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1 Introduction

1.1 Biological thermodynamics

We are far away from being able to understand, model and simulate biological processes from

first principles at all scales of detail. Nevertheless, it is

firmly established that general physical principles are f \

applicable to living matter. Among them, “[Biology ~ has] ~ become  the
paramount  science, exceeding

thermodynamics seems to me the most useful and other  disciplines,  including

.. . . hysics and chemistry at least, in
general principle. Thermodynamics determines for phy , v o
the creative tumult of its

instance the directions of reactions inside a cell and disputations. [...] I'll also be so
bold at this point to suggest that
the amount of energy that is stored and transferred we are now at the edge of
. . . . establishing the two fundamental
to synthesize a given metabolite'. Thermodynamics )
laws of biology:
predicts the direction of spontaneous processes, such The first law is that all of the

as protein association events, and the extent of phenomena  of biology, the

entities and the processes, are
biochemical reactions. It quantifies equilibrium, ultimately obedient to the laws of

physics and chemistry. Not

phase changes and stability using unmeasurable immediately reducible to them,

quantities like energy and entropy. These are coupled but ultimately consistent and in
consilience with them, by a cause

to experimentally measurable ones, like temperature and effect explanation.

and pressure, through mathematical relationships. The second law is that all

biological ~ phenomena,  these
This way, thermodynamics creates a system of entities and processes that define
explanation for physicochemical transformations in life icself, have arisen by evolution
through natural selection.”
micro- and macromolecular systems.

E.O. Wilson, speaking at the 50th

anniversary of New Scientist

The concept of free energy is the main criterion to K magazine, 2006 j

predict if, and to what extent, a process will occur in

a spontaneous way. It is a refinement of the qualitative idea of “chemical affinity”, widespread
until the 19" century. Free energy allows us to describe the equilibrium in chemical reactions and
physicochemically driven processes such as non-covalent association. Important processes
governed by non-covalent interactions are hormone binding to receptors, mRNA codon

recognition by the ribosome? and protein-protein interactions. Free energy allows us to predict



the strength of such non-covalent interactions and the corresponding equilibrium constants.
Estimation of free energy in protein folding and molecular recognition is one of the central tasks
of theoretical chemistry concerning macromolecules and the subject of many reviews*. Free

energy can be loosely described as the interplay and competition between energy and entropy.

1.2 An intuitive notion of energy and entropy

Energy quantifies the ability to do work. Entropy measures the quality of that energy; the lower

its entropy, the more useful that energy is.

Fig. 1.1: The Sun as the source of lowered entropy for planet Earth. Figure courtesy of Isabel Arnaud.

At first sight, the Earth seems to be kept alive by the energy arriving from the Sun. This is a
superficial understanding, because in the steady state, the amount of energy arriving from the Sun
and the amount radiated back into space are equal. If the energy arriving from the sun remained,
the Earth would become unbearably warmer every day. As noted by Schrédinger’ in an article
directed to a lay audience, life is maintained by a constant influx of low entropy. He coined the
term negentropy, which in this context means that living organisms are constantly expelling high
entropy and feed on nurturing low entropy to survive. Plants use the low entropy radiation

through photosynthesis to lower their own entropy. Animals eat these plants, for the same



purpose. With each step of metabolism in single organisms, and each trophic level of an
ecosystem, the total entropy increases in irreversible processes. In other words, the “quality” of the

energy is lowered along the food chain.

The earth receives low-entropy electromagnetic radiation, which partly trickles down through the
food chain and metabolic networks, and is ultimately emitted back as high-entropy radiation.
High-frequency, visible light arrives to the earth. Infrared, low frequency radiation is emitted
back into space (see Fig. 1.1). Consider the proportionality between frequency and energy,

known as Planck’s relation

E=hv, (1.0)

where E is energy, h is Planck's constant and v is the frequency. The arriving high frequency
photons carry more energy per photon than those leaving. To keep the balance of energy in the
steady state, more photons leave than those that arrive. A larger number of photons means more

degrees of freedom, and thus higher entropy. For more on this, see Chap. 27 of ref '°.

Entropy involves energy dissipation and the irreversibility of processes. This can be illustrated
with a waterfall analogy. A small amount of water at the top of a mountain falls into the ocean,
which is flattened and all at the same level. In this process, its energy is not lost - it just becomes
more dispersed. As it falls down, it may or may not be used to drive an industrial or biological

process.

Entropy is in many relevant cases a measure of disorder and uncertainty. Understanding entropy as
disorder should be taken with a grain of salt, as this analogy does not always apply''. A crystal is an
example of a low entropy material because of its predictable regularity. This is not to say that
particles in a crystal are static at finite temperature, but their displacements due to thermal energy
are relatively small. If we take a crystal with particles vibrating around fixed lattice points and heat
it, it will become a liquid and its entropy will rise. If we heat the system further, it may become a
gas that fills the whole room. The entropy (uncertainty) is now much larger than in the crystal. It

has become much harder to say where in the room each particle is, that is, the missing information



about the positions has grown. The crystal will not spontaneously reform, putting everything
back into place the way it was before. This irreversibility results in an arrow of time that points

just in one direction into the more disordered future'.

Entropy is a measure of the missing information about the possible arrangements of a system.
About one century after entropy was postulated in thermodynamics', entropy was formulated
again in the context of telecommunications by Shannon' to provide a measure for channel
transmission capacity. Shannon’s ideas went on to become the foundation of information theory,
a whole branch of applied mathematics closely related to statistics. Information theory turned out
to be more general, with thermodynamic entropy being a particular case thereof". In the present
doctoral thesis, I use tools from information theory and apply them to statistical

thermodynamics.

Finally, entropy is a measure of multiplicity and variability within a system. It comprises counting
states on a logarithmic scale. An intuitive connection between the guality of energy understanding
of entropy and the multiplicity of states view from information theory can be gained through the
following example: Consider how we rub our hands together on a cold day. We use high quality
energy gained from food to apply very directed work, which is a collective effort of many muscle
cells applying a force in the same direction (low multiplicity). It gets transformed into low quality
energy that we perceive as a rise in temperature. This transformed energy has a high multiplicity
because it quickly becomes spread out in all directions and involves the random, undirected
vibrations of many particles. It is of lower quality because it cannot be completely turned back

into directed motion, as dictated by the Second Law of Thermodynamics.

If entropy is always increasing in real-world processes, it is legitimate to ask: why was it so low in
the first place? Why was the entropy of the universe so low after the Big Bang? A possible partial
answer has been postulated by Roger Penrose in Conformal Cyclic Cosmology'®, where the

universe exists in cycles of time that reset the entropy through rescaling'”.

Today, the concept of entropy has found widespread application in science and engineering. The

generality of thermodynamics has afforded it a place in engineering'®, astrophysics'”'” and of



course the life sciences®. Entropy also lives a parallel life in statistics?' and information theory'#?,

where it is applied to quantify information in processes as varied as communication channels and
cell signaling dynamics**. However, entropy is still often misunderstood, ignored or pointed to

as the cause of inexplicable results.

1.3 From steam engines to actin
/ \ filaments: the laws of

Laws of Thermodynamics in Lay

thermodynamics

Terminology

1** Law: It is impossible to obtain

something from nothing, but one Although thermodynamics was born in the realm
may break even. of industrial plants®, its wide applicability has
2" Law: One may break even

but only at the lowest possible conferred it a place in biology. An example is the
temperature. . . )

34 Law: One cannot reach the exploration of the thermodynamics of actin
lowest possible temperature. filaments®, which are self-assembling units that
Implication: It is impossible to
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Thermodynamics consists of a set of tools to reason about energies and entropies. The basic

entropic forces®°.

building blocks are two laws and some multivariate calculus®.

Ist law (energy balance): dU = 5q + 5W, (1.1)

where U is the internal energy, q is heat and W is work. d indicates U is a path-independent state

variable, while O means that heat and work depend on the application path.

2nd law (total entropy never decreases): dS >0, (1.2)

where § is entropy'>*~.



The First Law simply states that energy in all forms is conserved, and that it can be exchanged
through heat and work. The Second Law can be seen as “half a conservation law”, because

entropy can be created but not destroyed™.

By combining the First and Second Laws at constant number of particles (V), Volume (V) and
Temperature (7), we may obtain an expression describing how a system can reach equilibrium

with the inequality

Free energy differential: dF =dU -TdS <0 (1.3)

1.4 Free energy in processes involving proteins

Protein folding and receptor-ligand binding occur in a spontaneous and specific way when the
folded and bound states have a lower free energy than their denatured and unbound counterparts,
respectively. The Helmholtz free energy change AF or the Gibbs free energy change

AG=AF+PAV predict the equilibrium constant (Keq) for folding and binding. For

macromolecules solvated in incompressible fluids like water, the volume term PAV'is negligible,

SO

AG =~ AF =AU —TAS =—k;T InK,, . (1.4)

For macromolecules and soft matter in general, the understanding of the driving forces that
together result in a given free energy or binding constant requires consideration of flexibility and
dynamics. The amino acid sequence of proteins encodes structure, flexibility®®, thermodynamics®

3639 which in turn code function.

and dynamics
The search for minimum free energy balances a rise in total entropy and a fall in total energy. A
rise in entropy need not happen uniformly for all the components of a system. Maximizing
entropy in a subset of the system may be the driving force for organization in another subset. This
is indeed the case in protein folding, where the hydrophobic effect often maximizes the entropy

the water by collapsing the protein chain into a more orderly, low conformational entropy state®.



The hydrophobic effect at room temperature for small solutes is also primarily due to a

maximization of water entropy*!. Nevertheless, the hydrophobic effect can also have an enthalpic

origin, for instance at high temperatures® or in the association of ligands to protein cavities®*.

Fig. 1.2: Proteins are molecular machines with motion networks® that catalyze reactions. They obey the
laws of thermodynamics, as first laid out for steam engines. Photo of a sculpture taken by myself at
Tacheles, Berlin in 2006.

1.4.1 Predicting ligand binding and protein-protein interactions

The difference in free energy between two states tells us if a process will occur spontaneously and
to what extent. For a thermodynamic state function such as free energy to be meaningful, the
start and end states should be clearly defined. For example, the stability of a protein against
unfolding is given by AGroig= Grolded — Gdenatured- If AGrold is negative, thermodynamics will favor

the folded state. Similarly, the binding free energy for a ligand-receptor complex is:

AG Gegmpter — (Gigans + G =—RTInK, (1.5)

binding = complex protein ) -

A factor-of-ten increase in the binding affinity constant Kj translates into a change of 1.3
kcal/mol in AGpinging at room temperature. This additional stability can come from either
enthalpic or entropic contributions within the whole system (ligand, receptor protein, solvent,

ions, etc)“.



1.4.2 Conformational entropy

The net enthalpic (AH) and entropic (TAS) contributions from all particles (solute and solvent)
almost even out in natural folding or properly engineered proteins®’. Stability of proteins against
denaturing is typically*® around AGfoig = 5 to 15 kcal/mol (Keg= 10 to 10™"). Upon folding, the
protein becomes more rigid and loses conformational entropy. This unfavorable contribution is
typically TAScont = 10 to 100 kcal/mol. Any estimation of free energy lacking this contribution

will grossly overestimate the stability of proteins against unfolding.

Entropy is defined in terms of probabilities of to occupy specific microstates. A microstate is an

individual conformation of a molecule. The conformational entropy is

S(:onf :_kBZ Pi In Pi> (16)

where Kg is the Boltzmann constant and pj is the probability of occupancy of each microstate.
The pj represent the net probabilities of occupancy of given microstates, including all correlations
and statistical dependencies connected with it. Energetic interactions between particles give rise to
correlations. It is known from information theory that neglecting correlations will cause an
overestimation of entropy", which is the explanation for the famous difference between the
Boltzmann and Gibbs entropies®. Such statistical correlations may even manifest physically to
produce work™. We are nowadays certain about the existence of particles and the need for
statistics to count the multiple ways in which they arrange. However, entropy was originally

defined as a macroscopic quantity'’, without any reference to particles or statistics.



1.5 The statistical in mechanics

‘ A

Max Planck joined the Physical
This conjures for many the defeat of Society of Berlin, of which he

wrote: "In those days I was

Statistics deals with uncertainty and probabilities.

determinism. For this reason, statistics and the . .
essentially the only theoretical

microscopic understanding of entropy had a physicist ~there, whence things
were not so easy for me, because
difficult entry into science. Ludwig Boltzmann I started mentioning entropy,

. ) but this was not uite
lived in the late 1800’s and formulated a . L q
fashionable, since it was regarded

. . . . M n
statistical approach®*°! which took into account as a mathematical spook”. Max

Planck

Elektrotechnischer Verein Berlin, G. E7Z:
Elektrotechnische Zeirschrift (VDE-Verlag) 69

which sharply defined macroscopic physical K (4), 1948. j

the stochastic nature of microscopic processes in

values become distributions®. Sadly, Boltzmann
committed suicide before seeing the success of his theory. Albert Einstein’s published PhD
dissertation® deals with deterministic equations. This seems to have been a compromise, as his
advisor Alfred Kleiner would not accept his molecular kinetic treatment of fluids, allegedly
because of its statistical nature®®. The hypothesis that Einstein originally intended to write a
dissertation on statistical mechanics is supported by the fact that during the previous years, he
had been publishing papers about entropy and thermodynamics with a strong statistical

component”™.

