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1 Introduction 

1.1 Biological thermodynamics 

We are far away from being able to understand, model and simulate biological processes from 

first principles at all scales of detail. Nevertheless, it is 

firmly established that general physical principles are 

applicable to living matter. Among them, 

thermodynamics seems to me the most useful and 

general principle. Thermodynamics determines for 

instance the directions of reactions inside a cell and 

the amount of energy that is stored and transferred 

to synthesize a given metabolite1. Thermodynamics 

predicts the direction of spontaneous processes, such 

as protein association events, and the extent of 

biochemical reactions. It quantifies equilibrium, 

phase changes and stability using unmeasurable 

quantities like energy and entropy. These are coupled 

to experimentally measurable ones, like temperature 

and pressure, through mathematical relationships. 

This way, thermodynamics creates a system of 

explanation for physicochemical transformations in 

micro- and macromolecular systems. 

 

The concept of free energy is the main criterion to 

predict if, and to what extent, a process will occur in 

a spontaneous way. It is a refinement of the qualitative idea of “chemical affinity”, widespread 

until the 19th century. Free energy allows us to describe the equilibrium in chemical reactions and 

physicochemically driven processes such as non-covalent association. Important processes 

governed by non-covalent interactions are hormone binding to receptors, mRNA codon 

recognition by the ribosome2 and protein-protein interactions. Free energy allows us to predict 

“[Biology has] become the 
paramount science, exceeding 
other disciplines, including 
physics and chemistry at least, in 
the creative tumult of its 
disputations. […] I’ll also be so 
bold at this point to suggest that 
we are now at the edge of 
establishing the two fundamental 
laws of biology:  
 

The first law is that all of the 
phenomena of biology, the 
entities and the processes, are 
ultimately obedient to the laws of 
physics and chemistry. Not 
immediately reducible to them, 
but ultimately consistent and in 
consilience with them, by a cause 
and effect explanation.  
 

The second law is that all 
biological phenomena, these 
entities and processes that define 
life itself, have arisen by evolution 
through natural selection.” 
 
E.O. Wilson, speaking at the 50th 
anniversary of New Scientist 
magazine, 2006 
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the strength of such non-covalent interactions and the corresponding equilibrium constants. 

Estimation of free energy in protein folding and molecular recognition is one of the central tasks 

of theoretical chemistry concerning macromolecules and the subject of many reviews3-8. Free 

energy can be loosely described as the interplay and competition between energy and entropy. 

1.2 An intuitive notion of energy and entropy  

Energy quantifies the ability to do work. Entropy measures the quality of that energy; the lower 

its entropy, the more useful that energy is. 

 
  Fig. 1.1:  The Sun as the source of lowered entropy for planet Earth. Figure courtesy of Isabel Arnaud. 
 

At first sight, the Earth seems to be kept alive by the energy arriving from the Sun. This is a 

superficial understanding, because in the steady state, the amount of energy arriving from the Sun 

and the amount radiated back into space are equal. If the energy arriving from the sun remained, 

the Earth would become unbearably warmer every day. As noted by Schrödinger9 in an article 

directed to a lay audience, life is maintained by a constant influx of low entropy. He coined the 

term negentropy, which in this context means that living organisms are constantly expelling high 

entropy and feed on nurturing low entropy to survive. Plants use the low entropy radiation 

through photosynthesis to lower their own entropy. Animals eat these plants, for the same  
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purpose. With each step of metabolism in single organisms, and each trophic level of an 

ecosystem, the total entropy increases in irreversible processes. In other words, the “quality” of the 

energy is lowered along the food chain. 

 

The earth receives low-entropy electromagnetic radiation, which partly trickles down through the 

food chain and metabolic networks, and is ultimately emitted back as high-entropy radiation. 

High-frequency, visible light arrives to the earth. Infrared, low frequency radiation is emitted 

back into space (see   Fig. 1.1). Consider the proportionality between frequency and energy, 

known as Planck’s relation 

 

E = hν ,     (1.0) 

 

where E is energy, h is Planck's constant and ν is the frequency. The arriving high frequency 

photons carry more energy per photon than those leaving. To keep the balance of energy in the 

steady state, more photons leave than those that arrive. A larger number of photons means more 

degrees of freedom, and thus higher entropy. For more on this, see Chap. 27 of ref 10. 

 

Entropy involves energy dissipation and the irreversibility of processes. This can be illustrated 

with a waterfall analogy. A small amount of water at the top of a mountain falls into the ocean, 

which is flattened and all at the same level. In this process, its energy is not lost - it just becomes 

more dispersed. As it falls down, it may or may not be used to drive an industrial or biological 

process. 

 

Entropy is in many relevant cases a measure of disorder and uncertainty. Understanding entropy as 

disorder should be taken with a grain of salt, as this analogy does not always apply11. A crystal is an 

example of a low entropy material because of its predictable regularity. This is not to say that 

particles in a crystal are static at finite temperature, but their displacements due to thermal energy 

are relatively small. If we take a crystal with particles vibrating around fixed lattice points and heat 

it, it will become a liquid and its entropy will rise. If we heat the system further, it may become a 

gas that fills the whole room. The entropy (uncertainty) is now much larger than in the crystal. It 

has become much harder to say where in the room each particle is, that is, the missing information 
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about the positions has grown. The crystal will not spontaneously reform, putting everything 

back into place the way it was before. This irreversibility results in an arrow of time that points 

just in one direction into the more disordered future12. 

 

Entropy is a measure of the missing information about the possible arrangements of a system. 

About one century after entropy was postulated in thermodynamics13, entropy was formulated 

again in the context of telecommunications by Shannon14 to provide a measure for channel 

transmission capacity. Shannon’s ideas went on to become the foundation of information theory, 

a whole branch of applied mathematics closely related to statistics. Information theory turned out 

to be more general, with thermodynamic entropy being a particular case thereof15. In the present 

doctoral thesis, I use tools from information theory and apply them to statistical 

thermodynamics. 

 

Finally, entropy is a measure of multiplicity and variability within a system. It comprises counting 

states on a logarithmic scale. An intuitive connection between the quality of energy understanding 

of entropy and the multiplicity of states view from information theory can be gained through the 

following example: Consider how we rub our hands together on a cold day. We use high quality 

energy gained from food to apply very directed work, which is a collective effort of many muscle 

cells applying a force in the same direction (low multiplicity). It gets transformed into low quality 

energy that we perceive as a rise in temperature. This transformed energy has a high multiplicity 

because it quickly becomes spread out in all directions and involves the random, undirected 

vibrations of many particles. It is of lower quality because it cannot be completely turned back 

into directed motion, as dictated by the Second Law of Thermodynamics. 

 

If entropy is always increasing in real-world processes, it is legitimate to ask: why was it so low in 

the first place? Why was the entropy of the universe so low after the Big Bang? A possible partial 

answer has been postulated by Roger Penrose in Conformal Cyclic Cosmology16, where the 

universe exists in cycles of time that reset the entropy through rescaling17. 

 

Today, the concept of entropy has found widespread application in science and engineering. The 

generality of thermodynamics has afforded it a place in engineering18, astrophysics17,19 and of 
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course the life sciences20. Entropy also lives a parallel life in statistics21 and information theory14,22, 

where it is applied to quantify information in processes as varied as communication channels and 

cell signaling dynamics23,24. However, entropy is still often misunderstood, ignored or pointed to 

as the cause of inexplicable results. 

1.3 From steam engines to actin 

filaments: the laws of 

thermodynamics 

Although thermodynamics was born in the realm 

of industrial plants25, its wide applicability has 

conferred it a place in biology. An example is the 

exploration of the thermodynamics of actin 

filaments26, which are self-assembling units that 

play key roles in muscle contraction and in the 

formation and reshaping of the cytoskeleton. Actin 

filaments achieve cell motility by exploiting 

entropic forces27-30. 

 

Thermodynamics consists of a set of tools to reason about energies and entropies. The basic 

building blocks are two laws and some multivariate calculus31. 

 

1st law (energy balance):    dU q wδ δ= + ,   (1.1) 

 

where U is the internal energy, q is heat and w is work. d indicates U is a path-independent state 

variable, whileδ means that heat and work depend on the application path.  
 

2nd law (total entropy never decreases):       0dS ≥ ,    (1.2) 

where S is entropy13,32. 

 

Laws of Thermodynamics in Lay 
Terminology  
1st Law: It is impossible to obtain 
something from nothing, but one 
may break even. 
2nd Law: One may break even 
but only at the lowest possible 
temperature. 
3rd Law: One cannot reach the 
lowest possible temperature. 
Implication: It is impossible to 
obtain something from nothing, 
so one must optimize resources 
- Annamalai & Puri 
 

Advanced thermodynamics engineering; CRC 
Press, 2002. 
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The First Law simply states that energy in all forms is conserved, and that it can be exchanged 

through heat and work. The Second Law can be seen as “half a conservation law”, because 

entropy can be created but not destroyed33. 

 

By combining the First and Second Laws at constant number of particles (N), Volume (V) and 

Temperature (T), we may obtain an expression describing how a system can reach equilibrium 

with the inequality 

 

Free energy differential:           0= − ≤dF dU TdS               (1.3) 

1.4 Free energy in processes involving proteins 

Protein folding and receptor-ligand binding occur in a spontaneous and specific way when the 

folded and bound states have a lower free energy than their denatured and unbound counterparts, 

respectively. The Helmholtz free energy change ∆F or the Gibbs free energy change 

∆G=∆F+P∆V predict the equilibrium constant (Keq) for folding and binding. For 

macromolecules solvated in incompressible fluids like water, the volume term P∆V is negligible, 

so 

 

lnB eqG F U T S k T K∆ ≈ ∆ = ∆ − ∆ = − .   (1.4) 

 

For macromolecules and soft matter in general, the understanding of the driving forces that 

together result in a given free energy or binding constant requires consideration of flexibility and 

dynamics. The amino acid sequence of proteins encodes structure, flexibility34, thermodynamics35 

and dynamics36-39, which in turn code function. 

 

The search for minimum free energy balances a rise in total entropy and a fall in total energy. A 

rise in entropy need not happen uniformly for all the components of a system. Maximizing 

entropy in a subset of the system may be the driving force for organization in another subset. This 

is indeed the case in protein folding, where the hydrophobic effect often maximizes the entropy  

the water by collapsing the protein chain into a more orderly, low conformational entropy state40. 
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The hydrophobic effect at room temperature for small solutes is also primarily due to a 

maximization of water entropy41. Nevertheless, the hydrophobic effect can also have an enthalpic 

origin, for instance at high temperatures42 or in the association of ligands to protein cavities43-45. 

 

 
Fig. 1.2: Proteins are molecular machines with motion networks39 that catalyze reactions. They obey the 
laws of thermodynamics, as first laid out for steam engines. Photo of a sculpture taken by myself at 
Tacheles, Berlin in 2006. 

1.4.1 Predicting ligand binding and protein-protein interactions 

The difference in free energy between two states tells us if a process will occur spontaneously and 

to what extent. For a thermodynamic state function such as free energy to be meaningful, the 

start and end states should be clearly defined. For example, the stability of a protein against 

unfolding is given by ∆Gfold= Gfolded – Gdenatured. If ∆Gfold is negative, thermodynamics will favor 

the folded state. Similarly, the binding free energy for a ligand-receptor complex is: 

 

( ) lnbinding complex ligand protein aG G G G RT K∆ = − + = −   (1.5) 

 

A factor-of-ten increase in the binding affinity constant Ka translates into a change of 1.3 

kcal/mol in ∆Gbinding at room temperature. This additional stability can come from either 

enthalpic or entropic contributions within the whole system (ligand, receptor protein, solvent, 

ions, etc)46.  
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1.4.2 Conformational entropy 

The net enthalpic (∆H) and entropic (T∆S) contributions from all particles (solute and solvent) 

almost even out in natural folding or properly engineered proteins47. Stability of proteins against 

denaturing is typically48 around ∆Gfold = 5 to 15 kcal/mol (Keq = 10-4 to 10-11). Upon folding, the 

protein becomes more rigid and loses conformational entropy. This unfavorable contribution is 

typically T∆Sconf  = 10 to 100 kcal/mol. Any estimation of free energy lacking this contribution 

will grossly overestimate the stability of proteins against unfolding. 

 

Entropy is defined in terms of probabilities of to occupy specific microstates. A microstate is an 

individual conformation of a molecule. The conformational entropy is 

 

lnconf B i iS k p p= − ∑ ,    (1.6) 

 

where kB is the Boltzmann constant and pi is the probability of occupancy of each microstate. 

The pi represent the net probabilities of occupancy of given microstates, including all correlations 

and statistical dependencies connected with it. Energetic interactions between particles give rise to 

correlations. It is known from information theory that neglecting correlations will cause an 

overestimation of entropy15, which is the explanation for the famous difference between the 

Boltzmann and Gibbs entropies49. Such statistical correlations may even manifest physically to 

produce work50. We are nowadays certain about the existence of particles and the need for 

statistics to count the multiple ways in which they arrange. However, entropy was originally 

defined as a macroscopic quantity13, without any reference to particles or statistics. 

 



9 

 

1.5 The statistical in mechanics 

Statistics deals with uncertainty and probabilities. 

This conjures for many the defeat of 

determinism. For this reason, statistics and the 

microscopic understanding of entropy had a 

difficult entry into science. Ludwig Boltzmann 

lived in the late 1800’s and formulated a 

statistical approach32,51 which took into account 

the stochastic nature of microscopic processes in 

which sharply defined macroscopic physical 

values become distributions52. Sadly, Boltzmann 

committed suicide before seeing the success of his theory. Albert Einstein’s published PhD 

dissertation53 deals with deterministic equations. This seems to have been a compromise, as his 

advisor Alfred Kleiner would not accept his molecular kinetic treatment of fluids, allegedly 

because of its statistical nature54. The hypothesis that Einstein originally intended to write a 

dissertation on statistical mechanics is supported by the fact that during the previous years, he 

had been publishing papers about entropy and thermodynamics with a strong statistical 

component55-57. 

 

For years, Planck also had upheld a macroscopic view of entropy and matter as a continuum. But 

with his solution of the blackbody radiation problem, Planck was not only introducing the 

Wirkungsquantum, but at the same time recognizing the need for a statistical treatment58. “I was, 

however, at that time still too far oriented towards the phenomenological aspect to come to closer 

quarters with the connection between entropy and probability […] I busied myself… with the 

task of elucidating a true physical character for the [entropy] formula, and this problem led me 

automatically to a consideration of the connection between entropy and probability, that is, 

Boltzmann's trend of ideas,” said Planck in his Nobel prize lecture59. 

 

In the words of Jaynes, “It is possible to make a sharp distinction in statistical mechanics: the 

physical and the statistical. We formulate our partial knowledge into a physical model. This 

Max Planck joined the Physical 
Society of Berlin, of which he 
wrote: "In those days I was 
essentially the only theoretical 
physicist there, whence things 
were not so easy for me, because 
I started mentioning entropy, 
but this was not quite 
fashionable, since it was regarded 
as a mathematical spook". Max 
Planck 
 

Elektrotechnischer Verein Berlin, G. ETZ: 
Elektrotechnische Zeitschrift (VDE-Verlag) 69 
(A), 1948. 
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model should deliver a correct enumeration of the states of a system and their properties. The 

statistical part is a straightforward example of inference.”60 The field of statistical physics61,62 

explains how the world we see around us arises from the interactions of uncountable numbers of 

microscopic particles. The observed fact that entropy always increases (2nd law, eq (1.2)) is in fact 

just a consequence of probability. A system that starts in a low-entropy state has many ways to 

move to a state of higher entropy, but only a few ways to move to a state with the same or lower 

entropy. Thus, you are more likely to see a system move from low to high entropy than vice 

versa, and when we consider macroscopic objects involving ~1023 particles, the probability of 

seeing entropy spontaneously decrease “quickly moves into monkeys-writing-Shakespeare 

territory”63. 

 

Arieh Ben-Naim argues that entropy can be reduced to plain common sense64, as: 

“1. The Second Law is basically a law of probability [as Boltzmann established]. 

2. The laws of probability are basically the laws of common sense [as Laplace said]. 

3. It follows from (1) and (2) that the Second Law is basically a law of common sense - nothing 

more.” 

1.5.1 Information over matter and energy 

Recently, an experiment demonstrated the realization of a Szilárd-type65-67 machine that 

transforms information into free energy. A non-equilibrium feedback manipulation of a 

Brownian particle on the basis of information about its position (configurational entropy) 

achieves this conversion68. Theoretical demonstrations have also shown how to convert statistical 

correlations into work50. Even more generally, both relativity theory and quantum mechanics can 

be understood in terms of information69-71. Some things can travel faster than light. For instance, 

quantum entangled states experimentally show spooky action at a distance72,73. But  information 

cannot travel faster than light71 (if Einstein’s theory holds). This is confirmed by the fact that it is 

not possible to transmit information instantly using entangled states71. In my opinion, this shows 

that information has a higher hierarchy than matter and energy themselves. 
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1.6 Entropy is a logarithmic counting of microstates 

A microstate is an individual conformation of a molecule that cannot be resolved within the 

framework of a conventional experimental setup. Entropy measures the multiplicity of such 

microstates on a logarithmic scale. In contrast, a macrostate61,74 is a collection of microstates with 

given macroscopic properties (values of a small number of observables in a given49 experiment).  

 

According to the Boltzmann distribution, a microstate of lower energy will be more populated 

than one of higher energy in the canonical ensemble. Expressing the Boltzmann distribution in 

terms of the probability of individual microstates j and k yields: 

 

( )
expj j k

k B

p E E
p k T

− − 
=  

 
  for T>0K .   (1.7) 

 

Ej is a microscopic energy, which is a function of the conformation (j). E is a function of the 

number of moles and volume (N, V) but not of temperature or entropy (T, S). Higher 

temperatures mean that thermal energy kBT will allow significant occupation of correspondingly 

higher energy levels. The macrostate of a system acquires an internal energy U as a function of 

which microstates are actually populated. The macroscopic (average) internal energy U is the 

average over all microstates 

1

t

i i
i

U E p E
=

= = ∑ ,     (1.8) 

 

where t is the total number of microstates.  

 

The toy model in Fig. 1.2 captures many interesting properties of energy and entropy. This 

molecule has positively and negatively charged ends, which attract each other and may interact 

with a favorable energy -ε. We further assume that we have an experimental technique that can 

resolve whether the molecule is in the open or the compact conformation. Since the compact 

conformation has the lowest energy, one could reach the conclusion that it is the most populated. 

But what if the microstates of the open type are more numerous? This multiplicity (W) of states 
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of equal energy is quantified by the entropy, eq (1.6). For our model: 

So = 4
, ,1

lnB o i o ii
k p p

=
− ∑  = kBln(4) and Sc = kBln(1). Since all microstates for each macrostate 

have the same energy, they are equiprobable, and we can simplify the entropy to S = kBln(W). 

The entropy change between macrostates is ∆Soc = kBln(4/1). 

 

 
Fig. 1.2: A 4-bead toy model of a folding molecule. The compact state is unique and contains one 
attractive interaction with a favorable energy of –ε. The four open microstates have no long-range 
interactions. Based on Fig 10.1 of ref 31. 
 

The free energy uses both U and S to assess the stability of each macrostate. The relative stability 

in the canonical ensemble between the open and compact macrostates is measured by the free 

energy, eq (1.4). The opening (“unfolding”) free energy for Fig. 1.2 is: 

 

(0 ( )) ( ln 4 ln1) ln 4oc B B BF T k k k Tε ε∆ = − − − − = −              (1.9) 

 

The equilibrium constant Keq yields the proportion of compact vs. open conformations: 

 

              exp exp expoc oc oc
eq

B B B

F U T SK
k T k T k T

     −∆ −∆ ∆
= =     

     
              (1.10) 
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Keq for the model in Fig. 1.2 is: 

 

ln(4)exp exp 4 exp
     − −

= = ⋅     
     

B
eq

B B B

k TK
k T k T k T

ε ε                 (1.11) 

 

The entropy change cannot be interpreted straightforwardly when expressed as ∆S = 2.75 

cal/(mol K). But its contribution to the equilibrium constant is a dimensionless number 

measuring multiplicity W = 4. This means simply 4 times more open conformations than 

compact conformations. In this light, entropy is more intuitive and easier to understand than 

energy itself! 

 

Entropy can be interpreted in an analog way in protein folding. A conformational unfolding 

entropy change75 of ∆Sunfold = 33.3 cal/(mol K) means there exist Wdenatured / Wnative = 

exp(T∆S/(kBT)) = 1.9 × 107 times more denatured conformations than native ones. In this case, 

W refers to the weighted average multiplicity of states. The conformational entropy contribution 

is unfavorable and will oppose folding. Clearly, other driving forces such as the hydrophobic 

entropy gain and favorable enthalpic interactions have to compensate for this large 

conformational entropy loss for folding to occur. 

1.6.1 Stabilization by conformational entropy 

A simple example of a molecule whose dominant macrostate is stabilized by entropy is the peptide 

trialanine. The two conformers, compact α and extended β  (shown in Fig. 1.3) can be 

distinguished experimentally76,77 in solution. A conformer is a geometrically defined macrostate, 

or collection of microstates (conformations) with similar energies and geometries. Conformer α 

has a lower internal energy Uα  due to having more favorable contacts than conformer β. As the 

energy difference ∆Uβα = Uβ − Uα is smaller than thermal energy kBT, significant interconversion 

occurs, and both conformers exist in equilibrium in the canonical ensemble. 
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Fig. 1.3: Trialanine and its two conformers, α and β. The horizontal axis is a geometric “progress 
variable”, in this case the central Ramachandran angle ψ2. The conformation α is more compact and has 
lower energy (depicted as well height) than β. However, the extended β  is favored by entropy (depicted as 
well width). 
 

Although each individual high energy microstate in the basin of conformer β  is less likely (see eq 

(1.7)), there are many more such states. The sheer multiplicity of states of conformer β allows it 

to be significantly populated, and indeed be the dominant conformer in solution76,77. Large 

multiplicity means high entropy, depicted here as the width of the well Sβ > Sα. In later sections, 

we use the concepts of microstate (individual conformation or frame in a molecular simulation) 

and macrostate (conformer) in the context of the thermodynamics of trialanine. We will use 

molecular dynamics simulations of the trialanine molecule to test the algorithms put forth in this 

thesis to estimate conformational entropy. 

 

A biological example of conformational entropic stabilization, in this case of the folded state, 

occurs in hyperthermophilic organisms. Their genes code for proteins enriched in positively 

charged amino acids. But the positive charge is often achieved by the presence of lysines rather 

than arginines. This significant bias was recently explained78 through the much higher number of 

rotamers available to lysine. Because the effective conformational freedom of lysine is greater, it 

constitutes a reservoir of conformational entropy, thereby stabilizing the protein’s folded state. 

 

A frequently unappreciated fact is that many proteins in the cell stably exist in a high entropy 

state. They populate a partially folded state sometimes called a “molten globule”79, which has 
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significant secondary-structure but a fluid hydrophobic core80. Some of them acquire a more rigid 

structure only upon ligand binding, while others are intrinsically unstructured81. Such proteins 

are obviously underrepresented in the literature and the PDB database. In experiments, they are 

hard to discern from on-path folding intermediates. In molecular dynamics simulations, their 

high flexibility demands very long trajectories to acquire reliable statistics82. Nevertheless, there 

are recent theoretical studies in which molten globules were characterized with simulation80. 

 

 
Fig. 1.4 Part of a polypeptide chain. Number of conformations in the native state (left) and the denatured 
state (right). The denatured state is clearly favored by conformational entropy, but is opposed by other 
thermodynamic forces that fold proteins. 

1.6.2 Acceptable errors in theoretical estimations of protein 

thermodynamics 

Enthalpy-entropy compensation is just enough to favor protein folding83. Proteins have evolved 

in such a way that changes in enthalpy from intramolecular interactions, electrostatic solvation 

free energy84,85, a favorable hydrophobic effect42,43,86,87 and an unfavorable conformational entropy 

loss almost cancel out. This tiny window for compensation makes simulation-based calculation of 

thermodynamic variables very challenging. Each one of the aforementioned factors can contribute 

10 to 100 kcal/mol. The methods for estimating these enthalpic and entropic contributions need 

to be extremely precise in order not to miss the total free energy, which for a spontaneous process 

may be almost zero, but negative. 

 

Protein folding and binding involve non-covalent interactions. These have very narrow free 

energy ranges in order to remain reversible. For biological processes, the net difference between 

states is often48 between 5 and 15 kcal/mol. This is about 10 times more than thermal energy at 
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physiological temperature kBT = 0.6 kcal/mol. Ken Dill set an error goal of 0.100 kcal/mol per 

amino acid for the estimation of free energy of proteins88. Theoretical entropy estimation is even 

more difficult to converge than free energy estimation89. The methods presented in this thesis to 

estimate entropy achieved an average precision in S of 0.3  J/(mol K) for trialanine, which 

translates into an average error in TS of 0.007 kcal/mol per amino acid at T = 300K. This is 14 

times better than Dill’s goal88. Nevertheless, questions remain about the transferability of the 

entropy estimation technique to larger systems, and of the quality of the force field used in the 

molecular dynamics simulation. 

 

In this thesis, I concentrate on the calculation of solute conformational entropy, and not on water 

entropy. Nevertheless, by applying techniques such as Permutation Reduction90, it is possible to 

extend the applicability of algorithms such as the ones developed in this work to estimate water 

entropy. In fact, others91 have already applied my quasi-harmonic algorithm with nearest-

neighbors correction92 combined with Permutation Reduction90 to estimate water entropic 

components in an anti-cancer drug binding to DNA91. 

1.7 The entropy of polymers 

Folded proteins are relatively rigid, entangled biological polymers with a low (but difficult to 

estimate) residual conformational entropy. Synthetic flexible polymers usually have considerably 

more conformational freedom because of the lack of specific microscopic structural preferences. 

 

In the macroscopic world of everyday experience, there is a clear difference between stretching a 

thin metal wire and a rubber band. This is connected to their microscopic structure. When a 

metal is stretched, the individual bond lengths between atoms are pulled away from equilibrium. 

The restoring force comes from the bonds pulling back and is enthalpically-driven. On the other 

hand, when an elastic polymer like rubber is stretched, the bond lengths remain basically 

unstrained. Instead, the torsional motion of the chain becomes restricted. This is coupled with a 

decrease in entropy. The chain’s natural tendency towards disorder (enabled by the thermal 

energy) is experienced as a restoring entropic force towards the molecule’s freer configuration93. 

These ideas go back to K.H. Meyer and Flory94,95. 
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Cross-linked polymers such as vulcanized rubber and the elastin96 in human skin owe their 

material properties to entropic forces. Cross-linking provides additional entropic restoring 

networks. The elastic fibers in human arteries, especially in the aortic, survive for more than 60 

years, undergoing billions of cycles of stretching and relaxation97. Their resilience is due to the 

dominantly entropic nature of the elastic force. Entropic forces have also been shown to account 

for the activity of actin polymerization in cell motility27-30. 

 

Barring interference from enthalpic stabilization, the conformers of polymer chains tend to their 

state of highest entropy. In this thesis, we use the random walk polymer model to simulate the 

behavior of polyethylene glycol (PEG) chains, a biocompatible polymer. We calculate the free 

energy and entropy changes as the chain interacts with the surface of a protein. The application is 

bivalent binding, where a bivalent receptor binds two ligands, which are themselves tethered 

together with a PEG chain. The PEG chain interacts with the protein surface such that it 

experiences an entropy loss, which may be compensated by the hydrophobic effect and favorable 

energetic contacts between the polymer and protein. 

1.7.1 Connection of thermodynamics to information theory 

There exist many analogies useful to understand entropy, each of which carries a greater or lesser 

amount of truth: freedom, flexibility, chaos, disorder, accessibility, spreading of energy98. 

However, my experience in working on this thesis tells me that understanding entropy as the 

Shannon missing information about the molecular microstates15,64,99,100, or equivalently as a 

logarithmic counting of such microstates, is by far more useful. Identifying thermodynamic 

entropy with the Shannon entropy of the molecular microstates probabilities will help not only 

our intuitive understanding, but also allow us to further statistical mechanics with the tools of 

information theory. 

1.8 Medical applications of protein and drug thermodynamics 

A complete understanding of the thermodynamics of drug compounds and their interactions with 

metabolic actors such as proteins has long been a holy grail of theoretical chemistry. Advances in 
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modeling of thermodynamics including conformational entropy will bring new developments to 

medicinal chemistry and biopharmaceuticals. 

 

Most drugs currently on the market are agonists or antagonists that directly bind to the active site 

of a protein. But not all effective drugs bind to the active site. Allosteric modulators101 bind 

outside the receptor binding site, but can nevertheless induce a change in binding affinity, and 

thus a change in activity. Allosteric modulators directly affect the protein motion networks. 

Conformational entropy changes are thus key in understanding and modulating allostery102,103. 

Ultimately, strategies that take biomolecular dynamics into account will yield new lead 

compounds and drugs. Recently it was proposed that apparent mismatches between the inhibitor 

compound topology and the crystal structure of the target protein are a sign that a drug is not 

“enthalpically optimized” but rather “entropically optimized” to fit the multiplicity of 

conformations in solution104. 

 

Most HIV-1 protease inhibitors105,106 to date are antagonists of the active site. Design of drugs less 

susceptible to resistance may be accomplished by altering the thermodynamics of stability and 

folding of the protease (PR) dimer. Allosteric inhibitors bind to residues whose dynamics are 

coupled to the flap opening-closing collective motion network. They may either keep the flap 

open or closed shut, inhibiting its cleaving activity107. Another strategy is to inhibit folding of the 

PR dimer; this has been achieved with peptides that bind and reshape the free energy landscape to 

make inactive conformations thermodynamically stable108. 

 

Alzheimer's, Hungtington's109 and Creutzfeld-Jakob (prion) diseases110 all share protein 

misfolding and aggregation as a common feature. Experiments have lent credibility to the 

hypothesis that β-amyloid aggregates are causal in the pathogenesis, at least in Alzheimer's 

Disease111. The normal folded and the aggregated misfolded conformations represent two local 

minima in the free energy landscape112,113. The misfolded conformation is much lower in entropy, 

but is stabilized by enthalpy, mostly through tight van der Waals interactions in a so-called steric 

zipper114. The two free energy minima are separated by a kinetic barrier to oligomerization. The 

design of compounds that block aggregation will hopefully be assisted by a detailed 

understanding of the thermodynamics and kinetics of misfolding. 
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Furthermore, exploiting the multivalent effect is an interesting avenue in medicinal chemistry for 

the enhancement of binding affinity115,116 and the reduction of toxicity. Multivalent applications 

often rely on polymer carriers to join together several drug molecules117. Therapeutic compounds 

attached to polyethylene glycol spacers or to dendritic polymers118 create high local (effective) 

concentrations of drugs. 

1.9 Aim of this work 

In this thesis, I present improvements in the theoretical estimation of conformational entropy and 

in the modeling of the multivalent effect using flexible polymer spacers. It is hoped that these 

algorithms and models may contribute to further advance theoretical methods and help 

understand, model and simulate biological processes from first principles for the advancement of 

medicine. 
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2 Balanced and bias-free computation of conformational entropy 

differences for molecular trajectories 

This chapter is connected to an accepted publication: 

Numata, J.; Knapp, E. W., Balanced and bias-corrected computation of conformational entropy 
differences for molecular trajectories. J. Chem. Theory Comput. 2012, 8(4), 1235-1245. 
Submitted on 20-dec-2011.  Accepted on 14-mar-2012. dx.doi.org/10.1021/ct200910z 
 

2.1 Introduction 

A macrostate of a molecular system can be specified by appropriate thermodynamic variables. The 

conformational entropy of a molecular system is a measure of the missing information about the 

specific molecular conformation (microstate) adopted among the many available conformations 

of the macrostate. This interpretation follows Jaynes’ work1,2 and Ben-Naim’s reformulation of 

statistical mechanics in terms of information theory3. The physical entropy4 S is proportional to 

the dimensionless information entropy5 Sinf = − Σ pi ln(pi) according to S = kB Sinf, where the pi 

are the probabilities that the molecular system adopts a particular microstate i and kB is the 

Boltzmann constant. The interplay of entropy S and the average internal energy <U> is described 

by the free energy expression F = <E> − TS. The Boltzmann factor exp(−F/kBT), involving the 

free energy F, provides the relative probabilities of occupation for specific macrostates at a given 

absolute temperature T. 

