6. References


15 Fu SL, Ma ZW, Yin L, et al. [Isolation and cultivation of neural stem cells from the embryonic rat brain and spinal cord]. Sheng Li Xue Bao 2003; 55:278-283


25 Appendix E: Markers Commonly Used to Identify Stem Cells and to Characterize Differentiated Cell Types. In: Stem Cells: Scientific Progress and Future Research Directions


27 Preto A, Cameselle-Teijeiro J, Moldes-Boullosa J, et al. Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Mod Pathol 2004; 17:819-826


33 Reim G, Brand M. Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development 2002; 129:917-933


44 Ryffel GU. Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J Mol Endocrinol 2001; 27:11-29


51 Levinson-Dushnik M, Benvenisty N. Involvement of hepatocyte nuclear factor 3 in endoderm differentiation of embryonic stem cells. Mol Cell Biol 1997; 17:3817-3822


53 LaVoie HA. The role of GATA in mammalian reproduction. Exp Biol Med (Maywood) 2003; 228:1282-1290


63 Reis-Filho JS, Schmitt FC. Taking advantage of basic research: p63 is a reliable myoepithelial and stem cell marker. Adv Anat Pathol 2002; 9:280-289

64 McKeon F. p63 and the epithelial stem cell: more than status quo? Genes Dev 2004; 18:465-469


84 Talerman A, Haije WG, Baggerman L. Serum alpha-fetoprotein (AFP) in patients with germ cell tumors of the gonads and extragonadal sites: correlation between endodermal sinus (yolk sac) tumor and raised serum AFP. Cancer 1980; 46:380-385


92 Lajtha LG. Stem cell concepts. Differentiation 1979; 14:23-34

93 Sherley JL. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Stem Cells 2002; 20:561-572


98 Rapoport B, Filetti S, Takai N, et al. Studies on the cyclic AMP response to thyroid stimulating immunoglobulin (TSI) and thyrotropin (TSH) in human thyroid cell monolayers. Metabolism 1982; 31:1159-1167


6. References

111 Polak JM, and Van Noorden S Immunocytochemistry: Modern methods and applications. Bristol: Wright: 1986


117 Sasai Y, De Robertis EM. Ectodermal patterning in vertebrate embryos. Dev Biol 1997; 182:5-20

118 Hill M, 2005 UNSW Embryology Vers. 4.9 0 7334 2108 3


120 Ambesi-Impiombato FS, Villone G. The FRTL-5 thyroid cell strain as a model for studies on thyroid cell growth. Acta Endocrinol Suppl (Copenh) 1987; 281:242-245


123 Stull RA, Hyun WC, Pallavicini MG. Simultaneous flow cytometric analyses of enhanced green and yellow fluorescent proteins and cell surface antigens in doubly transduced immature hematopoietic cell populations. Cytometry 2000; 40:126-134
6. References


132 Derwahl M, Broecker M, Kraiem Z. Clinical review 101: Thyrotropin may not be the dominant growth factor in benign and malignant thyroid tumors. J Clin Endocrinol Metab 1999; 84:829-834

133 Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434:843-850


143 Badenhoop K. Intrathyroidal microchimerism in Graves' disease or Hashimoto's thyroiditis: regulation of tolerance or alloimmunity by fetal-maternal immune interactions? Eur J Endocrinol 2004; 150:421-423


151 Schwab ME. Repairing the injured spinal cord. Science 2002; 295:1029-1031


156 Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91:661-672

