MCPH, but also in those with Seckel syndrome (other Seckel syndrome genes include 

ATR and RBBP8) (27, 28). There is not only an overlap of the genotype, but also of the 

MCPH and Seckel syndrome phenotype such as short stature, severe microcephaly, 

and mental retardation (27). Moreover, there is an overlap of the phenotype of Majewski 

osteodysplastic primordial dwarfism type II (MOPDII) caused by mutations in the 

pericentrin gene PCNT with that of MCPH and of Seckel syndrome (29). The gene 

products associated with these diseases also share common functions (30). 

1.2.3 MCPH protein function 

MCPH genes encode proteins that are involved in cell cycle regulation, cell cycle 

checkpoint control and DNA repair, chromosome condensation, centrosome function, 

spindle formation and dynamics, kinetochore attachment to spindles, cellular 

abscission, and apoptosis (reviewed in (1, 30)). MCPH proteins localize predominantly 

to the centrosome and the pericentriolar matrix. In animal cells, the centrosome, as the 

major microtubule organizing center (MTOC), organizes and orientates the mitotic 

spindle poles to ensure proper cell division (31). MCPH proteins further play a role in 

mitotic cleavage plane orientation and thereby regulate the balance between symmetric 

and asymmetric progenitor cell division during neurogenesis (reviewed in (1)). Abnormal 

orientation of the mitotic cleavage plane is believed to partially contribute to the 

microcephaly phenotype (1, 32). In addition, CDK5RAP2, CENPJ, CEP152, and STIL 

are involved in various centrosomal processes such as centriole duplication, 

engagement, and cohesion, centrosome attachment to the spindle pole, recruitment of 

important factors to the centrosome, and establishment of proper mitotic spindles (33-

42). 

1.2.4 Pathomechanism of MCPH 

Neurons in the mammalian CNS are all generated from neuroepithelial (NE) cells, which 

are pluripotent stem cells. NE cells undergo three types of cell division: (i) symmetric, 

proliferative division giving rise to two NE cells, (ii) asymmetric division yielding one NE 

cell and one neuron, (iii) symmetric division yielding two neurons (43). The mammalian 

cortex is highly organized and has a laminated structure, consisting of six layers (44). It 

develops in an inside-out sequence, where early postmitotic cells generated from the 

neuroepithelium build up the layers nearest to the ventricular zone (deep layers) and 

later generated postmitotic cells migrate beyond the first generated deeper layers giving 
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rise to the next layer and so on (45). In that fashion the six cortical layers evolve (45). 

The size of the cortex depends on the relative rate of cell proliferation, the balance of 

symmetric versus asymmetric progenitor cell proliferation, cell death and cell 

differentiation/maturation (46). One current model for the microcephaly phenotype in 

MCPH invokes a premature shift from symmetric to asymmetric cell divisions and thus 

premature neurogenesis with a subsequent depletion of the progenitor pool (Figure 2; 

(47-49)). In addition, increased levels of cell death and premature cell cycle exit have 

also been suggested to contribute to the pathomechanism of MCPH (48, 49). However, 

other mechanisms might also play a role, as a progressive cellular defect during stem 

cell differentiation has been reported (50-52). 

 

 

Figure 2. Working hypothesis for MCPH3 pathomechanism. 

A current model suggests a premature shift from symmetric to asymmetric cell division, leading to a 

depletion of the progenitor pool and a reduction of the final neuron number. Adapted from (53). 

 

1.3 MCPH type 3 (MCPH3) 

Homozygous mutations in the Cyclin-dependent kinase 5, regulatory-subunit associated 

protein 2 gene CDK5RAP2 were identified as a cause of MCPH type 3 (MCPH3) in 

2005 (13). Currently there are three identified CDK5RAP2 mutations in three Pakistani 

families and, one Somali child: (i) a nonsense mutation in exon 4 (c.246T>A, p.Y82X) 

introducing a new splice acceptor site, (ii) a nonsense mutation in exon 8 (c.700G>T, 
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p.E234X) introducing a frame shift, and (iii) a mutation in intron 26 (IVS26-15A>G, 

R1334SfsX5) resulting in a premature stop codon and finally (iv) a heterozygous 

mutation introducing a frame shift and a splicing respectively (c.524_528del and c.4005-

1 G>A) (Figure 3; (13, 54-56)). All mutations are proposed to lead to truncated proteins 

and a loss of CDK5RAP2 function. 

 

 

Figure 3. Position of CDK5RAP2 mutations within gene and protein domain. 

Known and predicted MCPH protein domains: Structural maintenance of chromosome (SMC), C-terminal 

Cnn Motif 2 that might mediate Golgi complex interaction and binding to calmodulin (CM2), Gamma 

tubulin ring complex (yTuRC), EB1 plus-end binding protein 1 (EB1), Cyclin-dependent kinase-5 

regulatory kinase 1 (CDK5R1). Figure adapted from (57). 