 

Knowledge on conformational entropy 

differences is an essential ingredient to 

understand binding affinities. 

Conformational entropy is the missing link 

to a full free energy difference when using 

methods such as MMPB/SA (enthalpy 

from the Molecular Mechanics force field, 

solvation free energy from the Poisson-

Boltzmann equation, hydrophobic effect 

“Once in a while, engineering has 
contributed a great deal to [physical 
theory]. Two examples that come to 
mind [are] the analysis of heat engines 
by the engineer Carnot. And the other 
is the analysis of information theory 
by Shannon, recently. And both of 
those are closely related phenomena, it 
turns out.” 
 

Richard Feynman, 1962 
The Feynman Lectures on Physics 1-44: 
The Laws of Thermodynamics. 
 

http://dx.doi.org/10.1021/ct200910z
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from the solvent accessible Surface Area)6-9. In the present work, we develop efficient algorithms 

for estimating conformational entropy differences of macro-molecular systems comprising many 

degrees of freedom. We apply these methods to two model systems: (1) A three-atom molecule in 

two different confined spaces. (2) Trialanine in implicit solvent with two conformer regimes. For 

both models, we generate very precise benchmark entropy values to compare with. 

2.1.1 Experimental measurements of conformational entropy 

Using thermodynamic relations, it is possible to separate enthalpic and entropic contributions to 

free energy changes measured experimentally10. The absolute conformational entropy of the 

protein backbone has also been estimated from Atomic Force Microscopy measurements11. 

However, the separation of the total entropy change into solvent and solute components is in 

general not straightforward12. The reason is that conformational entropy is a measure of the 

microscopic variability of conformations, a level of detail which is challenging to resolve 

experimentally. Recently, experimental techniques from Nuclear Magnetic Resonance (NMR) 

have been used to peek into the microscopic states of the solute through order parameters and to 

estimate solute conformational entropy changes upon binding13-17. Along the same line, a view of 

allosteric phenomena and protein recognition is emerging from NMR experiments, which 

support the interpretation of allostery18 (i.e. certain spatially distant sites in a protein are strongly 

correlated) as a network of molecular groups undergoing concerted motions19, and establishes 

conformational entropy changes as key in modulating allostery20 and protein-ligand recognition21. 

 

While the motion of sequentially adjacent amino acid residues can obviously be correlated, a 

recent study suggests that residues as distant as 15 Å can be even more strongly correlated than 

residues in close spatial contact22. It is noteworthy that Shannon conceived the concept of 

information entropy5 for communication channels. We can now quantify communication 

between amino acid residues23 using his theory. Nevertheless, the interpretation of NMR data to 

estimate entropy often does not consider correlations among order parameters24. Methods from 

information theory such as those in the present study can be used to account for non-linear 

correlations25,26 in the molecular coordinates. Since correlations always reduce the entropy3, 

including them will provide a tighter upper bound to conformational entropy.  
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2.1.2 Theoretical estimation of conformational entropy 

Macromolecules involve many degrees of freedom. Therefore, they constitute a special kind of 

challenge in the estimation of conformational entropy. A variety of methods have been proposed 

to tackle this problem27. The quasi-harmonic approximation (QHA)28-33 is based on ‘principal 

component analysis’ (PCA), also known as eigenvalue decomposition, which accounts for linear 

correlations between pairs of coordinates. It fits the observed probability density for the 

eigenmode coordinates of an effective harmonic oscillator model for which statistical mechanical 

quantities like the entropy can be expressed analytically. More elaborate QHA approaches apply 

corrections in third order moments of the coordinates34 or in pair-wise supra-linear correlations 
35,36. A further development of pair-wise supra-linear correlations is the ‘minimally coupled 

subspace’ approach37. It combines ‘independent component analysis’38 with ‘mutual information 

(MI) expansion’39 and ‘adaptive kernel density estimator’ approaches37.  

 

DNA33 and RNA40 display ‘collective coordinates’ (eigenmodes), which are close to harmonic 

modes in Cartesian coordinates using PCA41 or QHA28-33. Hence, applying these methods in 

Cartesian coordinates to ribonucleotides42, only small corrections for anharmonicity and pairwise 

supralinear correlations are needed using the nearest-neighbor method35. However, peptides and 

proteins possess different types of degrees of freedom, where Cartesian coordinates describing the 

conformations of polypeptide chains are highly correlated, even after applying PCA or QHA43. 

Internal Bond-Angle-Torsion (BAT) coordinates can avoid such correlations to a large extent44 

and can also be applied in the quasi-harmonic approximation45-47.  

 

Other approaches fit the observed distributions in torsional angle space to probability 

distributions given in closed form48 like Gaussian and/or von-Mises kernel density estimators49-53. 

The latter approach is non-parametric and approximates the probability density as a sum of peaks 

for which an analytical expression of the entropy is available. Another unrelated method to 

compute entropy, inspired by polymer physics, is the rigorous but computationally demanding 

hypothetical scanning54,55, which is based on reconstructing the macromolecular chain conformer 

from scratch. Methods originally devised to estimate free energy differences, like thermodynamic 

perturbation and integration, have also be extended to estimate entropy differences56-58. 
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In this work, we employ the internal BAT coordinates combined with a histogram method to 

estimate entropy with the mutual information (MI) expansion39, which is capable of accounting 

for supralinear correlations59,60. Most importantly, we introduce novel techniques that expedite 

convergence and compensate bias in estimating conformational entropy differences. 

2.2 Analytical derivation: Configurational entropy of a 

macromolecule 

2.2.1 Absolute and relative configurational entropies 

To define entropy in the canonical ensemble of a macromolecule with N atoms, we start with the 

partition function of the conformer domain α  

 

   3 exp( / )N N N
BQ h d d E k T

α
α α

−
Ω

= −∫ ∫p r .                  (2.1) 
 

The Hamiltonian  

    2

1
/ 2 ( )

N
N

n n
n

E p m Uα α
=

= +∑ r .                  (2.2) 

 

in eq (2.1) involves kinetic and potential energy terms of the N atom macromolecule. The symbol 

Ωα signifies the domain of configurations that identify the conformer α. The potential energy 

Uα (r N) is a function in the 3N Cartesian coordinates denoted by the 3N-dimensional vector r N. 

The energy Uα (r N) is infinite outside of the domain α that defines the conformer. Integrating 

over the 3N momenta in eq (2.1), we can write Qα as  

 

1

3
N

n
nQ Zα α

=
= Λ∏       

 

in terms of the configuration integral  

 

    exp[ ( ) /( )]N N
BZ U k T dα α

αΩ
= −∫ r r    (2.3)  
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and the “momentum” contribution, expressed by the 3N-fold product of the thermal de Broglie 

wavelengths  

     / 2 Bn nh m k TπΛ = ,     (2.4)  

 

where mn is the mass of atom n, kB is the Boltzmann constant, h is Planck’s constant, and T is the 

absolute temperature. The free energy Fα of the conformer in domain α is  

 

     Fα = −kBT ln(Qα).     (2.5)  

 

The ensemble average of the internal energy is  

 

2

,

3
2

ln
B B

N V

QE k T Nk T U
T

α
α α

∂ = = + ∂ 
 ,   (2.6) 

 

where the ensemble average of the potential energy can be written as  

 

    ( ) ( )N N NU d P Uα α α
αΩ

= ∫ r r r     (2.7)  

 

using the probability density function  

 

( ) exp[ ( ) /( )]N N
BP U k T Zα α α= −r r .   (2.8) 

 

Rearranging eq (2.8) and taking logarithms of both sides, we get  

 

( ) ln[ ( ) ]N N
BU k T P Zα α α= −r r .    (2.9) 
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Substitution of eq (2.9) into eq (2.7) gives  

 

( ) ln[ ( ) ]N N N
BU k T d P P Zα α α α

αΩ
= − ∫ r r r  .    (2.10) 

 

Now we define the configurational entropy of the conformer domain α as  

 

     Sα = (<Eα> − Fα ) / T .     (2.11)  

 

Using eq (2.6) and (2.10) we can rewrite the absolute configurational entropy, eq (2.11), as  

 

   
1

33
2 ( ) ln[ ( ) ]B B

N
N N N

n
nS Nk k d P P

α
α α α

=
Ω

= − Λ∏∫ r r r ,   (2.12)  

or rearranging 

  
1

3
2 3 ln ( ) ln[ ( )]B B B

N
N N N

n
nS Nk k k d P P

α
α α α

= Ω
= − Λ −∑ ∫ r r r .   (2.13) 

 

In the configurational entropy difference, ∆Sαβ = Sα − Sβ, the first two terms in eq (2.13) cancel, 

if both entropies refer to the same temperature, yielding  

 

         ∆Sαβ = kB (ŝα − ŝβ),      (2.14)  

 

where the relative configurational entropy is defined by  

 

   ˆ ( ) ln[ ( )]N N Ns d P P
δ

δ δ δΩ
= − ∫ r r r , δ = α, β ,   (2.15)  

 

which is analog to the Shannon differential entropy5 for the probability density ( )NPδ r . If 

entropy differences at different temperatures are evaluated, eq (2.13) should be used. In this work 

we can use eq (2.15), since we compute entropy differences at the same temperature. 
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Eq (2.15) is the expression for a relative entropy for two reasons: (i) Its actual value varies by an 

additive constant term dependent on the length units (e.g. Ångström) used for the coordinates 

r N. (ii) It is a differential (continuous61) entropy, which may assume negative or positive values 

(see App. I of ref 3 and sec. 20 of Shannon5). Conversely, the expression (2.13) is an absolute 

entropy62 because: (i) The length units used in the conformational integral cancel. (ii) Planck’s 

constant h discretizes (quantizes) the phase space (cf. eq 7.12 of Landau & Lifshitz63). 

 

 

Alternatively, (2.15) may be rewritten 

 

   1ˆ ln( ( )) ln
( )

N
Ns P

Pδ δ
δ

 
= − ≡  

 
r

r
 .    (2.16) 

 

The inverse of a probability density is the multiplicity. From (2.16), it becomes clear that entropy 

is a logarithmic measure of the average multiplicity of microstates, which is called degeneracy in 

the context of quantum mechanics. 

2.2.2 Sackur-Tetrode equation as a limiting case for ideal gas 

We now calculate the absolute configurational entropy for an ideal gas, where the probability 

distribution is uniform throughout the volume V of the container, such that 

 

( ) 1 NN
dP V=r .    (2.17) 

 

Solving eq (2.13)  analytically, we get 

 

1

3
2 3 ln lnB B B

N

d
n

nS Nk k k N V
=

= − Λ −∑    (2.18) 

 

Additionally, we have identical masses, so nm m= , so  the absolute entropy for distinguishable 

particles (2.18) becomes 
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2

2lnB
B

d
e m k TS Nk V

h
π   =  

   
    (2.19) 

 

For an ideal gas, we have indistinguishable particles, so 

 

ln !BST dS S k N= −     (2.20) 

 

The last term in (2.20) accounts for indistinguishability, which in this work only applies to the 

ideal gas. Using Stirling’s approximation, we have ln ! lnN N N N≈ − and may write 

 

3 35/2 2 2

2 2
5
2

2 2ln   lnB B B
B B

ST
m k T m k TVe VS Nk Nk Nk

N h N h
π π         = ≡ +   

         
 , (2.21) 

 

which is the familiar Sackur-Tetrode equation64. 

2.2.3 Entropy using local spherical polar (BAT) coordinates 

We introduce local spherical polar coordinates65-67, also referred to as ‘bond-angle-torsion’ (BAT) 

coordinates59,68,69, since they represent the conformational displacements of the atoms of a 

macromolecule in a more natural fashion than Cartesian coordinates. BAT coordinates simplify 

the configurational integrals, as for instance eqs (2.3) or (2.15), since they involve bond lengths, 

bond angles and torsions. This coordinate system is local because the frame of reference is shifted 

and rotated at each new bond to accommodate the molecular topology. These local coordinates 

are adapted to the molecular structure by separating degrees of freedom with high flexibility 

(torsion angles) from those with low flexibility (bonds and bond angles). This helps avoiding 

strong but spurious correlations inherent in atomic Cartesian coordinates44. Since these 

correlations are large, they can mask the physically relevant correlations. 

 

These coordinates are defined by fixing the coordinate r1 of the terminal atom 1 of the 

macromolecule at the origin of the coordinate system. All other coordinates refer to the bond 

vectors bn. The local spherical coordinates for the bond vector are bn = (bn, θn, ϕ n), 
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n = 2, 3, .  .  . N, (bond length bn, inclination angle θn, azimuthal angle ϕ n). We begin with bond 

vector b2 = r2 − r1 of the end atom 1, using the z- and x-axes from a lab frame as a reference for 

rotations θ 2 and ϕ 2. For the second bond vector b3 = r3 − r2, we use b2 as a reference for θ 2 but 

still need the x-axis from the lab frame as a reference for ϕ 3. For a linear molecule, the bond 

vectors are consecutively bn = rn − rn-1, n = 4, 5, . . . N. For the local spherical coordinates of 

bond vector bn we take atom position rn-1, as the coordinate origin, the preceding bond vector bn-

1 as z-axis, and the unit vector parallel to the cross product bn−2×bn−1 as x-axis. In a non-linear, 

branched molecule, we use for all bond vectors following a branch point (atom with more than 

two covalent bonds) the bond vector of the preceding two bonds as reference for z- and x-axes. 

Independently of the degree of branching, a molecule with N atoms and no ring structure 

possesses N−1 covalent bonds. Each ring introduces an additional bond. To avoid 

overcompleteness, one covalent bond in each ring is ignored, which automatically transforms the 

molecular topology back to a branched structure. Thus, together with the coordinates r1 of the 

initial atom 1 a complete set of 3N BAT coordinates (Fig. 2.1) is obtained for an N atom 

molecule. These BAT coordinates are collected in the 3N-dimensional supervector  

 

 b


 = (r1, b2, b3, . . . . bN-1, bN ), with bn = (b n, θ n, ϕ n),  n = 2, 3, .  .  . N.  (2.22)  

 

The potential energy function Uα is independent of position and orientation of the solute in the 

solvent. Therefore, we can separate contributions of those degrees of freedom and perform the 

corresponding integrations in configurational integrals as for instance eqs (2.3) or (2.15) in closed 

form using BAT coordinates65,66,68,69. The integration over r1 in configuration integrals like eq 

(2.15) can be performed directly, yielding as a result the volume V available to solvent and solute 

together. 
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Fig. 2.1: Local spherical polar coordinates (BAT coordinates) of a branched molecule. The lab frame 
(purple) is the initial reference for external rotations θ 2, ϕ 2 and ϕ 3. Further up the chain, the frame of 
reference is local and defined by the chemical bonds.  
 

Rotating the first bond vector b2 = r2 − r1 together with the whole solute molecule is described 

by varying the polar coordinate angles (θ 2, ϕ 2). Similarly the whole molecule can be rotated 

about the bond b2 described by the azimuthal angle ϕ 3. The potential energy function Uα of the 

solute does not depend on the orientation of the whole solute molecule. Hence, the integrations 

over θ 2, ϕ 2 and ϕ 3 in the configuration integrals like eq (2.15) can be performed directly to give 

the factor 8π2. As a result we have for instance for the (configurational) state sum, eq (2.3) 

 

 (3)2 2 2
2 2 3 3 3 30

2π

4
8 sin exp[ ( ) / ]

N

Bn
n

Z V db b db b d d U k Tα απ θ θ
=

′= −∏∫ ∫ ∫ ∫ b b


,  (2.23)  

 

with the differential of the local spherical polar coordinates  

 

    d(3)bn  = bn
2dbn sinθn dθn dϕ n     (2.24)  

 

and the 3N−6 BAT variables combined in the (3N-6)-dimensional vector  

 

  ′b


 = (b2, b3, θ 3, b4, b5, . . . . bN−1, bN ),   bn = (b n, θ n, ϕ n) .   (2.25)  

 

with bond length bn, inclination angle θ n, azimuthal angle ϕ n. In analogy to eq (2.25) we also 

define the differential form 
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d(3N−6)b′ = b2
2db2 × b3

2db3 × sinθ 3 dθ 3  ×  (3)

4

N

n
n

d
=

∏ b .             (2.26)a 

Thus, we can write now the (configurational) state sum, eq (2.23) in the compact form  

 

   (3 6)
2 exp[ ( ) / ]

8
N

B
Z d U k T z

V α
α

απ
− ′ ′= − ≡∫ b b



 ,   (2.27)  

 

where zα
  is now the conformational state sum exclusive of the position and orientations of the 

solute. We can now define the reduced conformational probability distribution  

 

    ( ) exp[ ( ) / ] /BU k T zαα αρ ′ ′= −b b
 

 .    (2.28) 

 

2.2.3.1 Relative conformational entropy in terms of BAT coordinates 

The reduced relative conformational entropy, which neglects translation and orientation of the 

macromolecule, is 

 

  (3 6) ( ) ln[ ( )] ln( )−

Ω
′ ′ ′= − ≡ −∫ b b b

 

Ns d
δ

δ δ δ δρ ρ ρ , δ = α, β.  (2.29)  

 

Hence, the entropy differences of a molecular system can be expressed by the dimensionless 

configurational entropies as is done in eq (2.14) or alternatively by the reduced dimensionless 

conformational entropies, eq (2.29) according to  

 

    ∆Sαβ = kB (ŝα − ŝβ) ≡ kB (sα − sβ).     (2.30) 

 

In case an implicit solvent model is used, the potential energy function Uδ is explicitly defined 

and the configurational integral in eq (2.29) can, in principle, be evaluated directly. For an 

explicit solvent model Uα depends implicitly on the thermodynamic state of the system (i.e., 

pressure and temperature) and involves averaging the Boltzmann factor exp(−Usolv / (kBT)), where 

Usolv is the solute-solvent interaction, over “free” solvent configurations for each fixed solute 
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conformation70. In both cases, the resulting Uα incorporates the influence of the solvent on the 

distribution of the molecular conformations71. In practical applications, it is often more 

advantageous to sample the conformational probability density ( )αρ ′b


 through simulations. It 

should be noted that a rigorous separation of the conformational entropy of a solute from the 

entropy of the embedding solvent72,73 is not possible in the current scheme because of the 

correlations between the two molecular subsystems. 

2.3 Numerical method to estimate conformational entropy 

differences 

We are now prepared to numerically estimate conformational entropy differences for a 

macromolecule (solute) immersed in a solvent possessing two distinct conformer domains α and 

β using eq (2.30). These conformers are for instance conformational domains separated by 

torsional energy barrier or the native folded and denatured unfolded structures of a protein74. The 

entropy difference (2.30) can be expressed in terms of the reduced relative conformational 

entropy (2.29) for each conformer δ = α,β, corresponding to the Shannon differential entropy5 of 

the probability density (2.28). 

 

The conformational entropy, eq (2.29), of a macromolecule with N atoms involves an integral in 

3N−6 dimensions. Hence, even for a small macromolecule, solving such integrals suffers from the 

curse of dimensionality. It is virtually impossible to perform these integrals explicitly even for 

molecules of a few atoms. Alternatively, one can use sampling methods based on molecular 

dynamics (MD) or Monte Carlo (MC) simulations, which generate molecular conformers in the 

frame of a canonical or quasi-canonical ensemble. In case the computation of canonical ensemble 

averages (free energy, enthalpy and entropy) can be based on a single equilibrated trajectory, 

importance sampling with Metropolis MC or MD simulation75 and energy averaging are 

straightforward techniques to evaluate them. We will use this method to obtain reliable 

benchmark data to compare our results with. This method is however not applicable if the 

problem requires the use of different trajectories from independent simulations, as is generally 

necessary for studying protein-ligand binding. Hence, other procedures are needed which can 
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deal with data from different trajectories. An alternative for these cases is the numerical 

estimation presented here.  

 

To estimate conformational entropy differences, we use non-redundant internal BAT coordinates 

for the given molecular topology. The high dimensionality of the conformational space  is 

reduced through the mutual information expansion. The probability densities of the lower-

dimensional subspaces in BAT coordinates are discretized by a histogram method and used in the 

calculation of conformational entropy differences. The biases inherent in entropy estimation are 

compensated through the bias-removal and balancing methods. 

2.3.1 Automated selection of BAT coordinates 

For a given molecular topology, a set of non-redundant internal BAT coordinates is constructed 

using the procedure described in section 2.2.3 “Entropy using local spherical polar (BAT) 

coordinates”. In practice, this translates into a tree algorithm also described by Gilson et al59. The 

PERL implementation of the BAT tree algorithm by Thomas Steinbrecher76, which in turn uses 

ptraj77, is adapted and modified to use Charmm/NAMD trajectories. 

2.3.1.1 Continuity maximization for torsions  

In contrast to molecular bond angles, torsion angles can vary over the whole angular regime from 

0 to 2π, such that the 2π periodicity must be considered to avoid discontinuities. We apply a 

‘continuity maximization’ algorithm to deal with this problem. For each torsion angle, its one-

dimensional probability distribution is discretized with a large number of histogram bins (say 

1000), many more than will finally be used for entropy computations. In this histogram, the 

longest continuous stretch of empty bins is detected. The end points of the angular interval for 

the histogram used to evaluate the entropies are placed such that they exclude this regime. If no 

histogram bin is empty, the original angular distribution is kept and used for the entropy 

evaluation. For a torsional coordinate with values that cover the whole 2π span, the choice of the 

end points formally has no effect, and numerically it would only have a vanishing one. However, 

for an angular variable that covers only part of the 2π span, this algorithm avoids considering a 

large number of empty (unused) histogram bins. 
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2.3.1.2 Phase angles 

If P torsions ϕn share three atoms (for a methyl group P = 3), geometrical correlations can be 

reduced furthermore by transforming P − 1 torsions into phase angles78 φn.  The hydrogens of a 

methyl group display such behavior, for which we define a master torsion angle, say ϕ i , and two 

phase angles78 φ k . Generally, if the torsion angles ϕ i and ϕ j have three atoms in common, we 

keep ϕ i and substitute ϕ j by the phase angle  

 

φ j = ϕ j − ϕ i .     (2.31) 

 

This transformation has a unit Jacobian and preserves a complete geometric description of the 

molecule. In Fig. 2.1, the atoms with coordinates r4 and r5 give rise to torsions ϕ 4 and ϕ 5. 

According to eq (2.31) we substitute torsion ϕ 5 by the phase angle φ 5 = ϕ 5 − ϕ 4. Such phase 

angles78 have narrower distributions than torsion angles. 

 

In our algorithm, main chain torsions (of the polypeptide backbone) are kept as full torsions, and 

the ones defined at branches (describing side chain orientations) are converted into phase angles. 

Both phase angles and the ability to define main chain atom types are implemented in our 

modified version of the BAT tree algorithm. 

2.3.2 Mutual Information expansion in low dimensional subspaces 

The convergence of the reduced conformational entropy s, eq (2.29), suffers from the curse of 

dimensionality. Therefore, we approximate s by a systematic series, projecting the probability 

distribution function ρ from the L-dimensional space, spanned by the generalized coordinates 

1 2, ,... )( L
tq q q q=  into subspaces of lower dimensions as defined below  

 

( 3)
(3) , , , ,( , , ) ( ) L

i ji j k k i j kq q q q d qρ ρ −= − ∫
 , with  ( 3)

, ,
, ,

−

≠
= Π

L
L

i j k
l i j k

ld q dq  (2.32)a 

 

and the analog expressions of two- and one-dimensional reduced probability distribution 

functions  



41 

 

 

(2) , (3) , ,( , ) ( , , )= ∫i j i ji j i j k k kq q q q q dqρ ρ   (2.32)b 

and 

          (1) (2) ,( ) ( , )= ∫i i j ji i jq q q dqρ ρ .  (2.32)c 

 

The factors Jn appearing in the conformational integrals of (2.32) are from the Jacobian 

determinant describing the transformation of the volume element from Cartesian to generalized 

coordinates. In the present application we use BAT coordinates, eq (2.26)a, where according to 

eq (2.26)b the Jacobian factors Jn are  

 

Jn = bn
2   for  qn = bn ,    (2.33)a 

Jn = sinθn    for  qn = θ n ,    (2.33)b 

Jn = 1    for  qn = ϕ n .     (2.33)c 

 

Individual values of the low dimensional probability densities (2.32) can be readily estimated 

from a finite set of simulation data. Their statistical accuracy improves the lower the dimension of 

the considered subspace is. With these reduced probability distributions, one can define entropy 

expressions in the corresponding low dimensional conformational space as for instance 

  

 ( )(3) , , (3) , , (3) , ,
, ,

( , , ) ( , , )i j i ji j k i j k k i j k k l l
l i j k

s q q q ln q q q J dqρ ρ
=

= − ∏∫ ,  (2.34)a 

 

for the three-dimensional subspace and analog expressions for the two- and one-dimensional 

subspaces 

   ( )(2) , (2) , (2) ,
,

( , ) ( , )i j i ji j i j i j l l
l i j

s q q ln q q J dqρ ρ
=

= − ∏∫   (2.34)b 

and  

       ( )(1) (1) (1)( ) ( )i i i ii i is q ln q J dqρ ρ= −∫  . (2.34)c 
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We are now prepared to formulate the MI expansion for entropies in an L dimensional phase 

space35,39,59  

   (1) (2) (3)
1 1 1

, , , ...
L L L

MIE
i i j i j k

i i j i j ks s I I
= < = < < =

= − + −∑ ∑ ∑ .            (2.35)a  

 

The terms I(2) i,j and I(3) i,j,k in (2.35) are the mutual information terms of 2nd and 3rd order, 

respectively, which are defined as  

 

     (2) (1) (1) (2), ,i j i j i jI s s s= + −             (2.35)b 

and   

  (1) (1) (2)(3) (1) (2) (2) (3),, , , , , ,( )i j i ji j k k i k j k i j kI s s s s s s s= + + − + + + .           (2.35)c 

 

 The MI expansion (2.35) starts with the sum of marginal entropy contributions s(1)i in 

the individual one-dimensional subspaces, neglecting correlations between them. The next terms 

correct for these correlations up to a given order. The MI expansion can in principle be extended 

to any desired order, up to full dimensionality39. However, higher order terms have a notoriously 

difficult convergence behavior. In the present work, we will use the MI expansion up to third 

order. According to our experience, this is sufficient to evaluate entropies from molecular 

trajectories reliably when internal BAT coordinates are used. 

2.3.3 Discretization 

To evaluate the subspace entropies according to (2.34), the molecular conformer coordinates 

obtained from a simulation of a canonical ensemble are discretized using histogram bins. In a 

three-dimensional subspace spanned by the coordinates ijkq  = (qi, qj, qk), the bins are numbered 

by the integer vector ijkm  = (mi, mj, mk), where the ml, (l = i, j, k) run from 1 to Ml and their 

widths are given by ∆ql. If the total number of conformations belonging to conformer regime δ is 

N(δ) and the number of conformations in the bin ijkm  belonging to the three-dimensional 

subspace spanned by ijkq  is ( )
(3) , , ( )i j k ijkN mδ 

, the corresponding discretized probability is  
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  ( )( ) ( ) ( ) ( )
(3) (3), , , ,

, ,
( )( )i j k ijk i j k ijk l l l

l i j k
p N N Jm m m qδ δ δδ

=

 
= ∆ 

 
∏ 

,            (2.36)a 

 

such that the probability density function is normalized to unity according to  

 

   ( )
( ) ( )
(3) (3)

, ,
1

, , , ,
, , 1

1 ( )( )
=

≡ ∑ ∫






i j k

M M M

i ji j k ijk i j k ijk k
m m m

i j k

N N q dq dq dqmδ
δ δρ  . 

 

The ( ) ( )l lJ mδ  refer to the Jacobian factors (2.33) for the different BAT coordinates ql. Using 

analog definitions, the discretized probabilities for two- and one-dimensional subspaces 

(normalized the same way as in the three-dimensional subspace) are  

 

   ( )( ) ( ) ( ) ( )
(2) (2), ,

,
( )( )i j ij i j ij l l l

l i j
p N N Jm m m qδ δ δδ

=

 
= ∆ 

 
∏ 

           (2.36)b  

and  

   ( ) ( )( ) ( ) ( ) ( )
(1) (1) ( ) ( )i i i i i i ip N N Jm m m qδ δ δδ= ∆ .             (2.36)c  

 

Based on these discretized probabilities, the entropies in the three-, two- and one-dimensional 

subspaces spanned by ijkq , ijq  and qi, respectively can be written as  

 

      ( ) ( )( )( ) ( ) ( ) ( )
(3) (3) (3)

, ,

, , , , , ,
, , 1, , , ,

( ) ln
i j k

i j k

M M M

i j k l l l i j k ijk i j k ijk
m m ml i j k l i j k

s J p pq m m mδ δ δ δ

== =

   
− ∆   

   
∑∏ ∏

 

,     (2.37)a 

 

    ( ) ( )( )( ) ( ) ( ) ( )
(2) (2) (2)

,

, , ,
, 1, ,

( ) ln
i j

i j

M M

i j i j ij i j ijl l l
m ml i j l i j

s J p pq m m mδ δ δ δ

== =

   
− ∆   

   
∑∏ ∏

 

,          (2.37)b  

 

   ( ) ( ) ( )( )( ) ( ) ( ) ( )
(1) (1) (1)

1
ln

i

iM

i i i i i i i i
m

s J p pq m m mδ δ δ δ

=
−∆ ∑              (2.37)c 
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used to evaluate the MI expansion (2.35). To account for the periodicity of the torsion angles, the 

histogram bins are placed appropriately, using an adaptive algorithm, as described in section 

2.3.1.1 “Continuity maximization for torsions”. 

2.3.4 Bias-Removal 

The entropy expressions (2.37) are based on estimates of the probability density function using 

finite samples that represent the canonical ensemble. These are subject to fluctuations, which lead 

to systematic deviations (bias) that underestimate the true value of entropy79,80. In the limit of 

small probabilities to find the molecular system in one particular bin of the histogram, a simple 

correction (bias-removal) term can be added that compensates this bias and yields bias-free 

(unbiased) entropy estimates according to 

 

( ) ( )
(1) (1) ( )

( )ˆ 1
2ˆ i i

iM
Ns s δ

δ
δ δ −

= +  ,                (2.38)a 

( ) ( )
(2) (2) ( ), ,

( )ˆ 1
2ˆ i j i j

ijM
Ns s δ

δ δ
δ −

= +  ,            (2.38)b 

( ) ( )
(3) (3) ( ), , , ,

( )ˆ 1
2ˆ i j k i j k

ijkM
Ns s δ

δ δ
δ −

= +  .         (2.38)c 

 

The ( )M̂ δ  count only the occupied bins of the histograms, (with ( )( )p mδ 

> 0), such that 

, ,

( )ˆ
l

l i j k
ijkM Mδ

=
≤ ∏  and N(δ) is the total number of frames (molecular conformations) in the sample. 

Evidently, the corrections are larger for entropy terms in higher dimensional subspaces81,82. The 

bias-removal corrections (2.38) depend only on parameters characterizing the evaluation of the 

data ( ( )M̂ δ , N(δ)) and not on the particular system considered (p(δ)). 

2.3.5 Balancing 

In practice, we are often interested in entropy differences between different states, for example 

between two conformer regimes (see eq (2.30)) or between the bound and unbound states of a 

protein-ligand system. Using a finite number of frames (molecular conformations from 
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simulation), the entropy difference may already have converged, although the entropies of 

individual conformer regimes have not. We have noticed that convergence of entropy differences 

is most efficient when the same number of effectively independent frames (N(α) ≈ N(β)) is used for 

both conformer regimes (α, β). When the two conformer regimes are simulated in a single-

trajectory, an imbalance occurs if N(α) > N(β). Discretizing these data in a histogram, eqs (2.36), 

the systematic errors for the subspace entropies, eqs (2.37), will differ for the two conformers. 

Hence, the systematic errors will not cancel in the entropy difference, eq (2.30), using these 

subspace entropies. To avoid this problem, the set of data are balanced keeping all frames of the 

minority conformer regime β, while reducing the number of frames of the majority conformer 

regime α by randomly deleting frames of the conformer α. If instead only a contiguous part of 

the trajectory is used to reduce the number of frames of the majority conformer, the two 

conformer regimes are no longer explored under the same conditions. Effects of such a 

nonequivalent exploration are discussed in section 2.5.6.1“Importance of choosing frames at 

random in the balancing method”. 