For years, Planck also had upheld a macroscopic view of entropy and matter as a continuum. But
with his solution of the blackbody radiation problem, Planck was not only introducing the
Wirkungsquantum, but at the same time recognizing the need for a statistical treatment®®. “I was,
however, at that time still too far oriented towards the phenomenological aspect to come to closer
quarters with the connection between entropy and probability [...] I busied myself... with the
task of elucidating a true physical character for the [entropy] formula, and this problem led me

automatically to a consideration of the connection between entropy and probability, that is,

Boltzmann's trend of ideas,” said Planck in his Nobel prize lecture®.

In the words of Jaynes, “It is possible to make a sharp distinction in statistical mechanics: the

physical and the statistical. We formulate our partial knowledge into a physical model. This
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model should deliver a correct enumeration of the states of a system and their properties. The
statistical part is a straightforward example of inference.”® The field of statistical physics®"¢*
explains how the world we see around us arises from the interactions of uncountable numbers of
microscopic particles. The observed fact that entropy always increases (2™ law, eq (1.2)) is in fact
just a consequence of probability. A system that starts in a low-entropy state has many ways to
move to a state of higher entropy, but only a few ways to move to a state with the same or lower
entropy. Thus, you are more likely to see a system move from low to high entropy than vice
versa, and when we consider macroscopic objects involving ~10% particles, the probability of
seeing entropy spontaneously decrease “quickly moves into monkeys-writing-Shakespeare

territory”®.

Arieh Ben-Naim argues that entropy can be reduced to plain common sense®, as:

“l. The Second Law is basically a law of probability [as Boltzmann established].

2. The laws of probability are basically the laws of common sense [as Laplace said].

3. It follows from (1) and (2) that the Second Law is basically a law of common sense - nothing

»
more.

1.5.1 Information over matter and energy

05-67 machine that

Recently, an experiment demonstrated the realization of a Szildrd-type
transforms information into free energy. A non-equilibrium feedback manipulation of a
Brownian particle on the basis of information about its position (configurational entropy)
achieves this conversion®. Theoretical demonstrations have also shown how to convert statistical
correlations into work®. Even more generally, both relativity theory and quantum mechanics can
be understood in terms of information®”'. Some things can travel faster than light. For instance,
quantum entangled states experimentally show spooky action at a distance’>”?. But information
cannot travel faster than light’! (if Einstein’s theory holds). This is confirmed by the fact that it is

not possible to transmit information instantly using entangled states”. In my opinion, this shows

that information has a higher hierarchy than matter and energy themselves.
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1.6 Entropy is a logarithmic counting of microstates

A microstate is an individual conformation of a molecule that cannot be resolved within the
framework of a conventional experimental setup. Entropy measures the multiplicity of such

61,74 3

microstates on a logarithmic scale. In contrast, a macrostate®"’* is a collection of microstates with

iven macroscopic properties values or a Ssmall numbper or observables in a given® experiment).
g pic properties (values of a small number of observables in a given® ¢

According to the Boltzmann distribution, a microstate of lower energy will be more populated
than one of higher energy in the canonical ensemble. Expressing the Boltzmann distribution in

terms of the probability of individual microstates j and k yields:
, —(E. -E
P =exp ((J—Tk)] for T>0K . (1.7)

Ej is a microscopic energy, which is a function of the conformation (j). E is a function of the
number of moles and volume (N, V) but not of temperature or entropy (T, S). Higher
temperatures mean that thermal energy kT will allow significant occupation of correspondingly
higher energy levels. The macrostate of a system acquires an internal energy U as a function of
which microstates are actually populated. The macroscopic (average) internal energy U is the

average over all microstates

U=(E)=2 pE. (1.8)

where t is the total number of microstates.

The toy model in Fig. 1.2 captures many interesting properties of energy and entropy. This
molecule has positively and negatively charged ends, which attract each other and may interact
with a favorable energy -€. We further assume that we have an experimental technique that can
resolve whether the molecule is in the open or the compact conformation. Since the compact
conformation has the lowest energy, one could reach the conclusion that it is the most populated.

But what if the microstates of the open type are more numerous? This multiplicity (W) of states
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of equal energy is quantified by the entropy, eq (1.6). For our model:
Sp = _kBZ; P,i In p,; = keIn(4) and S; = kgln(1). Since all microstates for each macrostate

have the same energy, they are equiprobable, and we can simplify the entropy to S = kgln(W).

The entropy change between macrostates is ASoc = kgln(4/1).

Macrostate Energy Microstates (experimentaly indistinguishable)
(experimentally

accessible)

Open 0 :—: E :

Compact -g

Fig. 1.2: A 4-bead toy model of a folding molecule. The compact state is unique and contains one
attractive interaction with a favorable energy of —&. The four open microstates have no long-range
interactions. Based on Fig 10.1 of ref '

The free energy uses both U and S to assess the stability of each macrostate. The relative stability
in the canonical ensemble between the open and compact macrostates is measured by the free
energy, eq (1.4). The opening (“unfolding”) free energy for Fig. 1.2 is:

AF, = (0—(-£))-T (ks IN4—k, In1) = —k,T In4 (1.9)

The equilibrium constant Keqyields the proportion of compact vs. open conformations:

-AF -AU TAS
K, =ex L |=ex x lex o 1.10
B p( kBT j p( kBT J p[ kBT j ( )
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Keq for the model in Fig. 1.2 is:

—-& kT In(4) —-&
K. _=ex exp| —& =4.exp| — 1.11
- p(kBT] p( keT ] p(kBTj ( )

The entropy change cannot be interpreted straightforwardly when expressed as AS = 2.75

cal/(mol K). But its contribution to the equilibrium constant is a dimensionless number
measuring multiplicitcy W = 4. This means simply 4 times more open conformations than
compact conformations. In this light, entropy is more intuitive and easier to understand than

energy itself!

Entropy can be interpreted in an analog way in protein folding. A conformational unfolding
entropy change” of ASunfold = 33.3 cal/(mol K) means there exist Waenatured / Whative =
exp(TAS/(ksT)) = 1.9 x 107 times more denatured conformations than native ones. In this case,
W refers to the weighted average multiplicity of states. The conformational entropy contribution
is unfavorable and will oppose folding. Clearly, other driving forces such as the hydrophobic
entropy gain and favorable enthalpic interactions have to compensate for this large

conformational entropy loss for folding to occur.

1.6.1 Stabilization by conformational entropy

A simple example of a molecule whose dominant macrostate is stabilized by entropy is the peptide
trialanine. The two conformers, compact & and extended £ (shown in Fig. 1.3) can be
distinguished experimentally’®”” in solution. A conformer is a geometrically defined macrostate,
or collection of microstates (conformations) with similar energies and geometries. Conformer o
has a lower internal energy U, due to having more favorable contacts than conformer £. As the
energy difference AUp, = Ug— U, is smaller than thermal energy 4s 7, significant interconversion

occurs, and both conformers exist in equilibrium in the canonical ensemble.
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Entropy Sg

CEREREERERER N ENFENNR]

internal energy
AUBQ

poecas

progress variable vy,

Fig. 1.3: Trialanine and its two conformers, & and f. The horizontal axis is a geometric “progress
variable”, in this case the central Ramachandran angle y,. The conformation « is more compact and has

lower energy (depicted as well height) than £. However, the extended £ is favored by entropy (depicted as
well width).

Although each individual high energy microstate in the basin of conformer £ is less likely (see eq
(1.7)), there are many more such states. The sheer multiplicity of states of conformer S allows it
to be significantly populated, and indeed be the dominant conformer in solution”®””. Large
multiplicity means high entropy, depicted here as the width of the well Sg> S,. In later sections,
we use the concepts of microstate (individual conformation or frame in a molecular simulation)
and macrostate (conformer) in the context of the thermodynamics of trialanine. We will use
molecular dynamics simulations of the trialanine molecule to test the algorithms put forth in this

thesis to estimate conformational entropy.

A biological example of conformational entropic stabilization, in this case of the folded state,
occurs in hyperthermophilic organisms. Their genes code for proteins enriched in positively
charged amino acids. But the positive charge is often achieved by the presence of lysines rather
than arginines. This significant bias was recently explained” through the much higher number of
rotamers available to lysine. Because the effective conformational freedom of lysine is greater, it

constitutes a reservoir of conformational entropy, thereby stabilizing the protein’s folded state.

A frequently unappreciated fact is that many proteins in the cell stably exist in a high entropy

state. They populate a partially folded state sometimes called a “molten globule””, which has



15

significant secondary-structure but a fluid hydrophobic core®. Some of them acquire a more rigid
structure only upon ligand binding, while others are intrinsically unstructured®. Such proteins
are obviously underrepresented in the literature and the PDB database. In experiments, they are
hard to discern from on-path folding intermediates. In molecular dynamics simulations, their
high flexibility demands very long trajectories to acquire reliable statistics®>. Nevertheless, there

are recent theoretical studies in which molten globules were characterized with simulation®.

Fig. 1.4 Part of a polypeptide chain. Number of conformations in the native state (left) and the denatured
state (right). The denatured state is clearly favored by conformational entropy, but is opposed by other
thermodynamic forces that fold proteins.

1.6.2 Acceptable errors in theoretical estimations of protein

thermodynamics

Enthalpy-entropy compensation is just enough to favor protein folding®. Proteins have evolved

in such a way that changes in enthalpy from intramolecular interactions, electrostatic solvation

84,85 42,43,86,87

free energy®*®, a favorable hydrophobic effect and an unfavorable conformational entropy
loss almost cancel out. This tiny window for compensation makes simulation-based calculation of
thermodynamic variables very challenging. Each one of the aforementioned factors can contribute
10 to 100 kcal/mol. The methods for estimating these enthalpic and entropic contributions need
to be extremely precise in order not to miss the total free energy, which for a spontaneous process

may be almost zero, but negative.

Protein folding and binding involve non-covalent interactions. These have very narrow free
energy ranges in order to remain reversible. For biological processes, the net difference between

states is often*® between 5 and 15 kcal/mol. This is about 10 times more than thermal energy at
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physiological temperature kgT = 0.6 kcal/mol. Ken Dill set an error goal of 0.100 kcal/mol per
amino acid for the estimation of free energy of proteins®®. Theoretical entropy estimation is even
more difficult to converge than free energy estimation®. The methods presented in this thesis to
estimate entropy achieved an average precision in S of 0.3 ]/(mol K) for trialanine, which
translates into an average error in TS of 0.007 kcal/mol per amino acid at T = 300K. This is 14
times better than Dill’s goal®. Nevertheless, questions remain about the transferability of the
entropy estimation technique to larger systems, and of the quality of the force field used in the

molecular dynamics simulation.

In this thesis, I concentrate on the calculation of solute conformational entropy, and not on water
entropy. Nevertheless, by applying techniques such as Permutation Reduction, it is possible to
extend the applicability of algorithms such as the ones developed in this work to estimate water
entropy. In fact, others” have already applied my quasi-harmonic algorithm with nearest-
neighbors correction” combined with Permutation Reduction® to estimate water entropic

components in an anti-cancer drug binding to DNA”".

1.7 The entropy of polymers

Folded proteins are relatively rigid, entangled biological polymers with a low (but difficult to
estimate) residual conformational entropy. Synthetic flexible polymers usually have considerably

more conformational freedom because of the lack of specific microscopic structural preferences.

In the macroscopic world of everyday experience, there is a clear difference between stretching a
thin metal wire and a rubber band. This is connected to their microscopic structure. When a
metal is stretched, the individual bond lengths between atoms are pulled away from equilibrium.
The restoring force comes from the bonds pulling back and is enthalpically-driven. On the other
hand, when an elastic polymer like rubber is stretched, the bond lengths remain basically
unstrained. Instead, the torsional motion of the chain becomes restricted. This is coupled with a
decrease in entropy. The chain’s natural tendency towards disorder (enabled by the thermal

energy) is experienced as a restoring entropic force towards the molecule’s freer configuration®.

These ideas go back to K.H. Meyer and Flory”*®.
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Cross-linked polymers such as vulcanized rubber and the elastin®® in human skin owe their
material properties to entropic forces. Cross-linking provides additional entropic restoring
networks. The elastic fibers in human arteries, especially in the aortic, survive for more than 60
years, undergoing billions of cycles of stretching and relaxation”. Their resilience is due to the
dominantly entropic nature of the elastic force. Entropic forces have also been shown to account

for the activity of actin polymerization in cell motility* .