 

1.3.1 CDK5RAP2 

CDK5RAP2, also referred to as centrosome-associated protein 215 (CEP215), or CDK5 

activator binding protein C48, is a highly conserved protein, and ortholog genes are 

found in other organisms such as apes, cows, dogs, rats, mice, and chicken (57). The 

protein was discovered by two groups independently in 2000 and associated with the 

disease MCPH five years later (12, 13, 58, 59). Studies performed in somatic cells 

revealed the importance of CDK5RAP2 in centrosomal microtubule organization; it 

recruits the y-tubulin ring complex (y-TuRC) to the centrosome, which is key for 

microtubule nucleation (60). Cdk5rap2 localization to the pericentriolar matrix (PCM) is 

evident throughout all stages of the cell cycle, and its centrosomal level is regulated in a 

cell cycle dependent manner in mouse embryonic fibroblasts (36, 60). Centrosomal 
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microtubule organization and PCM component recruitment regulated through 

CDK5RAP2 are important for proper mitotic progression (61). In human tumor cells, but 

not in rodents, CDK5RAP2 has been found to localize at the distal, growing tips of 

microtubules where it indirectly regulates the microtubule plus-end dynamics (62). 

Proper spindle formation, chromosomal segregation, spindle checkpoint signaling 

pathway, indirect regulation of CDK5, and regulation of centriole cohesion and 

duplication cycle are additional functions of CDK5RAP2 (13, 36, 58, 63). Apart from the 

centrosomal localization of CDK5RAP2, the protein has also been shown to localize to 

the Golgi network during interphase in a centrosomal and energy dependent manner; 

however, the importance of this localization is not known so far (64). 

 

Figure 4. CDK5RAP2 intracellular localization. 

Localization of CDK5RAP2 protein during interphase and in mitosis. CDK5RAP2 protein is found at the 

centrosome and the Golgi complex (green) during the interphase, and is localized at the centrosome in 

the mitotic cell (shown in tumor cells). Also, this protein has been described to localize to the plus end of 

microtubules (orange). During interphase cells are growing and duplicate their DNA (blue) in order to later 

divide during mitosis through the mitotic spindle apparatus (orange). Growth and division of cells needs a 

constant supply of new proteins and lipids to the site of synthesis in the endoplasmatic reticulum via the 

Golgi apparatus (green). During mitosis, the Golgi apparatus is fragmented into many small vesicles that 

are subsequently divided upon the later daughter cells. Figure adaptebd from (57). 
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2. Aims  

When I started my PhD thesis in 2009, CDK5RAP2 was known to be a centrosome-

associated protein, involved in various centrosome related functions such as the 

recruitment of the y-tubulin ring complex to the centrosome, maintenance of connection 

between centrioles and pericentriolar matrix, centrosome cohesion, and spindle 

checkpoint regulation. In addition, the protein was described to be an indirect regulator 

of the highly conserved serine threonine kinase CDK5 (reviewed in (1)). The latter result 

has not been reproduced. Further mechanisms were - at that time point - not described. 

In particular, no systematic description of the spatiotemporal expression of CDK5RAP2 

in the developing mouse and human brain as well as no mouse model had been 

reported. Moreover, only two CDK5RAP2 mutations with sparse clinical data had been 

published. Thus, the main aim of my PhD thesis project was to characterize the role of 

CDK5RAP2 in physiological brain development and in the occurrence of acquired and 

hereditary brain malformation. The specific aims were:  

(i) Characterization of the spatiotemporal CDK5RAP2 expression during normal 

murine and human brain development. 

(ii) Characterization of a Cdk5rap2 mutant mouse generated in our research group. 

(iii) Identification of further MCPH3 patients with novel CDK5RAP2 mutations and 

characterization of their phenotype. 
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3. Methods 

3.1 Animal and human samples  

Embryonal (E), postnatal (P) and adult C57Bl6 mice (E10, E12, E16, P0, P5, P10, P56) 

were obtained from the animal facility FEM of the Charité - Universitätsmedizin Berlin, 

Germany. In addition, we generated transgenic Cdk5rap2 mice (see below for details). 

All experiments were carried out in accordance to the national ethic principles 

(registration no. T0309/09 and G0113/08).  

Informed consent was obtained from the parents of the patients for the molecular 

genetic analysis, the publication of clinical data, photos, magnetic resonance images 

(MRI) and studies on immortalized lymphocytes (LCLs). DNA was extracted from EDTA 

blood samples using the Illustra BACC2 DNA extraction kit (GE Healthcare, Munich, 

Germany). Samples from microcephaly patients and controls were used in this study 

with approval from the local ethics committees of the Charité and the Freiburg 

University (approval nos. EA1/212/08 and 494/11, respectively). 