 

Here we provide an explanation for the observation that with less data for the majority conformer 

regime better estimates of entropy differences are obtained. Smooth probability distributions have 

higher entropy than rough distributions. For example, a perfectly smooth Gaussian probability 

distribution provides the maximum entropy for fixed variance83. Alternatively, a rough, multi-

peaked probability density of the same variance contains more information, since the multi-

peaked distribution ‘classifies’ data in more detail. It is well established82 that the statistical bias 

originates from statistical variations in the bin values of the histogram p, eq (2.36) representing 

the true probability density ρ, eq (2.32). It is evident that histograms will on average become 

smoother the more data are used to estimate the distribution. We conjecture that balancing works 

well because it produces histograms with comparable roughness in both conformer regimes. 

Thus, the bias from the histogram roughness cancels in the entropy difference (2.30). This 

behavior is detailed under section 2.5.6 “Convergence of the entropy estimates”. 

 

Hence, we recommend applying balancing when the conformers of both regimes are taken from 

the same trajectory. However, balancing will also work, if different trajectories of the same 
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molecular system are simulated under equivalent conditions. In contrast to the bias-removal 

correction that applies to entropies of individual states (conformer regimes), the balancing 

correction applies only to entropy differences. While the bias-removal correction term (2.38) 

removes systematic deviations (biases) connected solely with the evaluation procedure, balancing 

accounts also for systematic deviations that depend on the particular system under study.  

2.3.6 Generating molecular conformations in a canonical ensemble 

Data that represent a canonical ensemble of molecular conformations can be generated by MD. 

We use Langevin dynamics as implemented in CHARMM35b1 as thermostat. To avoid slowing 

down of dynamics as observed in ref 84 a friction constant of γLang = 1 ps−1 is used85. However, 

other thermostats such as the Andersen thermostat86 or Nosé-Hoover chains87 may also be 

appropriate88. 

 

Some implicit solvent models such as GBMV with standard parameters are known not to 

conserve energy89 in microcanonical (NVE) MD simulations because of the complexity of the 

molecular surface of the solute used to approximate the Poisson-Boltzmann solvation free energy. 

As a consequence, these models combined with a thermostat may generate imperfect canonical 

ensembles. Therefore, we prefer to use the energy conserving implicit solvent model FACTS90, 

defined purely on the basis of pairwise distances between atoms. 

2.3.7 Benchmark Entropy 

The free energy change between two molecular conformer regimes can be calculated from a single 

trajectory if equilibrated simulation data reflecting Boltzmann statistics are available. N(α) and N(β) 

are the number of conformations (frames) for the conformer regimes α and β obtained from a 

simulation using importance sampling with MD or Metropolis MC75. This is sometimes called the 

counting method27 to obtain the configurational free energy difference      

  

( )( )ln( / )BF F F k T N Nαβ α β
βα∆ = − = − .    (2.39) 
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The entropy difference between two conformer domains α and β of a macromolecule with N 

atoms can be written  

 

    ∆Sαβ ,bench= (∆<Eαβ> −∆Fαβ)/T .    (2.40)  

 

Using eq (2.6) <Eδ> = 3/2 NkBT + <Uδ> and given conformers α and β at identical temperature 

T, the difference of the internal energy 

 

    ∆<Eαβ> = ∆<Uαβ> = <Uα> − <Uβ> ,   (2.41)  

 

can be evaluated from MD simulation data by averaging the potential energies Uδ, δ = α, β, over 

all frames of conformer regime α and β, respectively. Entropy differences computed from data of 

a single trajectory based on (2.40) converge more rapidly than an MI expansion. Therefore, they 

can be used as a benchmark to test the MI expansion method. Conversely, the MI expansion can 

also be applied to compute entropy differences for situations where the conformer regimes need 

to be generated by independent MD simulations where relation (2.39) cannot be applied to 

compute the free energy difference. Such independent trajectories are required for instance to 

evaluate the binding affinities of ligand-receptor or protein-protein complexes.  

 

Using MD simulation data to evaluate ∆Fαβ according to (2.39), ∆Fαβ converges more rapidly 

with the length of the trajectory than the evaluation of ∆Sαβ and ∆Uαβ based on (2.40) and 

(2.41), respectively. This convergence behavior has been reported previously56 and is discussed at 

length for our simulations in section 2.5.4 “Convergence of benchmark entropy, energy and free 

energy”. The simulation data are obtained with importance sampling based on Boltzmann statistics 

such that for an evaluation of ∆Fαβ all frames are used with equal weights, while for evaluation of 

∆Uαβ the frames need to be reweighed using the potential energy terms U(δ), δ = α, β. Hence, the 

effective number of frames available for the latter case is smaller, resulting in larger statistical 

errors. As a consequence, the convergence of the benchmark value of ∆Sαβ according to (2.40) is 

limited by the convergence behavior of ∆Uαβ. 
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2.4 Model system 1: Monte Carlo simulation of a three-atom 

molecule in a cage 

2.4.1 Simulation procedure 

The first model system that we investigate is a three-atom molecule whose conformations are 

generated by a continuous random walk starting at the origin with fixed step size (bond length). 

The first atom is considered to be fixed at the minimum of a wall opened toward the positive z-

axis defining a cage (see Fig. 2.2). The wall surface obeys the relation  

 

     zwall(x,y) = ε(x2+y2)½ , ε > 0.    (2.42)  

 

 
Fig. 2.2: Three-atom molecule modeled as continuous random walk with fixed bond lengths. Each 

conformation is defined by two bond angles (θ2, θ3) and one torsion angle ϕ. The conformer regime α is 

the ensemble of conformations where atom 2 and 3 are both above the depicted parabolic wall, eq (2.42), 

while conformer β comprises all other conformers (right part).  

 

The second atom can change its position by varying its angle θ2 relative to the plane rectangular 

to the z-axis. The third atom can move by rotating around the axis formed by atoms 1 and 2 by 

the azimuthal angle ϕ and by varying the bond angle θ3 of the three atoms. Rotations of the 

molecule around the z-axis do not matter, since they do not change the configuration of wall and 

molecule, due to the rotational symmetry of the wall surface, eq (2.42). The set of angular 

variables (θ2, θ3, ϕ) are analog to the BAT coordinates. They are the internal coordinates of the 

molecule fixed with atom 1 at the wall.  
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2.4.1.1 Monte Carlo algorithm 

A simple Monte Carlo (MC) algorithm is used to generate 5 × 107 frames of the free, unrestricted 

3-atom molecule by a Random Walk, (RW). To generate each frame in Cartesian coordinates, we 

proceed as follows:  

 

1. Place the first atom at the origin: r1 = (0, 0, 0) 

2. Place atom 2 at r2 = r1+b2.  

3. Place atom 3 at r3 = r2+b3.  

 

Here, bn is a vector whose tip is uniformly randomly distributed on a sphere of radius b, where b 

is the fixed bond length. This is accomplished through an algorithm due to Marsaglia91, which is 

an optimized version of von Neumann’s algorithm92. The independent, identically distributed 

pseudorandom numbers required by Marsaglia’s algorithm91 are generated by the pseudorandom 

number generator Taus088 due to L’Ecuyer93.  

 

The ensemble of free conformations is now subject to restriction by a hard wall described by, eq 

(2.42) with ε = 0.612. The constant ε is chosen arbitrarily to provide a positive curvature and 

divide the conformers unevenly. The conformer regime α comprises the frames where all atoms 

are above zwall. The rest, where any or all atoms are below zwall, is denominated β. 

2.4.2 Clustering of conformations 

The locations of atoms 2 and 3 relative to the wall surface determine the conformer regime 

(α or β) to which the molecule belongs (see Fig. 2.2). If both atoms are above the wall, the 

molecule belongs to conformer regime α. If one or both atoms are below the wall, the molecule is 

in conformer regime β. In this way we have constructed a molecular model with an asymmetric 

distribution between the two conformer regimes. Choosing the parameter value ε = 0.612 for the 

wall surface, eq (2.42), yields an asymmetry of 1 to 10.4 in the proportion of conformations 

between regime α and β. A simple MC procedure is used to generate 5 × 107 free molecular 

conformations. Then the wall surface, eq (2.42), is introduced and the molecular conformers are 

assigned to one of the two conformer regimes. 
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2.4.3 Entropy estimation  

Here, we estimate the entropy change between the two conformers for the three-atom molecule 

in a cage. A two step continuous unconstrained random walk starting at the coordinate origin can 

be considered as a three-atom model where the first atom is fixed at the origin. The Cartesian, as 

well as the three internal coordinates (θ2, θ3, ϕ) (for a definition see Fig. 2.2) of such a molecular 

model are by construction uncorrelated. By introducing a wall to divide the ensemble of 

conformers into two regimes, correlations between the coordinates are introduced. All three 

internal coordinates are supralinearly26 correlated, as evidenced by non-vanishing pairwise (2) ,i jI  

and third order (3) 1,2,3I  MI terms39. 

 

For the chosen value of the curvature ε = 0.612 of the quadratic wall, eq (2.42), we obtain for 

5 × 107 random walks (frames) N(α) = 4.38 × 106 conformers of type α and N(β) = 45.6 × 106 

conformers of type β (Fig. 2.2). Since β is the majority conformer, applying balancing means to 

randomly select Nα frames of conformer regime β for the entropy difference computation. The 

benchmark entropy, eq (2.40), may be used as a standard. It converges quickly with the number 

of frames (solid line in Fig. 2.3) to the value ∆Sαβ = −∆Fαβ/T = kB ln(N(α) / N(β)) = 

−19.5 J/(mol K), since ∆Uαβ = 0. 

 

Among the estimators, the slowest convergence is observed (Fig. 2.3) when neither balancing nor 

bias-removal is applied, equivalent to the original method by Gilson et al59,60. The fastest 

convergence is achieved by applying both balancing and bias-removal. When separating the 

effects, the balancing method alone provides a stronger improvement for a small number of 

frames (Nframes), while bias-removal provides a stronger improvement for larger number of frames 

Nframes. In practical applications, it is advisable to apply both balancing and bias-removal, as they 

work synergistically to accelerate convergence. 
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Fig. 2.3: Entropy difference ∆Sαβ for the three-atom molecule as described in section 2.4.3, probing the 
correction methods: balancing and bias-removal. The computations are based on a total of 5×107 
conformers. The solid line  is the benchmark entropy difference, eq (2.40). All entropy estimators use 
the third order MI expansion with M=35 histogram bins, eqs (2.35)–(2.37). Dashed line  balanced & 
bias-free; dotted line  balanced & biased; dash-dotted line  unbalanced & bias-free (reflected to be 
above the benchmark); short dashed line  unbalanced & biased (reflected to be above the benchmark). 
The latter two curves have been reflected about their asymptotic values ∆Sαβ(∞) according to 
∆Sαβ = ∆Sαβ(∞) − ∆Sαβ for ease of comparison. The inlay zooms into the last phase of convergence. The 
fastest convergence among estimators is achieved by applying both methods: bias-free and balancing.  
 

The abscissa in Fig. 2.3 and Fig. 2.4 is the total number of frames in the simulation. Because in 

the balancing method we actually use only a subset of those frames, the CPU requirements of the 

entropy evaluation are reduced by one order of magnitude, while at the same time improving the 

convergence. Nevertheless, we use the same abscissa to allow comparison between the methods.  

The number of histogram bins M chosen is the resolution at which the conformational space and 

the correlations between the different variables will be sampled. The dependence on M is plotted 

in Fig. 2.4 for the uncorrected (a), and for the balanced and bias-free methods (b). If we choose 

M too large, there will not be enough data to fill the bins, and convergence will be slower and 

incomplete for the given amount of data, which is 5×107 conformers. If we choose too small an 

M, the resolution will not be high enough to capture the correlations. The values of M between 

20 and 35 are most suitable for the third order MI expansion using 5 x 107 conformers. There is, 

however, a dependence of ∆Sαβ on M, which is reduced by using balancing and bias-removal, but 

not completely eliminated. In summary, most of the entropy estimates have reached their 

asymptotic value when using balancing and bias-removal (Fig. 2.4b). Conversely the 

corresponding results are far from being converged, if the MI expansion method is used without 

corrections, i.e. unbalanced and biased (Fig. 2.4a).  
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Fig. 2.4: Entropy difference ∆Sαβ for the three-atom molecule probing different histogram sizes using a: 
uncorrected estimates (unbalanced and biased) and b: corrected entropy estimates (balanced and bias-free) 
with improved asymptotic convergence. The computations are based on a total of 5×107 conformations. 
Solid line is the benchmark entropy according to eq (2.40). All entropy estimators (dashed lines) use the 
third order MI expansion varying the number of histogram bins M. Note that the curves with M = 35 are 
identical to Fig. 2.3 except for the reflection.  

2.5 Model system 2: Molecular Dynamics simulation of trialanine 

2.5.1 Simulation procedure 

Simulations of trialanine were performed with 13 different conditions, each one spanning a 1 µs 

trajectory. The canonical ensemble was approximated using the Langevin thermostat with 

coupling constant γLang = 1 ps-1. The time propagation step was 1 fs. No SHAKE constraints were 

used to account also for entropy contributions from hydrogen atom bond vibrations. 

Conformations were saved every 0.2 ps for a total of Nframes = 5 × 106. The CHARMM2294 force 

field was used together with the implicit solvation model FACTS90 with parameters κ = 8 and 

dielectric constant ε = 1.0 implemented in CHARMM35b1. In order to generate a total of 13 

simulations with different entropies, we varied the hydrophobic “surface tension” term γHφ and 

scaled the attractive 1/r6 term of the Lennard Jones potential by the dimensionless factor εattr. For 

vanishing surface tension (γHφ = 0.0), we used εattr(j) = 0.00 + 0.25 j, j = 0, 1, 2, . . . 6, and for 

γHφ = 0.025 cal/(mol K Å2) and γHφ = 0.045 cal/(mol K Å2), we used εattr = 0.00; 0.50; and 1.0.  
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2.5.2 Clustering of conformations 

The molecular conformations of the trajectories were post-processed to generate two conformers 

by using a geometric criterion. The main anharmonic motion in trialanine is about the dihedral 

angle ψ2 of the middle residue95,96, which we have chosen as our ‘order parameter’ (see Fig. 2.6). 

We separate two conformers of trialanine by searching for two minima in occupation in the 

torsion angle ψ2. As a result we obtain a conformer regime α with dihedral angles similar to an α-

helix and a conformer regime β with torsion angles similar to polyglycine 31-helix (PII). 

 

 
Fig. 2.5: Probability density for the Ramachandran dihedral ψ2 in simulation condition 8. The torsion 
angle ψ2 (see Fig. 2.6) is used as order parameter dividing the conformers α and β. This circular variable 
delimits the conformers at two positions: ψ2,crit is computed as the region with minimum population near 
ψ2=-140°, which varies according to the simulation conditions (See Table 2.1). The second cut position is 
fixed at ψ2=25°, since it depends on the repulsive wing of the Lennard Jones potential and is identical for 
all 13 simulation conditions.  
 

Our trialanine model consists of N = 34 atoms. Its geometry can be described with N−1 = 33 

bonds, N−2 = 32 angles and N−3 = 31 torsions yielding a total of 96 BAT coordinates. 

Furthermore, the torsion angles can be divided into 13 main torsions and 18 associated phase 

angles. 
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Fig. 2.6: The compact (α) and extended (β) conformers of trialanine. The Ramachandran torsion ψ2 is 

used as an order parameter to define the conformers. The compact conformer α has a lower (more 

favorable) potential energy Uα < Uβ , but also lower (more unfavorable) entropy sα < sβ , eq (2.29), than 

the extended conformer. By how much U and s differ is a function of the surface tension (γHφ) and the 

scaled 1/r6 attractive term of the Lennard Jones potential (εattr), which were varied in each of the 13 

simulations.  

2.5.3 Entropy estimation 

For the MD simulations of trialanine, larger values of εattr enhance the attractive wing of the 

Lennard Jones potential. This leads to more compact conformations (N(α) > N(β)), and a larger 

entropy difference ∆Sβα. Larger surface tension (γHφ) up to a value of 0.045 cal/(mol K Å2) had a 

smaller and opposite effect on ∆Sβα. By varying εattr and γHφ, different simulation conditions are 

created, which are then used to test the entropy estimator based on the MI expansion. The order 

parameter ψ2 serves to cluster the conformers α and β (see Fig. 2.5 and Fig. 2.6). 

2.5.4 Convergence of benchmark entropy, energy and free energy 

In order to test our numerical method to estimate entropy, we need reliable benchmarks. Here we 

show that the trialanine benchmark values are appropriately converged. In Fig. 2.7, we observe 

that the free energy difference ∆Fβα converges the fastest among thermodynamic variables. The 

energy difference ∆Uβα is slower in convergence, and ∆Sβα,bench, being calculated as a difference, is 

the slowest one to converge. The simulation condition ID is assigned by ascending values of 

∆Fβα . The order in the values of the energy difference ∆Uβα and the entropy difference ∆Sβα,bench 

differs somewhat with respect to the ascending ∆Fβα order (see bars on the right of Fig. 2.7.) The 

free energy ∆Fβα is the result of the interplay of energetic and entropic contributions, which are 

related but not identical. A given potential energy surface (which varies among simulation 

conditions 1 to 13) determines which microstates are accessible to each conformer at temperature 
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T. The energetic component results from the microstates’ average energy (average “funnel 

depth”), and the entropic component from their multiplicity (average “funnel width”), adapting 

the concepts of Wolynes97 to our system. Thus, there is no a priori reason to believe that the 

ascending order of the values of energy, entropy and free energy differences should be identical. 

See color labels in Fig. 2.7a, b and c. 

 

    

 
Fig. 2.7: Convergence of the thermodynamic variables in the 1 µs trialanine simulation using 5x106 
frames. The frames are used in time order. a: Free energy change. b: Internal energy change. c: Entropy 
change benchmark. 
 

Krivov et al. simulated tetraalanine98 with the PARAM19 force field of CHARMM99 and the 

ACS100 implicit solvent model. To evaluate entropy, the tetraalanine conformers were clustered 

using not a geometric, but a kinetic criterion. The simulation was done both with Langevin 

dynamics and with a method that confines and explores conformations in a given conformer 
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basin. They also find that the extended β conformer has higher average energy but is stabilized by 

entropy. The entropy difference between the helical α and extended β conformations of 

tetraalanine was found to be ∆Sβα = 20.4 J/(mol K)98, comparable to our results for trialanine, 

which range from about 5.8 to 17.3 J/(mol K) depending on the simulation conditions. 

 

In Table 2.1 the final asymptotic values for the thermodynamic variables are provided. For each 

simulation condition, the numerical values for the hydrophobic “surface tension” term γHφ and 

the 1/r6 attractive Lennard Jones potential scaling factor εattr used in each simulation can be read. 

Also, the critical value of ψ2, a Ramachandran dihedral angle of the middle residue of 

trialanine95,96, which we use as order parameter, is provided. ψ2,crit is the value of that angle at 

which the ensemble population is the lowest, and used to divide the conformers α and β. The 

second value at which the circular variable ψ2 is cut is fixed at 25°, a value identical for all 

simulations. It is the consequence of the repulsive wing of the Lennard Jones potential (identical 

in all 13 simulations) and physically interpretable as a steric constraint. See Fig. 2.5 for an 

example of the probability distribution ρ(ψ2) corresponding to simulation condition ID 8.  

 

Table 2.1: Converged values of the thermodynamic variables for trialanine simulation with 13 different 
conditions.  
Simulation 
condition 

εattr 

[dimless] 
γHφ 

[cal/(mol K Å2)] 
∆Fβα 

[kJ/mol] 
∆Uβα 

[kJ/mol] 
∆Sβα,bench 

[J/(mol K)] 
ψ2,crit 

[degrees] 
1 0.00 0.045 -0.25 1.49 5.80 -134.5 
2 0.00 0.025 0.21 2.03 6.08 -138.5 
3 0.00 0.000 0.73 2.58 6.15 -140.5 
4 0.50 0.045 1.01 3.57 8.54 -135.5 
5 0.25 0.000 1.37 3.44 6.92 -139.5 
6 0.50 0.025 1.51 3.86 7.85 -139.5 
7 0.50 0.000 2.06 4.53 8.23 -141.5 
8 1.00 0.045 2.87 6.22 11.17 -140.5 
9 0.75 0.000 2.92 6.03 10.37 -140.5 

10 1.00 0.025 3.30 6.85 11.83 -141.5 
11 1.00 0.000 3.93 7.45 11.72 -141.5 
12 1.25 0.000 5.16 9.60 14.79 -144.5 
13 1.50 0.000 6.81 12.01 17.34 -144.5 
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2.5.5 Detailed results for entropy estimates using the MI expansion (MIE) 

Here we present the results for entropy estimation with MIE1 (Fig. 2.8), MIE2 (Fig. 2.9) and 

MIE3 (Fig. 2.10). The four panels of these figures demonstrate the effect of using different 

correction methods. Upper left: unbalanced, biased; upper right: unbalanced, bias-free; lower left: 

balanced, biased; lower right: balanced, bias-free. In these figures, we consider all 96 BAT degrees 

of freedom of the trialanine model: bonds, angles, torsions and if necessary phase angles that 

replace corresponding torsion angles. The lower right panel (d) presents the best results using 

both correction methods: balancing and bias-removal. Also shown in each panel is the average 

and standard deviation of the estimate-to-benchmark ratio ∆Sβα,MIE1 / ∆Sβα,bench. Average and 

standard deviation for this ratio are calculated over all 13 simulation conditions and all five of 

histogram schemes with different numbers of bins M.  

2.5.5.1 MIE1 using all BAT coordinates 

The first order MI expansion (MIE1) in Fig. 2.8 is well converged. Nevertheless, the converged 

value does not agree well with the benchmarks, as can be seen by the deviation of the computed 

results from the dashed diagonal line representing the perfect agreement. In MIE1, the individual 

entropies are estimated as the sum of the marginal entropies (first term of (2.35)). Compensating 

the bias according to eq (2.38) yields for MIE1 a small correction only, which results in no 

noticeable change from ab and cd in Fig. 2.8. The size of the correction is small because in 

the 1st order MI expansion the number of histogram bins is small such that the bins are well filled 

and exhibit small fluctuations. This contrasts with MIE2 and MIE3 having quadratically and 

cubically as many histogram bins, respectively. Thus, for MIE1 the major correction comes from 

balancing (ac and bd). The balancing method narrows the spread between the estimators for 

the different number of histogram bins M (different symbols), but as expected cannot correct for 

the lack of correlation in MIE1.  

 



58 

 

 
Fig. 2.8: Results with first order MI expansion (MIE1). Entropy difference estimates ∆Sβα (abscissa) 
between the two conformers β and α  for the trialanine model are compared with benchmark entropies 
(ordinate). All 96 BAT degrees of freedom are used. The symbols stand for the number of histogram bins 
used:  M=20;  M=25;  M=35;  M=50;  M=100. The arrows show application of the correction 
methods: none (a), either (b, c) or both (d). Also given are average and standard deviations for the ratio 
∆Sβα,MIE1 / ∆Sβα,bench of all 13 simulation conditions and the five histogram schemes with different numbers 
of bins M. The optimal result is 1.0 ±0.0.  
 

2.5.5.2 MIE2 using all BAT coordinates 

In Fig. 2.9, we see a large and beneficial effect of the balancing method (ac and bd). The 

bias-removal acts to fine-tune the entropy differences in cd. It becomes evident that balancing 

and bias-removal act synergistically to improve the accuracy of the entropy estimates.  
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Fig. 2.9: Results with second order MI expansion (MIE2). Entropy difference estimates ∆Sβα (abscissa) 
between the two conformers β and α  for the trialanine model are compared with benchmark entropies 
(ordinate). All 96 BAT degrees of freedom are used. The symbols stand for the number of histogram bins 
used:  M=20;  M=25;  M=35;  M=50;  M=100. The arrows show application of the correction 
methods: none (a), either (b, c) or both (d). Also given are average and standard deviations for the ratio 
∆Sβα,MIE1 / ∆Sβα,bench of all 13 simulation conditions and the five histogram schemes with different numbers 
of bins M. The optimal result is 1.0 ±0.0. 
 

2.5.5.3 MIE3 using all BAT coordinates 

The MIE3 entropy difference estimates in Fig. 2.10 show poor agreement with the benchmarks. 

There is definite improvement by using bias-removal and balancing, but even Fig. 2.10d where 

both methods have been used is far from optimal. From this we conclude that we need more 

frames than the 5 × 106 frames used here to obtain well converged MIE3 estimates.  
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Fig. 2.10: Results with third order MI expansion (MIE3). Entropy difference estimates ∆Sβα (abscissa) 
between the two conformers β and α  for the trialanine model are compared with benchmark entropies 
(ordinate). All 96 BAT degrees of freedom are used. The symbols stand for the number of histogram bins 
used:  M=20;  M=25;  M=35;  M=50;  M=100. The arrows show application of the correction 
methods: none (a), either (b, c) or both (d). Also given are average and standard deviations for the ratio 
∆Sβα,MIE1 / ∆Sβα,bench of all 13 simulation conditions and the five histogram schemes with different numbers 
of bins M. The optimal result is 1.0 ±0.0. 
 

2.5.5.4 MIE Using only soft degrees of freedom 

In recent work of Brüschweiler et al.51, it was suggested to employ the main torsion angles (‘soft 

degrees of freedom’) only and to neglect the ‘hard degrees of freedom’, including phase angles. In 

their work, Brüschweiler et al. only account for the momenta contributions (cf. second term of eq 

(2.13)) of the hard degrees of freedom, which is required because the entropy difference is 

estimated for conformers at two different temperatures (T = 380 K and T = 270 K). They assume 

that the Jacobian determinant (which only arises from hard degrees of freedom) will be 

conformation-independent and thus cancel. The validity of this assumption is discussed in 

section 2.6.1.2, “Approximate cancellation of the Jacobian term of the entropy”. The momenta 
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contributions and the constant Jacobian are embodied into eq (2) of ref 51.  Using only torsions 

as soft degrees of freedom resulted in estimate-to-benchmark ratios between 0.87 and 0.96 when 

testing entropy differences of dipeptide conformers at two different temperatures (see Table I, last 

column, of Brüschweiler et al.51). 

 

Furthermore, Brüschweiler et al. studied the conformational entropy change between the bound 

and unbound conformers of a protein52. They found that linear correlations (as obtained from the 

covariance matrix35) between torsion angles are fairly similar in the bound and unbound states. 

Based on this fact, Brüschweiler et al. suggested52 to neglect correlations between the torsion 

angles (as estimated from mutual information, which includes non-linear correlations26). In 

defining ‘soft degrees of freedom’ Brüschweiler et al. considered only one main torsion angle per 

shared pair of bonds. This is confirmed in the statement that the alanine dipeptide “has a total of 

7 soft degrees of freedom”51. Translated to our definition of BAT coordinates, trialanine has 13 

main torsions. However, trialanine also has 18 associated phase angles, which may or may not 

count as ‘soft degrees of freedom’. The remaining 33 bond lengths and 32 bond angles are 

considered stiff or ‘hard degrees of freedom’. Although their entropy estimation employs different 

numerical methods51,52, their results are on similar footing with ours since: (i) They employ (a 

subset of) BAT coordinates. (ii) Their data are naturally balanced, as their conformers belong to 

two independent simulations involving the same simulation conditions, from which they likely 

take the same number of frames for their analysis.  

 

Fig. 2.11: Entropy estimates for the trialanine model using only the main 13 torsion angles as ‘soft degrees 
of freedom’, and neglecting the conformational variations of phase angles, bond angles and bond lengths. 
Both correction methods (balancing and bias-removal) are used, as they yield the best results. Also given 
are average and standard deviations for the ratio ∆Sβα,MIE1 / ∆Sβα,bench of all 13 simulation conditions and 
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the five histogram schemes with different numbers of bins M. The optimal result is 1.0 ±0.0. a: First order 
MI expansion (MIE1); b: Second order MI expansion (MIE2). 
 

We applied their suggestions to our trialanine model. In Fig. 2.11a, we follow both suggestions. 

Using only the main 13 torsions with the 1st order MI expansion (MIE1) yields a low value of the 

estimate-to-benchmark ratio of 0.71 ±0.087. In Fig. 2.11b, we switch to the 2nd order (MIE2), 

obtaining a larger estimate-to-benchmark ratio of 0.82 ±0.051. If we now alter the definition of 

soft degrees of freedom to include all 31 torsion and phase angles, we obtain a ratio of 

0.81 ±0.069 for MIE1 and a ratio of 0.97 ±0.027 for MIE2 (Fig. 2.12).  

 

Fig. 2.12: Entropy estimates for the trialanine model using 31 ‘soft degrees of freedom’ (13 torsions and 
18 phase angles), and neglecting the conformational variations of angles and bonds. Both correction 
methods (balancing and bias-removal) are used, as they yield the best results. Also given are average and 
standard deviations for the ratio ∆Sβα,MIE1 / ∆Sβα,bench of all 13 simulation conditions and the five histogram 
schemes with different numbers of bins M. The optimal result is 1.0 ±0.0. a: First order MI expansion 
(MIE1); b: Second order MI expansion (MIE2).  
 

In summary, the best estimates for trialanine are obtained when applying both correction 

methods: balancing and bias-removal in the 2nd order MI expansion. Furthermore, using all 96 

BAT coordinates with M = 35 bins histogram (Fig. 2.9d) leads to the best estimate-to-benchmark 

ratio of 1.01 ±0.037. The second best results are obtained using only the ‘soft degrees of freedom’ 

defined as the torsion and phase angles (Fig. 2.12b). Note that most data points in Fig. 2.12b are 

below the identity line (ratios below 1.0), pointing to a slight systematic underestimation of the 

entropy differences due to small contributions from the hard degrees of freedom. 
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2.5.6 Convergence of the entropy estimates 

In this section, we analyze the convergence properties of entropy and entropy difference estimates 

using the 2nd order MI expansion (MIE2) and employing both correction methods (balancing 

and bias-removal). For the sake of clarity, only the final converged benchmark values of the 

entropy difference ∆Sβα,bench (eq (2.40)) are shown as dashed lines in Fig. 2.13 and Fig. 2.14. The 

convergence properties of the entropy difference for the benchmark values was treated separately 

in the section 2.5.4 “Convergence of benchmark entropy, energy and free energy”.  

 

 
Fig. 2.13: Unbalanced number of frames, 2nd order estimator (MIE2) used to plot individual (relative) 
entropies Sα, Sβ and the entropy difference ∆Sαβ. Convergence of the entropy estimates versus number of 
frames used for the trialanine simulation condition 8 (parameters: γHφ = 0.045 cal/(mol K Å2) and 
εattr = 1.00). Frames are used in time order. The abscissa denotes with N(δ)

frames the effective number of 
frames used for δ=α, β. This differs from Nframes used elsewhere, which refers to all frames of the 
simulation. The dashed line marks the final benchmark value. a: Individual conformer entropies without 
bias-removal. b: Individual conformer entropies using bias-removal. c: Entropy difference without bias-
removal. d: Entropy difference using bias-removal.  
 

In the following discussion we will use the example of trialanine with simulation condition 8 

(parameters γHφ = 0.045 cal/(mol K Å2) and εattr = 1.00) using the 2nd order MIE expansion 

(MIE2). The individual entropies Sδ are not fully converged, whether unbalanced (Fig. 2.13a, b) 

or balanced data are used (Fig. 2.14a, b), and independently of whether bias removal ab is 



64 

 

applied or not. As matter of fact, balancing will slow down the convergence of entropies of the 

majority conformer Sα. However, our main focus is on computing entropy differences ∆Sβα. 

There, we observe a beneficial effect of balancing. Without balancing, the entropy difference 

∆Sβα  diverges (Fig. 2.13c, d), while with balancing the entropy difference converges (Fig. 2.14c, 

d). This is due to the fact that after balancing the individual conformer entropies (Sα,MIE2 and 

Sβ,MIE2) possess similar systematic errors, which cancel in the entropy difference ∆Sβα. The bias-

removal method cd provides an additional beneficial fine-tuning for the entropy difference.  

2.5.6.1 Importance of choosing frames at random in the balancing method  

In the balancing method, only a subset of the frames of the majority conformer is used. It is 

important to choose those frames at random101 instead of simply taking a contiguous subset of the 

trajectory, since that results in a nonequivalent exploration of the phase space. While the 

convergence of the individual entropies Sδ,MIE2 using time order or random order is 

indistinguishable to the eye due to the large magnitude of the individual entropies (Fig. 2.14a, b), 

the consequences for the convergence of the entropy difference ∆Sβα,ΜΙΕ2 are clearly visible. In 

Fig. 2.14c, d we see that the convergence of the entropy difference is accelerated by choosing the 

frames at random. The reason for this does not lie in the numerical properties of the bias of the 

histogram method, but rather in the fact that the randomly ordered conformations result in a 

more complete phase space exploration at a given number of frames. Choosing the frames at 

random is important for MD and MC simulations, where the frames are correlated with each 

other.  