Barring interference from enthalpic stabilization, the conformers of polymer chains tend to their
state of highest entropy. In this thesis, we use the random walk polymer model to simulate the
behavior of polyethylene glycol (PEG) chains, a biocompatible polymer. We calculate the free
energy and entropy changes as the chain interacts with the surface of a protein. The application is
bivalent binding, where a bivalent receptor binds two ligands, which are themselves tethered
together with a PEG chain. The PEG chain interacts with the protein surface such that it
experiences an entropy loss, which may be compensated by the hydrophobic effect and favorable

energetic contacts between the polymer and protein.

1.7.1 Connection of thermodynamics to information theory

There exist many analogies useful to understand entropy, each of which carries a greater or lesser
amount of truth: freedom, flexibility, chaos, disorder, accessibility, spreading of energy®.
However, my experience in working on this thesis tells me that understanding entropy as the

Shannon missing information about the molecular microstates'> %1%

, or equivalently as a
logarithmic counting of such microstates, is by far more useful. Identifying thermodynamic
entropy with the Shannon entropy of the molecular microstates probabilities will help not only

our intuitive understanding, but also allow us to further statistical mechanics with the tools of

information theory.

1.8 Maedical applications of protein and drug thermodynamics

A complete understanding of the thermodynamics of drug compounds and their interactions with

metabolic actors such as proteins has long been a holy grail of theoretical chemistry. Advances in
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modeling of thermodynamics including conformational entropy will bring new developments to

medicinal chemistry and biopharmaceuticals.

Most drugs currently on the market are agonists or antagonists that directly bind to the active site
of a protein. But not all effective drugs bind to the active site. Allosteric modulators'®! bind
outside the receptor binding site, but can nevertheless induce a change in binding affinity, and
thus a change in activity. Allosteric modulators directly affect the protein motion networks.
Conformational entropy changes are thus key in understanding and modulating allostery'*>'%.
Ultimately, strategies that take biomolecular dynamics into account will yield new lead
compounds and drugs. Recently it was proposed that apparent mismatches between the inhibitor
compound topology and the crystal structure of the target protein are a sign that a drug is not
“enthalpically optimized” but rather “entropically optimized” to fit the multiplicity of

conformations in solution'%.

Most HIV-1 protease inhibitors'®!% to date are antagonists of the active site. Design of drugs less
susceptible to resistance may be accomplished by altering the thermodynamics of stability and
folding of the protease (PR) dimer. Allosteric inhibitors bind to residues whose dynamics are
coupled to the flap opening-closing collective motion network. They may either keep the flap
open or closed shut, inhibiting its cleaving activity'”’. Another strategy is to inhibit folding of the
PR dimer; this has been achieved with peptides that bind and reshape the free energy landscape to

make inactive conformations thermodynamically stable'®.

Alzheimer's, Hungtington's'” and Creutzfeld-Jakob (prion) diseases'"

all share protein
misfolding and aggregation as a common feature. Experiments have lent credibility to the
hypothesis that -amyloid aggregates are causal in the pathogenesis, at least in Alzheimer's
Disease'!". The normal folded and the aggregated misfolded conformations represent two local
minima in the free energy landscape''*!"*. The misfolded conformation is much lower in entropy,
but is stabilized by enthalpy, mostly through tight van der Waals interactions in a so-called steric

114, The two free energy minima are separated by a kinetic barrier to oligomerization. The

zipper
design of compounds that block aggregation will hopefully be assisted by a detailed

understanding of the thermodynamics and kinetics of misfolding.
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Furthermore, exploiting the multivalent effect is an interesting avenue in medicinal chemistry for

115,116

the enhancement of binding affinity and the reduction of toxicity. Multivalent applications

17, Therapeutic compounds

often rely on polymer carriers to join together several drug molecules
attached to polyethylene glycol spacers or to dendritic polymers''® create high local (effective)

concentrations of drugs.

1.9 Aim of this work

In this thesis, I present improvements in the theoretical estimation of conformational entropy and
in the modeling of the multivalent effect using flexible polymer spacers. It is hoped that these
algorithms and models may contribute to further advance theoretical methods and help
understand, model and simulate biological processes from first principles for the advancement of

medicine.
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2 Balanced and hias-free computation of conformational entropy

differences for molecular trajectories

This chapter is connected to an accepted publication:

Numata, ].; Knapp, E. W., Balanced and bias-corrected computation of conformational entropy
differences for molecular trajectories. J. Chem. Theory Comput. 2012, 8(4), 1235-1245.
Submitted on 20-dec-2011. Accepted on 14-mar-2012. dx.doi.org/10.1021/ct200910z

2.1 Introduction

A macrostate of a molecular system can be specified by appropriate thermodynamic variables. The
conformational entropy of a molecular system is a measure of the missing information about the
specific molecular conformation (microstate) adopted among the many available conformations
of the macrostate. This interpretation follows Jaynes’ work"* and Ben-Naim’s reformulation of
statistical mechanics in terms of information theory®. The physical entropy* S is proportional to
the dimensionless information entropy’ Sinf = — Z pj In(Pi) according to S = Kg Sinf, where the p;
are the probabilities that the molecular system adopts a particular microstate i and Kg is the
Boltzmann constant. The interplay of entropy S and the average internal energy <U> is described
by the free energy expression F = <E> — TS. The Boltzmann factor exp(—F/kgT), involving the
free energy F, provides the relative probabilities of occupation for specific macrostates at a given

absolute temperature T.

a A

“Once in a while, engineering has

contributed a great deal to [physical differences is an essential ingredient to
theory]. Two examples that come to

Knowledge on conformational entropy

mind [are] the analysis of heat engines understand binding affinities.

by the engincer Carnot. And the other Conformational entropy is the missing link
is the analysis of information theory

by Shannon, recently. And both of to a full free energy difference when using
those are closely related phenomena, it

methods such as MMPB/SA (enthalpy

turns out.”
from the Molecular Mechanics force field,

Richard Feynman, 1962
The Feynman Lectures on Physics 1-44:
\ The Laws of Thermodynamics. J Boltzmann equation, hydrophobic effect

solvation free energy from the Poisson-
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from the solvent accessible Surface Area)®”. In the present work, we develop efficient algorithms
for estimating conformational entropy differences of macro-molecular systems comprising many
degrees of freedom. We apply these methods to two model systems: (1) A three-atom molecule in
two different confined spaces. (2) Trialanine in implicit solvent with two conformer regimes. For

both models, we generate very precise benchmark entropy values to compare with.

2.1.1 Experimental measurements of conformational entropy

Using thermodynamic relations, it is possible to separate enthalpic and entropic contributions to
free energy changes measured experimentally’’. The absolute conformational entropy of the
protein backbone has also been estimated from Atomic Force Microscopy measurements''.
However, the separation of the total entropy change into solvent and solute components is in
general not straightforward'?. The reason is that conformational entropy is a measure of the
microscopic variability of conformations, a level of detail which is challenging to resolve
experimentally. Recently, experimental techniques from Nuclear Magnetic Resonance (NMR)
have been used to peek into the microscopic states of the solute through order parameters and to

estimate solute conformational entropy changes upon binding'*'"”

. Along the same line, a view of
allosteric phenomena and protein recognition is emerging from NMR experiments, which
support the interpretation of allostery'® (i.e. certain spatially distant sites in a protein are strongly

correlated) as a network of molecular groups undergoing concerted motions', and establishes

conformational entropy changes as key in modulating allostery®® and protein-ligand recognition?.

While the motion of sequentially adjacent amino acid residues can obviously be correlated, a
recent study suggests that residues as distant as 15 A can be even more strongly correlated than
residues in close spatial contact®. It is noteworthy that Shannon conceived the concept of
information entropy’ for communication channels. We can now quantify communication
between amino acid residues® using his theory. Nevertheless, the interpretation of NMR data to
estimate entropy often does not consider correlations among order parameters®. Methods from
information theory such as those in the present study can be used to account for non-linear

25,26 3

correlations”?® in the molecular coordinates. Since correlations always reduce the entropy?,

including them will provide a tighter upper bound to conformational entropy.



29

2.1.2 Theoretical estimation of conformational entropy

Macromolecules involve many degrees of freedom. Therefore, they constitute a special kind of
challenge in the estimation of conformational entropy. A variety of methods have been proposed
to tackle this problem?”. The quasi-harmonic approximation (QHA)*? is based on ‘principal
component analysis’ (PCA), also known as eigenvalue decomposition, which accounts for linear
correlations between pairs of coordinates. It fits the observed probability density for the
eigenmode coordinates of an effective harmonic oscillator model for which statistical mechanical
quantities like the entropy can be expressed analytically. More elaborate QHA approaches apply
corrections in third order moments of the coordinates® or in pair-wise supra-linear correlations
3536 A further development of pair-wise supra-linear correlations is the ‘minimally coupled
subspace’ approach?. It combines ‘independent component analysis’*® with ‘mutual information

(MI) expansion™ and ‘adaptive kernel density estimator’ approaches”.

DNA% and RNA* display ‘collective coordinates’ (eigenmodes), which are close to harmonic
modes in Cartesian coordinates using PCA*' or QHA?3, Hence, applying these methods in
Cartesian coordinates to ribonucleotides®, only small corrections for anharmonicity and pairwise
supralinear correlations are needed using the nearest-neighbor method®. However, peptides and
proteins possess different types of degrees of freedom, where Cartesian coordinates describing the
conformations of polypeptide chains are highly correlated, even after applying PCA or QHA®.
Internal Bond-Angle-Torsion (BAT) coordinates can avoid such correlations to a large extent*

and can also be applied in the quasi-harmonic approximation®’.

Other approaches fit the observed distributions in torsional angle space to probability

distributions given in closed form* like Gaussian and/or von-Mises kernel density estimators**>3,

The latter approach is non-parametric and approximates the probability density as a sum of peaks
for which an analytical expression of the entropy is available. Another unrelated method to

compute entropy, inspired by polymer physics, is the rigorous but computationally demanding

54,55

hypothetical scanning’*, which is based on reconstructing the macromolecular chain conformer

from scratch. Methods originally devised to estimate free energy differences, like thermodynamic

perturbation and integration, have also be extended to estimate entropy differences™®.
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In this work, we employ the internal BAT coordinates combined with a histogram method to
estimate entropy with the mutual information (MI) expansion®®, which is capable of accounting
for supralinear correlations®®. Most importantly, we introduce novel techniques that expedite

convergence and compensate bias in estimating conformational entropy differences.

2.2 Analytical derivation: Configurational entropy of a

macromolecule

2.2.1 Absolute and relative configurational entropies

To define entropy in the canonical ensemble of a macromolecule with N atoms, we start with the

partition function of the conformer domain &

Q, = h—3Njo|pNjQ drN exp(=E,, / kgT). 2.1)
The Hamiltonian
N
E, =Y pi/2m,+U,(r"). (2.2)
n=1

in eq (2.1) involves kinetic and potential energy terms of the N atom macromolecule. The symbol
Q, signifies the domain of configurations that identify the conformer a. The potential energy

Ug (r™) is a function in the 3N Cartesian coordinates denoted by the 3N-dimensional vector r N,
The energy U, (r N is infinite outside of the domain ¢ that defines the conformer. Integrating

over the 3N momenta in eq (2.1), we can write Q as

in terms of the configuration integral

Z, =, expl-U,(r")/(kgT)] dr® (2.3)
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and the “momentum” contribution, expressed by the 3N-fold product of the thermal de Broglie
wavelengths

A, =hi2z2m KT , (2.4)

where My, is the mass of atom N, Kg is the Boltzmann constant, h is Planck’s constant, and T is the

absolute temperature. The free energy F, of the conformer in domain « is

Fo=—ksT In(Q,). (2.5)

The ensemble average of the internal energy is

<Ea>:kBT2(%j =3 NkgT +(U,,) (2.6)
NV

where the ensemble average of the potential energy can be written as
_ N N N
(o) =], drP(ru, ™) @7
using the probability density function

P, (r") = exp[-U,, (r") /(k;T)/Z, . (2.8)

Rearranging eq (2.8) and taking logarithms of both sides, we get

U,(rN)=—ksTIn[P,(r")z,1. (2.9)
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Substitution of eq (2.9) into eq (2.7) gives
(Us)=—KeT [, P, ()[R, (r*)Z,] (2.10
Now we define the configurational entropy of the conformer domain o as

Su=(<E>—Fo)/T. (2.11)

Using eq (2.6) and (2.10) we can rewrite the absolute configurational entropy, eq (2.11), as

N
S =3 Nks —kg IQadr“Pa(r”)ln[Pa(r”)HAﬁ], (2.12)
or rearranging
N
Se = 3Nky =3y >IN Ay —kg [ drP, (r™)In[P, (r")]. (2.13)
n=1 a

In the configurational entropy difference, AS,3= S, — Sp, the first two terms in eq (2.13) cancel,

if both entropies refer to the same temperature, yielding
ASaﬁ: kB (§a_§ﬂ)» (2.14)

where the relative configurational entropy is defined by

§5=-anderé(rN)ln[Pg(rN)], 5=a, B, (2.15)

which is analog to the Shannon differential entropy” for the probability density Py (rNy. 1f

entropy differences at different temperatures are evaluated, eq (2.13) should be used. In this work

we can use eq (2.15), since we compute entropy differences at the same temperature.
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Eq (2.15) is the expression for a relative entropy for two reasons: (i) Its actual value varies by an
additive constant term dependent on the length units (e.g. Angstrom) used for the coordinates
r™. (i) It is a differential (continuous®") entropy, which may assume negative or positive values
(see App. I of ref 3 and sec. 20 of Shannon’). Conversely, the expression (2.13) is an absolute
entropy® because: (i) The length units used in the conformational integral cancel. (ii) Planck’s

constant h discretizes (quantizes) the phase space (cf. eq 7.12 of Landau & Lifshitz®).