3.2 Cell culture 

Ebstein-Barr virus transformed lymphocytes (LCLs) were established according to the 

protocol published by (65). Non-adherent LCLs were cultured in RPMI 1640 with L-

Glutamine (Invitrogen, Darmstadt, Germany) supplemented with 20% v/v fetal bovine 

serum (Invitrogen) and 1% v/v penicillin-streptomycin (Sigma-Aldrich, Taufkirchen, 

Germany). 

3.3 RNA extraction and quantitative real time PCR 

Total RNA was extracted using standard techniques from C57Bl6 mouse cerebral 

cortex at the age of E10, E12, E14, E16, P0, P5, P10, P20, and P56 (n=6 per group) 

and organs from P0 pups as kidney, thymus, lung, heart, bladder, liver, and placenta 

(n=3-6 per group). In addition, RNA was extracted from transgenic Cdk5rap2 mouse 

and control specimen. Total RNA was extracted using TRI-Reagent® (Sigma-Aldrich) 

according to the manufacturer’s recommendations from tissue samples, and cDNA was 

prepared by reverse transcription using the ThermoScript® RT-PCR System 

(Invitrogen), using a combination of oligo(dT)20 and random hexamer primers. cDNA 

synthesis was performed with 1 µg of RNA. For quantitative real-time PCR, 1 µl of 1:10 

diluted cDNA was used as template. For primer and probe sequences, please refer to 
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(66, 67). Experiments (n=5-6 per group) were run in triplicate, using an Applied 

Biosystems 7500 Fast Real-time PCR System (Applied Biosystems Inc., Norwalk, CT, 

USA) in 96-well microtiter plates. Threshold cycle (Ct) values were calculated using the 

7500 Fast System SDS Software (Applied Biosystems Inc.), and further statistical 

calculations were performed using Microsoft Excel (Microsoft Corporation, Bellevue, 

WA, USA) and GraphPad Prism 5 software (GraphPad Software Inc., La Jolla, CA, 

USA). The 2-∆∆Ct method was applied for the quantification of the relative expression of 

the Cdk5rap2 mRNA using the reference gene hypoxanthine phophoribosyltransferase 

(Hprt) as the endogenous control for normalization. 

3.4 Protein extraction and Western blot 

Proteins were extracted from murine tissues and human LCLs using standard 

techniques. Protein concentrations were determined using a bicinchoninic acid (BCA) 

based assay, according to the instructions of the manufacturer (BCA Protein Assay Kit; 

Pierce Biotechnology, Rockford IL, USA). Protein extracts were denaturated in Laemmli 

sample loading buffer at 95 °C for 5 min, separated by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE), and electrophoretically transferred in 

transfer buffer in a semi-dry fashion using Trans-Blot SD Semi-Dry transfer cell 

(BioRad, Munich, Germany) onto nitrocellulose membrane (BioRad). The membranes 

were incubated for 1 h at room temperature (RT) in blocking buffer (TBS-T 1x with 5% 

bovine serum albumin (BSA)), rinsed three times with TBS-T 1x for 8 min each at RT on 

a shaker followed by incubation with primary and secondary antibodies. The 

immunoreactive proteins were visualized using a technique based on a 

chemiluminescent reaction. The gel pictures were obtained with the Molecular images 

ChemiDoc XRS+ (BioRad). Western blot experiments were run in triplicates. 

3.5 Immunohistology and -cytology 

Cryostat sections of embryonic, postnatal, and adult murine brain tissue and organs 

from P0 pups (kidney, thymus, lung, heart, liver, and intestines) were briefly air-dried 

prior to rising in phosphate buffer saline (PBS 1x) for 10 min and in staining buffer (0,2% 

gelatine, 0,25% Triton X-100 in PBS 1x) for 20 min. In a 30 min blocking step, sections 

were incubated in 10% donkey or goat normal serum (DNS, GNS) in staining buffer at 

RT. Sections were incubated overnight at RT with primary antibodies in the staining 

buffer containing 10% DNS or GNS followed by an incubation with the corresponding 

secondary antibodies for 2 h at RT, and 30 min rinsing with PBS 1x prior to mounting 
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with Immu-mount (Thermo scientific, Schwerte, Germany). Nuclei were labeled with 

4’,6-diamidino-2-phenylindole (DAPI, 1:1000, Sigma-Aldrich). 