 

The convergence behavior of ∆Sβα,ΜΙΕ2 for all 13 simulation conditions using balancing and bias-

removal is presented in Fig. 2.15.  

2.5.7 Summary of results for model system 2 

We conclude that the best results for estimators of the entropy differences ∆Sβα between the two 

the conformers (α, β) of the trialanine model are obtained using all BAT coordinates in the 2nd 

order MI expansion. These entropy estimates are well converged () and agree best with the 

benchmark (Fig. 2.9). 
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Fig. 2.14: Balanced number of frames, 2nd order estimator (MIE2) used to plot individual entropies Sα, Sβ 
and the entropy difference ∆Sαβ. Convergence of the entropy estimates versus number of frames used for 
the trialanine simulation condition 8 (parameters: γHφ = 0.045 cal/(mol K Å2) and εattr = 1.00). Frames are 
used in time and random order as indicated in the figure. The abscissa denotes with N(δ)

frames the effective 
number of frames used, which is identical for δ=α, β when applying the balancing method. This differs 
from Nframes used elsewhere, which refers to all frames of the simulation. The dashed line marks the final 
benchmark value. a: Individual conformer entropies without bias-removal. b: Individual conformer 
entropies using bias-removal. c: Entropy difference without bias-removal. d: Entropy difference using bias-
removal.  
 

                  
Fig. 2.15: Convergence of the entropy estimates with the second order MI expansion, using balancing and 
bias-removal. The frames are used in time order.  
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We show the deviation of the entropy estimates from the benchmark values in Fig. 2.16. The 

simulation conditions are labeled as 1 to 13, ordered by increasing ∆Fβα. The simulations with 

conditions 1 and 2 have vanishing ∆Fβα, so that Keq = N(β) / N(α) = exp(−∆Fβα/kBT) ≈ 1, i.e. the 

numbers of frames are equal. In other words, the molecular system is naturally balanced. In 

contrast, the simulation with condition 13 is very unbalanced, with ∆Fβα >> 0 and Keq ≈ 0.07, 

such that there is room for improvement using the balancing method. See caption of Fig. 2.16 for 

values of parameters and thermodynamic variables for the 13 simulation conditions. 

 

 
Fig. 2.16: Deviation of the estimated conformational entropy difference ∆Sβα , eqs (2.35)–(2.37), using 

the 2nd order MI expansion (MIE2) with all 96 BAT coordinates from the benchmark value, eq (2.40). 

Based on MD simulations of 1 µs with 5×106 frames (coordinate sets) for trialanine. Smaller deviations are 

for symbols near the center of the discontinuous logarithmic ordinate. The MD simulations with 13 

different conditions are ordered by increasing ∆Fβα. The color labels the correction methods used (see bars 

on the right). The symbols label the number of bins used in histograms:  M = 20;  M = 35;  

M = 100. It is apparent that the deviation of the estimated ∆Sβα is smallest when the estimates are both 

balanced and bias-free (green). Details of the MD simulation are given in section 2.5.1. Correspondence 

between simulation condition ID and parameters is as follows: ID 1 (εattr =0.0, γHφ=0.045 kcal/(mol Å2)); 

2 (0.00, 0.025); 3 (0.00, 0.000); 4 (0.50, 0.045); 5 (0.25, 0.000); 6 (0.50, 0.025); 7 (0.50, 0.000); 8 

(1.00, 0.045); 9 (0.75, 0.000); 10 (1.00, 0.025); 11 (1.00, 0.000); 12 (1.25, 0.000); 13 (1.50, 0.000).  
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The deviations in Fig. 2.16 are plotted for the 2nd order MI expansion including all 96 BAT 

coordinates. Using the balancing method (green and blue symbols) results in the smallest 

deviations of ∆Sβα from the benchmark values. In particular, combining balancing with bias-

removal (green) results in an average absolute deviation of less than 0.3 J/(mol K). Using the 

balancing method without bias-removal (blue) results in an average deviation of 0.7 J/(mol K), 

about twice as large. The unbalanced ∆Sβα values (black and red) have generally large, negative 

deviations and a systematic, spurious dependency on ∆Fβα. When only bias-removal is applied 

(black), but no balancing, the absolute deviation becomes 7.5 J/(mol K). The red symbols in Fig. 

2.16 represent the estimates of ∆Sβα, where no corrections are applied, corresponding to the 

original method by Gilson et al59,60. In this case, the entropy difference has not converged using 

all available N(α) + N(β)= 5 × 106 frames. The average absolute deviation of the estimated entropy 

difference from the benchmark value in absence of any corrections is 32 J/(mol K), which is 

about 100 times larger than the corresponding results obtained applying both correction 

methods. 

 

   
Fig. 2.17: Entropy difference ∆Sβα for the trialanine model system using all 96 BAT coordinates (bonds, 

bond angles, torsion angles and phase angles) and considering 5×106 frames, which are in time order. a: 

Influence of the number of histogram bins, M, on the estimated entropy difference of the 2nd order MI 

expansion (MIE2), plotted versus the corresponding benchmark values for the 13 different MD simulation 

conditions applying both corrections: balancing and bias-removal. The number of histogram bins M was 

varied:  M = 20;  M = 25;  M = 35;  M = 50;  M = 100. The dashed diagonal line corresponds to 

perfect agreement between benchmark and estimate of entropy difference. Also given is the average and 

standard deviation of the ratio ∆Sβα,MIE / ∆Sβα,bench over all five M values and data from all 13 simulation 
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conditions (optimal result is 1.0 ±0.0). b: Convergence of the benchmark and the MIE2 estimate as a 

function of the number of frames Nframes using M = 35 histogram bins. For the sake of clarity, only three 

representative simulations (1, 8, 13) are shown. See caption of Fig. 2.16 for correspondence between 

simulation (sim) condition ID and their parameters.  

 

To obtain close agreement with the benchmark values for the trialanine model system (see Fig. 

2.17a) it was necessary to include all 96 BAT coordinates and pair correlations between them, as 

implemented in the 2nd order MI expansion of the entropy differences. The estimate-to-

benchmark ratio ∆Sβα,MIE2 / ∆Sβα,bench (see Fig. 2.17a) was found to be 1.01 ± 0.044 when 

averaged over all five histogram schemes M (M= 20,25, 35, 50, 100) and all 13 simulation 

conditions. In Fig. 2.17b, we see that both benchmark (solid line) and estimated (dashed line) 

entropy differences are asymptotically converged, with the benchmark converging more quickly. 

This is shown for three examples in Fig. 2.17b (and for all examples in Fig. 2.7 and Fig. 2.15). 

The 1st order MI expansion (Fig. 2.8) converges much more quickly than the 2nd order, but the 

entropies ∆Sβα obtained with the 1st order MI expansion have an estimate-to-benchmark ratio of 

0.82 ± 0.051 (corresponding to 1 − 0.82 = 18% average underestimation; see Table 2.2). The 3rd 

order MI expansion does not converge for the available 5×106 frames, and would likely require at 

least one order of magnitude more frames (Fig. 2.10). For more information, see section 2.5.5 

“Detailed results for entropy estimates using the MI expansion (MIE)”. 

 

We follow the suggestions of Brüschweiler et al. and employ only the main torsion angles51 in the 

first order MI expansion52. For more details, see section 2.5.5.4 “MIE Using only soft degrees of 

freedom”. Neglecting 33 bonds, 32 bond angles and 18 phase angles, 13 main torsion angles 

remain for the trialanine model involving 34 atoms. Applying the 1st order MI expansion with 

M = 35, the estimate-to-benchmark ratio averaged over all 13 simulation conditions is 

0.71 ±0.089. Including also pairwise correlations by using the 2st order MI expansion raises the 

average ratio to 0.82 ±0.051. If we now redefine the ‘soft degrees of freedom’ to include not only 

the main 13 torsions but also the 18 phase angles, we obtain ratios of 0.81 ± 0.071 (for MIE1) 

and 0.97 ± 0.024 (for MIE2), which are much closer to unity. All data are summarized in Table 

2.2. 
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Table 2.2: Averages and standard deviations for the estimate-to-benchmark ratio ∆Sβα,MIE / ∆Sβα,bench over 

all 13 simulation conditions using histograms with M = 35 bins. The optimal result is 1.0 ± 0.0. The 

entropy estimates were computed using the 1st and 2nd order MI expansion (MIE1 and MIE2) applying 

both correction methods (balancing and bias-removal). The estimate-to-benchmark ratios vary for the 

different coordinate sets and orders of the MI expansion used. Best results are obtained with MIE2 using 

all 96 BAT coordinates, and second best results are for the 31 ‘soft degrees of freedom’ (13 torsions and 18 

phase angles).  

coordinate set order of MI expansion 
MIE1 MIE2 

13 main  
torsion angles 

0.71 
± 0.089 

0.82 
± 0.051 

13 torsion and 
18 phase angles 

0.81 
± 0.071 

0.97 
± 0.024 

all 96 BAT  
coordinates  

0.82 
± 0.091 

1.01  
± 0.037 

 

2.6 Discussion 

2.6.1.1 BAT coordinates represent phase space compactly 

Internal BAT coordinates allow a compact representation of the available conformational volume 

of a molecule. An alternative and complementary view of entropy to the missing information is a 

measure of the phase space volume occupied by a certain state (see Sec. 27.3 in ref 102) in the 

canonical ensemble. The mobility of hydrogen atoms of a methyl group in internal BAT 

coordinates is characterized mainly by a single dihedral angle, while the remaining two phase 

angles are less important, since they belong to the stiffer degrees of freedom. All other degrees of 

freedom of the methyl group describe small amplitude vibrations in three bond angles and three 

bond lengths. Alternatively, the Cartesian representation requires nine geometrically highly 

correlated coordinates, all of which involve large amplitude motions. Even after applying PCA 

OR QHA, such correlations persist43 for polypeptide chains. Internal BAT coordinates avoid such 

spurious correlations inherent to Cartesian coordinates and are therefore more suitable to describe 

the relevant correlations of motion in a molecule, thus yielding improved entropy estimates if the 

MI expansion is used.  
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2.6.1.2 Approximate cancellation of the Jacobian term of the entropy 

In our calculations we consistently employ the factors based on the Jacobian determinant, so that 

the entropy in terms of internal BAT coordinates, eq (2.29), yields formally the same entropy as 

in Cartesian coordinates, eq (2.15). The influence of the Jacobian does not in general cancel for 

entropy differences (see theorem 1.3.2 in ref 61). Nevertheless, we have noticed that there is an 

approximate cancellation of the Jacobian contributions in the calculation of entropy differences 

between conformers of the same molecule if the MI expansion is used. This can be rationalized as 

follows: (1) The Jacobian term plays no role in 2nd, 3rd or higher order terms of the MI expansion 

(see appendix of ref 103). (2) Most of the entropy difference is due to torsions, for which the 

Jacobian is unity (see eq (2.33)). (3) The only Jacobian contributions to entropy differences are 

due to the 1-dimensional bond and bond angle entropies. The probability densities for these 

coordinates experience only small changes between conformers, so the Jacobian term in the 

entropy difference will vanish. Similar conclusions about bond lengths and angles have been 

reached by others54. 

 

The case of non-covalent bonds in the calculation of the entropy of receptor-ligand binding60 

should nevertheless be treated separately. The relative motion of ligand and receptor (residual 

translation and libration in the bound conformation) can be characterized using three torsions, 

two angles and one bond degrees of freedom. The factors from the Jacobian determinant 

associated with the angles and the bond may be extremely different in the bonded and non-

bonded states, as the variability of such bonds and angles is much wider than in a covalent bond. 

As such, these Jacobian determinants should always be treated explicitly, as their influence does 

not cancel in entropy differences. This was indeed the case in section 2.4 “Model system 1: 

Monte Carlo simulation of a three-atom molecule in a cage”, where bond angles have large 

variations and the Jacobian term is essential for obtaining a thermodynamically relevant104 

entropy difference. 

2.6.1.3 Entropy estimation in signal processing versus molecular simulations 

The signal processing community has designed a wealth of approaches to estimate entropy from 

samples of time series. They include histogram methods80,105, kernel density estimators106 and the 

k-nearest-neighbor approach26,35,103,107-109. For a finite number of samples, all entropy estimators 
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suffer from statistical and systematic biases79,80. The systematic bias can be understood intuitively 

because entropy is a sensitive measure of the variability of a probability density, and a finite 

sample will tend to underestimate this variability. A major focus in signal processing110 is to 

estimate entropy with mutual information (MI) estimators for a small number of variables 

(around 10) and a small number of samples (about 103). Entropy estimation for molecular 

simulation data presents a different type of challenge, since we compute entropy differences 

considering molecular systems involving 102 or more atomic coordinates, where one needs 

samples of 105 or more independent coordinate frames. In this study, we provide evidence that 

adequately bias-free and balanced histogram-based entropy estimators work best for data from 

molecular simulation. At the same time, its simplicity makes this method computationally more 

efficient than others like the k-nearest-neighbor approach.  

2.7 Conclusion 

In this work, trialanine, a small test model molecule, was used to prove that the 2nd order MI 

expansion, in conjunction with balancing and bias-removal corrections, allows for proper 

convergence of the entropy difference ∆Sβα. This is the case even though the individual 

conformational entropies sα and sβ, eq (2.29), are not converged (see section 2.5.6 “Convergence 

of the entropy estimates”). Notwithstanding, the estimated values of ∆Sβα are in excellent 

agreement with the corresponding benchmark values.  

 

The use of local spherical polar coordinates65-67, the so-called BAT coordinates69, enables a clear-

cut separation of global translation and rotation from the internal degrees of freedom. In the 

quasi-harmonic approximation30,31 and other approaches53, the rigid rotor approximation111 is 

often used to remove the translational and rotational degrees of freedom. Unfortunately, the rigid 

rotor introduces spurious mass dependencies32,112 and correlations between external and internal 

degrees of freedom, which can be avoided by using BAT coordinates. The BAT coordinates are 

also adept at describing internal motions of polypeptides for numerical computations of entropy, 

since this coordinate system minimizes spurious geometric correlations between molecular 

coordinates. 
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Without the balancing and bias-removal corrections, the method has been used before59,60. Here, 

we demonstrated that the uncorrected estimate converges when using a much larger sample size 

(see Fig. 2.3). However, balancing and bias-removal corrections accelerate convergence in a 

synergistic fashion and enable a more efficient use of the available simulated frames. The 

balancing method allows for a more efficient systematic cancellation of sampling errors in entropy 

differences, which works well even if the individual entropy contributions are poorly converged. 

Applied simultaneously with balancing, the bias-removal method compensates systematic bias 

due to a limited sample size.  

 

However, just paying attention to the convergence of an entropy estimator does not guarantee 

that the algorithm works properly and that the results are reliable. In the test phase of an 

algorithm to compute entropies, a careful comparison with benchmark values is necessary before 

one can consider applying it to larger macromolecules, where benchmark values are not easily 

available. This is the purpose of the present study. Such comparisons have been done before47,51,59, 

proceeding then to calculate entropy for large molecular systems. We show here that the 

converged entropy differences obtained with the balanced and bias-free histogram method agree 

well with thermodynamic benchmarks. For the trialanine model system, the conformational 

entropy estimates agree with benchmarks to an average deviation of 0.3 J/(mol K), or alternatively 

an estimate-to-benchmark ratio of 1.01 ±0.037 (see Table 2.2). A small standard deviation and an 

average estimate-to-benchmark ratio close to unity together indicate converged estimates and a 

thermodynamically relevant result.  

 

We tested the suggestions of Brüschweiler et al.51,52 of just using the main torsion angles 

(excluding phase angles, bond angles and bonds), as well as using the 1st order MI expansion only. 

For trialanine, this resulted in an estimate-to-benchmark ratio of only 0.71 ±0.089. However, 

following this line of thought and using only the main torsions and phase angles in the 2nd order 

MI expansion yielded results almost as good as those of the full BAT coordinate set, with an 

estimate-to-benchmark ratio of 0.97 ±0.024. This reduced set of coordinates is only about 1/3 of 

the full set of BAT coordinates. As a consequence, the computational cost for the 2nd order MI 

expansion is reduced to about 1/9th.  
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When estimating conformational entropy differences with the methods presented here, the 

following guidelines are important: (i) The molecular dynamics trajectories need to be long 

enough to provide a Boltzmann distribution of equilibrated microstates representative for the 

considered conformer macrostates; (ii) The full set of BAT coordinates, or alternatively only the 

torsion and phase angles (plus any external bonds and angles analog to the ones we defined in Fig. 

2.2) need to be considered; (iii) To perform a 2nd order MI expansion, necessary to achieve a 

sufficient accuracy of a few percent, a trajectory with a large number of independent frames is 

needed (at least 105 frames with random frame selection for balancing); (iv) Avoid using more 

frames for the dominant molecular conformer, since the best bias cancellation in entropy 

differences occurs when the number of frames is balanced; (v) When balancing requires 

considering only a subset of the total number of frames, select the frames randomly from the 

whole trajectory to utilize the conformational space explored by the simulation as completely as 

possible. 

 

Since entropy estimators are generally biased, the balancing method presented here is likely also 

applicable for algorithms estimating entropy differences by methods other than histogram 

binning. The complete method, including 1st to 3rd order MI expansion, balancing and bias-

removal can be performed with the program ENTROPICAL, which can be obtained from the 

author and used with CHARMM and NAMD topologies and trajectories. 

“X-ray structures of proteins are like a tree in 
winter, beautiful in its stark outline but lifeless in 
appearance. Molecular dynamics gives life to this 
structure by clothing the branches with leaves that 
flutter because of the thermal winds.” 
 

Claude Poyart, 1988 paraphrased by Martin 
Karplus, Spinach on the Ceiling: A Theoretical 
Chemist’s Return to Biology (Autobiography). Annu. 
Rev. Biophys. Biomol. Struct. 2006, 35, 1- 47. 
 

http://dx.doi.org/doi:10.1146/annurev.biophys.33.110502.133350
http://dx.doi.org/doi:10.1146/annurev.biophys.33.110502.133350


74 

 
 

2.8 References for Chapter 2 

(1) Jaynes, E. T., Where do we stand on maximum entropy? In The Maximum Entropy 
Formalism -R. Levine, M. Tribus (Eds.); MIT Press, Cambridge, MA: 1979. ISBN:978-
0262120807 

(2) Jaynes, E. T., Information Theory and Statistical Mechanics (part 1). Phys. Rev. 1957, 106, 
620-630. dx.doi.org/doi:10.1103/PhysRev.106.620 

(3) Ben-Naim, A. A Farewell To Entropy: Statistical thermodynamics based on information; 
World Scientific Publishing Company: Singapore, 2008. ISBN:978-9812707079 

(4) Clausius, R., Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen 
der mechanischen Wärmetheorie. Ann. der Physik 1865, 201, 353-400. 
dx.doi.org/doi:10.1002/andp.18652010702 

(5) Shannon, C. E.; Weaver, W., A mathematical theory of communication. Bell Syst. Tech. J 
1948, 27, 379-423 dx.doi.org/doi:10.1145/584091.584093 

(6) Srinivasan, J.; Cheatham_III, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A., Continuum 
Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices. J. Am. 
Chem. Soc. 1998, 120, 9401-9409. dx.doi.org/doi:10.1021/ja981844+S0002-
7863(98)01844-7 

(7) Watanabe, H.; Tanaka, S.; Okimoto, N.; Hasegawa, A.; Taiji, M.; Tanida, Y.; Mitsui, T.; 
Katsuyama, M.; Fujitani, H., Comparison of binding affinity evaluations for FKBP ligands 
with state-of-the-art computational methods: FMO, QM/MM, MM-PB/SA and MP-CAFEE 
approaches. Chem-Bio Inf. J. 2010, 10, 32-45. dx.doi.org/doi:10.1273/cbij.10.32 

(8) Polyansky, A. A.; Zubac, R.; Zagrovic, B., Estimation of Conformational Entropy in 
Protein–Ligand Interactions: A Computational Perspective. Meth. Mol. Biol. 2012, 819, 
327-353. dx.doi.org/doi:10.1007/978-1-61779-465-0_21 

(9) Homeyer, N.; Gohlke, H., Free Energy Calculations by the Molecular Mechanics 
Poisson−Boltzmann Surface Area Method. Mol. Inf. 2012, In Print. 
dx.doi.org/doi:10.1002/minf.201100135 

(10) Salwiczek, M.; Samsonov, S.; Vagt, T.; Nyakatura, E.; Fleige, E.; Numata, J.; Cölfen, H.; 
Pisabarro, M. T.; Koksch, B., Position dependent effects of fluorinated amino acids on 
hydrophobic core formation of a coiled coil heterodimer. Chem. Eur. J. 2009, 15, 7628-
7636. dx.doi.org/doi:10.1002/chem.200802136 

(11) Thompson, J. B.; Hansma, H. G.; Hansma, P. K.; Plaxco, K. W., Backbone 
Conformational Entropy of Protein Folding: Experimental Measures from Atomic Force 
Microscopy. J. Mol. Biol. 2002, 322, 645-652. dx.doi.org/doi:10.1016/S0022-
2836(02)00801-X 

(12) Makhatadze, G. I.; Privalov, P. L., Hydration effects in protein unfolding. Biophys. Chem. 
1994, 51, 291-309. dx.doi.org/doi:10.1016/0301-4622(94)00050-6 

(13) Stone, M. J., NMR relaxation studies of the role of conformational entropy in protein stability 
and ligand binding. Acc. Chem. Res. 2001, 34, 379-388. 
dx.doi.org/doi:10.1021/ar000079c 

(14) Brüschweiler, R.; Case, D. A., Collective NMR relaxation model applied to protein 
dynamics. Phys. Rev. Lett. 1994, 72, 940-943. 
dx.doi.org/doi:10.1103/PhysRevLett.72.940 

http://dx.doi.org/doi:10.1103/PhysRev.106.620
http://dx.doi.org/doi:10.1002/andp.18652010702
http://dx.doi.org/doi:10.1145/584091.584093
http://dx.doi.org/doi:10.1021/ja981844+S0002-7863(98)01844-7
http://dx.doi.org/doi:10.1021/ja981844+S0002-7863(98)01844-7
http://dx.doi.org/doi:10.1273/cbij.10.32
http://dx.doi.org/doi:10.1007/978-1-61779-465-0_21
http://dx.doi.org/doi:10.1002/minf.201100135
http://dx.doi.org/doi:10.1002/chem.200802136
http://dx.doi.org/doi:10.1016/S0022-2836(02)00801-X
http://dx.doi.org/doi:10.1016/S0022-2836(02)00801-X
http://dx.doi.org/doi:10.1016/0301-4622(94)00050-6
http://dx.doi.org/doi:10.1021/ar000079c
http://dx.doi.org/doi:10.1103/PhysRevLett.72.940


75 

 

(15) Frederick, K. K.; Marlow, M. S.; Valentine, K. G.; Wand, A. J., Conformational entropy 
in molecular recognition by proteins. Nature 2007, 448, 325-330. 
dx.doi.org/doi:10.1038/nature05959 

(16) Diehl, C.; Engstrm, O.; Delaine, T.; Håkansson, M.; Genheden, S.; Modig, K.; Leffler, 
H.; Ryde, U.; Nilsson, U. J.; Akke, M., Protein Flexibility and Conformational Entropy in 
Ligand Design Targeting the Carbohydrate Recognition Domain of Galectin-3. J. Am. Chem. 
Soc. 2010, 132, 14577-14589. dx.doi.org/doi:10.1021/ja105852y 

(17) Marlow, M. S.; Dogan, J.; Frederick, K. K.; Valentine, K. G.; Wand, A. J., The role of 
conformational entropy in molecular recognition by calmodulin. Nat. Chem. Biol. 2010, 6, 
352-358. dx.doi.org/doi:10.1038/nchembio.347 

(18) Süel, G. M.; Lockless, S. W.; Wall, M. A.; Ranganathan, R., Evolutionarily conserved 
networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 2003, 
10, 56-59. dx.doi.org/doi:10.1038/nsb881 

(19) Hammes-Schiffer, S., Enzyme Motions Inside and Out. Science 2006, 312, 208-209. 
dx.doi.org/doi:10.1126/science.1127654 

(20) DuBay, K. H.; Bothma, J. P.; Geissler, P. L., Long-Range Intra-Protein Communication 
Can Be Transmitted by Correlated Side-Chain Fluctuations Alone. PLoS Comput. Biol. 
2011, 7, e1002168. dx.doi.org/doi:10.1371/journal.pcbi.1002168.g004 

(21) Tzeng, S.-R.; Kalodimos, C. G., Protein dynamics and allostery: an NMR view. Curr. 
Opin. Struct. Biol. 2011, 21, 62-67. dx.doi.org/doi:10.1016/j.sbi.2010.10.007 

(22) Fenwick, R. B.; Esteban-Martin, S.; Richter, B.; Lee, D.; Walter, K. F. A.; Milovanovic, 
D.; Becker, S.; Lakomek, N. A.; Griesinger, C.; Salvatella, X., Weak Long-Range 
Correlated Motions in a Surface Patch of Ubiquitin Involved in Molecular Recognition. J. 
Am. Chem. Soc. 2011, 133, 10336-10339. dx.doi.org/doi:10.1021/ja200461n 

(23) Brüschweiler, R., Protein dynamics: Whispering within. Nat. Chem. 2011, 3, 665-666. 
dx.doi.org/doi:10.1038/nchem.1124 

(24) Calandrini, V.; Abergel, D.; Kneller, G. R., Protein dynamics from a NMR perspective: 
Networks of coupled rotators and fractional Brownian dynamics. J. Chem. Phys. 2008, 128, 
145102. dx.doi.org/doi:10.1063/1.2894844 

(25) Lange, O. F.; Grubmüller, H., Generalized Correlation for Biomolecular Dynamics. 
Proteins: Struct., Funct., Bioinf. 2006, 62, 1053-1061. 
dx.doi.org/doi:10.1002/prot.20784 

(26) Numata, J.; Ebenhöh, O.; Knapp, E. W., Measuring correlations in metabolomic networks 
with mutual information. Genome Inform. 2008, 20, 112-122. 
dx.doi.org/doi:10.1142/9781848163003_0010 

(27) Meirovitch, H., Recent developments in methodologies for calculating the entropy and free 
energy of biological systems by computer simulation. Curr. Opin. Struct. Biol. 2007, 17, 
181-186. dx.doi.org/doi:10.1016/j.sbi.2007.03.016 

(28) Stern, O., Ueber eine Methode zur Berechnung der Entropie von Systemen elastisch 
gekoppelter Massenpunkte. Ann. der Physik 1916, 356, 237-260. 
dx.doi.org/doi:10.1002/andp.19163561902 

(29) Schlitter, J., Estimation of absolute and relative entropies of macromolecules using the 
covariance matrix. Chem. Phys. Lett. 1993, 215, 617-621. dx.doi.org/doi:10.1016/0009-
2614(93)89366-P 

http://dx.doi.org/doi:10.1038/nature05959
http://dx.doi.org/doi:10.1021/ja105852y
http://dx.doi.org/doi:10.1038/nchembio.347
http://dx.doi.org/doi:10.1038/nsb881
http://dx.doi.org/doi:10.1126/science.1127654
http://dx.doi.org/doi:10.1371/journal.pcbi.1002168.g004
http://dx.doi.org/doi:10.1016/j.sbi.2010.10.007
http://dx.doi.org/doi:10.1021/ja200461n
http://dx.doi.org/doi:10.1038/nchem.1124
http://dx.doi.org/doi:10.1063/1.2894844
http://dx.doi.org/doi:10.1002/prot.20784
http://dx.doi.org/doi:10.1142/9781848163003_0010
http://dx.doi.org/doi:10.1016/j.sbi.2007.03.016
http://dx.doi.org/doi:10.1002/andp.19163561902
http://dx.doi.org/doi:10.1016/0009-2614(93)89366-P
http://dx.doi.org/doi:10.1016/0009-2614(93)89366-P


76 

 

(30) Schäfer, H.; Mark, A. E.; van_Gunsteren, W. F., Absolute entropies from molecular 
dynamics simulation trajectories. J. Chem. Phys. 2000, 113, 7809-7817. 
dx.doi.org/doi:10.1063/1.1309534 

(31) Andricioaei, I.; Karplus, M., On the calculation of entropy from covariance matrices of the 
atomic fluctuations. J. Chem. Phys. 2001, 115, 6289-6292. 
dx.doi.org/doi:10.1063/1.1401821 

(32) Carlsson, J.; Åqvist, J., Absolute and Relative Entropies from Computer Simulation with 
Applications to Ligand Binding. J. Phys. Chem. B 2005, 109, 6448-6456. 
dx.doi.org/doi:10.1021/jp046022f 

(33) Harris, S. A.; Laughton, C. A., A simple physical description of DNA dynamics: Quasi-
harmonic analysis as a route to the configurational entropy. J. Phys.: Condens. Matter 2007, 
19, 076103. dx.doi.org/doi:10.1088/0953-8984/19/7/076103 

(34) Rojas, O. L.; Levy, R. M.; Szabo, A., Corrections to the quasiharmonic approximation for 
evaluating molecular entropies. J. Chem. Phys. 1986, 85, 1037-1043. 
dx.doi.org/doi:10.1063/1.451296 

(35) Numata, J.; Wan, M.; Knapp, E. W., Conformational Entropy of Biomolecules: Beyond the 
Quasi-Harmonic Approximation. Genome Inform. 2007, 18, 192-205. 
dx.doi.org/doi:10.1142/9781860949920_0019 

(36) Baron, R.; Hünenberger, P. H.; McCammon, J. A., Absolute Single-Molecule Entropies 
from Quasi-Harmonic Analysis of Microsecond Molecular Dynamics: Correction Terms and 
Convergence Properties. J. Chem. Theory Comput. 2009, 5, 3150-3160. 
dx.doi.org/doi:10.1021/ct900373z 

(37) Hensen, U.; Lange, O. F.; Grubmüller, H., Estimating Absolute Configurational Entropies 
of Macromolecules: The Minimally Coupled Subspace Approach. PLoS One 2010, 5, e9179. 
dx.doi.org/doi:10.1371/journal.pone.0009179 

(38) Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; Wiley-Interscience: 
New York, 2001. ISBN:978-0471405405 

(39) Matsuda, H., Physical nature of higher-order mutual information: Intrinsic correlations and 
frustration Phys. Rev. E 2000, 3, 3096-3102. dx.doi.org/doi:10.1103/PhysRevE.62.3096 

(40) Noy, A.; Pérez, A.; Lankas, F.; Luque, F. J.; Orozco, M., Relative Flexibility of DNA and 
RNA: a Molecular Dynamics Study. J. Mol. Biol. 2004, 343, 627-638. 
dx.doi.org/doi:10.1016/j.jmb.2004.07.048 

(41) Amadei, A.; Linssen, A.; Berendsen, H., Essential dynamics of proteins. Proteins 1993 
1993, 17, 412-425. dx.doi.org/doi:10.1002/prot.340170408 

(42) Mukherjee, A., Entropy Balance in the Intercalation Process of an Anti-Cancer Drug 
Daunomycin. J. Phys. Chem. Lett. 2011, 2, 3021-3026. 
dx.doi.org/doi:10.1021/jz2013566 

(43) Chang, C.-E.; Chen, W.; Gilson, M. K., Evaluating the Accuracy of the Quasiharmonic 
Approximation. J. Chem. Theory Comput. 2005, 1 1017-1028. 
dx.doi.org/doi:10.1021/ct0500904 

(44) Mendez, R.; Bastolla, U., Torsional Network Model: Normal Modes in Torsion Angle Space 
Better Correlate with Conformation Changes in Proteins. Phys. Rev. Lett. 2010, 104, 
228103. dx.doi.org/doi:10.1103/PhysRevLett.104.228103 

(45) Karplus, M.; Kushick, J. N., Method for estimating the configurational entropy of 
macromolecules. Macromolecules 1981, 14, 325-332. 
dx.doi.org/doi:10.1021/ma50003a019 

http://dx.doi.org/doi:10.1063/1.1309534
http://dx.doi.org/doi:10.1063/1.1401821
http://dx.doi.org/doi:10.1021/jp046022f
http://dx.doi.org/doi:10.1088/0953-8984/19/7/076103
http://dx.doi.org/doi:10.1063/1.451296
http://dx.doi.org/doi:10.1142/9781860949920_0019
http://dx.doi.org/doi:10.1021/ct900373z
http://dx.doi.org/doi:10.1371/journal.pone.0009179
http://dx.doi.org/doi:10.1103/PhysRevE.62.3096
http://dx.doi.org/doi:10.1016/j.jmb.2004.07.048
http://dx.doi.org/doi:10.1002/prot.340170408
http://dx.doi.org/doi:10.1021/jz2013566
http://dx.doi.org/doi:10.1021/ct0500904
http://dx.doi.org/doi:10.1103/PhysRevLett.104.228103
http://dx.doi.org/doi:10.1021/ma50003a019


77 

 

(46) Nola, A. D.; Berendsen, H. J. C.; Edholm, O., Free energy determination of polypeptide 
conformations generated by molecular dynamics. Macromolecules 1984, 17, 2044-2050. 
dx.doi.org/doi:10.1021/ma00140a029 

(47) Harpole, K. W.; Sharp, K. A., Calculation of Configurational Entropy with a Boltzmann-
Quasiharmonic Model: The Origin of High-Affinity Protein-Ligand Binding. J. Phys. Chem. 
B 2011, 115, 9461-9472. dx.doi.org/doi:10.1021/jp111176x 

(48) Darian, E.; Hnizdo, V.; Fedorowicz, A.; Singh, H.; Demchuk, E., Estimation of the 
Absolute Internal-Rotation Entropy of Molecules with Two Torsional Degrees of Freedom from 
Stochastic Simulations. J. Comput. Chem. 2005, 26, 651-660. 
dx.doi.org/doi:10.1002/jcc.20198 

(49) Wang, J.; Brüschweiler, R., 2D Entropy of Discrete Molecular Ensembles. J. Chem. Theory 
Comput. 2006, 2, 18-24. dx.doi.org/doi:10.1021/ct050118b 

(50) Li, D.-W.; Khanlarzadeh, M.; Wang, J.; Huo, S.; Brüschweiler, R., Evaluation of 
Configurational Entropy Methods from Peptide Folding-Unfolding Simulation. J. Phys. 
Chem. B 2007, 111, 13807-13813. dx.doi.org/doi:10.1021/jp075220e 

(51) Li, D. W.; Brüschweiler, R., In silico Relationship between Configurational Entropy and Soft 
Degrees of Freedom in Proteins and Peptides. Phys. Rev. Lett. 2009, 102, 118108. 
dx.doi.org/doi:10.1103/PhysRevLett.102.118108 

 
(52) Li, D.-W.; Showalter, S. A.; Bruschweiler, R., Entropy Localization in Proteins. J. Phys. 