Alternatively, (2.15) may be rewritten

8 =—<In(P§(rN))>

1
<In{w}> . (2.16)

The inverse of a probability density is the multiplicity. From (2.16), it becomes clear that entropy
is a logarithmic measure of the average multiplicity of microstates, which is called degeneracy in

the context of quantum mechanics.

2.2.2 Sackur-Tetrode equation as a limiting case for ideal gas

We now calculate the absolute configurational entropy for an ideal gas, where the probability

distribution is uniform throughout the volume V of the container, such that

Pd(rN)=1/VN . (2.17)
Solving eq (2.13) analytically, we get
N
Sg = 3Nk —3k; > InA, —k;N InV (2.18)
n=1

Additionally, we have identical masses, so M, =m, so the absolute entropy for distinguishable

particles (2.18) becomes
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%
S, = Nk, In[V (Z’Tehﬂj ] (2.19)

For an ideal gas, we have indistinguishable particles, so

The last term in (2.20) accounts for indistinguishability, which in this work only applies to the

ideal gas. Using Stirling’s approximation, we have INN!~ N InN —N and may write

Ve ( 2zmk.T V2 V (27mk.T )2
SST :NkB In N ( h2 B J = NkB In W(TBJ +%NkB ) (221)

which is the familiar Sackur-Tetrode equation®.

2.2.3 Entropy using local spherical polar (BAT) coordinates

65-67

We introduce local spherical polar coordinates®*, also referred to as ‘bond-angle-torsion’ (BAT)

coordinates®®0%%

, since they represent the conformational displacements of the atoms of a
macromolecule in a more natural fashion than Cartesian coordinates. BAT coordinates simplify
the configurational integrals, as for instance eqs (2.3) or (2.15), since they involve bond lengths,
bond angles and torsions. This coordinate system is local because the frame of reference is shifted
and rotated at each new bond to accommodate the molecular topology. These local coordinates
are adapted to the molecular structure by separating degrees of freedom with high flexibility
(torsion angles) from those with low flexibility (bonds and bond angles). This helps avoiding

strong but spurious correlations inherent in atomic Cartesian coordinates*. Since these

correlations are large, they can mask the physically relevant correlations.

These coordinates are defined by fixing the coordinate r; of the terminal atom 1 of the
macromolecule at the origin of the coordinate system. All other coordinates refer to the bond

vectors bn. The local spherical coordinates for the bond vector are by = (bn, 6, @n),
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n=2,3,. . .N, (bond length by, inclination angle 6, azimuthal angle ¢n). We begin with bond
vector D2 = Iy — 1 of the end atom 1, using the z- and x-axes from a lab frame as a reference for
rotations 67 and ¢3. For the second bond vector b3 = 3 — I, we use b as a reference for 6, but
still need the x-axis from the lab frame as a reference for @3. For a linear molecule, the bond
vectors are consecutively bn =y — rp.g, N =4, 5, ... N. For the local spherical coordinates of
bond vector by we take atom position I'y.1, as the coordinate origin, the preceding bond vector by.
1 as z-axis, and the unit vector parallel to the cross product byoxbn_1 as x-axis. In a non-linear,
branched molecule, we use for all bond vectors following a branch point (atom with more than
two covalent bonds) the bond vector of the preceding two bonds as reference for z- and x-axes.
Independently of the degree of branching, a molecule with N atoms and no ring structure
possesses N—1 covalent bonds. Each ring introduces an additional bond. To avoid
overcompleteness, one covalent bond in each ring is ignored, which automatically transforms the
molecular topology back to a branched structure. Thus, together with the coordinates Iy of the
initial atom 1 a complete set of 3NV BAT coordinates (Fig. 2.1) is obtained for an N atom

molecule. These BAT coordinates are collected in the 3N-dimensional supervector

B = (rl, bz, b3, e b|\|-1, bN ), with bn = (b ns 6?n, (Dn), n= 2, 3, . . .N. (2.22)

The potential energy function U, is independent of position and orientation of the solute in the
solvent. Therefore, we can separate contributions of those degrees of freedom and perform the
corresponding integrations in configurational integrals as for instance egs (2.3) or (2.15) in closed
form using BAT coordinates®®*%. The integration over I'1 in configuration integrals like eq
(2.15) can be performed directly, yielding as a result the volume V available to solvent and solute

together.
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Fig. 2.1: Local spherical polar coordinates (BAT coordinates) of a branched molecule. The lab frame
(purple) is the initial reference for external rotations 6,, @, and @;. Further up the chain, the frame of
reference is local and defined by the chemical bonds.

Rotating the first bond vector b2 = Iy — Iy together with the whole solute molecule is described
by varying the polar coordinate angles (62, ¢2). Similarly the whole molecule can be rotated
about the bond b: described by the azimuthal angle ¢3. The potential energy function Uy, of the
solute does not depend on the orientation of the whole solute molecule. Hence, the integrations
over 6, @2 and @3 in the configuration integrals like eq (2.15) can be performed directly to give

the factor 8m%. As a result we have for instance for the (configurational) state sum, eq (2.3)
2n N _
2, =V8x* [ db, b} [db;bZ [ d6;sin6; T T [dby, exp[-U,, () /kgT], (2.23)
n=4

with the differential of the local spherical polar coordinates
d®b, = by’db, siné, dé, den, (2.24)

and the 3N—6 BAT variables combined in the (3V-6)-dimensional vector
b’ = (b2, ba, O3, ba, bs, . ... by_s, b)), by = (b, O, @n) . (2.25)

with bond length by, inclination angle @n, azimuthal angle ¢y. In analogy to eq (2.25) we also

define the differential form
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N
d®Ob' = by’db, x bs’dbs x sind3 dds x [Jd®b,. (2.26)a
n=4
Thus, we can write now the (configurational) state sum, eq (2.23) in the compact form

Za
V8r

7= [d®" b exp[-U,, (0) /kgT] = 7, (2.27)

where Z,, is now the conformational state sum exclusive of the position and orientations of the

solute. We can now define the reduced conformational probability distribution

p, (0 =exp[-U,, (6) 1 kgT1/ 2, . (2.28)

2.2.3.1 Relative conformational entropy in terms of BAT coordinates

The reduced relative conformational entropy, which neglects translation and orientation of the

macromolecule, is
S5 = _.[di(SN_mb'Pé(B') In[p4(b")] E—<|n(p5)>, S-=a, B (2.29)

Hence, the entropy differences of a molecular system can be expressed by the dimensionless
configurational entropies as is done in eq (2.14) or alternatively by the reduced dimensionless

conformational entropies, eq (2.29) according to
ASap = ke (Sa = Sp) = ke (Sa = Sp). (2.30)

In case an implicit solvent model is used, the potential energy function Uy is explicitly defined
and the configurational integral in eq (2.29) can, in principle, be evaluated directly. For an
explicit solvent model U, depends implicitly on the thermodynamic state of the system (i.e.,
pressure and temperature) and involves averaging the Boltzmann factor eXp(—Uson / (KsT)), where

Usolv is the solute-solvent interaction, over “free” solvent configurations for each fixed solute
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conformation’. In both cases, the resulting U, incorporates the influence of the solvent on the

distribution of the molecular conformations”. In practical applications, it is often more

advantageous to sample the conformational probability density p, (0') through simulations. It

should be noted that a rigorous separation of the conformational entropy of a solute from the

t72,73 i

entropy of the embedding solven s not possible in the current scheme because of the

correlations between the two molecular subsystems.

2.3 Numerical method to estimate conformational entropy

differences

We are now prepared to numerically estimate conformational entropy differences for a
macromolecule (solute) immersed in a solvent possessing two distinct conformer domains o and
LS using eq (2.30). These conformers are for instance conformational domains separated by
torsional energy barrier or the native folded and denatured unfolded structures of a protein’™. The
entropy difference (2.30) can be expressed in terms of the reduced relative conformational
entropy (2.29) for each conformer = &, 3, corresponding to the Shannon differential entropy’ of

the probability density (2.28).

The conformational entropy, eq (2.29), of a macromolecule with NV atoms involves an integral in
3N—-6 dimensions. Hence, even for a small macromolecule, solving such integrals suffers from the
curse of dimensionality. It is virtually impossible to perform these integrals explicitly even for
molecules of a few atoms. Alternatively, one can use sampling methods based on molecular
dynamics (MD) or Monte Carlo (MC) simulations, which generate molecular conformers in the
frame of a canonical or quasi-canonical ensemble. In case the computation of canonical ensemble
averages (free energy, enthalpy and entropy) can be based on a single equilibrated trajectory,
importance sampling with Metropolis MC or MD simulation” and energy averaging are
straightforward techniques to evaluate them. We will use this method to obtain reliable
benchmark data to compare our results with. This method is however not applicable if the
problem requires the use of different trajectories from independent simulations, as is generally

necessary for studying protein-ligand binding. Hence, other procedures are needed which can
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deal with data from different trajectories. An alternative for these cases is the numerical

estimation presented here.

To estimate conformational entropy differences, we use non-redundant internal BAT coordinates
for the given molecular topology. The high dimensionality of the conformational space is
reduced through the mutual information expansion. The probability densities of the lower-
dimensional subspaces in BAT coordinates are discretized by a histogram method and used in the
calculation of conformational entropy differences. The biases inherent in entropy estimation are

compensated through the bias-removal and balancing methods.

2.3.1 Automated selection of BAT coordinates

For a given molecular topology, a set of non-redundant internal BAT coordinates is constructed
using the procedure described in section 2.2.3 “Entropy using local spherical polar (BAT)
coordinates”. In practice, this translates into a tree algorithm also described by Gilson et al®®. The
PERL implementation of the BAT tree algorithm by Thomas Steinbrecher’®, which in turn uses

ptraj”’, is adapted and modified to use Charmm/NAMD trajectories.

2.3.1.1 Continuity maximization for torsions

In contrast to molecular bond angles, torsion angles can vary over the whole angular regime from
0 to 27, such that the 27 periodicity must be considered to avoid discontinuities. We apply a
‘continuity maximization’ algorithm to deal with this problem. For each torsion angle, its one-
dimensional probability distribution is discretized with a large number of histogram bins (say
1000), many more than will finally be used for entropy computations. In this histogram, the
longest continuous stretch of empty bins is detected. The end points of the angular interval for
the histogram used to evaluate the entropies are placed such that they exclude this regime. If no
histogram bin is empty, the original angular distribution is kept and used for the entropy
evaluation. For a torsional coordinate with values that cover the whole 27 span, the choice of the
end points formally has no effect, and numerically it would only have a vanishing one. However,
for an angular variable that covers only part of the 27 span, this algorithm avoids considering a

large number of empty (unused) histogram bins.
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2.3.1.2 Phase angles

If P torsions @y share three atoms (for a methyl group P = 3), geometrical correlations can be
reduced furthermore by transforming P — 1 torsions into phase angles”® ¢. The hydrogens of a
methyl group display such behavior, for which we define a master torsion angle, say @i, and two
phase angles’ @i. Generally, if the torsion angles @ and @j have three atoms in common, we

keep @i and substitute @j by the phase angle

Pi=@ji— @i. (2.31)

This transformation has a unit Jacobian and preserves a complete geometric description of the
molecule. In Fig. 2.1, the atoms with coordinates r'4 and I's give rise to torsions @4 and @s.
According to eq (2.31) we substitute torsion @5 by the phase angle ¢5 = @5 — @4. Such phase

angles”® have narrower distributions than torsion angles.

In our algorithm, main chain torsions (of the polypeptide backbone) are kept as full torsions, and
the ones defined at branches (describing side chain orientations) are converted into phase angles.
Both phase angles and the ability to define main chain atom types are implemented in our

modified version of the BAT tree algorithm.