Human paraffin sections were deparaffinized, rinsed in staining buffer, incubated 30 

min in 10% GNS at RT, incubated overnight at RT with the primary antibody followed by 

an incubation with streptavidin goat anti-rabbit biotinylated antibody (Invitrogen) 1:400 

for 2 h at RT. Endogenous peroxidase was quenched through subsequent incubation in 

0.3% H2O2 for 10 min at RT, and signal amplification was performed using the 

Vectastain ABC elite system® (Vector laboratories, Orton Southgate, UK). Color 

development was achieved by adding 17 µl of H2O2 30% to sections incubated in a 

solution containing 200 mg/L DAB, 0.05 M Tris and 0.6% NiNH4SO4. Color development 

was stopped through rinsing sections in 0.05 M Tris solution, and sections were 

dehydrated and mounted with Entelan® (Merck, Darmstadt, Germany). Human sections 

were also stained with Hematoxylin and Eosin staining (H&E) and anti MIB1 

immunostaining (Dako, Hamburg, Germany); these immunostainings were done using 

standard procedures. For immunocytology human LCLs were plated on Poly-L-lysine 

(Sigma-Aldrich) coated coverslips, cultured for 30 min at standard conditions, and 

incubated in 37 °C PFA 4% for 10 min prior to rinsing with phosphate buffered saline 

(PBS 1x). Coverslips were further incubated at RT in staining buffer (0,2% gelatin, 

0,25% Triton X-100 in PBS 1x) for 20 min and subsequently in 10% donkey normal 

serum (DNS) in staining buffer for 30 min for blocking. Coverslips were incubated 

overnight at 4 °C with primary antibodies in the staining buffer containing 10% DNS 

followed by an incubation with the corresponding secondary antibodies for 2 h at RT. 

Nuclei were labeled with DAPI (1:1000). 

Fluorescently labeled tissue and cells were analyzed and imaged by a fluorescent 

Olympus BX51 microscope with the software Magnafire 2.1B (2001; Olympus, 

Hamburg, Germany) and with the Zeiss Lsm5 exciter confocal microscope with the 

software Zen 2009 (Zeiss, Berlin, Germany). All images were processed using Adobe 

Photoshop. For antibody information, please refer to the original publications (67, 68). 

3.6 Haplotype analysis using microsatellite markers 

For linkage analysis with respect to the loci of MCPH1-7 and PNKP in patients with 

primary microcephaly, we selected microsatellite markers for each locus in such a way 

that three markers were located on each side of each gene. The markers flanking the 

CDK5RAP2 gene were: CHLC.GGAA23B10, D9S258, D9S2152, D9S103, D9S116, 
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and D9S1823. PCR fragments were resolved by capillary electrophoresis on an ABI 

3100 sequencer (Applied Biosystems, Darmstadt, Germany), and fragment analysis 

was performed using the GeneScan software (Applied Biosystems). Haplotypes were 

constructed in the family by inspection of the microsatellite fragment length.  

3.7 CDK5RAP2 gene sequencing 

Thirty-eight coding exons of the CDK5RPAP2 gene and at least 50 bp of the intronic, 

exon-flanking sequence were analyzed through PCR, and cycle sequencing using the 

ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit Version 1.1 

(Applied Biosystems). Capillary electrophoresis was performed using an ABI 3100 

sequencer (Applied Biosystems), and sequence data were analyzed using SeqPilot 

DNA sequence analysis software (JSI, Kippenheim, Germany). The database sequence 

NM_018249 for the CDK5RAP2 gene was used as reference sequence. 

3.8 Generation and characterization of Cdk5rap2 mutant mice 

The conditional gene-targeting vector for the Cdk5rap2 LoxP+/+ mice was produced from 

a mouse genomic library clone (C57Bl6) by my supervisor and colleagues (Figure 5). 

The targeting strategy was to conditionally delete exon 3 of Cdk5rap2 and generate a 

subsequent stop codon at the beginning of exon 4 by using a Cre-LoxP strategy. Exon 3 

and 4 encode the -tubulin ring complex (TuRC)-binding domain of Cdk5rap2 (Figure 

3). The targeting vector was constructed by successive cloning of PCR products and 

contained 3.4 kb 5′ and 3.5 kb 3′ homology arms and a neomycin selection cassette. A 

LoxP sequence was introduced into intronic regions between exon 2 and 3 as well as 

between exon 3 and 4, i.e., with positions about 320 bp before and about 2.2 kp at the 

end of exon 3. An FRT-Neo selection cassette with two flanking FRT sites for later 

removal by FLP recombinase was inserted about 300 bp into intron 3 (first FRT site) 

and 16 bp (second FRT site) before the 3’ LoxP site The linearized targeting construct 

was electroporated into C57BL/6N mouse embryonic stem cells (ESC) and selected 

using neomycin. For the resultant clones, the correct insertion of the targeting construct 

into the genome was subsequently confirmed by PCR over the homologous 

recombination arm using external primers and further confirmed by Southern blot with 

Neo internal probe and with 5′ and 3′ external probes. 

The Cdk5rap2 LoxP+/- mouse line was established at the Institut Clinique de la Souris 

(ICS; llkirch, France) in accordance to the French law. One verified stem cell clone was 
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selected for C57Bl6 blastocysts injection, and ESC-derived chimeras gave germline 

transmission. The resulting chimeric line was verified by PCR using external primers, 

further confirmed by Southern blot with Neo internal probe and crossed with a Flip 

C57Bl6 deleter mouse to excise the FRT site-flanked Neo cassette on F1 progenies. 