Chem. B 2010, 114, 16036-16044. dx.doi.org/doi:10.1021/jp109908u 
(53) Suárez, E.; Díaz, N.; Suárez, D., Entropy Calculations of Single Molecules by Combining the 

Rigid-Rotor and Harmonic-Oscillator Approximations with Conformational Entropy 
Estimations from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2011, 7, 
2638-2653. dx.doi.org/doi:10.1021/ct200216n 

(54) Cheluvaraja, S.; Meirovitch, H., Calculation of the entropy and free energy of peptides by 
molecular dynamics simulations using the hypothetical scanning molecular dynamics method. 
J. Chem. Phys. 2006, 125, 024905. dx.doi.org/doi:10.1063/1.2208608 

(55) Meirovitch, H., Methods for calculating the absolute entropy and free energy of biological 
systems based on ideas from polymer physics. J. Mol. Recognit. 2010, 23, 153-172. 
dx.doi.org/doi:10.1002/jmr.973 

(56) Pearlman, D. A.; Rao, B. G., Free energy calculations: Methods and applications. In 
Encyclopedia of computational chemistry; Schleyer, P. v. R., Ed. 1998; Vol. 2, p 1036-
1061. doi:10.1002/0470845015.cfa011 

(57) Peter, C.; Oostenbrink, C.; Dorp, A. v.; van_Gunsteren, W. F., Estimating entropies from 
molecular dynamics simulations. J. Chem. Phys. 2004, 120, 2652-2661. 
dx.doi.org/doi:10.1063/1.1636153 

(58) Chipot, C.; Pohorille, A., Calculating Free Energy Differences Using Perturbation Theory. 
In Free energy calculations: Theory and applications in chemistry and biology; Springer: 
Berlin, Heidelberg, 2007. ISBN: 978-3540384472 

(59) Killian, B. J.; Kravitz, J. Y.; Gilson, M. K., Extraction of configurational entropy from 
molecular simulations via an expansion approximation. J. Chem. Phys. 2007, 127, 024107. 
dx.doi.org/doi:10.1063/1.2746329 

(60) Killian, B. J.; Kravitz, J. Y.; Somani, S.; Dasgupta, P.; Pang, Y.-P.; Gilson, M. K., 
Configurational Entropy in Protein-Peptide Binding: Computational Study of Tsg101 

http://dx.doi.org/doi:10.1021/ma00140a029
http://dx.doi.org/doi:10.1021/jp111176x
http://dx.doi.org/doi:10.1002/jcc.20198
http://dx.doi.org/doi:10.1021/ct050118b
http://dx.doi.org/doi:10.1021/jp075220e
http://dx.doi.org/doi:10.1103/PhysRevLett.102.118108
http://dx.doi.org/doi:10.1021/jp109908u
http://dx.doi.org/doi:10.1021/ct200216n
http://dx.doi.org/doi:10.1063/1.2208608
http://dx.doi.org/doi:10.1002/jmr.973
http://dx.doi.org/doi:10.1063/1.1636153
http://dx.doi.org/doi:10.1063/1.2746329


78 

 

Ubiquitin E2 Variant Domain with an HIV-Derived PTAP Nonapeptide. J. Mol. Biol. 
2009, 389, 315-335. dx.doi.org/doi:10.1016/j.jmb.2009.04.003     

(61) Ihara, S. Information Theory for Continuous Systems; World Scientific Publishing, 1993. 
ISBN:978-9810209858 

(62) Planck, M., Absolute Entropie und chemische Konstante. Ann. der Physik 1922, 371, 365-
372. dx.doi.org/doi:10.1002/andp.19223712105 

(63) Landau, L. D.; Lifshitz, E. M. Statistical Physics Part 1-Vol. 5; 3rd ed. ed.; Oxford: 
Pergamon Press, 1980.  

(64) McQuarrie, D. A. Statistical Mechanics; Harper & Row, 1973. ISBN:978-1891389153 
(65) Pitzer, K. S., Energy Levels and Thermodynamic Functions for Molecules with Internal 

Rotation: II. Unsymmetrical Tops Attached to a Rigid Frame. J. Chem. Phys. 1946, 14, 
239. dx.doi.org/doi:10.1063/1.1932193 

(66) Herschbach, D. R.; Johnston, H. S.; Rapp, D., Molecular Partition Functions in Terms of 
Local Properties. J. Chem. Phys. 1959, 31, 1652-1661. 
dx.doi.org/doi:10.1063/1.1730670 

(67) Gō, N.; Scheraga, H. A., On the Use of Classical Statistical Mechanics in the Treatment of 
Polymer Chain Conformation. Macromolecules 1976, 9, 535-542. 
dx.doi.org/doi:10.1021/ma60052a001 

(68) Potter, M. J.; Gilson, M. K., Coordinate Systems and the Calculation of Molecular 
Properties. J. Phys. Chem. A 2002, 106, 563-566. dx.doi.org/doi:10.1021/jp0135407 

(69) Chang, C.-E.; Potter, M. J.; Gilson, M. K., Calculation of Molecular Configuration 
Integrals. J. Phys. Chem. B 2003, 107, 1048-1055. dx.doi.org/doi:10.1021/jp027149c 

(70) Kirkwood, J. G., Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 1935, 3, 300-
313. dx.doi.org/doi:10.1063/1.1749657 

(71) Lazaridis, T.; Karplus, M., Thermodynamics of protein folding: a microscopic view. Biophys. 
Chem. 2003, 100, 367-395. dx.doi.org/doi:10.1016/S0301-4622(02)00293-4 

(72) Zhou, H.-X.; Gilson, M. K., Theory of Free Energy and Entropy in Noncovalent Binding. 
Chem. Rev. 2009, 109, 4092-4107. dx.doi.org/doi:10.1021/cr800551w 

(73) Reinhard, F.; Grubmüller, H., Estimation of absolute solvent and solvation shell entropies via 
permutation reduction. J. Chem. Phys. 2007, 126, 014102. 
dx.doi.org/doi:10.1063/1.2400220 

(74) Piana, S.; Lindorff-Larsen, K.; Shaw, D. E., How Robust Are Protein Folding Simulations 
with Respect to Force Field Parameterization? Biophys. J. 2011, 100, L47-L49. 
dx.doi.org/doi:10.1016/j.bpj.2011.03.051 

(75) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., 
Equation of State Calculations by Fast Computing Machines J. Chem. Phys. 1953, 21, 
1087-1092. dx.doi.org/doi:10.1063/1.1699114 

(76) Steinbrecher, T., amber2accent v0.4, 2007. ambermd.org/amber2accent/ 
(77) Case, D. A.; III, T. E. C.; Darden, T.; Gohlke, H.; Luo, R.; Merz_Jr, K. M.; Onufriev, 

A.; Simmerling, C.; Wang, B.; Woods, R. J., The Amber biomolecular simulation programs. 
J Comp. Chem. 2005, 26, 1668-1688. dx.doi.org/doi:10.1002/jcc.20290 

(78) Abagyan, R.; Totrov, M.; Kuznetsov, D., ICM-A new method for protein modeling and 
design: Applications to docking and structure prediction from the distorted native 
conformation. J. Comput. Chem. 1994, 15, 488-506. 
dx.doi.org/doi:10.1002/jcc.540150503 

http://dx.doi.org/doi:10.1016/j.jmb.2009.04.003
http://dx.doi.org/doi:10.1002/andp.19223712105
http://dx.doi.org/doi:10.1063/1.1932193
http://dx.doi.org/doi:10.1063/1.1730670
http://dx.doi.org/doi:10.1021/ma60052a001
http://dx.doi.org/doi:10.1021/jp0135407
http://dx.doi.org/doi:10.1021/jp027149c
http://dx.doi.org/doi:10.1063/1.1749657
http://dx.doi.org/doi:10.1016/S0301-4622(02)00293-4
http://dx.doi.org/doi:10.1021/cr800551w
http://dx.doi.org/doi:10.1063/1.2400220
http://dx.doi.org/doi:10.1016/j.bpj.2011.03.051
http://dx.doi.org/doi:10.1063/1.1699114
http://ambermd.org/amber2accent/
http://dx.doi.org/doi:10.1002/jcc.20290
http://dx.doi.org/doi:10.1002/jcc.540150503


79 

 

(79) Paninski, L., Estimation of Entropy and Mutual Information. Neural Comput. 2003, 15, 
1191-1253. dx.doi.org/doi:10.1162/089976603321780272 

(80) Schürmann, T., Bias analysis in entropy estimation. J. Phys. A 2004, 37, L295-L301. 
dx.doi.org/doi:10.1088/0305-4470/37/27/L02 

(81) Steuer, R.; Kurths, J.; Daub, C. O.; Weise, J.; Selbig, J., The mutual information: 
Detecting and evaluating dependencies between variables. Bioinformatics 2002, 18 Suppl. 2, 
S231-S240. dx.doi.org/doi:10.1093/bioinformatics/18.suppl_2.S231 

(82) Herzel, H.; Schmitt, A. O.; Ebeling, W., Finite sample effects in sequence analysis. Chaos 
Solitons Fractals 1994, 4, 97-113. dx.doi.org/doi:10.1016/0960-0779(94)90020-5 

(83) Jaynes, E. T.; Bretthorst, G. L. Probability Theory: The Logic of Science, 2003. ISBN:978-
0521592710 

(84) Juneja, A.; Numata, J.; Nilsson, L.; Knapp, E. W., Merging Implicit with Explicit Solvent 
Simulations: Polyethylene Glycol. J. Chem. Theory Comput. 2010, 6, 1871-1883. 
dx.doi.org/doi:10.1021/ct100075m 

(85) Bussi, G.; Parrinello, M., Accurate sampling using Langevin dynamics. Phys. Rev. E 2007, 
75, 056707. dx.doi.org/doi:10.1103/PhysRevE.75.056707 

(86) Andersen, H. C., Molecular dynamics simulations at constant pressure and/or temperature. J. 
Chem. Phys. 1980, 72, 2384-2393. dx.doi.org/doi:10.1063/1.439486 

(87) Martyna, G. J.; Klein, M. L.; Tuckerman, M., Nosé-Hoover chains: The canonical ensemble 
via continuous dynamics. J. Chem. Phys. 1992, 97, 2635-2643. 
dx.doi.org/doi:10.1063/1.463940 

(88) Rosta, E.; Buchete, N.-V.; Hummer, G., Thermostat Artifacts in Replica Exchange 
Molecular Dynamics Simulations. J. Chem. Theory Comput. 2009, 5, 1393-1399. 
dx.doi.org/doi:10.1021/ct800557h 

(89) Chocholouová, J.; Feig, M., Balancing an accurate representation of the molecular surface in 
generalized born formalisms with integrator stability in molecular dynamics simulations. J. 
Comput. Chem. 2006, 27, 719-729. dx.doi.org/doi:10.1002/jcc.20387 

(90) Haberthür, U.; Caflisch, A., FACTS: Fast Analytical Continuum Treatment of Solvation. J. 
Comput. Chem. 2007, 29, 701-715. dx.doi.org/doi:10.1002/jcc.20832 

(91) Marsaglia, G., Choosing a Point from the Surface of a Sphere. Ann. Math. Statist. 1972, 43, 
645-646. dx.doi.org/doi:10.1214/aoms/1177692644 

(92) Neumann, J. v., Various Techniques Used in Connection with Random Digits. NBS Appl. 
Math. Ser. 1951, 12, 36-38.  

(93) L'Ecuyer, P., Maximally equidistributed combined Tausworthe generators. Mathematics of 
computation 1996, 65, 203-213. dx.doi.org/www.jstor.org/stable/2153840 

(94) MacKerell_Jr, A.et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics 
Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586-3616.  

(95) Hamm, S. W. a. P., Structure Determination of Trialanine in Water Using Polarization 
Sensitive Two-Dimensional Vibrational Spectroscopy. J. Phys. Chem. B 2000, 104, 11316-
11320. dx.doi.org/doi:10.1021/jp001546a 

(96) Schweitzer-Stenner, R.; Eker, F.; Huang, Q.; Griebenow, K., Dihedral Angles of 
Trialanine in D2O Determined by Combining FTIR and Polarized Visible Raman 
Spectroscopy. J. Am. Chem. Soc. 2001, 123, 9628-9633.  

(97) Wolynes, P. G., Energy landscapes and solved protein-folding problems. Phil. Trans. R. Soc. 
A 2005, 363, 453-467. dx.doi.org/doi:10.1098/rsta.2004.1502 

http://dx.doi.org/doi:10.1162/089976603321780272
http://dx.doi.org/doi:10.1088/0305-4470/37/27/L02
http://dx.doi.org/doi:10.1093/bioinformatics/18.suppl_2.S231
http://dx.doi.org/doi:10.1016/0960-0779(94)90020-5
http://dx.doi.org/doi:10.1021/ct100075m
http://dx.doi.org/doi:10.1103/PhysRevE.75.056707
http://dx.doi.org/doi:10.1063/1.439486
http://dx.doi.org/doi:10.1063/1.463940
http://dx.doi.org/doi:10.1021/ct800557h
http://dx.doi.org/doi:10.1002/jcc.20387
http://dx.doi.org/doi:10.1002/jcc.20832
http://dx.doi.org/doi:10.1214/aoms/1177692644
http://dx.doi.org/http:/www.jstor.org/stable/2153840
http://dx.doi.org/doi:10.1021/jp001546a
http://dx.doi.org/doi:10.1098/rsta.2004.1502


80 

 

(98) Krivov, S.; Chekmarev, S. F.; Karplus, M., Potential Energy Surfaces and Conformational 
Transitions in Biomolecules: A Successive Confinement Approach Applied to a Solvated 
Tetrapeptide. Phys. Rev. Lett. 2002, 88, 038101. 
dx.doi.org/doi:10.1103/PhysRevLett.88.038101 

(99) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, 
M., CHARMM: A program for macromolecular energy, minimization, and dynamics 
calculations. J. Comput. Chem. 1983, 4, 187-217. 
dx.doi.org/doi:10.1002/jcc.540040211 

(100) Schaefer, M.; Bartels, C.; Karplus, M., Solution conformations and thermodynamics of 
structured peptides: molecular dynamics simulation with an implicit solvation model. J. Mol. 
Biol. 1998, 284, 835-848. dx.doi.org/doi:10.1006/jmbi.1998.2172 

(101) Matsumoto, M.; Nishimura, T., Mersenne twister: a 623-dimensionally equidistributed 
uniform pseudo-random number generator. ACM T. Model. Comput. S. 1998, 8, 3-30. 
dx.doi.org/doi:10.1145/272991.272995 

(102) Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe; Vintage 
Books USA, 2005. ISBN:978-0679776314 

(103) Kraskov, A.; Stögbauer, H.; Grassberger, P., Estimating mutual information. Phys. Rev. E 
2004, 69, 066138. dx.doi.org/doi:10.1103/PhysRevE.69.066138 

(104) Hnizdo, V.; Gilson, M. K., Thermodynamic and Differential Entropy under a Change of 
Variables. Entropy 2010, 12, 578-590. dx.doi.org/doi:10.3390/e12030578 

(105) Moddemeijer, R., On estimation of entropy and mutual information of continuous 
distributions. Signal Processing 1989, 16, 233-248. dx.doi.org/doi:10.1016/0165-
1684(89)90132-1 

(106) Beirlant, J.; Dudewicz, E. J.; Györfi, L.; Meulen, E. C. v. d., Nonparametric entropy 
estimation: an overview. Intern. J. Math. Stat. Sci. 1997, 6, 17-39.  

(107) Hnizdo, V.; Darian, E.; Federowicz, A.; Demchuk, E.; Li, S.; Singh, H., Nearest-Neighbor 
Nonparametric Method for Estimating the Configurational Entropy of Complex Molecules. J. 
Comput. Chem. 2007, 28, 655-668. dx.doi.org/doi:10.1002/jcc.20589 

(108) Hnizdo, V.; Singh, H.; Misra, N.; Fedorowicz, A.; Demchuk, E., Nearest neighbor 
estimates of entropy. Amer. J. Math. Management Sci. 2003, 23, 301-321.  

(109) Nilsson, M., On the Estimation of Differential Entropy From Data Located on Embedded 
Manifolds. IEEE T. Inform. Theory 2007, 53, 2330-2341. 
dx.doi.org/doi:10.1109/TIT.2007.899533 

(110) Bercher, J. F.; Vignat, C., Estimating the entropy of a signal with applications. IEEE T. 
Signal Process. 2000, 48, 1687-1694. dx.doi.org/doi:10.1109/78.845926 

(111) Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations: The Theory of Infrared and 
Raman Vibrational Spectra; Dover, 1955. ISBN:978-0486639413 

(112) Carlsson, J.; Åqvist, J., Calculations of solute and solvent entropies from molecular dynamics 
simulations. Phys. Chem. Chem. Phys. 2006, 8, 5385-5395. 
dx.doi.org/doi:10.1039/b608486a 

 
 

http://dx.doi.org/doi:10.1103/PhysRevLett.88.038101
http://dx.doi.org/doi:10.1002/jcc.540040211
http://dx.doi.org/doi:10.1006/jmbi.1998.2172
http://dx.doi.org/doi:10.1145/272991.272995
http://dx.doi.org/doi:10.1103/PhysRevE.69.066138
http://dx.doi.org/doi:10.3390/e12030578
http://dx.doi.org/doi:10.1016/0165-1684(89)90132-1
http://dx.doi.org/doi:10.1016/0165-1684(89)90132-1
http://dx.doi.org/doi:10.1002/jcc.20589
http://dx.doi.org/doi:10.1109/TIT.2007.899533
http://dx.doi.org/doi:10.1109/78.845926
http://dx.doi.org/doi:10.1039/b608486a


81 

 
 

3 Influence of Spacer-Receptor Interactions on the Stability of 

Bivalent Ligand-Receptor Complexes 

This chapter is based on an accepted publication. A copy of the original submitted manuscript 

can be found attached at the end of the printed version of this thesis. 

 

Numata, J.; Juneja, A.; Diestler, D. J.; Knapp, E. W., Influence of Spacer-Receptor Interactions on 
the Stability of Bivalent Ligand-Receptor Complexes. J. Phys. Chem. B 2012, 116(8), 2595-2604.  
Submitted on 23-nov-2011. Accepted on 25-jan-2012. dx.doi.org/10.1021/jp211383s 
 

3.1 Introduction 

In the publication that this chapter introduces, we explore the thermodynamics of spacer-

mediated bivalent ligand binding to a protein receptor. We combine a minimalistic model of the 

protein receptor surface with a random walk model for the flexible polymer serving as spacer (Fig. 

3.1). We build upon the statistical mechanical fundamental theory of the multivalent 

enhancement effect developed in our group1,2. To our knowledge, this is the first time that the 

interaction between the polymer spacer and the protein receptor is included into a model of 

multivalent interactions, except for one recent study3. In light of our findings, spacer−receptor 

interactions are an essential ingredient to understand the statistical mechanics of multivalent 

enhancement. 

3.1.1 Biological and pharmaceutical relevance of multivalency 

Multivalent binding is a widespread strategy in nature. It allows otherwise weak binders to act in 

concert and generate strong binding. Properly designed multivalent ligands can bind to their 

corresponding multivalent receptors often by orders of magnitude more efficiently than their 

monovalent analogs4-19. The influenza virus infects by multivalently attaching to multiple sialic 

acid-containing oligosaccharides expressed on the surface of respiratory cells. Recently, a sialic-

acid-functionalized nanoparticle was synthesized within my cooperative research group (SFB765) 

that mimics these interactions and binds to the virus thanks to multivalent interactions20. An 

http://dx.doi.org/10.1021/jp211383s
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anticancer multivalent ligand was also recently designed by another group, packing together 

several copies of a tumor targeting moiety peptide with the drug camptothecin21. 

3.1.2 Polymer spacer-receptor interactions 

When monovalent ligands are tethered together using flexible polymer spacers, the interactions of 

the spacer with the target protein receptor may affect the thermodynamics of binding 

significantly. The protein receptor constrains the polymer’s conformational freedom, causing a 

large conformational entropy loss. This may be compensated by favorable enthalpic and 

hydrophobic interactions. We quantify these thermodynamic variables using our minimalistic 

models, which have the advantage of focusing on the overall protein surface topography and not 

depending on the precise crystal structure of the receptor involved. 

 

 
Fig. 3.1: Three-dimensional perspective of the receptor surface, concave between the binding sites. This 
minimalistic model captures the general features of RET channel4 receptor and the polyethylene glycol 
spacer.  Shown are the receptor hard surface (solid) and the attractive interacting surface (transparent) with 
bivalent ligand (including the polymer spacer) bound to binding sites located on the top of the two 
Lorentzian hills. 

3.1.3 Comparison of our model to experiment 

To test the validity of our theoretical model, we compare our results to the experimental bivalent 

enhancement of a successful synthetic bivalent ligand. Cyclic guanidine mono-phosphate 

(cGMP) ligands activate nucleotide-gated ion channels in bovine rod photoreceptor cells (RET)4. 

It was shown that synthesizing a bivalent ligand by tethering two cGMP ligating units with a 

polyethylene glycol spacer enhances the binding affinity to RET by about two orders of 

magnitude4.  
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3.2 Conclusions 

3.2.1 Receptor topography: concave, planar or convex 

Our results show that for non-concave receptors, the enhancement effect can be reduced by 

several orders of magnitude, even to the point of rendering the binding of monomeric ligands 

more efficient than that of bivalent ligands. The reason is the huge loss in spacer conformational 

entropy from the constraints imposed by the receptor. For convex receptors, this entropy loss can 

no longer be compensated by other thermodynamic driving forces like enthalpy or the 

hydrophobic effect. The reduction of the enhancement effect resulting from conformational 

entropy loss is most pronounced for convex receptor surfaces, very large for planar receptor 

surfaces and still significant for concave receptor surfaces (like the 14-3-3 protein, Fig. 3.2).  The 

estrogen receptor22,23, Fig. 3.3, presents a non-concave, corrugated surface that our model predicts 

will abolish enhancement of bivalent ligand binding when using flexible polymers as tethers. 

 
Fig. 3.2: Corrugated R−surface between the two binding sites of the bivalent homodimeric estrogen 
receptor (ER), shown binding a bivalent ligand consisting of two diethylstilbestrol (DES) ligating units 
connected by a PEG spacer of 21 main-chain atoms. The spacer geometry is modelled on the basis of the 
ER crystal structure (PDB id 3ERD)24. The PEG spacer needs to circumvent the two α-helices, which 
protrude from the ER surface. The backbones of the two polypeptides are traced by rubber bands in green 
and yellow. The transparent gray shaded area pictures the protein volume including the side chains.  

3.2.2 Interaction thermodynamics: repulsive or attractive 

In our study, we find that the conformational entropy loss needs to be compensated by favourable 

interactions between spacer and receptor, either of enthalpic or hydrophobic origin, for 

enhancement to occur. This is consistent with the physicochemical properties of polyethylene 

glycol, which is known to interact weakly but favourably with proteins. Such weak attractions 

have been shown to exist between protein surfaces and polyethylene glycol (PEG)25-31, often used 
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as spacer material.  We model the PEG−receptor surface interaction as an attractive layer next to 

the hard receptor surface (see Fig. 3.1), and find that a weak attraction only one tenth the 

magnitude of that between hydrophobic aliphatic carbon atoms can reproduce the enhancement 

observed in the experiment4. 

 

The model was programmed in around 5000 lines of original code in C++ for efficient generation 

and testing of a large number of configurations (up to 2×1011) to ensure numerical precision. For 

more details about the model, results and comparison to experiment see the article’s full text and 

supporting information attached at the end of this thesis. 

 

 
 
Fig. 3.3: Concave receptor surface between the two binding sites of the bivalent 14-3-3 dimeric receptor 
(PDB 3RDH) pictured binding two FOBISIN101 ligands (magenta)32. The same molecular 
representation for the protein is used as in Fig. 3.2. 
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4   Summary 

4.1 Abstract in English 

Although thermodynamics was born from the desire to optimize industrial processes, its wide 

applicability has recently afforded it a place in biology. Accurate estimation of thermodynamic 

variables for processes involving biological macromolecules is an important goal in theoretical 

chemistry. For macromolecules and soft matter in general, understanding of the driving forces 

that comprise a given free energy or binding constant requires consideration of flexibility for all 

molecular degrees of freedom. The entropic contribution to free energy is thus an essential 

ingredient, whether explicitly quantified or included in a model in the form of a correct 

enumeration of the multiplicity of conformations. This doctoral thesis offers two contributions to 

the problem of computing entropy: (1) A numerical method for estimating conformational 

entropy differences for macromolecules was developed. It uses techniques borrowed from 

information theory and applies them to statistical mechanics. The method is applicable to 

conformational transitions and protein-ligand binding.  (2) A model to describe the enhancement 

of the binding affinity for a bivalent ligand tethered with a polymer spacer was expounded. The 

novelty of the model consists in the inclusion of spacer-receptor interactions. 

4.1.1 Balanced and bias-free computation of conformational 

entropy differences for molecular trajectories 

The mutual information expansion (MIE) is applied to estimate conformational entropy 

differences of macromolecules applicable to molecular dynamics or Monte Carlo simulation data 

on oligopeptides, polymers, proteins and ligands. The MIE serves to reduce the high 

dimensionality of the probability density of the conformational space of a macromolecule. The 

individual terms of the MIE are evaluated with a histogram method. Internal bond-angle-torsion 

(BAT) coordinates are used to avoid spurious correlations present when using Cartesian 

coordinates, which would demand using higher order terms in the MIE.  
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Practically all entropy estimation methods from finite samples suffer from an inherent systematic 

error or bias. Two approaches are applied that compensate for systematic errors that occur with a 

histogram method: (1) Simulation data are balanced by using the same number of coordinate sets 

(frames) for both conformer domains. Balancing puts fluctuations of the histogram bin contents 

on the same level for both conformers, allowing for efficient error cancellation.  (2) Bias-removal 

corrects for systematic deviations due to finite number of frames per bin. Applying both 

corrections improves the precision of entropy differences enormously. Estimates of entropy 

differences are compared to thermodynamic benchmarks of polymer and peptide models, where 

excellent agreement is found. For trialanine as model system, the average error for the estimated 

conformational entropy difference is only 0.3 J/(mol K), which is 100 times smaller than without 

applying the two corrections. Guidelines are provided for efficiently estimating conformational 

entropies. The complete method, including 1st to 3rd order MI expansion, balancing and bias-

removal can be performed with the program ENTROPICAL. It can be obtained from the author 

and used with CHARMM and NAMD topologies and trajectories.  

4.1.2 Influence of spacer-receptor interactions on the stability of 

bivalent ligand-receptor complexes 

Experiments show that a ligand-receptor complex formed by binding a bivalent ligand (D) in 

which the two ligating units are joined covalently by a flexible polymeric spacer (S) can be orders 

of magnitude more stable than the corresponding complex formed with monomeric ligands. Up 

until now, the molecular models that have been proposed to rationalize this “enhancement effect” 

neglect spacer-receptor (S−R) interactions. These interactions can nevertheless substantially 

influence the relative stability of complexes. Here, the results of a computational study designed 

to assess the impact of S−R interactions in the prototypic bivalent complex are presented and 

compared with results of experiments. The S−R interactions mimicking general features of 

biological systems are modeled by contoured R surfaces with hills (or depressions) at the binding 

sites. In the fictitious limit of vanishing S−R interactions, the enhancement is pronounced. This 

enhancement is in line with the experimental observations, although the S−R interactions, which 

surely occur in reality, were neglected. For strictly repulsive S−R interactions (hard R surface) the 

enhancement vanishes, or even reverses. This is particularly the case if the R surface is convex (i.e. 
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rising between the binding sites), while the enhancement is only moderately reduced if the R 

surface is concave. Alternatively, a weak S−R attraction close to the R surface can increase the 

enhancement. It is concluded that large enhancement should be observed only if both features are 

present: a concave R surface plus a weak S−R attraction. The latter occurs for spacer material such 

as polyethylene glycol (PEG), which is weakly hydrophobic and thus attracted by protein 

surfaces. It is shown that the enhancement of bivalent binding can be characterized by a single 

key parameter, which may also provide guidelines for the design of multivalent complexes with 

large enhancement effect. 
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4.2 Zusammenfassung in deutscher Sprache 

Obwohl die Thermodynamik ursprünglich zur Optimierung industrieller Prozesse entwickelt 

wurde, hat sie sich durch ihre breiten Anwendungsmöglichkeiten in letzter Zeit auch einen Platz 

in der Biologie gesichert. Ein wichtiges Ziel in der theoretischen Chemie stellt die genaue 

Abschätzung thermodynamischer Variablen für Prozesse dar, an denen biologische 

Makromoleküle beteiligt sind. Das Verständnis der Triebkräfte, die eine gewisse freie Energie bei 

Makromolekülen und allgemein weicher Materie ausmachen, bedarf der Miteinbeziehung der 

Flexibilität aller molekularen Freiheitsgrade. Der entropische Beitrag zur freien Energie ist also 

ein unentbehrlicher Bestandteil, unabhängig davon, ob er explizit quantifiziert wird oder bei 

einem Modell in Form einer richtigen Aufzählung der Vielfachheit der Konformationen mit 

einbezogen wird. Die vorliegende Dissertation liefert zu dem Problem der Entropieberechnung 

zwei Beiträge: (1) Eine numerische Methode zur Berechnung von Entropiedifferenzen bei 

Makromolekülen wurde entwickelt. Sie entlehnt Techniken aus der Informationstheorie und 

wendet sie in der statistischen Mechanik an. Die Methode ist bei Konformationsänderungen und 

Protein-Ligandbindung verwendbar.  (2) Zur Beschreibung der Verstärkung der 

Bindungsaffinität bei bivalenten Liganden, die mit einem Polymer-Spacer verknüpft sind, wurde 

ein geeignetes Modell entwickelt. Neu bei diesem Modell ist die Einbeziehung von Spacer-

Rezeptor-Wechselwirkungen.  