2.3.2 Mutual Information expansion in low dimensional subspaces

The convergence of the reduced conformational entropy S, eq (2.29), suffers from the curse of
dimensionality. Therefore, we approximate S by a systematic series, projecting the probability
distribution function p from the L-dimensional space, spanned by the generalized coordinates

G' =(q,,q,,...q,) into subspaces of lower dimensions as defined below

L
P3)i,jk (qi7qj7qk) :_J.P(q)d(l__s)qi,j,k , with d(Lig)qi,j,k = H dQ| (2.32)a

I, j k

and the analog expressions of two- and one-dimensional reduced probability distribution

functions
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Pryii (G, dj) = Ip(g)i,j,k (4, 4;,9) da, (2.32)b
and

p(l)i(qi):Ip(Z)i,j(qilqj)dqj- (2.32)c

The factors Jy appearing in the conformational integrals of (2.32) are from the Jacobian
determinant describing the transformation of the volume element from Cartesian to generalized
coordinates. In the present application we use BAT coordinates, eq (2.26)a, where according to

eq (2.26)b the Jacobian factors Jy are

\Jn = bn2 for qn = bn s (2.33)3
\]n = SinGn for qn = en 5 (2.33)b
Jn = l for qn = (on . (2.33)C

Individual values of the low dimensional probability densities (2.32) can be readily estimated
from a finite set of simulation data. Their statistical accuracy improves the lower the dimension of
the considered subspace is. With these reduced probability distributions, one can define entropy

expressions in the corresponding low dimensional conformational space as for instance

S(3)i,j,k:_J.p(3)i,j,k(qi’qj'qk)ln(p(S)i,j,k(qi’qj’qk)) ] Jdq; , (2.34)a

1=1, 1k

for the three-dimensional subspace and analog expressions for the two- and one-dimensional

subspaces

S@)i,j = _Ip(Z)i,j (a, q]')ln(P(Z) CT Qj))IH_ J,dg, (2.34)b
:|,J

and

Swi = _I Puyi (g;)In (p(l) i(q )) Jidg; . (2.34)c
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We are now prepared to formulate the MI expansion for entropies in an L dimensional phase

Space35,39,59

L

L L
Swe =2, Swi— 2D, Loyij + > Lyt jkc = - (2.35)a
i=1

i<j=1 i<j<k=1

The terms l(z)ij and l(3)ijx in (2.35) are the mutual information terms of 2" and 3 order,

respectively, which are defined as

l2)i,j =Swi +Swi ~Sw@ij (2.35)b
and

Layi ik =Swi +Swi +Swk ~ (Swyij +S@ik TSz k) + Sk - (2.35)c

The MI expansion (2.35) starts with the sum of marginal entropy contributions S(1y; in
the individual one-dimensional subspaces, neglecting correlations between them. The next terms
correct for these correlations up to a given order. The MI expansion can in principle be extended
to any desired order, up to full dimensionality’®. However, higher order terms have a notoriously
difficult convergence behavior. In the present work, we will use the MI expansion up to third
order. According to our experience, this is sufficient to evaluate entropies from molecular

trajectories reliably when internal BAT coordinates are used.

2.3.3 Discretization

To evaluate the subspace entropies according to (2.34), the molecular conformer coordinates
obtained from a simulation of a canonical ensemble are discretized using histogram bins. In a

three-dimensional subspace spanned by the coordinates Gy = (¢ g;, g4), the bins are numbered
by the integer vector mijk = (m;, mj, mi), where the my, (I =1, j, K) run from 1 to M and their

widths are given by Aq). If the total number of conformations belonging to conformer regime o'is

N© and the number of conformations in the bin mijk belonging to the three-dimensional

subspace spanned by Gy, is N((g)i’ ik (M) , the corresponding discretized probability is
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p((e?))| j.k (mljk (3)| j.k (mljk )/(N(& H ‘]I(a)(ml)Aql J > (236)3

150, ).k

such that the probability density function is normalized to unity according to

Mj.M .My

1= N%é‘) Z N((:f))u i (M) = Ip(3)|1k(qijk)dqidqjqu .

mj,mj,m =1

The J|(§) (M) refer to the Jacobian factors (2.33) for the different BAT coordinates ¢j. Using

analog definitions, the discretized probabilities for two- and one-dimensional subspaces

(normalized the same way as in the three-dimensional subspace) are

Pl ; (M) = NG, ; ( )/ [N@H J,(‘”(m,)AqIJ (2.36)b
I=i,
and

P (M) = NI )/ (N9 m) ). 230

Based on these discretized probabilities, the entropies in the three-, two- and one-dimensional

subspaces spanned by G , Gy and 0, respectively can be written as

MMM
(Hm.] 5 [HJ.“‘)(m.jpéza,k<n,-k>'n(péza,,-,k<m.,k>) @37

=i, j,k mj.mj,m =1 =i, j,k

M;i M

Sff)’.f (Hqu,] zl(HJw)(m)]pg)”( ) (pg))”(m )) (2.37)b
i m;,mj
M;

50 =-Ag, Y, 3 (m)) pi (m,)In( p3) (m,)) (2.37)c

m;=1
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used to evaluate the MI expansion (2.35). To account for the periodicity of the torsion angles, the
histogram bins are placed appropriately, using an adaptive algorithm, as described in section

2.3.1.1 “Continuity maximization for torsions”.

2.3.4 Bias-Removal

The entropy expressions (2.37) are based on estimates of the probability density function using
finite samples that represent the canonical ensemble. These are subject to fluctuations, which lead
to systematic deviations (bias) that underestimate the true value of entropy”®. In the limit of
small probabilities to find the molecular system in one particular bin of the histogram, a simple
correction (bias-removal) term can be added that compensates this bias and yields bias-free

(unbiased) entropy estimates according to

1 M) 1
&(0) _ «(9)
Swi = Swi t 2|N(6) ’ (2.38)a
M (91
&0)  _ «(9) i
S@)ij = S@ii T ING (2.38)b
M ()1
&(%) N ijk
S(3)i,i,k - S(3)i,j,k + IN@  * (2.38)C

The M count only the occupied bins of the histograms, (with p(é) (m) > 0), such that

Mi(ji) < H M, and N@ is the total number of frames (molecular conformations) in the sample.
153, ]k

Evidently, the corrections are larger for entropy terms in higher dimensional subspaces®#2. The
bias-removal corrections (2.38) depend only on parameters characterizing the evaluation of the

data (M Q) , N and not on the particular system considered (p(é)).

2.3.5 Balancing

In practice, we are often interested in entropy differences between different states, for example
between two conformer regimes (see eq (2.30)) or between the bound and unbound states of a

protein-ligand system. Using a finite number of frames (molecular conformations from
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simulation), the entropy difference may already have converged, although the entropies of
individual conformer regimes have not. We have noticed that convergence of entropy differences
is most efficient when the same number of effectively independent frames (N ~ NPy is used for
both conformer regimes (¢, f). When the two conformer regimes are simulated in a single-
trajectory, an imbalance occurs if N@ > NO, Discretizing these data in a histogram, eqs (2.36),
the systematic errors for the subspace entropies, eqs (2.37), will differ for the two conformers.
Hence, the systematic errors will not cancel in the entropy difference, eq (2.30), using these
subspace entropies. To avoid this problem, the set of data are balanced keeping all frames of the
minority conformer regime £, while reducing the number of frames of the majority conformer
regime & by randomly deleting frames of the conformer a. If instead only a contiguous part of
the trajectory is used to reduce the number of frames of the majority conformer, the two
conformer regimes are no longer explored under the same conditions. Effects of such a
nonequivalent exploration are discussed in section 2.5.6.1“Importance of choosing frames at

random in the balancing method”.

Here we provide an explanation for the observation that with less data for the majority conformer
regime better estimates of entropy differences are obtained. Smooth probability distributions have
higher entropy than rough distributions. For example, a perfectly smooth Gaussian probability
distribution provides the maximum entropy for fixed variance®. Alternatively, a rough, multi-
peaked probability density of the same variance contains more information, since the multi-
peaked distribution ‘classifies’ data in more detail. It is well established® that the statistical bias
originates from statistical variations in the bin values of the histogram p, eq (2.36) representing
the true probability density p, eq (2.32). It is evident that histograms will on average become
smoother the more data are used to estimate the distribution. We conjecture that balancing works
well because it produces histograms with comparable roughness in both conformer regimes.
Thus, the bias from the histogram roughness cancels in the entropy difference (2.30). This

behavior is detailed under section 2.5.6 “Convergence of the entropy estimates”.

Hence, we recommend applying balancing when the conformers of both regimes are taken from

the same trajectory. However, balancing will also work, if different trajectories of the same
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molecular system are simulated under equivalent conditions. In contrast to the bias-removal
correction that applies to entropies of individual states (conformer regimes), the balancing
correction applies only to entropy differences. While the bias-removal correction term (2.38)
removes systematic deviations (biases) connected solely with the evaluation procedure, balancing

accounts also for systematic deviations that depend on the particular system under study.

2.3.6 Generating molecular conformations in a canonical ensemble

Data that represent a canonical ensemble of molecular conformations can be generated by MD.
We use Langevin dynamics as implemented in CHARMM35b1 as thermostat. To avoid slowing
down of dynamics as observed in ref 84 a friction constant of Yrang = 1 ps ' is used®. However,
other thermostats such as the Andersen thermostat® or Nosé-Hoover chains®” may also be

appropriate®.

Some implicit solvent models such as GBMV with standard parameters are known not to
conserve energy® in microcanonical (NVE) MD simulations because of the complexity of the
molecular surface of the solute used to approximate the Poisson-Boltzmann solvation free energy.
As a consequence, these models combined with a thermostat may generate imperfect canonical
ensembles. Therefore, we prefer to use the energy conserving implicit solvent model FACTS,

defined purely on the basis of pairwise distances between atoms.

2.3.7 Benchmark Entropy

The free energy change between two molecular conformer regimes can be calculated from a single
trajectory if equilibrated simulation data reflecting Boltzmann statistics are available. N and N
are the number of conformations (frames) for the conformer regimes & and f obtained from a

simulation using importance sampling with MD or Metropolis MC”. This is sometimes called the

counting method”’ to obtain the configurational free energy difference

AF

s =F, —F, ==k, TIn(N® /NPy, (2.39)
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The entropy difference between two conformer domains & and S of a macromolecule with V

atoms can be written

Asaﬂ,bmc/yz (A<Eaﬁ> _AFaﬂ)/T. (240)

Using eq (2.6) <Es = 3/2 NkgT + <Us> and given conformers o and fat identical temperature

7, the difference of the internal energy

A<Ey > = A<Uyp> = <U> — <Up> (2.41)

can be evaluated from MD simulation data by averaging the potential energies Us, = o, f3, over
all frames of conformer regime « and f, respectively. Entropy differences computed from data of
a single trajectory based on (2.40) converge more rapidly than an MI expansion. Therefore, they
can be used as a benchmark to test the MI expansion method. Conversely, the MI expansion can
also be applied to compute entropy differences for situations where the conformer regimes need
to be generated by independent MD simulations where relation (2.39) cannot be applied to
compute the free energy difference. Such independent trajectories are required for instance to

evaluate the binding affinities of ligand-receptor or protein-protein complexes.

Using MD simulation data to evaluate AF g according to (2.39), AF,s3 converges more rapidly
with the length of the trajectory than the evaluation of AS,sand AU s based on (2.40) and
(2.41), respectively. This convergence behavior has been reported previously® and is discussed at
length for our simulations in section 2.5.4 “Convergence of benchmark entropy, energy and free
energy”. The simulation data are obtained with importance sampling based on Boltzmann statistics
such that for an evaluation of AF g all frames are used with equal weights, while for evaluation of
AU g5 the frames need to be reweighed using the potential energy terms U, §= a, . Hence, the
effective number of frames available for the latter case is smaller, resulting in larger statistical
errors. As a consequence, the convergence of the benchmark value of AS,p according to (2.40) is

limited by the convergence behavior of AU 4.
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2.4 Model system 1: Monte Carlo simulation of a three-atom

molecule in a cage

2.4.1 Simulation procedure

The first model system that we investigate is a three-atom molecule whose conformations are
generated by a continuous random walk starting at the origin with fixed step size (bond length).
The first atom is considered to be fixed at the minimum of a wall opened toward the positive z-

axis defining a cage (see Fig. 2.2). The wall surface obeys the relation

Zwan(X,y) = 8(X2+y2)1/2 ,e>0. (2.42)

LA

g

Fig. 2.2: Three-atom molecule modeled as continuous random walk with fixed bond lengths. Each

conformation is defined by two bond angles (65, 65) and one torsion angle . The conformer regime o is
the ensemble of conformations where atom 2 and 3 are both above the depicted parabolic wall, eq (2.42),

while conformer B comprises all other conformers (right part).

The second atom can change its position by varying its angle é relative to the plane rectangular
to the z-axis. The third atom can move by rotating around the axis formed by atoms 1 and 2 by
the azimuthal angle ¢ and by varying the bond angle & of the three atoms. Rotations of the
molecule around the z-axis do not matter, since they do not change the configuration of wall and
molecule, due to the rotational symmetry of the wall surface, eq (2.42). The set of angular
variables (6, 6, @) are analog to the BAT coordinates. They are the internal coordinates of the

molecule fixed with atom 1 at the wall.
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2.4.1.1 Monte Carlo algorithm

A simple Monte Carlo (MC) algorithm is used to generate 5 x 107 frames of the free, unrestricted
3-atom molecule by a Random Walk, (RW). To generate each frame in Cartesian coordinates, we

proceed as follows:

1. Place the first atom at the origin: = (0, 0, 0)
2. Place atom 2 at r, = ri+b..

3. Place atom 3 at r3 = r+bs.

Here, by, is a vector whose tip is uniformly randomly distributed on a sphere of radius b, where b
is the fixed bond length. This is accomplished through an algorithm due to Marsaglia’!, which is
an optimized version of von Neumann’s algorithm®?. The independent, identically distributed

pseudorandom numbers required by Marsaglia’s algorithm®' are generated by the pseudorandom

number generator Taus088 due to L’Ecuyer®.