The F1 animals were crossed with C57BL6 mice to generate F2 animals. Conditional 

Cdk5rap2 LoxP+/+ hCMV Cre+ mice (cKO) were generated to obtain complete excision 

of the Cdk5rap2 exon 3 and introduce a stop codon in exon 4. Breeding of Cdk5rap2 

LoxP+/+ mice with hCMV Cre+ mice resulted in heterozygous Cdk5rap2 LoxP+/- hCMV 

Cre+ mice that were then crossed with Cdk5rap2 LoxP+/+ mice. The latter mice were 

further breed among each other. Cdk5rap2 LoxP+/+ hCMV Cre- and Cdk5rap2 LoxP+/- 

hCMV Cre- were used as controls. Breeding was performed at the animal facility FEM 

of the Charité - Universitätsmedizin Berlin, Germany, and all experiments were carried 

out in accordance to the national ethic principles (registration no. T0309/09 and 

G0113/08). 

Genomic DNA was isolated from tail cuts by proteinase K digestion (Invisorb spin 

tissue mini kit, Stratec-molecular, Berlin, Germany) using standard methods, and 

genotyping was performed by PCR (primer sequences are available on request). 

Characterization of our conditional Cdk5rap2 LoxP+/+ / hCMV Cre mice (cKO) was 

achieved through various strategies including quantitative real-time PCR (qPCR) of 

Cdk5rap2 mRNA products, sequencing of cDNA, Western blot, histology (hematoxylin 

and eosin staining), immunohistology, inspection of the animals, and cranial MRI 

analysis. 
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Figure 5. Transgenic Cdk5rap2 LoxP / hCMV Cre mouse generation. 

Schematic representation of the targeting vector. Homologous recombination into the Cdk5rap2 wild-type 

allele of mESC resulted in the Cdk5rap2 LoxP genotype. A correctly targeted ESC clone was injected into 

blastocystes to generate chimeric mice. Chimeras were bred with FLIP expressing transgenic animals to 

generate Cdk5rap2 LoxP mice lacking the Neo cassette, and the latter were bred with hCMV Cre mice to 

delete exon 3 and generate a stop codon downstream. 
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4. Results 

4.1 Reference genes in the developing murine brain and in differentiating 
embryonic stem cells 

To chose the most appropriate reference gene for normalization purpose of the qPCR 

results, we analyzed, in vivo and in vitro, five candidate genes throughout mouse 

embryonic stem cell differentiation and the developing murine brain neocortex: Actb, 

18s, Gapdh, Hprt, and RPII. Thereby, we identified Gapdh and Hprt as reference genes 

most suitable for Cdk5rap2 gene expression analysis in the developing murine brain 

neocortex in vivo (66). 

4.2 Spatiotemporal expression of CDK5RAP2  

We started to study CDK5RAP2 function by characterizing its spatiotemporal 

expression in pre- and postnatal murine and human brain and in other organs (Figure 

6). CDK5RAP2 was detected in various murine and human organs with the highest 

protein and mRNA levels in murine brain, kidney, and thymus. CDK5RAP2 

immunopositivity was present particularly within regions of high proliferation in murine 

and human fetal organs. The intracellular enrichment of CDK5RAP2 at the centrosomes 

and the Golgi apparatus was confirmed by immunohistology. We found CDK5RAP2 

spatio-temporal localization to be strictly regulated during murine and human brain 

development. During early neurogenesis in murine brain (E10.5-E12.5), Cdk5rap2 

localizes to symmetrically and asymmetrically dividing neural progenitors at the 

ventricular and subventricular zone (VZ, SVZ). Later in development, the protein is 

present in glial cells and early neurons but is rarely detected in mature neurons. 

Cdk5rap2 is strongly downregulated as the brain matures; however, it remains to be 

expressed in preserved proliferation zones. At the age of P0, Cdk5rap2 is present 

throughout the cerebral cortex, particularly in Cux1-positive upper layer neurons. Later, 

in the adult brain, the distribution of the protein within the cerebral cortex is uniform. 

CDK5RAP2 also localizes to other brain regions such as the hippocampus and the 

cerebellum, where again we found its immunoreactivity in proliferative zones. Our 

results obtained in human brain are consistent with those of the murine brain and 

suggest that CDK5RAP2 may be important for neural progenitor proliferation (67). 
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Figure 6. Cdk5rap2 in the developing murine cortex. 

(A) Cdk5rap2 mRNA expression in the murine cortex at various embryonic and postnatal ages. (B) A 

scheme representing the spatiotemporal protein localization in the murine neocortex. (C) Cdk5rap2 

colocalizes with nestin-positive progenitor cells, and Tuj1-positive early neurons. Also, it is found in glial 

cells (Iba1-positive microglia, GFAP-positive astrocytes).  