4.2.1 Ausbalancierte und von systematischen Fehlern bereinigte 

Berechnung konformationeller Entropiedifferenzen für molekulare 

Trajektorien 

Die Reihenentwicklung der wechselseitigen Information (mutual information expansion, MIE) 

wird benutzt, um Differenzen in konformationeller Entropie bei Makromolekülen zu berechnen. 

Die Methode ist auf Moleküldynamik- oder Monte-Carlo-Simulationsdaten von Polymeren, 

Proteinen und Liganden anwendbar. Die MIE dient der Dimensionsreduktion der 

Wahrscheinlichkeitsdichte des konformationellen Raums eines Makromoleküls. Die einzelnen 

Entwickungsterme der MIE werden mit Hilfe einer Histogrammmethode ausgewertet. Ein 

internes Koordinatensystem (Bindungslänge, Bindungswinkel und Torsionswinkel, das 
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sogenannte BAT-System) wird benutzt, um die, bei kartesischen Koordinaten anwesenden, 

störenden Korrelationen zu vermeiden, die Entwickungsterme höherer Ordnung in der MIE 

benötigen würden. Praktisch alle Entropieschätzungsmethoden, die über eine endliche Menge 

von Daten verfügen, leiden an systematischen Fehlern (Bias). Zwei Korrekturmethoden werden 

eingesetzt, um diese systematischen Fehler von Histogrammmethoden auszugleichen: (1) Die 

Simulationsdaten werden ausbalanciert, indem die gleiche Anzahl von Koordinatensätzen 

(Einzelbildern) für beide Konformerdomänen benutzt wird. Durch dieses Ausbalancieren werden 

die Schwankungen der Belegungen einzelner Histogrammsäulen für beide Konformere im Mittel 

gleich groß. Dies führt zu einem effizienten Fehlerausgleich. (2) Die Bereinigung der 

systematischen Fehler (Bias) kompensiert Abweichungen, die auf Grund der endlichen Menge 

von Daten pro Histogrammsäule entstanden sind. Die gleichzeitige Verwendung beider 

Korrekturen verbessert die Genauigkeit der Abschätzung von Entropiedifferenzen erheblich. Die 

geschätzten Entropiedifferenzen werden mit thermodynamischen Bezugswerten für Polymer- und 

Peptidmodelle verglichen und stimmen mit diesen ausgezeichnet überein. Für das Modellsystem 

Trialanin betrug der durchschnittliche Fehler für die geschätzte konformationelle 

Entropiedifferenz nur 0.3 J (mol K), welcher 100-mal kleiner ist als bei Weglassen beider 

Korrekturmethoden. Leitlinien zur effizienten Berechnung konformationeller Entropie werden 

angegeben. Die komplette Methode, einschließlich MIE 1. bis 3. Grad, Ausbalancieren und 

Bereinigung von systematischen Fehlern, kann mit Hilfe des Programms ENTROPICAL 

ausgeführt werden. Das Programm arbeitet auf CHARMM-  und NAMD-Topologien und -

Trajektorien und wird vom Autor auf Anfrage zur Verfügung gestellt.  

4.2.2 Einfluss von Spacer-Rezeptor-Wechselwirkungen auf die 

Stabilität von bivalenten Ligand-Rezeptor-Komplexen 

Experimente zeigen, dass ein durch einen bivalenten Liganden (D) gebildeter Ligand-Rezeptor-

Komplex, in dem beide bindenden Einheiten mit Hilfe eines flexiblen Polymer-Spacers kovalent 

verknüpft werden, um Größenordnungen stabiler sein kann als der entsprechende, durch 

monomere Liganden gebildete Komplex. Bislang haben molekulare Modelle der bivalenten 

Bindung den Verstärkungseffekt erklärt, ohne die Wechselwirkungen zwischen Spacer und 

Rezeptor (S−R) zu berücksichtigen. Letztere können aber die relative Stabilität der Komplexe 
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entscheidend beeinflussen. Wir haben Computersimulationen an geeigneten, prototypischen 

Modellsystemen für den bivalenten Komplexe durchgeführt, um die Auswirkungen der S−R-

Wechselwirkungen auf die Bindungseffizienz zu untersuchen und mit experimentellen 

Ergebnissen verglichen. Die modellierten S−R-Wechselwirkungen bilden die allgemeinen 

Merkmale biologischer Systeme nach und werden als R-Oberfläche mit Bergen (bzw. Tälern) an 

den Bindungsstellen modelliert. Im fiktiven Grenzfall verschwindender S−R-Wechselwirkungen 

ist die Verstärkung der Bindungseffizienz groß. Dies deckt sich mit experimentellen 

Beobachtungen, obwohl die in der Realität sicher auftretenden S−R-Wechselwirkungen 

vernachlässigt wurden. Bei rein abstoßenden S−R-Wechselwirkungen (harter R-Oberfläche) 

verschwindet die Verstärkung oder kehrt sich gar um. Das ist insbesondere bei konvexer (also 

zwischen den Bindungsstellen gewölbter) R-Oberfläche der Fall, wobei die Verstärkung bei einer 

konkaven Oberfläche nur unwesentlich verringert ist. Alternativ kann eine schwache S−R-

Anziehung nahe der R-Oberfläche die Verstärkung erhöhen. Es wird geschlussfolgert, dass nur in 

dem Fall, dass beide Merkmale anwesend sind, eine hohe Verstärkung zu erwarten ist: d. h. bei 

einer konkaven R-Oberfläche und einer schwachen S−R-Anziehung. Letzteres tritt bei 

Spacermaterialien wie Polyethylenglycol (PEG) auf, welches geringfügig hydrophob ist und aus 

diesem Grund von Proteinoberflächen angezogen wird. Es wird gezeigt, dass die Verstärkung 

bivalenter Bindung mit einem einzelnen Parameter gekennzeichnet werden kann, woraus sich 

Leitlinien für den Entwurf multivalenter Komplexe mit hoher Verstärkung gewinnen lassen.  
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Suppose that we were asked to arrange the following in 

two categories: 

– distance, mass, electric force, entropy, beauty, 

melody.  

 

I think there are the strongest grounds for placing 

entropy alongside beauty and melody, and not with the 

first three. Entropy is only found when the parts are 

viewed in association, and it is by viewing or hearing the 

parts that beauty and melody are discerned. All three are 

features of arrangement. It is a pregnant thought that one 

of these three associates should be able to figure as a 

commonplace quantity of science. The reason why this 

stranger can pass itself off among the aborigines of the 

physical world is that it is able to speak their language, 

viz., the language of arithmetic. It has a measure-number 

associated with it and so is made quite at home in 

physics. 

 

Eddington, 1935 in The Nature of the Physical World. 
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ABSTRACT: Experiments show that a ligand-receptor complex formed by binding a 

bivalent ligand (D) in which the two ligating units are joined covalently by a flexible 

polymeric spacer (S) can be orders of magnitude more stable than the corresponding 

complex formed with monomeric ligands. Although molecular models rationalizing this 

“enhancement effect” have been proffered, they ignore spacer-receptor (S−R) 

interactions, which can substantially influence the relative stability of complexes. Here, 

the results of a computational study designed to assess the impact of S−R interactions in 

the prototypic bivalent complex are presented and compared with results of experiments. 

The S−R interactions mimicking general features of biological systems are modeled by 

contoured R surfaces with hills (or depressions) at the binding sites. In the fictitious limit 

of vanishing S−R interactions, the enhancement is pronounced, as observed in 

experiments. For strictly repulsive S−R interactions (hard R surface) the enhancement 

vanishes, or even reverses. This is particularly the case if the R surface is convex (i.e. 

rising between the binding sites), while the enhancement is only moderately reduced if 

the R surface is concave. Alternatively, a weak S−R attraction close to the R surface can 

increase the enhancement. It is concluded that large enhancement should be observed 

only if both features are present: a concave R surface plus a weak S−R attraction. The 

latter occurs for spacer material such as polyethylene glycol (PEG), which is weakly 

hydrophobic and thus attracted by protein surfaces. It is shown that the enhancement of 
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bivalent binding can be characterized by a single key parameter, which may also provide 

guidelines for the design of multivalent complexes with large enhancement effect.  

Abbreviations: CA, carbonic anhydrase; cGMP, cyclic guanidine mono-phosphate; D, 

bivalent (or divalent) ligand; ER, estrogen receptor; K, binding constant; M, monomeric 

ligand; q, canonical molecular partition function; PEG, polyethylene glycol; R, bivalent 

receptor; RD(1), RD(2) and (1)
2RD denote complexes in which, respectively, one binding 

site of R is occupied by one ligating unit of D, both sites of R are occupied by units of a 

single D, and both sites are occupied by units of separate Ds; RET, nucleotide-gated ion 

channel in bovine rod photoreceptor cells; RF, Flory radius (i.e. root-mean-square end-to-

end distance between ligating units of free D); Rhard model, R model with hard surface; 

Rplanar model, R model with planar surface and S-R attraction; Rsoft model, R model with 

S-R attraction; S, spacer; SASA, solvent accessible surface area. 

 
1. INTRODUCTION  
 Multivalent ligand-receptor complexes consist of associations of molecules held 

together through multiple, simultaneous, non-covalent bonds. They play essential roles in 

many natural (biological) processes1-4, in medicinal chemistry for the design of new 

therapeutics5,6 as well as in the synthesis of artificial supramolecular systems7-11. To 

delineate the nature of multivalent complexes, we focus on a prototypal molecular 

system, namely the bivalent complex in which a bivalent (or divalent) ligand (D) binds to 

a bivalent receptor (R). We assume that D is constructed by covalently joining two 

monovalent ligands (Ms) via a spacer (S) (e.g., a polymer chain). Note that we replace 

the term “linker” used in earlier works12,13 by “spacer” (denoted “S”) to emphasize that S 

imposes a constraint on the distance between the monomeric ligating units. The resulting 

D then consists of two ligating units connected by S. The bivalent complex forms as the 

units ensconce themselves in the two binding sites of R, which one can visualize as 

“pockets” formed by groups of atoms in special configurations so as to conform to the 

ligating units (i.e., the unit and the binding site are physicochemically complementary; 

they accommodate each other through specific, unique interactions). We further assume 

that the ligating units, which in essence are Ms modified by virtue of a covalent bond to 

S, practically do not differ from the original (free) Ms in their chemical nature.  
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By a judicious choice of S, one can construct a multivalent complex whose 

thermodynamic stability is far greater than that of its monovalent counterpart14-29. To be 

specific, we note that the stability of the prototype, in which both ligating units of D bind 

to the two binding sites of R, can be enhanced relative to that of the monovalent complex, 

in which two Ms independently bind to the two sites of R. This “enhancement effect” has 

an important practical implication, which is that a desired effect initiated by formation of 

a bivalent complex can be accomplished at concentrations of D much lower than those 

required of the monovalent counterpart.  

It should be noted that the term enhancement effect, which implies that the 

stability of the bivalent complex increases relative to that of the monovalent counterpart, 

reflects the prejudice that one should achieve a desired effect using as little of the 

presumably precious (or toxic, if it involves undesirable side effects) M as possible. In 

principle, if D is designed poorly, the stability of the bivalent complex may just as well 

be less than that of its monovalent counterpart.  

In previous articles12,13 we developed a fundamental theory of the enhancement 

effect and compared its predictions with the results of experimental studies of the binding 

of cyclic guanidine mono-phosphate (cGMP) ligands, which activate nucleotide-gated ion 

channels in bovine rod photoreceptor cells (RET)14. Applying classical statistical 

mechanics to the prototypal molecular system, we derived closed expressions for the 

binding constants in terms of molecular properties. Among the approximations that were 

introduced to permit derivation of analytic formulas was the complete neglect of all 

spacer-receptor (S-R) interactions as is generally done in theoretical descriptions of 

multivalent binding. In spite of these simplifications the agreement between theory and 

experiment is reasonably good.  

Recently a very simple model for S-R interactions (purely repulsive, planar R) 

was used in a Monte Carlo study of multivalent binding of functionalized nanoparticles30. 

The purpose of the current article is to present the results of a systematic study of a 

realistic topographical model designed to assess the influence of S-R interactions on the 

enhancement effect. The topography of the R surface is varied between convex and 

concave and weak S-R attractions are considered. Such weak attraction has been shown 

to exist between protein surfaces and polyethylene glycol (PEG)31-37, often used as spacer 

material. We find that S-R interactions can play a significant role in altering the relative 
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stability of complexes, which can also have a strong impact on the ligand’s biological 

activity. In the light of our present study, the reasonable agreement between experiment 

and our model12,13 that ignores S-R interactions must be regarded as fortuitous, resulting 

from cancellations of errors. In the present study we attempt to clarify why a generally 

expected enhancement of bivalent ligand binding relative to the monovalent case often 

fails to appear for unfavorable choices of R and S.  

2. THEORY  
 2.1. Description of Prototypal Model. We adopt the “local” nomenclature 

employed in earlier work12,13. We take the binding sites of R to be equivalent and the 

ligating units of D to be equivalent. The symbol RD(1) stands for the complex in which a 

single unit of one D is bound to a site of R, RD(2) for the R complex in which the two 

units of the same D bind to both sites of R, and RD(1)
2 for the complex in which units of 

two different Ds bind to the two sites of R.  

 We treat R as an extended rigid body and M (or the ligating unit) as an atom-like 

point mass, neglecting internal degrees of freedom of both. We envisage the two binding 

sites of R to be pockets formed by atoms in fixed configurations. The Ms (or ligating 

units) are planted in the sites to form the complex. D is constructed by covalently 

connecting two Ms via a generally flexible S-chain (henceforth, S is taken to be a 

polymer chain). We assume that the physicochemical character of the ligating units in D 

is practically the same as that of the Ms alone. Except for the binding interaction, 

additional (non-specific) interactions of the ligating units themselves with R are ignored. 

This approximation is justified, since the ligating units of D and the corresponding Ms 

are subject to the same non-specific interactions with R. The S-R interaction U(SR) is 

based on an R model with an atomically smooth, hard surface, impenetrable to atoms of 

S, with an attractive layer above it. The R surface has hills or depressions at the sites, so 

that the topography between the sites can be characterized as concave (for hills) or 

convex (for depressions).  

 2.2. Canonical Molecular Partition Functions (q) and Binding Constants (K). 

We restrict our consideration to solutions sufficiently dilute that intermolecular 

interactions between different Ds or different Rs can be neglected. Interpreting U(SR) as 

potential of mean force, we implicitly account for the influence of solvent. Under these 
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conditions, the binding constants of the complexes can be expressed simply in terms of 

canonical partition functions (q) of the isolated species. In prior work13, we derived 

formulas for these qs under assumptions that differ from the present study in several 

respects. Here, we focus on the prototypic bivalent rather than a tetravalent R and take M 

(and the ligating unit) to be atom-like rather than an extended rigid body, as we continue 

to treat R. Though these approximations may appear to be severe, they do not affect the 

essential conclusions of the study. Previously, we formally accounted for symmetries of 

the different molecular species13, but ignored them in comparing the predictions of the 

model with results of the experiment14. Here, the molecular symmetries are considered 

explicitly. Finally, and most important, the S-R interaction U(SR), which were neglected in 

former treatments, are included in the present one. Indeed, our focus is on the effects of 

U(SR) on the stability of the bivalent complex relative to its monovalent counterpart.  

In Appendix A of the Supporting Information we derive formulas for q(RD(1)), 

q(RD(2)), and q(RD(1)
2) that take into account the S-R interactions. In Appendix B we 

generate expressions for the binding constants (Ks) based on the qs. These are given in 

the fourth column of Table S1 of the Supporting Information. 

 2.3. Binding Efficiency of Bivalent Complex. The quantity typically employed 

as a measure of the potency of the ligand to induce a desired effect is EC50, which is the 

effective concentration of the ligand needed to induce one-half the maximum effect. 

Equivalently, EC50 = [D]1/2 is the concentration of the ligand D when the following 

condition holds:  

    [R]sat / [R]all = ½.           (1) 

In eq (1) [R]sat stands for the total concentration of all saturated complexes (i.e., both 

binding sites of R are occupied by ligating units) and [R]all for the total concentration of 

all species involving R (i.e., including also Rs with unoccupied sites). In preceding 

work12,13 following Hill38 we invoked the “all-or-none” hypothesis to simplify the 

theoretical treatment, as well as to be in accord with the analysis of experimental data14, 

which is also based on it. The all-or-none hypothesis, which assumes that either all sites 

of a given R are occupied by ligating units at once or none of the sites is occupied, is 

equivalent to ignoring the role of complexes of intermediate degrees of saturation.  
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 In the present article, we eschew the all-or-none simplification. Hence, for the 

binding of bivalent D to bivalent R eq (1) can be written explicitly  

  
(1) (2)
2

(1) (1) (2)
2

[RD ] [RD ] 1
[R] [RD ] [RD ] [RD ] 2

+
=

+ + +
           (2) 

In terms of the overall binding constants K(X) of the complexes X we can recast eq (2) as  
(1) 2 (2) (1)
2 1/ 2 1/ 2(RD )[D] { (RD ) (RD )}[D] 1 0K K K+ − − = ,         (3) 

where [D]1/2 = EC50 is the concentration at which the Rs are 50% saturated. Substituting 

theoretical expressions for the Ks, which now account for molecular symmetry, and 

solving the resulting quadratic equation, we obtain: 

  1 1 2
1/ 2 M eff 2 1 M eff 2 1

M 1

1[D] 2 ( ) (2 ( ) ) 4
4

v C R v C R
v

η η η η
η

− −⎡ ⎤= − + − +
⎣ ⎦

.        (4) 

In eq (4), Ceff(R) is the effective concentration of the unbound ligating unit of D at 

distance R from the other unit bound to a site of R (see eq (B.6) of Supporting 

Information); νΜ stands for the effective volume available to a ligating unit bound in a 

site of R (see eq (A13a)). The quantities η j ≡ <exp(−U(SR)/kBT)>j (where kB is 

Boltzmann’s constant and T is the absolute temperature) are averages of the Boltzmann 

factor over sub-ensembles (designated by index j) of conformations of the free S-chain 

restricted so that either one ligating unit (j = 1) or both units (j = 2) of the same D are 

bound to R (see eqs (B7) and (B9)).  

 In the limit of short S-chains, when eff ( ) 0C R → , since the second unit of D 

cannot bind to the other site of R, and 1 1η → , since S-R interactions become negligible, 

eq (4) simplifies to  

    [D(Ceff = 0)]1/2 = (1+2½) / (2 ν M).           (5) 

Given the value of [D(Ceff = 0)]1/2 in eq (5), one can estimate the value of ν M, an 

important parameter characterizing the binding of the ligating unit to R. If the all-or-none 

hypothesis is invoked, as in our previous works12,13, eq (5) reads either 

[D(Ceff = 0)]1/2 = 1 / ν M if symmetry numbers are ignored, or [D(Ceff = 0)]1/2 = 1 / (2ν M) 

if symmetry numbers are included (see Table S2 in Supporting Information). Hence, 

refraining from the all-or-none assumption and accounting for molecular symmetry yields 
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a value of ν M larger by a factor of (1+2½)/2 ≈ 1.2 than the value used earlier12,13 by 

invoking the all-or-none hypothesis and neglecting molecular symmetry.  

 Because the synthesis of very short PEG chains bound to cGMP is impractical, 

[M]1/2 was measured for RET14 and used instead of [D(Ceff = 0)]1/2. The two 

concentrations can be related by noting that D carries two ligating units and is therefore 

twice as efficient at binding as M (equivalent to a single unit) at the same concentration, 

in the limit of very short S-chains. Hence, we have  

    [D(Ceff = 0)]1/2 ≡ [M]1/2 / 2,            (6) 

which we take as the formal reference value of [D(Ceff = 0)]1/2 for vanishing S-chain 

length. Therefore, to obtain a realistic estimate of the parameter vM, we use for RET the 

value [D(Ceff = 0)]1/2 = 36 μM rather than the value 72 μM that was estimated by Kramer 

and Karpen14 and used by us previously12,13. With [D(Ceff = 0)]1/2= 36 μM and the 

minimum value [D]1/2(Min) = 0.4 μM, measured for RET14, the maximum enhancement 

effect is [D(Ceff = 0)]1/2 / [D]1/2(Min) = 90 rather than 180.  

3. MODELS AND METHODS  

 3.1. Receptor. In light of the enormous variety and complexity of real molecular 

systems and lack of structural knowledge of the ligand-receptor complex for which 

experimental measurements of EC50 are available, we refrain from specifying atomic 

details and rather tailor a model of R with a few essential features that may characterize a 

broad class of multivalent Rs. We suppose R to possess a smooth surface (impenetrable 

to S-chain atoms) comprising hills (or depressions) with the binding sites on top (or at the 

center) (see Fig. 1). Far from the peaks of the hills the surface tends to a basal plane that 

extends formally to infinity, so that the effect of the membrane in which R is embedded is 

included. The topography between the sites is then either concave or convex, if the sites 

are on the peaks of the hills or at the centers of the depressions, respectively. For 

example, RET, a homo-tetrameric protein complex whose sites are located on each of the 

four monomers that surround a central ion channel, likely exhibits a concave topography 

(i.e., the entrance to the ion channel is in a valley created by the surrounding proteins; see 

Fig. 1 of ref 14). 
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 We assume the two hills (depressions) carrying the binding sites possess 

cylindrical symmetry with Lorentzian profiles of height h > 0 (depth, h < 0) and full 

width at half height of 0.25 ρ, where ρ is the distance of the two sites. We take the origin 

of the coordinate system to be in the basal x-y plane of R and the z axis to coincide with 

the axis of the hill bearing site α (see Fig. 1a). Thus, the two sites α and β are located at 

rα = h ez and rβ = ρ ey + h ez, respectively, where ex, ey and ez are Cartesian unit vectors. 

Hence, the surface of R is specified by the locus of points r = (x, y, z) fulfilling the 

condition  

   z = Hhard(x, y) = Hα(x, y) + Hβ(x, y),         (7a) 

where  
         Hλ(x, y) = h ρ 2/[ρ 2 + 16 x2 + 16 (y−yλ)2], yλ=α = 0, yλ=β = ρ.       (7b) 

We designate this model as Rhard.  

 3.2. Polymeric Spacer, Bivalent Ligand and Ligand-Receptor Complex. 

Several of the key experiments on multivalent ligand binding employ PEG chains as 

spacers14,16,25,26. A PEG chain (S-chain) comprising NM monomers can be represented by 

the formula H (−O−CH2−CH2)
MN −OH. The bivalent ligand D is constructed by 

covalently bonding the end atoms of the S-chain to the monovalent ligands M. A ligating 

unit binding to R is considered to be buried in the binding site, such that the 

corresponding end atom of the S-chain is constrained to the top of the hill bearing that 

site. Thus, RD(1) is constructed by fixing one end atom of the S-chain at position rα = h ez 

where site α is situated; RD(2) is constructed by fixing also the second end atom of the 

S−chain at site β at position rβ = ρ ey + h ez (see Fig. 1a). We model the PEG chain as a 

freely jointed chain of 3NM + 1 = NS identical concatenated beads that represent the O 

atoms and CH2 groups of PEG. The C−C and O−C covalent bonds of the PEG chain, are 

taken to be equivalent and of the same length b = 1.53 Å.  

 3.3. Spacer-Receptor Interaction. Assuming that all non-hydrogen atoms 

(beads) of S interact independently with R according to the same potential ψ, we can 

express the S-R interaction as the sum  

   
S

S
(SR)

1 2
1

( , ,. . . ) ( )N

N

i
i

U ψ
=

=∑r r r r .          (8) 
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The potential energy ψ(ri) of interaction of the ith atom of S with R is given by  

   
hard

hard soft

soft

, ( , )
( ) , ( , ) ( , )

0, ( , )

i i i

i i i i i i

i i i

z H x y
W H x y z H x y

z H x y
ψ

∞ ≤⎧
⎪= − < ≤⎨
⎪ >⎩

r ,         (9) 

where z = Hhard(x, y), eq (7a), describes the impenetrable “hard” surface of R. In a 

distance range Hhard < z ≤ Hsoft defined by a second, “soft” surface Hsoft close to the hard 

surface, the atoms of the S-chain may be weakly attracted to R. Such an attractive region, 

modeled here as a square well, can account for potential hydrophobic interactions 

between S and R. To generate the soft surface of R, a sphere of radius σ = 2 b (b is the 

bond length between atoms of the S-chain) is rolled over the hard surface of R (see Fig. 

S1 of the Supporting Information). The locus of the center of the rolling sphere defines 

the soft surface. This procedure is commonly applied to proteins to define the solvent 

accessible surface area (SASA)39,40. A simple rolling-sphere algorithm can be employed 

if the protein volume is defined by a discrete number of atoms41. In the present 

application we use a different algorithm, storing the computed values of Hsoft(x, y) on a 

rectangular grid (see Appendix C of the Supporting Information for details).  

 In this study, we consider three different R models for the S-R interaction: (1) the 

hard R model (Rhard) with a hard wall only (W = 0) and different topologies of the R 

surface (variable h), (2) the planar R model (Rplanar) (h = 0) with attractive square well 

potential (variable W), and (3) the non-planar “soft” R model (Rsoft) (h > 0) with attractive 

S-R interactions (variable W), eq (9).  

 3.4. Computation of Effective Concentration Ceff and Ensemble Averages η j. 

The quantity of primary interest, EC50, itself depends on Ceff(R) and η j, whose 

computation requires knowledge of the probability distribution (density) function of the 

free S-chain. This distribution is represented by an ensemble of Nens conformations of the 

S-chain, each of which is generated by a continuous random walk comprising NS − 1 

random flights, as detailed in Appendix D of the Supporting Information.  

 For all models considered here, U(SR) = ∞ if ( , )<i i iz H x y  for any atom i of the S 

chain (see eq (9)). Therefore, only those free S-chain conformations that do not penetrate 

the hard surface of R contribute to η j = <exp(−U(SR)/kBT)>j. The subscript j denotes 

ensembles for two different situations: j = 1 corresponds to one end of the S-chain fixed 
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on binding site α of R to form RD(1); j = 2 corresponds to both ends of the S-chain fixed 

on the sites of R to form RD(2). See Appendix E of the Supporting Information for details. 

 To control statistical errors, which depend on the model, we employ ensembles of 

free S-chain conformations ranging from Nens = 5×106 to Nens = 1010. We estimate 

statistical errors roughly by using the first and second halves of the generated free 

S−chain conformations to evaluate η 1 and η 2. Deviations between the two halves larger 

than the width of the lines in the corresponding figures are indicated by error bars. The 

statistical errors are negligible in the absence of S-R attraction (Fig. 2) but can become 

appreciable for long S-chains and large S-R attraction (Fig. 4b). 

4. RESULTS AND DISCUSSION  
Our principal concern is to explore the impact of the S-R interactions on the 

stability of the bivalent ligand-receptor complex relative to its monovalent counterpart. 

For this purpose we focus on EC50 (i.e. [D]1/2). According to eq (4), [D]1/2 depends on 

ν M, the effective interaction volume available for a ligating unit in the binding site, 

Ceff(R), the effective concentration of one ligating unit of D when the other unit is bound 

to one of the two sites of R as well as on η1 and η2. The ensemble averages η1 and η2 

depend, according to eq (B9) of the Supporting Information, on U(SR), which in turn is 

determined by the model of R (i.e., either Rhard, Rplanar or Rsoft), as described in Section 3. 

We estimate a typical value of the effective interaction volume ν M available for a ligating 

unit in the binding site of R from experimental data, rather than modeling the binding 

interaction of a ligating unit with R. In particular, we employ data of Kramer and Karpen 

on the binding of cGMP to RET14. Hence, we set T = 300 K, ρ = 30 Å, and 

ν M ≈ 0.0335 μM−1. This estimate of the value of vM is based on the measured value of 

[M]1/2 = 72 μM14.  

Equation (4) can be rewritten as [ ] 1 2 1/2
 M  11/2

D   (4  ) {2  q  [(2  q)   4] }−= ν − + − +η , where  

    q = ν M Ceff η 2 /η 1.         (10) 

Thus, [D]1/2 manifests two dependences on ν M through the pre-factor ν M
-1 and the 

parameter q(ν M) (q ≥ 0). The inverse proportionality to ν M reflects monovalent binding 

in absence of multivalency (i.e., the binding to R of ligating units from different Ds). The 

enhancement effect of multivalent binding depends crucially on q(ν M). It is the key 
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parameter governing the efficiency of multivalent binding with flexible spacers. If 

monovalent binding is too weak (i.e. ν M is small), there is no enhancement effect. 

Indeed, as indicated in Fig. S3 of the Supporting Information, an appreciable 

enhancement effect is possible only if q is much greater than 2. Hence, in this regime of 

q, which corresponds to the minimum of the plot of [D]1/2 versus Flory radius RF (root-

mean-square end-to-end distance for free ligand D, eq (D3) of the Supporting 

Information), an increase inν M results in an increase in enhancement effect. Accordingly, 

the estimate of ν M that we now use, which is a factor of ~ 1.2 larger than that of ν M 

employed in our earlier work12,13, leads to a substantial increase in the enhancement 

effect.  

 The parameter q(ν M) [eq (10)] is proportional to ν M by the factor Ceff η 2 /η 1. It 

reflects the binding of the second ligating unit of D to R. Ceff describes the essence of the 

enhancement effect (i.e. the enhanced concentration of the second unit of a D whose first 

unit is already bound to R). The ratio η 2 /η 1 describes how the S-R interactions modulate 

the enhancement effect. It is generally smaller than unity, thus diminishing the 

enhancement effect appreciably. However, as demonstrated below, the ratio η 2 /η 1 grows 

with increasing concavity of the R surface and attraction between S and R.  

We stress that the ensemble averages η j are the sole parameters of the model that 

reflect the influence of the S-R interaction on the enhancement effect, as measured by 

EC50. It is shown in Appendix G of the Supporting Information that the contribution of 

the S-R interaction to the free energy of binding for RD(j) is ΔFj = −kB T ln(η j) for 

j = 1, 2. 

4.1. Strictly Repulsive Surface Rhard: Variation of Height of Hills. We examine first 

the dependence of η j on the height (depth) (h) of the two hills (depressions) of Rhard (see 

eq (7)). Hence, ΔFj = − T ΔSj, where η j = exp(ΔSj/kB) (see Appendix G of Supporting 

Information) is just the fraction of conformations of the S-chain for which all beads lie 

above the hard surface of R (z = Hhard(x, y)). Accordingly, ΔSj is the loss of entropy of the 

free S-chain of D due to its interaction with R, as the j (= 1, 2) ligating units bind to the 

sites to form RD(j).  
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Figs. 2a and 2b respectively display plots for Rhard of ΔS1/kB and ΔS2/kB versus S-

chain length (NS) for several heights h of the hills. The horizontal lines (h = ∞, ΔSj = 0) 

correspond to absence of S-R interactions, as assumed in our prior work12,13. As h 

decreases, the entropy loss increases markedly for both complexes RD(1) and RD(2). Note 

however, that the rate of entropy loss for RD(2) is nearly twice that for RD(1), because 

fewer free S-chain conformations survive the requirement that all atoms lie above 

Hhard(x, y) when both ends of the S-chain are bound to the sites of R. We note in passing 

that the dependences of η j on NS approximately obey a power law 

η j = exp(ΔSj/kB) ~ (NS)−j/2 as NS → ∞ (see Fig. S2 of the Supporting Information). For 

j = 1, the corresponding power law was previously reported for a polymer chain with one 

end attached to a planar hard wall42.  

We conclude that the hard surface of R engenders strong decreases in the entropy 

of the S-chain as D binds to R. For positive h, the landscape of R between the two 

binding sites is concave. With decreasing h the concavity becomes weaker and the 

entropy loss stronger. The entropy loss becomes dramatically large if R possesses a 

convex landscape (h < 0). Thus, the decrease in entropy as h goes from 0 to -1 is 

approximately equal to that as h goes from 10 to 0 (see Fig. 2).  

This entropy loss gives rise to lower stability of the complexes. Plots of [D]1/2 

versus the Flory radius RF (root mean square end-to-end distance of the S-chain, defined 

by eq (D3) of the Supporting Information) demonstrate this effect (see Fig. 3). As the 

height h of the hills decreases, the entropy loss of the S-chain increases and [D]1/2 rises 

correspondingly (Fig. 3). For short S-chains (i.e., small RF), where the second ligating 

unit is still unable to bind, [D]1/2 increases with increasing RF because of the entropy loss 

of the S−chain due to its interaction with the R surface. Likewise, for long S-chains (i.e., 

large RF) [D]1/2 increases again, since Ceff decreases. At intermediate RF, [D]1/2 goes 

through a minimum, and the enhancement effect is maximal here. The minimum in [D]1/2 

is deeper for the measured than for the computed [D]1/2.  