The ensemble of free conformations is now subject to restriction by a hard wall described by, eq
(2.42) with € = 0.612. The constant € is chosen arbitrarily to provide a positive curvature and
divide the conformers unevenly. The conformer regime o comprises the frames where all atoms

are above Zyai. The rest, where any or all atoms are below Zyaii, is denominated f.

2.4.2 Clustering of conformations

The locations of atoms 2 and 3 relative to the wall surface determine the conformer regime

(a or f) to which the molecule belongs (see Fig. 2.2). If both atoms are above the wall, the
molecule belongs to conformer regime a. If one or both atoms are below the wall, the molecule is
in conformer regime £. In this way we have constructed a molecular model with an asymmetric
distribution between the two conformer regimes. Choosing the parameter value € = 0.612 for the
wall surface, eq (2.42), yields an asymmetry of 1 to 10.4 in the proportion of conformations
between regime o and f. A simple MC procedure is used to generate 5 x 107 free molecular
conformations. Then the wall surface, eq (2.42), is introduced and the molecular conformers are

assigned to one of the two conformer regimes.
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2.4.3 Entropy estimation

Here, we estimate the entropy change between the two conformers for the three-atom molecule
in a cage. A two step continuous unconstrained random walk starting at the coordinate origin can
be considered as a three-atom model where the first atom is fixed at the origin. The Cartesian, as
well as the three internal coordinates (6, 6, @) (for a definition see Fig. 2.2) of such a molecular
model are by construction uncorrelated. By introducing a wall to divide the ensemble of
conformers into two regimes, correlations between the coordinates are introduced. All three
internal coordinates are supralinearly* correlated, as evidenced by non-vanishing pairwise I, ;

. 39
and third order |(3) 123 MI terms?®.

For the chosen value of the curvature € = 0.612 of the quadratic wall, eq (2.42), we obtain for

5 x 107 random walks (frames) N‘® = 4.38 x 106 conformers of type o and N = 45.6 x 106
conformers of type [ (Fig. 2.2). Since S is the majority conformer, applying balancing means to
randomly select NV, frames of conformer regime £ for the entropy difference computation. The
benchmark entropy, eq (2.40), may be used as a standard. It converges quickly with the number
of frames (solid line in Fig. 2.3) to the value AS,3=—AF 4T = kg In(N(“)/ N(ﬂ)) =

—19.5 J/(mol K), since AU, = 0.

Among the estimators, the slowest convergence is observed (Fig. 2.3) when neither balancing nor
bias-removal is applied, equivalent to the original method by Gilson et al**®. The fastest
convergence is achieved by applying both balancing and bias-removal. When separating the
effects, the balancing method alone provides a stronger improvement for a small number of
frames (/Vfiames), while bias-removal provides a stronger improvement for larger number of frames
Niames- In practical applications, it is advisable to apply both balancing and bias-removal, as they

work synergistically to accelerate convergence.



51

-4
‘\‘.‘.
= N
¥ 8F N
o \“.‘
E 3
S N
= 12 \.\“
T AN
w .---'-..-__._;_.\*\
< 16 S,
NP LN
N Sal
Nl
=20 1 aaal el _-_h:“::_
10* 10° 10° 10’

frames

Fig. 2.3: Entropy difference AS, for the three-atom molecule as described in section 2.4.3, probing the
correction methods: balancing and bias-removal. The computations are based on a total of 5x10’
conformers. The solid line — is the benchmark entropy difference, eq (2.40). All entropy estimators use
the third order MI expansion with M=35 histogram bins, eqs (2.35)—(2.37). Dashed line - - balanced &
bias-free; dotted line - - - - balanced & biased; dash-dotted line —-— unbalanced & bias-free (reflected to be
above the benchmark); short dashed line ----- unbalanced & biased (reflected to be above the benchmark).

The latter two curves have been reflected about their asymptotic values AS,p(0) according to
ASyp= ASep(0) — ASyp for ease of comparison. The inlay zooms into the last phase of convergence. The
fastest convergence among estimators is achieved by applying both methods: bias-free and balancing.

The abscissa in Fig. 2.3 and Fig. 2.4 is the total number of frames in the simulation. Because in
the balancing method we actually use only a subset of those frames, the CPU requirements of the
entropy evaluation are reduced by one order of magnitude, while at the same time improving the
convergence. Nevertheless, we use the same abscissa to allow comparison between the methods.
The number of histogram bins M chosen is the resolution at which the conformational space and
the correlations between the different variables will be sampled. The dependence on M is plotted
in Fig. 2.4 for the uncorrected (a), and for the balanced and bias-free methods (b). If we choose
M too large, there will not be enough data to fill the bins, and convergence will be slower and
incomplete for the given amount of data, which is 5x10” conformers. If we choose too small an
M, the resolution will not be high enough to capture the correlations. The values of M between
20 and 35 are most suitable for the third order MI expansion using 5 x 107 conformers. There is,
however, a dependence of ASy50n M, which is reduced by using balancing and bias-removal, but
not completely eliminated. In summary, most of the entropy estimates have reached their
asymptotic value when using balancing and bias-removal (Fig. 2.4b). Conversely the
corresponding results are far from being converged, if the MI expansion method is used without

corrections, i.e. unbalanced and biased (Fig. 2.4a).
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Fig. 2.4: Entropy difference AS, for the three-atom molecule probing different histogram sizes using a:
uncorrected estimates (unbalanced and biased) and b: corrected entropy estimates (balanced and bias-free)
with improved asymptotic convergence. The computations are based on a total of 5x10” conformations.
Solid line is the benchmark entropy according to eq (2.40). All entropy estimators (dashed lines) use the
third order MI expansion varying the number of histogram bins M. Note that the curves with M = 35 are
identical to Fig. 2.3 except for the reflection.

2.5 Model system 2: Molecular Dynamics simulation of trialanine

2.5.1 Simulation procedure

Simulations of trialanine were performed with 13 different conditions, each one spanning a 1 ps
trajectory. The canonical ensemble was approximated using the Langevin thermostat with
coupling constant Yrag = 1 ps”. The time propagation step was 1 fs. No SHAKE constraints were
used to account also for entropy contributions from hydrogen atom bond vibrations.
Conformations were saved every 0.2 ps for a total of Niume = 5 X 10°. The CHARMM22% force
field was used together with the implicit solvation model FACTS? with parameters k = 8 and
dielectric constant € = 1.0 implemented in CHARMM35b1. In order to generate a total of 13
simulations with different entropies, we varied the hydrophobic “surface tension” term yny and
scaled the attractive 1/r° term of the Lennard Jones potential by the dimensionless factor €. For
vanishing surface tension (yug = 0.0), we used €ar(j) = 0.00 + 0.25j,j=0,1,2,...6, and for
Y = 0.025 cal/(mol K A?) and Vg = 0.045 cal/(mol K A2), we used €ar = 0.00; 0.50; and 1.0.
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2.5.2 Clustering of conformations

The molecular conformations of the trajectories were post-processed to generate two conformers
by using a geometric criterion. The main anharmonic motion in trialanine is about the dihedral
angle y» of the middle residue’, which we have chosen as our ‘order parameter’ (see Fig. 2.6).
We separate two conformers of trialanine by searching for two minima in occupation in the
torsion angle y». As a result we obtain a conformer regime « with dihedral angles similar to an o.-

helix and a conformer regime f with torsion angles similar to polyglycine 3;-helix (Pu).
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Fig. 2.5: Probability density for the Ramachandran dihedral y, in simulation condition 8. The torsion
angle y, (see Fig. 2.6) is used as order parameter dividing the conformers & and f. This circular variable
delimits the conformers at two positions: Y, uic is computed as the region with minimum population near
W2=-140°, which varies according to the simulation conditions (See Table 2.1). The second cut position is
fixed at y,=25°, since it depends on the repulsive wing of the Lennard Jones potential and is identical for

all 13 simulation conditions.

Our trialanine model consists of NV = 34 atoms. Its geometry can be described with N-1 = 33
bonds, N-2 = 32 angles and N=3 = 31 torsions yielding a total of 96 BAT coordinates.
Furthermore, the torsion angles can be divided into 13 main torsions and 18 associated phase

angles.
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Fig. 2.6: The compact (@) and extended (/) conformers of trialanine. The Ramachandran torsion W, is
used as an order parameter to define the conformers. The compact conformer & has a lower (more
favorable) potential energy U, < Upg, but also lower (more unfavorable) entropy S, < Sz, eq (2.29), than
the extended conformer. By how much U and s differ is a function of the surface tension (yny) and the
scaled 1/r® attractive term of the Lennard Jones potential (ga1r), which were varied in each of the 13

simulations.

2.5.3 Entropy estimation

For the MD simulations of trialanine, larger values of xr enhance the attractive wing of the
Lennard Jones potential. This leads to more compact conformations (N® > NP, and a larger
entropy difference ASz,. Larger surface tension () up to a value of 0.045 cal/(mol K A2) had a
smaller and opposite effect on ASg,. By varying €awr and yny, different simulation conditions are
created, which are then used to test the entropy estimator based on the MI expansion. The order

parameter > serves to cluster the conformers o and f (see Fig. 2.5 and Fig. 2.6).

2.5.4 Convergence of benchmark entropy, energy and free energy

In order to test our numerical method to estimate entropy, we need reliable benchmarks. Here we
show that the trialanine benchmark values are appropriately converged. In Fig. 2.7, we observe
that the free energy difference AFp, converges the fastest among thermodynamic variables. The
energy difference AUpg, is slower in convergence, and ASpysench, being calculated as a difference, is
the slowest one to converge. The simulation condition ID is assigned by ascending values of
AFpy. The order in the values of the energy difference AUp, and the entropy difference ASggsench
differs somewhat with respect to the ascending AFp, order (see bars on the right of Fig. 2.7.) The
free energy AFp, is the result of the interplay of energetic and entropic contributions, which are
related but not identical. A given potential energy surface (which varies among simulation

conditions 1 to 13) determines which microstates are accessible to each conformer at temperature
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depth”), and the entropic component from their multiplicity (average “funnel width”), adapting

the concepts of Wolynes” to our system. Thus, there is no a priori reason to believe that the

ascending order of the values of energy, entropy and free energy differences should be identical.

See color labels in Fig. 2.7a, b and c.
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Fig. 2.7: Convergence of the thermodynamic variables in the 1 ps trialanine simulation using 5x10°
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Krivov et al. simulated tetraalanine®® with the PARAM19 force field of CHARMM?® and the

ACS' implicit solvent model. To evaluate entropy, the tetraalanine conformers were clustered

using not a geometric, but a kinetic criterion. The simulation was done both with Langevin

dynamics and with a method that confines and explores conformations in a given conformer



56

basin. They also find that the extended f conformer has higher average energy but is stabilized by
entropy. The entropy difference between the helical & and extended £ conformations of
tetraalanine was found to be ASg, = 20.4 J/(mol K)*®, comparable to our results for trialanine,

which range from about 5.8 to 17.3 J/(mol K) depending on the simulation conditions.

In Table 2.1 the final asymptotic values for the thermodynamic variables are provided. For each
simulation condition, the numerical values for the hydrophobic “surface tension” term Yy and
the 1/r° attractive Lennard Jones potential scaling factor €. used in each simulation can be read.
Also, the critical value of y», a Ramachandran dihedral angle of the middle residue of

trialanine®>%

, which we use as order parameter, is provided. W i is the value of that angle at
which the ensemble population is the lowest, and used to divide the conformers o and . The
second value at which the circular variable y; is cut is fixed at 25°, a value identical for all
simulations. It is the consequence of the repulsive wing of the Lennard Jones potential (identical

in all 13 simulations) and physically interpretable as a steric constraint. See Fig. 2.5 for an

example of the probability distribution p(y») corresponding to simulation condition ID 8.

Table 2.1: Converged values of the thermodynamic variables for trialanine simulation with 13 different

conditions.