 

4.3 Clinical and cellular phenotype of MCPH3 patients with novel CDK5RAP2 
mutation 

We identified, in collaboration, a novel homozygous nonsense mutation in the 

CDK5RAP2 gene in two affected boys of Italian descent (c.4441C>T, p.R1481X; Figure 

7), and described for the first time in detail the clinical, radiological, and also the cellular 

phenotype of MCPH3 patients (68). 

Both patients were microcephalic at birth and were later diagnosed to suffer from 

intellectual disability, developmental speech delay, and behavioral problems. Cranial 

MRI revealed microcephaly, simplified gyration (frontal pachygyria in one patient), and 

hypogenesis of the corpus callosum. We specifically detected neither multiple organ 

defects nor a hematopoietic phenotype recently reported in a mouse model of MCPH3 

(‘Hertwig’s anemia mouse’; (48, 68)). 
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Figure 7. Novel mutation within the CDK5RAP2 gene and protein. 

Exons are depicted as boxes. The coding and non-coding regions are drawn to scale. The localization 

and type of the published mutations are shown in black. The novel mutation is shown in red. Figure 

adapted from (68). 

We investigated the pathogenicity of the identified mutation in LCLs from the two 

patients with MCPH3 and from controls (Figure 8). Consistent to results of studies 

performed on murine cells, CDK5RAP2 localized to the centrosome of control LCLs 

throughout mitosis. Centrosomal CDK5RAP2 levels in interphase cells were weaker in 

comparison to those at prophase and telophase. CDK5RAP2 was below detection level 

in mutant LCLs, as detected by Western blot and immunocytology. The Golgi domain of 

the CDK5RAP2 protein located at the c-terminus is predicted to be lost in our patients. 

Therefore, we analyzed the integrity of the Golgi apparatus in the patient cells by 

immunocytology using an antibody against the cis-Golgi matrix protein GM130. The 

Golgi-apparatus is known to be fragmented during the course of mitosis to ensure 

proper and equal distribution between the two daughter cells (69). Our experiments 

indicate that the Golgi fragmentation in the patient cells occurs earlier during mitosis 

compared to that in control cells. Next, we examined the integrity of centrosomes and 

mitotic spindle apparatus in patient and control cells through immunocytology. The 

centrosomal protein y-tubulin was dispersed around the centrosomes in patient cells 

(normal total y-tubulin protein levels on Western blots), while the centrosomal protein 

pericentrin displayed a normal centrosomal localization. Moreover, we detected mitotic 

spindle defects as abnormal spindles with unfocused and broad arrangement of the 

microtubule poles in patient LCLs. Patient cells also showed a trend towards an 
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increase in multipolar spindles in combination to a decrease of spindle pole distance. 

Lagging chromosomes were significantly increased in one of the patients but merely 

showed a trend towards an increase in the other patient. While it has been previously 

shown that the level of Chk1 protein is downregulated in mouse Cdk5rap2 mutant cells 

(37), we did not detect a significant change of CHK1 protein in patient cells. 

 

Figure 8. Cellular phenotype in CDK5RAP2 mutant LCLs. 

(A) CDK5RAP2 is enriched at the y-tubulin-positive centrosome throughout the cell cycle in control LCLs. 

In mutant LCLs; (B) CDK5RAP2 is below detection level; (C) y-tubulin is more dispersed around the 

centrosome despite normal total-y-tubulin levels; (D) abnormal spindles with broad and unfocused poles 

and decreased spindle pole distance appear; multi-polar spindles were observed in one patient (*p<0.05, 

**p>0.01, ***p<0.001, One-way ANOVA; (68)). Interphase (I), prophase (P), prometaphase (PM), 

metaphase (M) and anaphase (A). 

 

4.4 Cdk5rap2 mutant mouse 

To mimic the human mutation and further study the function of CDK5RAP2 in vivo, we 

generated a transgenic Cdk5rap2 mouse. Through a Cre-LoxP strategy, a part of the y-

tubulin ring complex (yTuRC)-binding domain was conditionally deleted, resulting in a 

frameshift and subsequently a stop codon at the beginning of exon 4 (see materials and 

methods; Cdk5rap2 LoxP / hCMV Cre (cKO)). Sequencing genomic DNA and cDNA as 

well as Southern blot analysis confirmed the generation of the planned cKO allele, the 
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successful Cre-mediated deletion of exon 3, and the presence of the translational stop 

codon. Still, we detected Cdk5rap2 protein using an antibody that recognizes the C-

terminus, and the cKO mice did not display the expected microcephaly phenotype. Our 

further analysis indicated that a previously unknown splice variant of the Cdk5rap2 gene 

exists, which allows translation of Cdk5rap2, even in the absence of exon 3. This has 