In the absence of the S−R interaction (h = ∞) the computed minimum of [D]1/2 is 

significantly below the minimum of the measured [D]1/2 and located exactly at 

RF = ρ = 30 Å corresponding to the estimated  distance14 between the two binding sites. 

However, with increasing S-R interaction (smaller h) the minimum of [D]1/2, albeit 
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shallow, shifts to smaller RF values (Fig. 3). Although, the curve of [D]1/2 in Fig. 3 

labeled h = ∞ is based on the model with vanishing S-R interaction12,13 the enhancement 

effect is now considerably larger, because the present estimated value of vM, which 

avoids the all-or-none hypothesis and accounts for molecular symmetry, is greater than 

the previous one by a factor of 1.2. Thus, room is available for additional modifications 

of the present model that may diminish the enhancement effect. For the planar R surface 

(h = 0 Å) the enhancement is negligibly small, while for R with weakly convex surfaces 

(h = -1 Å), binding of D becomes dramatically hampered compared with binding of M 

(see Fig. 3).  

As Fig. 3 indicates, we need pronounced concavity of the R landscape with hill 

heights of at least h = 10 Å in order to qualitatively describe the enhancement measured 

for the activation of RET14. If we wanted to reproduce the measured maximum 

enhancement of [D(Ceff = 0)]1/2 / [D]1/2(Min) = 90, according to Fig. 3, we would need to 

set h ~ 30 Å, which may be unreasonably large. Therefore, we consider other options, 

namely weak attractive interactions of the PEG chain with the protein R surface.  

4.2 Spacer-Receptor Attraction: Rplanar and Rsoft models. If the spacer material were 

strictly hydrophilic, there would be no attraction between S and R. However, there are 

strong indications that PEG is not perfectly hydrophilic. PEG chains generally repel 

proteins by loss of conformational entropy, as long as the PEG-protein interface is 

relatively small. As this interface grows, weak hydrophobic and van der Waals attractions 

between PEG and protein may become significant31-35. Several independent lines of 

evidence point to the ability of PEG to attract non-polar as well as polar regions of  

proteins36. When PEG is used to foster crystallization of proteins, it may be observed in 

the crystal structures. For example, structurally ordered PEG chains have been found 

inside the ion channel of OmpF porin37. Such attractive interactions of PEG with protein 

surfaces were also observed for the cGMP activated ion channels14. For RET, it was 

observed that monomeric cGMP with attached PEG chain binds as efficiently as the bare 

cGMP monomer, despite the entropy loss that a PEG chain experiences in the 

neighborhood of the R surface. For the olfactory ion channel the monomeric cGMP with 

attached PEG chain binds to the receptor even more efficiently than the bare monomeric 

cGMP14. Based on these experimental results, we may conclude that the entropy loss of 
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the PEG chain upon binding of cGMP is compensated by attractive interactions between 

the PEG chain and the surface of RET.  

 Therefore, such strictly repulsive R models as Rhard may be unrealistic in that they 

do not account for the weak attractive forces that come into play as the S-chain 

approaches the surface of R. To explore the influence of an attractive contribution to the 

S-R interaction, we employ first a simple R model (Rplanar) consisting of a hard plane with 

an attractive square well potential (width σ and depth W) next to it. We vary the well 

depth W and fix the width to σ = 2 b = 3.06 Å, which roughly corresponds to the 

thickness of a single atomic layer at the R surface. Implicit solvent models of solutes in 

water mimic the hydrophobic effect43 usually by a surface energy term whose of strength 

varies from 0.012 kcal/(mol Å2) for small molecules44,45 to 0.030 kcal/(mol Å2), a value 

used for proteins46,47. The hydrophobic effect acting on a solute (in our case receptor and 

spacer) is proportional to the SASA of the solutes. Taking the radius of the atoms of the 

S-chain to be b = 1.53 Å, we estimate the effective decrease in SASA for one atom of S 

in contact with the R surface to be 2π b2 = 14.7 Å2. Thus, we estimate that when one 

atom of the hydrophobic S is in contact with the protein R surface, its free energy 

decreases by about W = 0.44 kcal/mol. Since PEG is only weakly hydrophobic, the 

decrease in free energy should be much smaller. We indeed find that values of W one 

order of magnitude smaller than this estimate are large enough to explain the 

experiments.  

In Figs. 4a and 4b are plotted ln(η1) = −ΔF1/(kBT) and ln(η2) = −ΔF2/(kBT) as 

functions of the S−chain length (NS) for the Rplanar model for several well depths W at 

fixed well width σ = 2 b = 3.06 Å corresponding to two bond lengths of S. The curves 

labeled W = 0.000 in Fig. 4a and 4b correlate with those in Fig. 2a and 2b labeled 0 

(h = 0). As the well gets deeper, −ΔFj falls off more slowly with increasing NS, eventually 

becoming almost flat at W = 0.045 kcal/mol, where enthalpy gain compensates entropy 

loss over a large interval of NS. This condition likely corresponds to the experimental 

observation that the binding to RET is for monovalent cGMP with an attached PEG chain 

as efficient as for a bare cGMP14. In fact this value of W is about ten times smaller than 

the above estimate of 0.44 kcal/mol for the free energy of association of an atom of a 

strongly hydrophobic molecular species with a protein surface.  
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For the Rplanar model, the influence of the attractive part of the S-R interaction on 

the enhancement effect is demonstrated in Fig. 5, which shows plots of [D]1/2 versus 

Flory radius RF that correspond to those of Fig. 3. According to our expectation, [D]1/2 

decreases as the attractive square well deepens, such that at W = 0.045 kcal/mol the 

enhancement becomes as large as the maximum enhancement of 

[D(Ceff = 0)]1/2 / [D]1/2(Min) = 90 measured for RET. Furthermore, this value of W 

coincides with the value for which the monovalent ligand with an attached polymer chain 

binds as efficiently to R as M alone. See Fig. 4a, which shows that −ΔF1 nearly vanishes 

and does not substantially change with the S-chain length. This agrees with 

measurements on the binding of cGMP to RET14. 

In the Rsoft model, we combine both concavity and S-R attraction so as to make 

the enhancement agree with that experimentally observed for RET. In Fig. 6 we show the 

dependence of [D]1/2 on Flory radius RF for different well depths W with a fixed, 

moderate concavity of the R surface (h = 10 Å, depicted in Fig. 1a). For this degree of 

concavity an even smaller S-R attraction of W = 0.020 kcal/mol yields an enhancement 

[ ] ( )eff 1/2 1/2
{[D(   0)]  / D Min }=C  as large as that measured for RET14 (Fig. 6). We can 

conclude that even a very small attractive S-R component corresponding to weak 

hydrophobicity can lead to a large enhancement effect in multivalent ligand binding.  

5. CONCLUSIONS  
 Properly designed multivalent ligands combined with appropriately chosen 

multivalent receptors bind often by orders of magnitude more efficiently than their 

monovalent analogs14-29. A prime example is the binding of polymer-linked bivalent 

ligands (cGMP moieties connected by PEG chains) to tetravalent receptors such as 

RET14. The increase in efficiency of multivalent binding is rationalized in terms of the 

“effective concentration” (Ceff) of ligating units. If some units of the multivalent ligand 

are already bound to R, the effective concentration of the remaining unbound ligating 

units at the unoccupied binding sites of R can be much greater than that of free ligands in 

solution. Thus, for a bivalent ligand it is more probable that the second unit binds to an 

available site of the same R than that another ligands bind from solution. A simple 
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model12,13 incorporating this concept was able to explain semi-quantitatively the 

measured dependence of EC50 ([D]1/2) on the length of the PEG S−chain.  

 For the sake of simplicity the S-R interaction was neglected in our earlier studies 

on bivalent binding12,13. The present work includes these interactions. To the best of our 

knowledge preceding theoretical investigations on multivalent binding ignored S-R 

interactions, except for one very recent study30. Furthermore, we refrain here from 

invoking Hill’s simplifying all-or-none assumption38, which ignores the semi-saturated 

ligand-receptor complex RD(1), where one binding site is occupied, while the second site 

is empty. Avoiding the all-or-none assumption and accounting for molecular symmetry 

increases the enhancement effect of bivalent binding by more than an order of magnitude, 

leaving room for additional factors in improved models that may reduce enhancement. In 

fact, the S-R interaction, absent in previous studies, has a strong influence and can reduce 

the efficiency of multivalent ligand binding substantially. Furthermore, we have shown 

that the enhancement effect of bivalent binding with a flexible spacer is governed by a 

single parameter q [see eq (10)]. The dependence of this parameter on monovalent 

binding efficiency (ν M), effective concentration (Ceff) and S-R interactions provides 

guidelines for the design of bivalent ligand-receptor complexes that can exhibit strong 

enhancement. We believe that such guidelines can also be extended to more general cases 

of multivalent binding.  

 The R with a hard surface (Rhard model) forces the atoms of S to stay outside of R, 

thus diminishing the number of allowed S-chain conformations and dramatically 

lowering the S-chain entropy (or, equivalently, increasing the free energy) as the S-chain 

approaches the surface of R. As a consequence, the enhancement effect can be reduced 

by several orders of magnitude, even to the point of rendering the binding of monomeric 

ligands (M) more efficient than that of bivalent ligands. The reduction of the 

enhancement effect by S-R interaction is most pronounced for convex R surfaces, very 

large for planar R surfaces and still significant for concave R surfaces. Only for 

unreasonably large concavity of the R surface is the computed enhancement sufficiently 

large to explain that seen for RET14. Hence, an attractive component of the S-R 

interaction is necessary to understand efficient bivalent binding for such complexes.  
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 If an attractive layer next to the hard surface of R is included, the enhancement 

effect becomes larger again. Already a weak S-R attraction only one tenth the magnitude 

of that between hydrophobic aliphatic carbon atoms, can restore the enhancement for the 

planar R surface (Rplanar model) to the value obtained in absence of S-R interaction and 

thus reproduce the measured enhancement for the binding of bivalent cGMP to RET14. If 

concavity of R is combined with S-R attraction, a moderate concavity and very small S-R 

attraction is also sufficient to explain the enhancement effect of bivalent binding. In fact 

there are a number of indications that PEG has a tendency to attach to protein surfaces 

and therefore may be slightly hydrophobic. The monomeric cGMP binds to RET with the 

same efficiency with and without an attached PEG chain14, which corroborates this 

behavior. Hence, the bivalent binding of cGMP to RET goes along with conformational 

entropy loss and gain of binding enthalpy of the spacer due to weak S-R interactions. 

These two contributions to binding free energy approximately compensate for concave 

receptor topography. That is why simplified earlier theoretical models of bivalent ligand 

binding that ignored the S-R interaction were able to provide fortuitous agreement with 

the measurements for these systems. Such compensation between entropy and binding 

enthalpy may hide the influence of S-R interactions on multivalent binding also for other 

systems.  

A depression, or valley, between the binding sites of R, as depicted in Fig. 1, 

results in a concave R surface. This topography is likely not widespread in the universe of 

protein structures. In fact (based on a preliminary scan, work in progress), bivalent Rs 

that possess a concave surface between the two ligand binding sites are scarce in the 

protein data bank48. Prominent examples of such receptors with concave topography49 are 

the homo- and hetero-dimeric 14-3-3 proteins50, which are essential for signaling in all 

eukaryotes and appear also in plants51. Figure 7 depicts the concavity of the R-surface 

between the two sites of a bivalent 14-3-3 protein homodimer (PDB id 3RDH), which is 

shown binding two drug-like molecules of a recently discovered inhibitor52. For artificial 

tandem peptide ligands involving phosphoserine, it was shown that binding to the 14-3-3 

protein can be 30 times more efficient than for the monovalent correlates53. Very 

recently, an artificial bivalent receptor was created by dimerizing carbonic anhydrase 

(CA)54. The binding efficiency of bivalent sulfonamide ligands with this receptor 

(dime5rCA) was enhanced by up to a factor of 5000.54 According to the crystal structures 
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of dCA the two binding sites are face-to-face corresponding to concave receptor 

topography, which is consistent with our results.  

Another homo-dimeric receptor on which several bivalent ligand binding studies 

have been performed is the estrogen receptor (ER)55,56. The topography between the two 

binding sites of the dimeric ER is neither concave nor planar, but strongly corrugated as 

can be seen in Fig. 8. As a consequence, the S-chain needs to form a bow to stay away 

from the ER surface or to adopt a complex non-linear conformation that makes close 

contact between S and the ER surface. Hence, it is not surprising that several 

experimental attempts to produce an appreciable enhancement for the binding of bivalent 

ligands with flexible spacers have so far not been successful for this system.  

 In summary, the difficulties we encounter in the theoretical description of the 

binding of D to R with explicit S-R interactions may explain the paucity of experiments 

that successfully demonstrate an enhancement effect for bivalent complexes in which the 

spacer is flexible. Use of rigid spacers could be advantageous in cases where the 

topography of the receptor is not concave, although a major problem with rigid spacers is 

that they must be adroitly designed so as to be commensurate with the topography of the 

corresponding receptor. The influence of S-R interactions on multivalent ligand binding 

was so far mostly overlooked or considered to be negligibly small. In fact, its influence 

can abolish enhancement of binding or even yield bivalent binding affinities lower than 

in the monomeric case. 

 While the spacer-receptor models used in the present study are still based on very 

simplifying assumptions, they provide general guidelines for more detailed molecular 

models. For future work, it will be useful to perform simulations in atomic detail in order 

to enhance the understanding of multivalent binding. Computing the free energy of 

binding of a multivalent ligand to its receptor for such a detailed model requires 

molecular dynamics (MD) simulations of more than 10,000 atoms. For the present study, 

we needed up to 1010 independent spacer conformations generated by a Monte Carlo 

method to obtain precise enough data for the bivalent ligand binding. Assuming that an 

independent spacer conformation is generated after each picosecond of an MD simulation 

(actually a very optimistic guess), one would still need a trajectory of 10 ms duration to 

theoretically model the bivalent binding process with sufficient accuracy. Such MD 

simulations require an enormous amount of CPU time. To monitor spacer length 
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dependencies as done in the present study, several such trajectories would be needed. To 

plan such expensive MD simulations, the present study can pave the way to choose the 

right conditions.  
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FIGURE CAPTIONS  
FIG. 1a: Schematic side view of bivalent receptor (Rhard) with binding sites occupied by 
ligating units of bivalent ligand connected by polymeric spacer. Hard surface of R 
defined by function z = Hhard(x, y), eq (7) (ρ = 30, h = 10 Å), where h is height and ρ is 
the distance between two Lorentzian hills (of 0.25 ρ half width at half height) on top of 
which are binding sites. Function Hhard represents distance from hard surface of receptor 
to basal x-y plane. Second surface (Hsoft, dashed line) bounds range of distances 
Hhard < z < Hsoft over which atoms of S may be subject to attractive square well of fixed 
width 2 3.06bσ = = Å and variable depth W.  

b: Three-dimensional perspective of R surface concave between binding sites. Displayed 
are Hhard (solid) and Hsoft (transparent) with bivalent ligand D (including S-chain) bound 
to binding sites located on tops of two Lorentzian hills.  

FIG. 2a: Entropy loss ΔS1 (equivalent to free energy difference −ΔF1 = T ΔS1) due to S-R 
interaction U(SR) on binding of one ligating unit of D to R, as function of S-chain length 
(in number of atoms NS) for hard receptor model (Rhard) with different heights h [Å] of 
Lorentzian hills (h = −1, 0, 5, 10, 30, ∞). h = −1 Å corresponds to Lorentzian depressions 
of depth 1 Å; h = ∞ corresponds to absence of S-R interaction. Distance between binding 
sites is ρ = 30 Å. ΔS1/kB = ln(η1) is computed over an ensemble of between 3×1010 and 
3×1011 conformations of free S-chains, constrained so that one end atom is fixed at 
binding site α of R. Ensemble average η1 = <exp(−U(SR)/kBT)>1 is equivalent to fraction 
of S-chain conformations for which all atoms lie above Hhard, eq (7) (see Fig. 1).  
2b: Entropy loss ΔS2 (equivalent to free energy difference −ΔF2 = T ΔS2) due to S-R 
interaction on binding of both ligating units of D to R, as function of S-chain length (in 
number of atoms NS) for Rhard model. Ensemble average η2 = <exp(−U(SR)/kBT)>2 
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[yielding ΔS2/kB = ln(η2)] is over conformations of free S-chains constrained so that end 
atoms are fixed at binding sites of R. Same notation and parameters as in Fig. 2a.  

FIG. 3: [D]1/2 for binding of D to R for Rhard model, as function of Flory radius RF of S-
chain for different heights of Lorentzian hills (h = −1, 0, 5, 10, 30, ∞), eq (7). Results 
correspond to those of Figs. 2a and 2b. Open circles ‘o’ refer to experimental data on 
activation of RET14. Distance between binding sites fixed at ρ = 30 Å, as suggested in ref 
14. Symbol ‘x’ at RF = 0 marks measured value [M]1/2 = 72 μM for monomeric cGMP14. 
Reference value for limiting concentration (open circle at RF = 0) is 
[D(Ceff = 0)]1/2 = 36 μM. Curve labelled h = ∞ refers to previously proposed model12,13, 
where we neglected the S-R interactions and applied the all-or-none hypothesis38. Note, 
however, in contrast to preceding study, we consider here bivalent instead of tetravalent 
R.  

FIG. 4a: Change in (negative) free energy due to S-R interaction on binding of one 
ligating unit of bivalent ligand to bivalent R for Rplanar model (h = 0) , as function of 
S−chain length (in number of atoms NS). S-R interaction is modelled by attractive square 
well potential next to R surface. Well depth W [kcal/mol] varies between 0.0 and 0.045. 
Distance between binding sites is ρ = 30 Å.  
4b: Change in (negative) free energy due to S-R interaction on binding of both ligating 
units of bivalent ligand to bivalent R, as function of S-chain length. Error bars shown 
where the statistical error larger than line width (i.e. for W=0.045 at large NS). Same 
Rplanar model, notation and parameters as in Fig. 4a.  

FIG. 5: [D]1/2 of binding of D to R, as a function of the Flory radius RF for the Rplanar 
model with different well depths W [kcal/mol]. Results correspond to those of Figs. 4a 
and 4b. Dotted reference curves labelled h = 0 and h = ∞ with W = 0.0 are reproduced 
from Fig. 3. Open circles refer to experimental data on RET14.  

FIG. 6: [D]1/2 of binding of D to R, as function of the Flory radius RF for the Rsoft model 
with different well depths W [kcal/mol] and fixed height h = 10 Å of Lorentzian hills, 
eq (7). Negative well depths correspond to S-R repulsion. Dotted reference curve labelled 
h = ∞ and W = 0.0 reproduced from Fig. 3. Open circles refer to experimental data on 
activation of RET14.  

FIG. 7: Concave R-surface between the two binding sites of the bivalent 14-3-3 dimeric 
receptor (PDB 3RDH) pictured binding two FOBISIN101 ligands (magenta)52. The 
backbones of the two polypeptides are traced by rubber bands in green and yellow. The 
transparent gray shaded area pictures the protein volume including the side chains.  

FIG. 8: Corrugated R-surface between the two binding sites of the bivalent homodimeric 
estrogen receptor (ER), shown binding a bivalent ligand consisting of two 
diethylstilbestrol (DES) ligating units connected by a PEG spacer of 21 main-chain 
atoms. The spacer geometry is modelled on the basis of the ER crystal structure (PDB id 
3ERD)57. The PEG spacer needs to circumvent the two α-helices, which protrude from 
the ER surface. The same representation is used for the protein as for Fig. 7.  
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Figures S1 – S3 
 

 
Fig. S1: View along x-axis of construction of the surface Hsoft a) Conceptual procedure: 
Hsoft can be regarded as the locus of points generated by the center of a sphere of radius 
2b rolled over Hhard(x,y), where b is distance between covalently bound atoms of S. b) 
Numerical realization: Hsoft is generated as the locus of tips of vectors proportional to 
gradient of [z - Hhard(x,y)], whose root sweeps over Hhard (b). If two gradient tips are 
assigned to the same point in the x-y plane, the larger value is used. 
 
 
 

 
Fig. S2: Same as Fig. 2 in main text, except abscissa (NS) is on logarithmic scale. Straight 
lines at large NS correspond to power law ηj = exp(ΔSj/kB) ~ (NS)−j/2.  
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Fig. S3: Plot of 2 1/2

M 1 1/2[D] {2 [(2 ) 4] } / 4v q qη = − + − +  vs q (solid line), where 
1

M eff 2 1( )q v C R η η −≡ ; a version of eq (4) of the main text modified to emphasize key role 
of parameter q in determining enhancement effect. Asymptotic behavior indicated by 
dashed line 1

M 1 1/2[D] / 2v qη −= . 
 
 
Appendix A: Canonical Partition Functions for Isolated ligand-receptor 

complexes 

 Employing a slight modification of our previous notation1, we write the 

Hamiltonian of (1)RD  as  

(1)

2
2 (SR )

R M 1 S
1

RD / 2 ( )k
k

H H P m u H Uα
=

= + + − + +∑ R r ,      (A1) 

In eq (A1) HR refers to the receptor R, which is regarded as an extended rigid body; k 

labels the ligating units, which are treated as point masses; 1( )u α−R r  is the potential 

energy of binding of unit 1 to binding siteα . In case the binding potential can be 

expressed as a sum of interactions between pairs of atoms, we have explicitly 

1 1 1( ) ( )j j
j

u α φ− = −∑R r R r ,            (A2) 

where the summation on j runs over atoms that make up the “pocket” of siteα and αr is 

the minimum of u (i.e., the position occupied by M (or unit 1) at equilibrium at zero 

temperature). We refer loosely to αr as the position of siteα . Note that αr and { }jr are 

implicit functions of the center of mass (c.o.m.) RR and orientation R  ω of R, where 
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R  ω collectively represents the three Eulerian angles. In particular, we can express the 

position of site α  explicitly as  

     R ( )Rα α= +r R ρ ω ,        (A3) 

where αρ  is the position of site α  with respect to the c.o.m. of R. By analogy the 

potential energy of binding of unit 1 to the other site ( β ) can be written  

1 1 R

1 1

( ) ( )

( ),l l
l

u uβ α βα

φ

− = − − −

= −∑
R r R R ρ ρ

R r        (A4) 

where the summation on l is over atoms composing the pocket of site β  and 

αβ β α= −ρ ρ ρ  is the distance from siteα  to site β .  

 In eq (A1) SH  replaces linkH of ref 1 as the Hamiltonian of the spacer (S), given 

by 

S2 ( )
S 1 2

1
/ 2 ( ; , )

SN
NS

i i
i

H p m U
=

= +∑ r R R ,         (A5) 

where the summation on index i runs over the NS atoms of S and U(S) represents the 

internal configurational (potential) energy of ligand D. As a concrete example, we 

instance the bead-spring model2 of a polymer chain, for which U(S) assumes the form 

( ) ( ) ( )S

S 22 2(S) 1 1 1
1 1 1 0 1 0 2 12 2 2

1

1
M M i i M N M

N

i
U k r k r k r+

−

=
= − − + − − + − −∑r R r r R r   (A6) 

The first and last terms of the right member of eq (A6) indicate that the covalent bonds 

between the end atoms of S (i = 1 and i = NS) and the Ms are accounted for by U(S). If, as 

is customarily done, we assume that the S-R interaction can be expressed as a sum of 

interactions between pairs of atoms, then we can write  

( )
S

(SR )

1
i j i j

j

N

i
U φ

=
= −∑∑ r r ,           (A7) 

where the index j runs over atoms of R. Note that the non-specific interactions of the 

ligating units with R are ignored.  

 In notation employed in ref 1 the partition function of (1)RD  can be expressed   
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(1)

(1) 12
R R R R 1 1 2 2

RD
2 2 (1)

R M 1 R1

1(RD )

exp{ [ / 2 ( ) ]}kk

q h d d d d d d d d

H P m u F

α

αβ

−

′Ω Ω

=

=
∑

× − + + − − +

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∑

P R J ω P R P R

R R ρ
     (A8) 

Here (1)RDΣ  is the symmetry number that corrects for multiple counting of 

indistinguishable orientations; β ≡ (kBT)−1 , Bk is Boltzmann’s constant and T is the 

absolute temperature; 
(1) (1)

SlnBF k T Q≡ −       (A9a) 

and  

    
(SR )

S S S S3 ](1)
S

[N N N UHQ h d d e β− +−≡ ∫ ∫p r      (A9b)  

The quantity (1)F is a generalization of F introduced in ref 1. The superscript (1) 

emphasizes that the Hamiltonian of S is augmented by the S-R interaction U(SR). F(1), 

which depends in general on RR , Rω , 1R , and 2R  (as well as on the parameters NS and 

T), is the free energy of S regarded as a thermodynamic subsystem in the field of the 

ligating units and R in a given (instantaneous) configuration specified by the 

aforementioned coordinates. It is the thermodynamic state-dependent effective potential 

energy mediating the interactions between the ligating units and R. In eq (A8) ′Ω and 

αΩ  signify constraints on the regions of integrations on 2R  and 1R that define the 

complex. Thus, 1R  must be confined to a small region αΩ  “centered” on R α+R ρ , the 

position of site α. In contrast, 2R  ranges over the remainder of space ′Ω  (where the 

prime denotes the exception of the negligible portions of space corresponding to the 

pockets).  

We now introduce the transformation of variables  

R R R R

R R R R

R

R S

R

;
;
; , 1, 2
; , 1, 2,...

,

k k k k

i i i i

j j

k
i N

α

α

α

′ ′= =
′ ′= =
′ ′= − − = =

′ ′= − − = =
′ = − −

R R P P
ω ω J J
R R R ρ P P
r r R ρ p p
r r R ρ

    (A10) 

where the index j labels atoms of R. Noting that the associated Jacobian is unity, we can 

rewrite eq (A8) as 
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(1)

(1) 12
R R R R 1 1 2 2

RD
2 2 (1)

R M 1 1 2 S1

1(RD )

exp{ [ / 2 ( ) ( , ; , )]}kk

q h d d d d d d d d

H P m u F N T

α

β

−

′Ω Ω

=

′ ′ ′ ′ ′ ′ ′ ′=
∑

′ ′ ′ ′× − + + +

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∑

P R J ω P R P R

R R R
   (A11) 

In the new (primed) coordinate system F(1) depends in general on the positions of both 

ligating units relative to binding siteα . But, since the integration over 1′R is restricted to 

the relatively small pocket of α , where 1′R 0� , F(1) depends, to a decent approximation, 

only on the difference 2 1′ ′−R R . Therefore, integrating on momenta and coordinates 

R′R and R′ω and introducing the additional change of variables 1 1 2 1;′′ ′ ′′ ′ ′= = −R R R R R  in 

eq (A11), we get  

       
(1)

(1)

1/2
(1) 3 3/2 6 (1)

R R M 1 1 S
RD

(1)1/2
3/2 S SM

R3 3 3
R M MRD

(RD ) exp{ [ ( ) ( ; , )]}

( , )( ) ,

q V T d d u F N T

v N Tv TV T

α

π β

π

− −

′Ω Ω
′′ ′′ ′′ ′′= Λ Λ − +

∑

=
∑ Λ Λ Λ

∫ ∫R R R R

 (A12) 

where  

M 1 1( ) exp[ ( )]v T d u
α

β
Ω

′′ ′′≡ −∫ R R               (A13a) 

(1) (1)
S S S( , ) exp[ ( ; , )]v N T d F N Tβ

Ω
′′ ′′≡ −∫ R R               (A13b) 

Note that in replacing ′Ω by Ω in eq (A13b) we ignore the contribution to the small 

regions corresponding to the pockets. 

 Assuming that the spacers do not interact with each other, we can express the 

Hamiltonian of the isolated complex RD(1)
2 as 

(1)
2

S

2 2
2

R M 11 R
1 1

2 2
(SR)

12 R S, 1 2
1 1

RD / 2 ( )

( ) ( ; , ),

ik
i k

N
k k k k

k k

H H P m u

u H U

α

α βα

= =

= =

= + + − −

+ − − − + +

∑∑

∑ ∑

R R ρ

R R ρ ρ r R R
      (A14) 

where the indices i (=1, 2) and k (=1, 2) label ligating units and Ss, respectively. 

Transforming both sets of coordinates according to eq (A10) and invoking the same 

approximations that were used to reach eq (A12), we obtain  
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(1)
2

(1) 18
2 R R R R 11 11 21 21

RD

2 2 2
12 12 22 22 R M1 1

(1)
11 12 21 11 S

(1)

1(RD )

exp{ [ / 2 ]}

exp{ ( ) ( ) } exp{ [ ( ; , )]}

exp{ [ (

iki k

q h d d d d d d d d

d d d d H P m

u u F N T

F

α

β

βα

β

β β

β

−

Ω

= =Ω

′ ′ ′ ′ ′ ′ ′ ′=
∑

′ ′ ′ ′ ′ ′× − +

′ ′ ′ ′⎡ ⎤× − + − − −⎣ ⎦

× −

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∑ ∑∫ ∫ ∫ ∫

P R J ω P R P R

P R P R

R R ρ R R

(1)
2

2 2(1)1/ 2
3/2 SM

22 12 S R3 3 3
R M MRD

; , )]} .vvVN T Tπ ⎛ ⎞ ⎛ ⎞
′ ′− = ⎜ ⎟ ⎜ ⎟∑ Λ Λ Λ⎝ ⎠ ⎝ ⎠

R R

      (A15) 

 For the isolated RD(2) we have the Hamiltonian 

S

( 2)
2 2

R M 1 R1

(SR)
2 R S 1 2

RD / 2 ( )

( ) ( ; , )
kk

N

H H P m u

u H U
α

α βα

=
= + + − −

+ − − − + +

∑ R R ρ

R R ρ ρ r R R
      (A16) 

Again employing the transformation of integration variables eq (A10), we can cast 

q(RD(2)) as 

(2)

(2) 12
R R R R 1 1 2 2

RD
2 2

R M 1 21
(1)

2 1 S

1(RD )

exp{ [ / 2 ( ) ( )]}

exp{ ( ; , )}
kk

q h d d d d d d d d

H P m u u

F N T

α β

βαβ

β

−

Ω Ω

=

′ ′ ′ ′ ′ ′ ′ ′=
Σ

′ ′ ′ ′× − + + + −

′ ′× − −

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∑

P R J ω P R P R

R R ρ

R R

   (A17) 

According to the constraints signified by αΩ and βΩ , the coordinates 1′R and 2′R remain 

within the pockets of sites α and β, respectively (i.e., 1′R 0� and 2 βα′R ρ� ). Expanding 

F(1) in Taylor’s series about this configuration and neglecting all but the lowest-degree 

contribution, namely (1)
S( ; , )F N Tβαρ , we deduce from eq (A17) 

(2)

(2)

1/2
(2) 3/2

R 1 13 6
R MRD

(1)
2 2 S

21/2
3/2 (1)M

R S3 3
R MRD

1(RD ) exp[ ( )]

exp[ ( )]exp[ ( ; , )]

exp( ( ; , ))

Vq T d u

d u F N T

vV T F N T

α

β
βα βα

βα

π β

β β

π β

Ω

Ω

′ ′= −
Σ Λ Λ

′ ′× − − −

⎛ ⎞
= −⎜ ⎟Σ Λ Λ⎝ ⎠

∫

∫

R R

R R ρ ρ

ρ

   (A18) 

 

Appendix B: Alternative Formulas for Binding Constants 

In the absence of the S-R interaction (U(SR) = 0) eqs (A9) reduce to  

S S( ; , ) lnBF R N T k T Q≡ −       (B1a) 
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and  

S S S S
S S

3( ; , ) N N N HQ R N T h d d e β− −≡ ∫ ∫p r     (B1b) 

Here F, the effective potential energy of interaction between the ligating units, depends 

by virtue of symmetry only on the distance R between the units.1 In contrast, F(1), which 

includes the influence of the receptor (U(SR) ≠ 0), depends on the (vector) distance R  

from unit 1 to unit 2. As pointed out just below eq (A11), F(1) generally depends on both 

1R  and 2R . However, in the present application 1R is fixed relative to the receptor, so 

that F(1) depends only on 2 1= −R R R . Hence, from eqs (A9b) and (B1b) we have  

S S S

S S S

S S S

S S

S S

3 (SR )
S3(1)

S S S 3
S

( ) (SR)

S S ( )

(SR )
S S S2

exp( [ ])
( ; , ) exp( )

exp( )

exp( ( ; )) exp( )
( ; , )

exp( ( ; ))

( ; , ) exp( ) ( ; , ).