Simulation Eattr YHo AFﬂa AUﬂa AS,Lia,bench Y2 crit

condition [dimless] [cal/(mol K AH]  [kd/mol] [kJ/mol]  [J/(mol K)]  [degrees]
1 0.00 0.045 -0.25 1.49 5.80 -134.5
2 0.00 0.025 0.21 2.03 6.08 -138.5
3 0.00 0.000 0.73 2.58 6.15 -140.5
4 0.50 0.045 1.01 3.57 8.54 -135.5
5 0.25 0.000 1.37 3.44 6.92 -139.5
6 0.50 0.025 1.51 3.86 7.85 -139.5
7 0.50 0.000 2.06 4.53 8.23 -141.5
8 1.00 0.045 2.87 6.22 11.17 -140.5
9 0.75 0.000 2.92 6.03 10.37 -140.5
10 1.00 0.025 3.30 6.85 11.83 1415
11 1.00 0.000 3.93 7.45 11.72 -1415
12 1.25 0.000 5.16 9.60 14.79 -144.5
13 1.50 0.000 6.81 12.01 17.34 -1445
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2.5.5 Detailed results for entropy estimates using the Ml expansion (MIE)

Here we present the results for entropy estimation with MIE1 (Fig. 2.8), MIE2 (Fig. 2.9) and
MIE3 (Fig. 2.10). The four panels of these figures demonstrate the effect of using different
correction methods. Upper left: unbalanced, biased; upper right: unbalanced, bias-free; lower left:
balanced, biased; lower right: balanced, bias-free. In these figures, we consider all 96 BAT degrees
of freedom of the trialanine model: bonds, angles, torsions and if necessary phase angles that
replace corresponding torsion angles. The lower right panel (d) presents the best results using
both correction methods: balancing and bias-removal. Also shown in each panel is the average
and standard deviation of the estimate-to-benchmark ratio ASgymie1 / ASgabench. Average and
standard deviation for this ratio are calculated over all 13 simulation conditions and all five of

histogram schemes with different numbers of bins M.

2.5.5.1 MIE1 using all BAT coordinates

The first order MI expansion (MIE1) in Fig. 2.8 is well converged. Nevertheless, the converged
value does not agree well with the benchmarks, as can be seen by the deviation of the computed
results from the dashed diagonal line representing the perfect agreement. In MIE1, the individual
entropies are estimated as the sum of the marginal entropies (first term of (2.35)). Compensating
the bias according to eq (2.38) yields for MIE1 a small correction only, which results in no
noticeable change from a=b and ¢=>d in Fig. 2.8. The size of the correction is small because in
the 1% order MI expansion the number of histogram bins is small such that the bins are well filled
and exhibit small fluctuations. This contrasts with MIE2 and MIE3 having quadratically and
cubically as many histogram bins, respectively. Thus, for MIE1 the major correction comes from
balancing (a=>c and b->d). The balancing method narrows the spread between the estimators for
the different number of histogram bins M (different symbols), but as expected cannot correct for

the lack of correlation in MIE1.
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Fig. 2.8: Results with first order MI expansion (MIE1). Entropy difference estimates ASp, (abscissa)
between the two conformers fand & for the trialanine model are compared with benchmark entropies
(ordinate). All 96 BAT degrees of freedom are used. The symbols stand for the number of histogram bins
used: X M=20; & M=25; + M=35; O M=50; ® M=100. The arrows show application of the correction
methods: none (a), either (b, ¢) or both (d). Also given are average and standard deviations for the ratio

ASpemizr | ASggiencs of all 13 simulation conditions and the five histogram schemes with different numbers

of bins M. The optimal result is 1.0 +0.0.

2.5.5.2 MIE2 using all BAT coordinates

In Fig. 2.9, we see a large and beneficial effect of the balancing method (a=c and b=>d). The

bias-removal acts to fine-tune the entropy differences in c=>d. It becomes evident that balancing

and bias-removal act synergistically to improve the accuracy of the entropy estimates.
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Fig. 2.9: Results with second order MI expansion (MIE2). Entropy difference estimates ASg, (abscissa)
between the two conformers £ and « for the trialanine model are compared with benchmark entropies
(ordinate). All 96 BAT degrees of freedom are used. The symbols stand for the number of histogram bins
used: X M=20; & M=25; + M=35; O M=50; ® M=100. The arrows show application of the correction
methods: none (a), either (b, ¢) or both (d). Also given are average and standard deviations for the ratio

ASpemizr | ASggsencs of all 13 simulation conditions and the five histogram schemes with different numbers

of bins M. The optimal result is 1.0 +0.0.

2.5.5.3 MIES3 using all BAT coordinates

The MIE3 entropy difference estimates in Fig. 2.10 show poor agreement with the benchmarks.

There is definite improvement by using bias-removal and balancing, but even Fig. 2.10d where

both methods have been used is far from optimal. From this we conclude that we need more

frames than the 5 x 10° frames used here to obtain well converged MIE3 estimates.
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Fig. 2.10: Results with third order MI expansion (MIE3). Entropy difference estimates ASg, (abscissa)
between the two conformers £ and « for the trialanine model are compared with benchmark entropies
(ordinate). All 96 BAT degrees of freedom are used. The symbols stand for the number of histogram bins
used: X M=20; & M=25; + M=35; O M=50; ® M=100. The arrows show application of the correction
methods: none (a), either (b, ¢) or both (d). Also given are average and standard deviations for the ratio

ASponier | ASggsensy of all 13 simulation conditions and the five histogram schemes with different numbers
of bins M. The optimal result is 1.0 +0.0.

2.5.5.4 MIE Using only soft degrees of freedom

In recent work of Briischweiler et al.”!, it was suggested to employ the main torsion angles (‘soft
degrees of freedom’) only and to neglect the ‘hard degrees of freedom’, including phase angles. In
their work, Briischweiler et al. only account for the momenta contributions (cf. second term of eq
(2.13)) of the hard degrees of freedom, which is required because the entropy difference is
estimated for conformers at two different temperatures (T = 380 K and T = 270 K). They assume
that the Jacobian determinant (which only arises from hard degrees of freedom) will be
conformation-independent and thus cancel. The validity of this assumption is discussed in

section 2.6.1.2, “Approximate cancellation of the Jacobian term of the entropy”. The momenta
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contributions and the constant Jacobian are embodied into eq (2) of ref 51. Using only torsions
as soft degrees of freedom resulted in estimate-to-benchmark ratios between 0.87 and 0.96 when
testing entropy differences of dipeptide conformers at two different temperatures (see Table I, last

column, of Briischweiler et al.>!).

Furthermore, Briischweiler et al. studied the conformational entropy change between the bound
and unbound conformers of a protein®. They found that linear correlations (as obtained from the
covariance matrix”’) between torsion angles are fairly similar in the bound and unbound states.
Based on this fact, Briischweiler et al. suggested® to neglect correlations between the torsion
angles (as estimated from mutual information, which includes non-linear correlations®). In
defining ‘soft degrees of freedom’ Briischweiler et al. considered only one main torsion angle per
shared pair of bonds. This is confirmed in the statement that the alanine dipeptide “has a total of
7 soft degrees of freedom™'. Translated to our definition of BAT coordinates, trialanine has 13
main torsions. However, trialanine also has 18 associated phase angles, which may or may not
count as ‘soft degrees of freedom’. The remaining 33 bond lengths and 32 bond angles are
considered stiff or ‘hard degrees of freedom’. Although their entropy estimation employs different
numerical methods®"*?, their results are on similar footing with ours since: (i) They employ (a
subset of) BAT coordinates. (ii) Their data are naturally balanced, as their conformers belong to
two independent simulations involving the same simulation conditions, from which they likely
take the same number of frames for their analysis.

20

QO
\
(o}

)

(=)
\

ratio: 0.71 £0.087 - ratio: 0.82 +0.051 -

151 . 15} R

AS,, wes Mol K)]
\

AS,. ez Mol K)]
\
b

5 10 15 20 5 10 15 20
AS [Ji(mol K)] AS [J/(mol K)]

Pa,bench Pa,bench
Fig. 2.11: Entropy estimates for the trialanine model using only the main 13 torsion angles as ‘soft degrees
of freedom’, and neglecting the conformational variations of phase angles, bond angles and bond lengths.
Both correction methods (balancing and bias-removal) are used, as they yield the best results. Also given

are average and standard deviations for the ratio ASgymier | ASggsenss of all 13 simulation conditions and
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the five histogram schemes with different numbers of bins M. The optimal result is 1.0 +0.0. a: First order
MI expansion (MIE1); b: Second order MI expansion (MIE2).

We applied their suggestions to our trialanine model. In Fig. 2.11a, we follow both suggestions.
Using only the main 13 torsions with the 1* order MI expansion (MIE1) yields a low value of the
estimate-to-benchmark ratio of 0.71 +0.087. In Fig. 2.11b, we switch to the 2™ order (MIE2),
obtaining a larger estimate-to-benchmark ratio of 0.82 +0.051. If we now alter the definition of

soft degrees of freedom to include all 31 torsion and phase angles, we obtain a ratio of

0.81 £0.069 for MIE1 and a ratio of 0.97 +0.027 for MIE2 (Fig. 2.12).
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Fig. 2.12: Entropy estimates for the trialanine model using 31 ‘soft degrees of freedom’ (13 torsions and
18 phase angles), and neglecting the conformational variations of angles and bonds. Both correction
methods (balancing and bias-removal) are used, as they yield the best results. Also given are average and
standard deviations for the ratio ASggumues | ASgesens of all 13 simulation conditions and the five histogram

schemes with different numbers of bins M. The optimal result is 1.0 +0.0. a: First order MI expansion
(MIE1); b: Second order MI expansion (MIE2).

In summary, the best estimates for trialanine are obtained when applying both correction
methods: balancing and bias-removal in the 2™ order MI expansion. Furthermore, using all 96
BAT coordinates with M = 35 bins histogram (Fig. 2.9d) leads to the best estimate-to-benchmark
ratio of 1.01 +£0.037. The second best results are obtained using only the ‘soft degrees of freedom’
defined as the torsion and phase angles (Fig. 2.12b). Note that most data points in Fig. 2.12b are
below the identity line (ratios below 1.0), pointing to a slight systematic underestimation of the

entropy differences due to small contributions from the hard degrees of freedom.



63

2.5.6 Convergence of the entropy estimates

In this section, we analyze the convergence properties of entropy and entropy difference estimates
using the 2™ order MI expansion (MIE2) and employing both correction methods (balancing
and bias-removal). For the sake of clarity, only the final converged benchmark values of the
entropy difference ASgypench (eq (2.40)) are shown as dashed lines in Fig. 2.13 and Fig. 2.14. The
convergence properties of the entropy difference for the benchmark values was treated separately

in the section 2.5.4 “Convergence of benchmark entropy, energy and free energy”.
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Fig. 2.13: Unbalanced number of frames, 2™ order estimator (MIE2) used to plot individual (relative)
entropies S,, Sy and the entropy difference AS, 5 Convergence of the entropy estimates versus number of
frames used for the trialanine simulation condition 8 (parameters: Ymy = 0.045 cal/(mol K A? and
€aw = 1.00). Frames are used in time order. The abscissa denotes with N%fume the effective number of
frames used for 6=, B. This differs from Ngmes used elsewhere, which refers to all frames of the
simulation. The dashed line marks the final benchmark value. a: Individual conformer entropies without
bias-removal. b: Individual conformer entropies using bias-removal. ¢: Entropy difference without bias-
removal. d: Entropy difference using bias-removal.

In the following discussion we will use the example of trialanine with simulation condition 8
(parameters Yy = 0.045 cal/(mol K A%) and &, = 1.00) using the 2" order MIE expansion
(MIE2). The individual entropies Ssare not fully converged, whether unbalanced (Fig. 2.13a, b)
or balanced data are used (Fig. 2.14a, b), and independently of whether bias removal a=>b is
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applied or not. As matter of fact, balancing will slow down the convergence of entropies of the
majority conformer S,. However, our main focus is on computing entropy differences AS .
There, we observe a beneficial effect of balancing. Without balancing, the entropy difference
ASp, diverges (Fig. 2.13c, d), while with balancing the entropy difference converges (Fig. 2.14c,
d). This is due to the fact that after balancing the individual conformer entropies (Symie2 and
Spmie2) possess similar systematic errors, which cancel in the entropy difference ASp,. The bias-

removal method c=>d provides an additional beneficial fine-tuning for the entropy difference.

2.5.6.1 Importance of choosing frames at random in the balancing method

In the balancing method, only a subset of the frames of the majority conformer is used. It is
important to choose those frames at random'”" instead of simply taking a contiguous subset of the
trajectory, since that results in a nonequivalent exploration of the phase space. While the
convergence of the individual entropies Ssazz using time order or random order is
indistinguishable to the eye due to the large magnitude of the individual entropies (Fig. 2.14a, b),
the consequences for the convergence of the entropy difference ASp, aie2 are clearly visible. In
Fig. 2.14c, d we see that the convergence of the entropy difference is accelerated by choosing the
frames at random. The reason for this does not lie in the numerical properties of the bias of the
histogram method, but rather in the fact that the randomly ordered conformations result in a
more complete phase space exploration at a given number of frames. Choosing the frames at
random is important for MD and MC simulations, where the frames are correlated with each

other.

The convergence behavior of ASg,, a2 for all 13 simulation conditions using balancing and bias-

removal is presented in Fig. 2.15.