been confirmed by cDNA analysis. Two further splice trap mutation mice were also not 

microcephalic (Cdk5rap2RRF465, Cdk5rap2RRU031; (36)). While protein could be detected 

in low amounts in one of these mice, the mechanism responsible for the lack of 

phenotype in the other mouse line is unknown. These results are currently prepared for 

publication. 
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5. Discussion  

The current hypothesis for the microcephaly phenotype in MCPH describes a premature 

shift from symmetric to asymmetric cell divisions, resulting to premature neurogenesis 

with a subsequent depletion of the progenitor cell pool (30, 47-49, 57). The underlying 

mechanisms for the suggested hypothesis include a deregulation of the CDK5RAP2 

function at the centrosomes, a lack of proper spindle assembly and orientation, a lack of 

proper cleavage plane and/or a deregulation of the response to DNA damage (reviewed 

in (57)). However, these have not been demonstrated in humans, and there might be 

other unknown mechanisms involved since microcephaly occurs in an MCPH mouse 

model despite normal cleavage plane (70). 

With the isolated brain phenotype of MCPH patients in mind, we began to study 

CDK5RAP2 function by characterizing the temporal and spatial expression pattern in 

the pre- and postnatal developing mouse and human brains including other organs (67). 

Our results provide the first systematic description of the temporal and spatial 

expression pattern of CDK5RAP2 in murine and human brain, and we detected a high 

degree of similarity between these two species with respect to CDK5RAP2 expression. 

We confirmed the high enrichment of CDK5RAP2 at the centrosomes and its 

association to the Golgi apparatus in vivo. We observed large numbers of CDK5RAP2-

positive cells and high levels of CDK5RAP2 protein and mRNA expression in the 

germinal matrix and the neocortex of murine embryos and human fetuses. Here, 

CDK5AP2 is present in both symmetrically and asymmetrically dividing neural 

progenitors. Cdk5rap2 is strongly downregulated as the brain matures, but it remains 

present in preserved proliferation zones of the mature mouse and human brain. These 

finding are in line with results of neuroimaging studies demonstrating a reduced brain 

volume especially of the neocortex in MCPH patients (2, 5) as well as with experimental 

data demonstrating the role of CDK5RAP2 in neural progenitor proliferation (reviewed in 

Megraw et al. 2011). 

In the murine and human neocortex, we found CDK5RAP2 immunopositivity 

particularly in the superficial cerebral cortex layers (67). These results are supported by 

the specific thinning of the superficial cerebral cortex layers in the MCPH3 mouse model 

Hertwig´s anemia mouse (48). In addition, superficial neocortical layers have been 

reported to be especially thinned in postmortem brains of non-genotyped microcephaly 
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vera patients (71, 72). Given the localization of CDK5RAP2 outside of the germinal 

matrix in murine and human neocortices, we analyzed its cell-type specific localization. 

Cdk5rap2 was highly present in early, but not in mature neurons. To our surprise, as the 

white matter is only slightly affected in MCPH patients, we detected high levels of 

Cdk5rap2 immunopositivity in glial cells (astrocytes, microglia, oligodendocytes). 

CDK5RAP2 is also present in other brain regions than the neocortex, especially in the 

hippocampus and in the cerebellum. Moreover, we detected Cdk5rap2 in migratory 

pathways within the mouse brain such as the rostral migratory stream, where 

progenitors and early differentiating neurons migrate toward the olfactory bulb, and the 

migration stream from the ganglionic eminences towards the cerebral cortex. It remains 

to be elucidated why the white matter as well as other brain regions are not more 

severely affected in patients, even given recent reports on a broader MCPH phenotype 

(e.g., cerebellar hypoplasia, corpus callosum agenesis, periventricular heterotopias). 

The brain phenotype of MCPH3 mouse models apart from the obvious differences of 

the neocortex has not been reported (48), and we will therefore address this point in 

future projects. 

CDK5RAP2 is a centrosomal protein, and it is astonishing therefore that patients with 

homozygous mutations in the corresponding gene suffer only from an isolated brain 

phenotype instead of a multi-organ disorder. In one of the MCPH3 mouse models, 

“multiple organ defects” were noted but not further specified (48). In addition, one 

MCPH3 patient with acute leukemia as well as two MCPH3 patients with sensineural 

hearing loss have been reported (55). We detected high levels of CDK5RAP2 in various 

murine and human organs including thymus, kidney, heart, lung, liver, spleen, placenta, 

testes and intestines (67). To address this point, we analyzed in detail the phenotype of 

patients with a homozygous CDK5RAP2 mutation (68). We specifically detected neither 

multiple organ defects nor a hematopoietic phenotype. 