N N N
N N N

N N N

N NS

N NS

h d d H U
Q N T h d d H

h d d H

d U U
Q N T

d U

Q N T U N T

β
β

β

β β

β

β

−
−

−

− +
= −

−

− −
= ×

−

= −

∫ ∫∫ ∫ ∫ ∫
∫

∫

p r
R p r

p r

r r R
R

r r R

R R

(B2) 

The symbol S2
( ; , )X N TR signifies the (restricted) canonical ensemble average of the 

dynamical quantity X over the configuration space ( SNr ) of the free spacer, with the end-

to-end distance fixed at R. Combining eqs (A9a), (B1a) and (B2), we obtain  

(1) (SR )
S S S2

( ; , ) ( ; , ) ln exp( ) ( ; , )BF N T F R N T k T U N Tβ⎡ ⎤= − −⎣ ⎦R R           (B3) 

 The effective volume of S in the absence of the S-R interaction is given by  

   S S S( , ) exp( ( ; , ))v N T d F R N Tβ≡ −∫ R        (B4) 

Hence, from this relation and that in eq (A13b) we obtain for the ratio of the effective 

volumes 
(1)(1)

SS S

S S S

(SR )
S S2

S

(SR )
eff S S2

exp[ ( ; , )]( , )
( , ) exp[ ( ; , )]

exp[ ( ; , )] exp( ) ( ; , )

exp[ ( ; , )]

( ; , ) exp( ) ( ; , )

d F N Tv N T
v N T d F R N T

d F R N T U N T

d F R N T

d C R N T U N T

β

β

β β

β

β

−
=

−

− −
=

−

= −

∫
∫

∫
∫

∫

R R

R

R R

R

R R

      (B5) 



 

This revised manuscript is included as part of the submitted doctoral thesis. For citation purposes please refer to the final 

and published version: J. Phys. Chem. B 2012 116(8)  http://dx.doi.org/10.1021/jp211383s 

127

The last line of eq (B5) invokes the definition of the effective concentration of unit 2 with 

respect to unit 1 for the free spacer,  

S
eff S

S

exp( ( ; , ))( ; , )
exp( ( ; , ))

F R N TC R N T
d F R N T

β
β

−
=

−∫ R
       (B6) 

It is equivalent to the probability density 21( )p R  that unit 2 is located at distance R from 

unit 1 in the free spacer.  

An alternative expression for this ratio can be reached by the following sequence: 
(1)

S

S

(SR )
S S S

S S S

( ) (SR )S
S

( ) S
S

( ; , )(1)
S

( ; , )
S

[ ](1)
S

S

( ; )
(SR)

( ; ) 1
exp( ) ,

NS

NS

F N T

F R N T

N N H U

N N H

N U U

N U

d ev
v d e

d Q d d d e

d Q d d d e

d d e e
U

d d e

β

β

β

β

β β

β
β

−

−

− +

−

− −

−

=

= =

= ≡ −

∫
∫
∫ ∫ ∫ ∫
∫ ∫ ∫ ∫
∫ ∫

∫ ∫

R

r R

r R

R

R

R R p r

R R p r

R r

R r

      (B7) 

where the second line depends on eqs (B1) and (A9) and the third line on eq (A5). The 

symbol
1

X stands for the average of X over the ensemble of configurations of the free 

spacer specified by the S(3 3)N + -dimensional vector ( S, NR r ). Using eq (B7), we can 

rewrite (1)(RD )K as shown in the fourth column of Table S1.  

From eqs (B3) and (B4) we have 
(SR )(1)

S S2

S S

(SR )
eff S S2

exp( ( ; , )) exp( ) ( ; , )exp( )
exp( ( ; , ))

( ; , ) exp( ) ( ; , )

F N T U N TF
v d F R N T

C N T U N T

β ββ
β

β
Ω′

− −−
=

−

= −

∫
R R

R

R R

      (B8) 

Hence, we can recast (2)(RD )K  as indicated in the fourth column of Table S1.  

 To simplify the notation in Table S1 and the main text, we define 

    (SR )
1 1 S 1

( , ) exp( )N T Uη η β= ≡ −      (B9a) 

   (SR)
2 2 S S2

( ; , ) exp( ) ( ; , )N T U N Tη η β= ≡ −R R     (B9b) 
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Appendix C: Generation of Surface Hsoft 

The “soft” surface of R can be conceptualized as the locus of points generated 

either by the center of a sphere of radius 2bσ = rolling over Hhard (Fig. S1a) or by the tip 

of the vector, proportional to the gradient of [z−Hhard(x, y)], whose root roams over Hhard 

(Fig. S1b). In practice we implement the latter view numerically as follows: We first 

construct a low-resolution (coarse: 0.1Å) and a high-resolution (fine: 0.02Å) grid in the 

basal xy-plane. We consider a point 0 0( , )x y on the fine grid, which corresponds to the 

point 0 0 0 hard 0 0( , , ( , ))x y H x y=r on Hhard. We wish to find the point on Hsoft that lies a 

distance 2b from 0r in the direction of the normal to Hhard at 0r . The locus of points that 

define Hhard is described by  

hard ( , )x y zx y H x y= + +r e e e .        (C1) 

Hence, the normal to Hhard at 0=r r can be expressed as  

0

0

0

hard hard

( )

( ) ( )x z y z

x y

H H
x y

=

=

⎡ ⎤∂ ∂
= ×⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤∂ ∂
= + × +⎢ ⎥∂ ∂⎣ ⎦

r r

r r

r rn r

e e e e
 

 

0

0

hard hard

hard{ [ ( , )]} .

z x y
H H

x y

z H x y
=

=

⎛ ⎞∂ ∂
= − −⎜ ⎟∂ ∂⎝ ⎠

= ∇ −
r r

r r r

e e e
          (C2) 

The point on softH  corresponding to 0 0 hard 0 0( , , ( , ))x y H x y is then given by 

hard
1 1 soft 1 1 0 0 hard 0 0

hard

{ [ ( , )]}( , , ( , )) ( , , ( , )) 2
{ [ ( , )]}

z H x yx y H x y x y H x y b
z H x y

=

=

∇ −
= +

∇ −
r r r

r r r

.     (C3) 

We assign 1 soft 1 1( , )z H x y=  to the point 1 1( , )x y′ ′  on the coarse grid that is nearest 1 1( , )x y . 

Often several values of 1 soft 1 1( , )z H x y=  resulting from points on the fine grid can be 

assigned to the same point 1 1( , )x y′ ′  of the coarse grid, but only the largest value is 

retained. In this way a discrete numerical representation of softH  is generated prior to the 
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computation of ensemble averages. During the simulation soft ( , )H x y corresponding to the 

position  ( , )x y  of a bead of S is set equal to softH  on the nearest point of the coarse grid.  

Appendix D: Generation of Spacer Ensembles, Evaluation of Ceff and RF 

In order to generate the S−chain conformations and analyze them, a program in 

C++ with around 5000 lines of original code plus numerical libraries was written to 

achieve the necessary efficiency in the simulations. 

The conformations of the S−chain are specified in the “laboratory” reference 

frame by the set of position vectors of the beads fa, where j labels the Nens conformations 

that make up the ensemble and i labels the atoms of the S-chain.  

The following continuous random walk (CRW) algorithm generates a single 

conformation of a chain of NS beads:  

1. Set the center of bead 1 at the origin 0. 

2. Set 1n = . 

3. Set 1n n= + . 

4. Generate a vector nb , whose tip is uniformly randomly distributed (URD) on a sphere 

of radius b, where b is the bond length. This is accomplished through an algorithm due to 

Marsaglia3, which is an optimized version of von Neumann’s algorithm4. The 

independent, identically distributed pseudorandom numbers required by Marsaglia’s 

algorithm are generated by the algorithm Ran088 (or Taus088) due to L’Ecuyer5. 

5. Place the center of bead n at the position nb with respect to the center of bead 1n − . 

6. If S 1n N< − , go to step 3; if Sn N≥ , go to step 7.  

7. Stop. 

We generate between 5×106 and 1×1010 free S-chain conformations.  

 We demonstrated previously1 that the effective concentration, Ceff, defined in 

eq (B6) of Appendix B (above) is equivalent to the probability distribution of the end-to-

end distance 
S

( ) ( )
1

( ) | |j j
N

j
eeR = −r r of the S-chain. The latter can be expressed discretely in 

terms of the Nens numerically generated S-chain conformations as  
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    eff
ens

( )( )
( )

l
l

l

n RC R
V R N

� ,        (D1) 

where n(Rl) is number of conformations having end-to-end distances ( )j
eeR  that satisfy the 

constraint | ( )j
eeR  − Rl | < Δ (regardless of the chain orientation) and the volume of the 

corresponding spherical shell is V(Rl) = 4π[(Rl + Δ )3 − (Rl − Δ )3]/3. Note that the 

discrete distribution, eq (D1), is normalized as  

eff eff
1

ens( ) ( ) ( ) ( ) 1,l l l ee ee
l l

V R C R N n R d C R−= =∑ ∑ ∫ R�       (D2) 

where the summation on l runs over the discrete intervals of fixed length 2 Δ. The Flory 

radius RF (i.e., the root mean square end-to-end distance) of the free S-chain is defined as  

  
ens

2 2 2 1
ens

( ) 2
eff

1
( ) [ ] .F

N
j

ee free ee ee ee ee
j

R R d R C R N R−

=
≡< > = ∑∫ R �       (D3) 

The parameter Δ, depending on the length of the chain, varies between 0.2 Å for the 

shortest (NS ≤ 121) and 2.0 Å for the longest S-chains (NS = 1500) considered.  

Appendix E: Ensemble Averages η1 (NS, T) and η2 (ρ;NS,T)  

η1 (NS, T) = <exp(−U (SR)/kBT)>1: One Ligating Unit of D Bound to R . The 

symbol <…>1 signifies an average over the configurations of the S-chain of NS beads 

with bead 1 confined to siteα at rα, as described in the Section 3 of the main text. By 

translating the beads (i) of each member (j) of the ensemble of free chains by −r1
(j) + rα, 

such that bead 1 is at rα = h ez (binding site α), we can use all Nens conformations of the 

free chain to compute η1. Note that we can as well place the last bead (NS) at rα for each 

of the Nens conformations, thus doubling the size of the ensemble. Since the orientation of 

R (as specified by the two-dimensional unit normal to the basal plane of R) is not unique, 

the size of the ensemble used to evaluate η 1 can be effectively enhanced by averaging 

over random orientations of R. Consequently, the orientation of R (initially specified by 

the unit vector n = ez normal to the basal plane (z = 0) can be arbitrary. For each 

orientation of R we can use the complete ensemble of free S-chain conformations. The 

two extra degrees of freedom associated with n give rise to an additional substantial 

increase in the effective size of the ensemble and, consequently, in the accuracy of 

ensemble averages.  
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We generate R
1orN = 2500 vectors n whose tips are uniformly randomly distributed 

(URD) on the unit sphere (see Appendix C) and use each of them as a new z-axis 

(i.e., ez = n) for the reoriented R. Hence, the total number of configurations in the 

extended ensemble is Nconfig = 2 × R
1orN ×Nens . Table S3 lists the actual numbers used, 

which were chosen to minimize the statistical error in the plots in Figs. 2a and 4a. For the 

Rplanar model, where ψ depends only on the distance of the atom from the basal plane, we 

need only ez = n. However, in the case of the Rhard and Rsoft models, where ψ depends on 

the vector position ri of the atom, new x- and y-axes must also be determined. We take 

the new unit vector along the y-axis to be ey = ez ×n’/|ez ×n’|, where n’ is a second URD 

unit vector. The unit vector in the new x-direction is ex= ey×ez. 

Thus, we can express the ensemble average as  

( )
S

 R
1 or2 ens1 R 1 ( )

1
1 1 1 1

1
ens1or2 exp[ ( ( , )) / ]

N N
j

i k B
l k j i

N
N N l k Tη ψ

− −

= = = =

= −∑ ∑ ∑ ∑ r n ,      (E1) 

where ri
(j)(l,nk) stands for the position of the ith bead of the jth conformation of the free 

chain for the kth orientation of R; the index l refers to the two possible placements of the 

end beads at rα = h ez.  

 In the case of the Rsoft model, as well as the Rplanar model with the attractive 

square well, the formal expression in eq (E1) for the ensemble average is susceptible to 

appreciable round-off error, when evaluated straightforwardly. The essential problem is 

that a configuration with a large number of beads in the attractive region could occur 

early in the accumulation of the sum. If so, its Boltzmann factor would be far larger than 

those of the following configurations, which would therefore be lost because of the 

limited number of significant digits available for floating point computations. This 

problem is avoided by recasting eq (E1) as  

S S

b b

b
1 b b

0 0
( ) exp ( )

B

N N

n n

n Wg n g n
k T

η
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ,       (E2) 

where g(nb) is the number of configurations for which all beads are above Hhard , or above 

the basal plane,  and nb beads are in the square well. 
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η2(ρ;NS,T) = <exp(−U(SR)/kBT)>2 : Both Ligating Units of D Bound to R. 

The symbol <…>2 signifies the average over configurations of the free chain under the 

stipulation that bead 1 and bead NS are locked in binding sites α and β respectively, at 

distance ρ, such that Ree
(j) must be close to ρ. To evaluate η2, we use a subset of the free 

S-chain ensemble, namely the n(ρ) members for which the condition holds. In the 

discrete representation of Ceff the end-to-end distance Ree
(j) of these S-chain 

conformations lies in the spherical shell of radius ρ. The complex RD(2) is formed as 

follows: (i) the positions ri
(j) of the beads (i) of the n(ρ) S-chain conformations (j) are 

translated by −r1
(j) + rα; (ii) the basal plane of R is oriented so that it passes through the 

origin 0 and contains the end-to-end distance vector ( )j
eeR  such that the unit normal vector 

n is orthogonal to ( )j
eeR . Note that the orientation of the basal plane of R is not unique in 

that the tip of n can lie at any point on the unit circle contained in a plane perpendicular 

to ( )j
eeR . This ambiguity in the orientation of n introduces an additional degree of freedom 

that can be used to enlarge the ensemble and consequently improve the ensemble 

average. We generate R
2orN = 360 vectors n distributed uniformly on the unit circle in the 

plane normal to ( )j
eeR , as described in Appendix F. For given n we take ez = n, 

( ) ( )/ | |j j
ee eey =e R R  and ex = ey × ez. The ensemble of S-chains with end-to-end distances of 

about ρ contains ( )n ρ  members and is a subset of the “free-chain” ensemble of size Nens. 

Hence, the number of configurations used in the ensemble average for η2 is 

Nconfig = R
2orN × ( )n ρ . Table S4 gives actual numbers used, which were chosen to 

minimize the statistical error in the plots in Figs. 2b and 4b. 

By analogy with eq (E1) we have  

( )
R
2 or

( )R
2

1

( )1 1
2 or

1 1
( ) exp[ ( ( )) / )]

S
j

i k B
k

Nn

j i

N

nN z k T
ρ

ρη ψ
=

−

= =
= −∑ ∑ ∑ n      (E3) 

A procedure analogous to the one employed in computing 1η for the Rsoft model, and the 

“attractive” Rplanar model, is also invoked here to circumvent the problem of round-off 

error.  
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Appendix F: Generation of Unit Normal Vectors Perpendicular to End-to-end 

Vector of Spacer  

 Let 1ee N= −R r r be the (vector) distance from end atom (bead) 1 to end atom 

(bead) NS and 0n be a reference unit vector normal to eeR . Then n0 and eeR  must satisfy 

the requirements 
2 2 2

0 0 0 0 0 1x y zn n n⋅ = + + =n n         (F1) 

0 0 0 0 0ee x y zn X n Y n Z⋅ = + + =n R        (F2) 

These constraints yield two equations in three unknowns and are insufficient to determine 

uniquely the reference vector. Thus, we introduce the additional, arbitrary condition: 

     0 0zn =          (F3) 

That is, we require the reference normal to be parallel to the x-y plane. Plugging eq (F3) 

into eqs (F1) and (F2), we get  

     2 2
0 0 1x yn n+ =        (F4a) 

     0 0 0x yn X n Y+ = ,      (F4b) 

the general solution of which is  

     2 1/2
0 (1 )xn α −= ± +       (F5a) 

     2 1/2
0 (1 ) ,yn α α −= +∓      (F5b) 

where   

     /X Yα ≡ .         (F6) 

We now take the particular solution  

     

2 1/2
0

2 1/2
0

0

(1 )

(1 )

0

x

y

z

n

n

n

α

α α

−

−

= +

= − +

=

        (F7)  

 We wish to construct another unit vector n normal to eeR that is rotated in the 

plane normal to eeR  that contains 0n so that the angle between n and 0n is ψ. Then the 

constraints on n are  

    2 2 2 1x y zn n n⋅ = + + =n n      (F8a) 
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    0 0 0 0 cosx x y y z zn n n n n n ψ⋅ = + + =n n     (F8b) 

    0ee x y zXn Yn Zn⋅ = + + =R n      (F8c) 

Rearranging eqs (F8b) and (F8c), we have 

0 0 cosx y x

y z

n n n
n ZnX Y

ψ⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠

        (F9) 

The solution of eq (F9) is  

1 cosx zn nαβψ
γ γ

= −                (F10a) 

cosy zn nα βψ
γ γ

= − −                (F10b) 

where 

     

2 1/2(1 )
Z
Y

γ α

β
γ

= +

=
       (F11) 

By combining eqs (F8a) and (F10) we obtain the following quadratic equation for zn : 

 

( )2 2 2
0 0

cos1 1 cos 0z y x zn n n nβ ψβ α ψ
γ

⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤+ + + − − =⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦
   (F12) 

But from eq (F7) we deduce that the quantity ( )0 0y xn nα+ vanishes and hence that the 

linear term in eq (F12) also vanishes, yielding the solution 
1/22

2
1 cos

1
zn ψ

β

⎛ ⎞−
= ±⎜ ⎟⎜ ⎟+⎝ ⎠

     (F13) 

Collecting the results, we have finally the following formulas for the components of the 

sought vector n: 
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1/22

2
1 cos

1
1 cos

cos

z

x z

y z

n

n n

n n

ψ
β

αβψ
γ γ

α βψ
γ γ

⎛ ⎞−
= ±⎜ ⎟⎜ ⎟+⎝ ⎠

= −

= − −

     (F14) 

Appendix G: Relation of ηj to Free Energy of Binding 

We consider the reaction 
(1)R D RD+ R          (G1) 

The standard Gibbs free energy of binding for RD(1) is 

(1) BRD

B

B B B

B B

0 (1)

M 1

M 1

M 1

ln[ (RD ]

ln[4 ]
ln 4 ln ln
ln 4 ln

F k T K

k T v
k T k T v k T
k T k T v F

η
η

Δ = −

= −
= − − −
≡ − − + Δ

           (G2) 

(see Table S1). The first term is due to the loss of orientational symmetries of R and D, 

the second to the confinement of the ligating unit (M) to one site of R (in the absence of 

the S-R interaction), and the third ( 1FΔ ) to the S-R interaction itself. It is the last 

contribution that is of primary interest. 

The ensemble average can be cast as  

1 /X Yη = ,             (G3) 

where 

  B B
(S) (SR)exp[ ( ) /( )] exp[ /( )]N NX d U k T U k Tβ≡ − −∫ r r     (G4a) 

   B
(S)exp( ( ) /( ))N NY d U k T≡ −∫ r r       (G4b) 

Thus, from eqs (G2) and (G3) we get 

B1 ln( )F k T X YΔ = −            (G5) 

The corresponding difference in standard entropy of binding is  
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B
B

B

1
1

1 1 2
1

1

ln( )

1 1ln( ) ,B

FS
T

k T X Yk XY Y XY
TXY

X Yk XY k T
X Y T

β
β β

β
β β

− − −
−

−

∂Δ
Δ = −

∂
⎧ ⎫∂ ∂ ∂

= + −⎨ ⎬∂ ∂ ∂⎩ ⎭
⎧ ⎫∂ ∂ ∂

= + −⎨ ⎬∂ ∂ ∂⎩ ⎭

       (G6) 

where β = 1/kBT. From eq (G4) we deduce the required partial derivatives:  

   (S) (SR)(S) (SR)exp[ ( )] exp( )[ ]N NX d U U U Uβ β
β

∂
= − − − +

∂ ∫ r r     (G7a) 

(S) (S)exp[ ( )]N NY d U Uβ
β

∂
= − −

∂ ∫ r r       (G7b) 

Combining eqs (G6) and (G7) and invoking the relation ∂β / ∂ T = −1/kBT2, we obtain  

B
(SR)

B

(S) (S) (SR)
B B

(S)
B B

(S) (S)
B

(S)
B

1
1

(SR)

(SR)

ln exp( /( ))

exp[ ( ) /( )]exp( /( ))[ ]1
exp[ ( ) /( )] exp( /( ))

exp[ ( ) /( )]1
exp[ ( ) /( )]

N N

N N

N N

N N

S k U k T

d U k T U k T U U

T d U k T U k T

d U k T U

T d U k T

⎡ ⎤Δ = −⎢ ⎥⎣ ⎦
⎧ ⎫− − +⎪ ⎪+ ⎨ ⎬

− −⎪ ⎪⎩ ⎭
⎧ ⎫−⎪− ⎨

−⎪⎩

∫
∫

∫
∫

r r

r r

r r

r r
⎪
⎬
⎪⎭

     (G8) 

Equation (G8) can be rewritten  

(SR)
B B

(SR) (S) (SR) (S)
B

(SR)
B

1
1

1 1

1

ln exp[ /( )]

exp[ /( )][ ]1

exp[ /( )]

S k U k T

U k T U U U

T TU k T

⎡ ⎤Δ = −⎢ ⎥⎣ ⎦
⎧ ⎫− +⎪ ⎪+ −⎨ ⎬

−⎪ ⎪
⎩ ⎭

      (G9) 

In the special case of the freely-jointed chain, the internal configurational energy 

U(S) is independent of the conformation. Hence, eq (G9) reduces to  

(SR)
1 B B

1

(SR) (SR) (SR)
B B

1 1

ln exp[ /( )]

1 exp[ /( )] exp[ /( )]

S k U k T

U k T U U k T
T

⎡ ⎤Δ = −⎢ ⎥⎣ ⎦

+ − −
   (G10) 

The difference in the standard enthalpy of binding is given by  

(SR) (SR) (SR)
1 1 1 B B

1 1
exp[ /( )] exp[ /( )]H F T S U k T U U k TΔ = Δ + Δ = − −     (G11)   
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One can carry out a similar analysis for η2, starting from  

(2)
(2)

B

B B B eff B 2

0
RD

)

ln{ (RD )}

ln 2 ln( ) ln( ) ln(M M

F k T K

k T k T v k T v C k T η

Δ = −

= − − − −
   (G12) 

(see Table S1). The first term on the right side of eq (G12) is due to the orientational 

symmetries of the species involved, the second term to the binding of the M moiety (i.e., 

the binding of the first ligating unit of D in the absence of the S-R interaction), the third 

term to the binding of the second unit of D in the absence of the S-R interaction, and the 

fourth term to the S-R interaction. This last contribution, which is of principal interest in 

the main text, is defined by  

2 2lnBF k T ηΔ ≡ −        (G13)  

In the special case of the Rsoft and “attractive” Rplanar models, we can use the 

analogue of eq (E2) of Appendix E to express the difference in the standard enthalpy of 

binding as  
S

b

S

b

b b b B
0

j

b b B
0

( ) ( ) exp( / )

( ) exp( / )

N

n
N

n

n W g n n W k T
H

g n n W k T

=

=

−
Δ =

∑

∑
      (G14) 

The corresponding difference in the entropy of binding is  

j j j( ) /S H F TΔ = Δ − Δ        (G15) 

For the Rsoft model with well depth W = 0.045 kcal/mol, we observe that 

−ΔFj/(kBT) is very small and remains nearly constant as a function of the S-chain length 

(Fig. S4), where j =1 or 2 refer respectively to the binding of one or both ligating units to 

R. The small value of j j jF T S H−Δ = Δ − Δ  is a consequence of the near cancellation of the 

entropic contribution jT SΔ  by the enthalpic contribution jHΔ . As the well gets deeper 

(W > 0.045 kcal/mol), the enthalpic contribution grows faster than the entropic 

contribution decreases, such that −ΔFj becomes positive with increasing S-chain length 

(NS). On the other hand, as the well becomes shallower (W < 0.045 kcal/mol), the 

entropic term shrinks faster than enthalpic term grows, so that −ΔFj becomes negative, as 

indicated in Fig. S4. 
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Fig. S4: a: Change in (negative) free energy due to S-R interaction on binding of one 
ligating unit of D, as a function of S-chain length NS (number of atoms (beads) in S-
chain) for Rsoft model. Distance between binding sites is ρ = 30 Å; height of Lorentzian 
hills h = 10 Å. Numbers labelling curves refer to square well depth W [kcal/mol]. Error 
bars shown only if deviations larger than line widths. b: Change in (negative) free energy 
due to S-R interaction on binding of both ligating units, as function of S-chain length for 
Rsoft model. Same notation and parameters as in Fig. S4a.  
 
 

It is noteworthy that the entropy loss inherent in −ΔFj grows very rapidly with 

increasing well depth W . Indeed, the entropy loss is so large that for convenience we plot 

the entropy change (ordinate) on a logarithmic scale in Fig. S5. A logarithmic scale with 

respect to the entropy is double-logarithmic with respect to the number of states. With 

increasing S-R attraction (W), the S-chain conformations preferentially accommodate to 

the 2D surface of Rsoft instead of extending out into the 3D space, thereby severely 

decreasing the number of states (expressed as S−chain entropy). 
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Fig. S5: Entropy loss due to attractive S-R interaction, as function of S-chain length (NS) 
for the Rsoft model with same parameters as in Fig. 5 of the main text. Error bars are only 
shown if larger than the line widths.  
 
 
Table S1. Canonical molecular partition functions (X)q and binding constants (X)K  for 

prototypal bivalent system. V is volume of solution;
3

R 1/3
R

1

/[ ]n
n

T T
=

≡ Θ∏  is dimensionless 

absolute temperature, where R 2 2 R/ 8n n Bh I kπΘ =  are characteristic rotational 
temperatures, given in terms of principal moments of inertia R

nI , T is absolute 
temperature, Bk is Boltzmann’s constant, h is Planck’s constant; 2 1/ 2

X X( / 2 )Bh m k TπΛ ≡ , 
where Xm  is mass of species X. (1)

S( ; , )F N Tβαρ , Mv , (1)
Sv , Sv , 

η2(ρ;NS,T) = <exp(−U(SR)/kBT)>2, η1 = <exp(−U(SR)/kBT)>1 (subscripts 1 and 2 denote 
respectively that one ligating unit of D and both units of D bind to R), 
and eff S( ; , )C N Tβαρ  are defined respectively by eqs (A9a), (A13a), (A13b), (B4), (B2, 
B9b), (B7, B9a) and (B6). βαρ  is distance between binding sites of R. Symmetry 
numbers for R and D are R 2σ = , D 2σ = ; since M is point mass, it has no symmetry 
number; symmetry numbers of complexes are RM 1Σ = , (1)RD 1Σ = , 

2RM 2Σ = , 

(1)
2RD

2Σ = , (2)RD 2Σ = . 

 
species X q(X)/V K(X) K (X) 

R 3/ 2 3
R R R/Tπ σ−Λ  ---- ---- 

M 3
M
−Λ  ---- ---- 

D 6
S M D/v σ−Λ  ---- ---- 

RM 3/ 2 3 3
R M R M RM/T vπ − −Λ Λ Σ  R M RM/vσ Σ  M2v  

RD(1) (1)
3/ 2 (1) 3 6

R M S R M RD/T v vπ − −Λ Λ Σ  (1)
(1)

R D M S SRD
/v v vσ σ Σ  M 14v η  

RM2 2

3/ 2 2 3 6
R M R M RM/T vπ − −Λ Λ Σ  

2

2
R M RM/vσ Σ  2

Mv  

RD(1)
2 (1)

3/ 2 (1) 2 3 12
R M S R M RD

( ) /T v vπ − −Λ Λ Σ (1)
2

2 (1) 2 2
R D M S SRD

( ) /v v vσ σ Σ 2 2
M 14v η  

RD(2) 
(2)

(1)
S

3/ 2 2 3 6
R M R M RD

( ; , )

/
F N T

T v

e βαβ

π − −

−

Λ Λ Σ

× ρ
 

( 2)

(1)
S

2 1
R D M

RD

S

( ; , ) /F N T

v v

e βαβ

σ σ −

−

×

Σρ  
2
M 2

eff S

2
( ; , )

v
C N Tβα

η
ρ

×
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Table S2. The value of [D(Ceff = 0)]1/2 according to assumptions made. Throughout this 
work, we have discarded all-or-none assumption and included symmetry numbers. See 
discussion of eq. 5 in main text. 
 All-or-none assumed All-or-none discarded 
Symmetry numbers ignored 

M

1
v

 
M

1 5
2v
+  

Symmetry factors included 

M

1
2v

 
M

1 2
2v
+  

Table S3. Number of S-chain conformations Nens and number of configurations 

Nconfig = 2 × R
1orN ×Nens  ( R

1orN  is number of receptor orientations relative to S-chain) used 

in calculation of η1 = <exp(−U(SR)/kBT)>1 and thus of ΔS1/kB = ln(η1). 

 
Rhard, convex, 
W=0, h=‐1 

Rplanar, Rhard concave,
W=0, h>0 

Rplanar  
W≠0, h=0 

Rsoft, 
W≠0, h=10 

NS  Nens  Nconfig  Nens  Nconfig  Nens  Nconfig  Nens  Nconfig 
3 to 300  5.E+06  3.E+10  5.E+06 3.E+10 1.E+07 5.E+10  5.E+06  3.E+10

380 to1500  5.E+06  3.E+10  5.E+06 3.E+10 5.E+07 3.E+11  5.E+06  3.E+10
 
 
Table S4. Number of S-chain conformations Nens and number of configurations Nconfig 

used in calculation of η2 = <exp(−U(SR)/kBT)>2 and thus of ΔS2/kB = ln(η2). Columns 

showing N/A have no conformations with an end-to-end distance Ree of around ρ = 30 Å, 

so that ( )n ρ = 0. This means that such S-chains are too short (Ns = 3 to 31) to bridge the 

gap between binding sites, and are thus incapable of bivalent binding. 

   
Rhard, convex, 
W=0, h=‐1 

Rplanar, Rhard concave,
W=0, h>0 

Rplanar  
W≠0, h=0 

Rsoft, 
W≠0, h=10 

  NS  Nens  Nconfig  Nens  Nconfig  Nens  Nconfig  Nens  Nconfig 
3 to 31  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A 
46  5.E+08  4.E+05  5.E+06  4.E+03  1.E+09  8.E+05  1.E+09  8.E+05 
61  5.E+08  9.E+06  5.E+06 9.E+04 1.E+09 2.E+07  1.E+09  2.E+07
91  5.E+08  1.E+08  5.E+06  1.E+06  1.E+09  3.E+08  1.E+09  3.E+08 
121  5.E+08  5.E+08  5.E+06  5.E+06  1.E+09  9.E+08  1.E+09  9.E+08 
151  5.E+08  1.E+09  5.E+06  1.E+07  1.E+09  3.E+09  1.E+09  3.E+09 
300  5.E+08  5.E+09  5.E+06  5.E+07  1.E+09  1.E+10  1.E+09  1.E+10 
380  5.E+08  6.E+09  5.E+06 6.E+07 5.E+09 6.E+10  5.E+09  6.E+10
500  5.E+08  5.E+09  5.E+06  5.E+07  5.E+09  5.E+10  5.E+09  5.E+10 
750  5.E+08  8.E+09  5.E+06  8.E+07  5.E+09  8.E+10  1.E+10  2.E+11 
1000  5.E+08  1.E+10  5.E+06  1.E+08  5.E+09  1.E+11  1.E+10  2.E+11 
1500  5.E+08  9.E+09  5.E+06  9.E+07  5.E+09  9.E+10  1.E+10  2.E+11 
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