Three homozygous CDK5RAP2 mutations had been described in three Pakistani 

families and in one patient from Somalia at the beginning of my PhD thesis project. All 

of these mutations had been proposed (but not shown) to lead to truncated proteins and 

loss of CDK5RAP2 function. Therefore, in parallel to our investigation of the 

spatiotemporal expression pattern of CDK5RAP2, we searched for further patients with 

MCPH3. We were able to identify a novel homozygous nonsense mutation in the 

CDK5RAP2 gene (c.4441C>T, p.R1481X) in the first two European patients (68). These 
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patients show classical MCPH phenotypes and also previously not acknowledged 

severe behavioral problems. We investigated the pathogenicity of the identified mutation 

in immortalized patient and control lymphocytes. In patient cells, CDK5RAP2 protein 

levels were below detection level, which further supports the proposed loss of 

CDK5RAP2 function in MCPH3. Moreover, mitotic spindle defects and disrupted y-

tubulin localization to the centrosome were apparent. We were thereby able to attribute 

the microcephaly phenotype in MCPH3 at least partially to a loss of centrosome integrity 

and to a mitotic spindle defect. We identified further patients with CDK5RAP2 

mutations, and we are planning in vitro studies on human primary cells in order to study 

specifically proliferation. 

To study the role of Cdk5rap2 and to mimic the human mutation in vivo, we 

generated a transgenic Cdk5rap2 mouse model (cKO) in which exon 3 encoding a part 

of the y-tubulin ring complex (yTuRC)-binding domain can be conditionally deleted 

(Kraemer et al., in preparation). The deletion should result in a frameshift and a 

subsequent stop codon at the beginning of exon 4. We confirmed the successful Cre-

mediated deletion of exon 3, and the presence of the translational stop codon that 

should be caused in the mRNA containing the frameshift by sequencing genomic DNA 

and cDNA as well as by Southern blot analysis. Despite the generation of the planned 

cKO allele, Cdk5rap2 protein could still be detected in the transgenic mice. In addition, 

the cKO mice did not show the expected microcephaly phenotype. Further analysis 

revealed the existence of a previously unknown splice variant of the Cdk5rap2 gene, 

allowing translation of Cdk5rap2 in the absence of exon 3. This has been confirmed by 

cDNA analysis. It remains to be elucidated whether this variant is also present in the 

human. 

Brain size at birth is largely determined by the relative rates of proliferation and cell 

death. By highlighting regions of physiological CDK5RAP2 expression in human fetuses 

and infants, we offer a further glimpse into how a disruption of the CDK5RAP2 gene 

may impact on the development of particular brain systems in humans. CDK5RAP2 

localizes to the germinal zones of the cortex in mice and humans, and its colocalization 

with markers of proliferating/progenitor cells underlines its proposed role in symmetric 

and asymmetric progenitor cell divisions and subsequent neocortical expansion during 

brain development. MCPH is considered as a predominant “neuronal disorder”. 

However, our results indicate a further function of Cdk5rap2 in glia cells, where 
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Cdk5rap2 is also expressed. Future studies will need to address the molecular function 

of Cdk5rap2 in the white matter as well as in other brain regions and other organs in 

animal models and patients (by neuroimaging and on the basis of postmortem 

samples). Moreover, it needs to be addressed how various MCPH-associated proteins 

cause the same human phenotype when dysfunctional and whether these proteins 

interact directly or indirectly. In addition, an identification and in-depth characterization 

of further patients with biallelic CDK5RAP2 mutations may provide a means to 

investigate processes that cause MCPH and to verify mechanisms described in other 

model systems and in settings where animal models are neither sufficient nor 

satisfactory. 
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neocortex in vivo and in undifferentiated, as well as differentiating mouse embryonic 

stem cells (mESC) in vitro. We found RNA polymerase II (RpII) to be a good reference 

gene to use when Cdk5rap2 gene expression is studied in mESC. Furthermore our 

results show that glycerinaldehyde-3- phosphate dehydrogenase (Gapdh) and 

hypoxanthine phophoribosyltransferase (Hprt) are good reference gene candidates for 
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Primary autosomal recessive microcephaly (MCPH) is a rare neurodevelopmental 
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CDK5RAP2 gene mutation and, for the first time, provide a detailed clinical, radiological, 

and cellular description. From the cellular phenotype detected in our patients, we could 

show that the microcephaly phenotype in MCPH3 is at least partially caused by mitotic 

spindle defect and centrosome disorganization. 
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Primary autosomal recessive microcephaly (MCPH) is a heterogeneous, rare 

neurodevelopmental disease. Understanding MCPH might give us an insight into the 

physiologic brain development and especially that of the cerebral cortex. MCPH genes 

have moved into the spotlight, since they might have contributed to the evolutionary 

expansion of the mammalian cerebral cortex. Here, we give a summary of MCPH 
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Biallelic mutations in the CDK5RAP2 gene cause the neurodevelopmental disease 
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timely overview of what has been described so far regarding CDK5RAP2. 
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