2.5.7 Summary of results for model system 2

We conclude that the best results for estimators of the entropy differences ASg, between the two
the conformers (@, f) of the trialanine model are obtained using all BAT coordinates in the 2™

order MI expansion. These entropy estimates are well converged () and agree best with the

benchmark (Fig. 2.9).
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Fig. 2.14: Balanced number of frames, 2" order estimator (MIE2) used to plot individual entropies S,, Sz
and the entropy difference AS,5 Convergence of the entropy estimates versus number of frames used for
the trialanine simulation condition 8 (parameters: Yry = 0.045 cal/(mol K A?) and €.« = 1.00). Frames are
used in time and random order as indicated in the figure. The abscissa denotes with NOgmes the effective
number of frames used, which is identical for 8=, £ when applying the balancing method. This differs
from MNiames used elsewhere, which refers to all frames of the simulation. The dashed line marks the final
benchmark value. a: Individual conformer entropies without bias-removal. b: Individual conformer

entropies using bias-removal. c: Entropy difference without bias-removal. d: Entropy difference using bias-
removal.
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Fig. 2.15: Convergence of the entropy estimates with the second order MI expansion, using balancing and
bias-removal. The frames are used in time order.
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We show the deviation of the entropy estimates from the benchmark values in Fig. 2.16. The
simulation conditions are labeled as 1 to 13, ordered by increasing AF g,. The simulations with
conditions 1 and 2 have vanishing AF g, so that Keq = NP | N@ = exp(—AFg/ksT) = 1, i.e. the
numbers of frames are equal. In other words, the molecular system is naturally balanced. In
contrast, the simulation with condition 13 is very unbalanced, with AF s, >> 0 and Keq = 0.07,
such that there is room for improvement using the balancing method. See caption of Fig. 2.16 for

values of parameters and thermodynamic variables for the 13 simulation conditions.
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Fig. 2.16: Deviation of the estimated conformational entropy difference ASg,, eqs (2.35)—(2.37), using
the 2™ order MI expansion (MIE2) with all 96 BAT coordinates from the benchmark value, eq (2.40).
Based on MD simulations of 1 ps with 5x10° frames (coordinate sets) for trialanine. Smaller deviations are
for symbols near the center of the discontinuous logarithmic ordinate. The MD simulations with 13
different conditions are ordered by increasing AFg,. The color labels the correction methods used (see bars
on the right). The symbols label the number of bins used in histograms: X M =20; + M = 35; ®
M =100. It is apparent that the deviation of the estimated ASg, is smallest when the estimates are both
balanced and bias-free (green). Details of the MD simulation are given in section 2.5.1. Correspondence
between simulation condition ID and parameters is as follows: ID 1 (€atr =0.0, y114p=0.045 kcal/(mol A2);
2 (0.00, 0.025); 3 (0.00, 0.000); 4 (0.50, 0.045); 5 (0.25, 0.000); 6 (0.50, 0.025); 7 (0.50, 0.000); 8
(1.00, 0.045); 9 (0.75, 0.000); 10 (1.00, 0.025); 11 (1.00, 0.000); 12 (1.25, 0.000); 13 (1.50, 0.000).
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The deviations in Fig. 2.16 are plotted for the 2" order MI expansion including all 96 BAT
coordinates. Using the balancing method (green and blue symbols) results in the smallest
deviations of ASg, from the benchmark values. In particular, combining balancing with bias-
removal (green) results in an average absolute deviation of less than 0.3 J/(mol K). Using the
balancing method without bias-removal (blue) results in an average deviation of 0.7 J/(mol K),
about twice as large. The unbalanced ASg, values (black and red) have generally large, negative
deviations and a systematic, spurious dependency on AF g,. When only bias-removal is applied
(black), but no balancing, the absolute deviation becomes 7.5 J/(mol K). The red symbols in Fig.
2.16 represent the estimates of ASg,, where no corrections are applied, corresponding to the
original method by Gilson et al**®. In this case, the entropy difference has not converged using
all available N+ N)= 5 x 10° frames. The average absolute deviation of the estimated entropy
difference from the benchmark value in absence of any corrections is 32 J/(mol K), which is

about 100 times larger than the corresponding results obtained applying both correction

methods.
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Fig. 2.17: Entropy difference ASg, for the trialanine model system using all 96 BAT coordinates (bonds,
bond angles, torsion angles and phase angles) and considering 5x%10° frames, which are in time order. a:
Influence of the number of histogram bins, M, on the estimated entropy difference of the 27 order M1
expansion (MIE2), plotted versus the corresponding benchmark values for the 13 different MD simulation
conditions applying both corrections: balancing and bias-removal. The number of histogram bins M was
varied: X M =20; &M =25, + M =35; O M = 50; ® M = 100. The dashed diagonal line corresponds to
perfect agreement between benchmark and estimate of entropy difference. Also given is the average and

standard deviation of the ratio ASgy iz | ASpyienss over all five M values and data from all 13 simulation
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conditions (optimal result is 1.0 +0.0). b: Convergence of the benchmark and the MIE2 estimate as a
function of the number of frames Ngumes using M = 35 histogram bins. For the sake of clarity, only three
representative simulations (1, 8, 13) are shown. See caption of Fig. 2.16 for correspondence between

simulation (sim) condition ID and their parameters.

To obrtain close agreement with the benchmark values for the trialanine model system (see Fig.
2.17a) it was necessary to include all 96 BAT coordinates and pair correlations between them, as
implemented in the 2™ order MI expansion of the entropy differences. The estimate-to-
benchmark ratio ASggmie2 / AS g bench (see Fig. 2.17a) was found to be 1.01 + 0.044 when
averaged over all five histogram schemes M (M= 20,25, 35, 50, 100) and all 13 simulation
conditions. In Fig. 2.17b, we see that both benchmark (solid line) and estimated (dashed line)
entropy differences are asymptotically converged, with the benchmark converging more quickly.
This is shown for three examples in Fig. 2.17b (and for all examples in Fig. 2.7 and Fig. 2.15).
The 1% order MI expansion (Fig. 2.8) converges much more quickly than the 2™ order, but the
entropies ASg, obtained with the 1*" order MI expansion have an estimate-to-benchmark ratio of
0.82 £ 0.051 (corresponding to 1 — 0.82 = 18% average underestimation; see Table 2.2). The 3%
order MI expansion does not converge for the available 5x10° frames, and would likely require at
least one order of magnitude more frames (Fig. 2.10). For more information, see section 2.5.5

“Detailed results for entropy estimates using the MI expansion (MIE)”.

We follow the suggestions of Briischweiler et al. and employ only the main torsion angles® in the
first order MI expansion’”. For more details, see section 2.5.5.4 “MIE Using only soft degrees of
freedom”. Neglecting 33 bonds, 32 bond angles and 18 phase angles, 13 main torsion angles
remain for the trialanine model involving 34 atoms. Applying the 1** order MI expansion with

M = 35, the estimate-to-benchmark ratio averaged over all 13 simulation conditions is

0.71 £0.089. Including also pairwise correlations by using the 2 order MI expansion raises the
average ratio to 0.82 +0.051. If we now redefine the ‘soft degrees of freedom’ to include not only
the main 13 torsions but also the 18 phase angles, we obtain ratios of 0.81 + 0.071 (for MIE1)
and 0.97 £ 0.024 (for MIE2), which are much closer to unity. All data are summarized in Table
2.2.
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Table 2.2: Averages and standard deviations for the estimate-to-benchmark ratio ASgymie / AS gobench over
all 13 simulation conditions using histograms with M = 35 bins. The optimal result is 1.0 + 0.0. The
entropy estimates were computed using the 1 and 2™ order MI expansion (MIE1 and MIE2) applying
both correction methods (balancing and bias-removal). The estimate-to-benchmark ratios vary for the
different coordinate sets and orders of the MI expansion used. Best results are obtained with MIE2 using

all 96 BAT coordinates, and second best results are for the 31 ‘soft degrees of freedom’ (13 torsions and 18

phase angles).
coordinate set  order of Ml expansion
MIE1 MIE2
13 main 0.71 0.82
torsion angles +0.089 +0.051
13 torsion and 0.81 0.97

18 phase angles  +£0.071 +0.024

all 96 BAT 0.82 1.01
coordinates +0.091 +0.037

2.6 Discussion

2.6.1.1 BAT coordinates represent phase space compactly

Internal BAT coordinates allow a compact representation of the available conformational volume
of a molecule. An alternative and complementary view of entropy to the missing information is a
measure of the phase space volume occupied by a certain state (see Sec. 27.3 in ref 102) in the
canonical ensemble. The mobility of hydrogen atoms of a methyl group in internal BAT
coordinates is characterized mainly by a single dihedral angle, while the remaining two phase
angles are less important, since they belong to the stiffer degrees of freedom. All other degrees of
freedom of the methyl group describe small amplitude vibrations in three bond angles and three
bond lengths. Alternatively, the Cartesian representation requires nine geometrically highly
correlated coordinates, all of which involve large amplitude motions. Even after applying PCA
OR QHA, such correlations persist® for polypeptide chains. Internal BAT coordinates avoid such
spurious correlations inherent to Cartesian coordinates and are therefore more suitable to describe
the relevant correlations of motion in a molecule, thus yielding improved entropy estimates if the

MI expansion is used.
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2.6.1.2 Approximate cancellation of the Jacobian term of the entropy

In our calculations we consistently employ the factors based on the Jacobian determinant, so that
the entropy in terms of internal BAT coordinates, eq (2.29), yields formally the same entropy as
in Cartesian coordinates, eq (2.15). The influence of the Jacobian does not in general cancel for
entropy differences (see theorem 1.3.2 in ref 61). Nevertheless, we have noticed that there is an
approximate cancellation of the Jacobian contributions in the calculation of entropy differences
between conformers of the same molecule if the MI expansion is used. This can be rationalized as
follows: (1) The Jacobian term plays no role in 2™, 3" or higher order terms of the MI expansion
(see appendix of ref 103). (2) Most of the entropy difference is due to torsions, for which the
Jacobian is unity (see eq (2.33)). (3) The only Jacobian contributions to entropy differences are
due to the 1-dimensional bond and bond angle entropies. The probability densities for these
coordinates experience only small changes between conformers, so the Jacobian term in the
entropy difference will vanish. Similar conclusions about bond lengths and angles have been

reached by others™.

The case of non-covalent bonds in the calculation of the entropy of receptor-ligand binding®
should nevertheless be treated separately. The relative motion of ligand and receptor (residual
translation and libration in the bound conformation) can be characterized using three torsions,
two angles and one bond degrees of freedom. The factors from the Jacobian determinant
associated with the angles and the bond may be extremely different in the bonded and non-
bonded states, as the variability of such bonds and angles is much wider than in a covalent bond.
As such, these Jacobian determinants should always be treated explicitly, as their influence does
not cancel in entropy differences. This was indeed the case in section 2.4 “Model system 1:
Monte Carlo simulation of a three-atom molecule in a cage”, where bond angles have large

104

variations and the Jacobian term is essential for obtaining a thermodynamically relevant

entropy difference.

2.6.1.3 Entropy estimation in signal processing versus molecular simulations

The signal processing community has designed a wealth of approaches to estimate entropy from
samples of time series. They include histogram methods®*'®®, kernel density estimators'® and the

k-nearest-neighbor approach?®3>191719_For a finite number of samples, all entropy estimators
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suffer from statistical and systematic biases”®. The systematic bias can be understood intuitively
because entropy is a sensitive measure of the variability of a probability density, and a finite
sample will tend to underestimate this variability. A major focus in signal processing''® is to
estimate entropy with mutual information (MI) estimators for a small number of variables
(around 10) and a small number of samples (about 10°). Entropy estimation for molecular
simulation data presents a different type of challenge, since we compute entropy differences
considering molecular systems involving 10* or more atomic coordinates, where one needs
samples of 10° or more independent coordinate frames. In this study, we provide evidence that
adequately bias-free and balanced histogram-based entropy estimators work best for data from
molecular simulation. At the same time, its simplicity makes this method computationally more

efficient than others like the k-nearest-neighbor approach.

2.7 Conclusion

In this work, trialanine, a small test model molecule, was used to prove that the 2™ order MI
expansion, in conjunction with balancing and bias-removal corrections, allows for proper
convergence of the entropy difference ASg,. This is the case even though the individual
conformational entropies S, and Sp, eq (2.29), are not converged (see section 2.5.6 “Convergence
of the entropy estimates”). Notwithstanding, the estimated values of ASg, are in excellent

agreement with the corresponding benchmark values.

The use of local spherical polar coordinates® %, the so-called BAT coordinates®, enables a clear-
cut separation of global translation and rotation from the internal degrees of freedom. In the

30,31

quasi-harmonic approximation®**' and other approaches®, the rigid rotor approximation'" is

often used to remove the translational and rotational degrees of freedom. Unfortunately, the rigid

32112 and correlations between external and internal

rotor introduces spurious mass dependencies
degrees of freedom, which can be avoided by using BAT coordinates. The BAT coordinates are
also adept at describing internal motions of polypeptides for numerical computations of entropy,

since this coordinate system minimizes spurious geometric correlations between molecular

coordinates.
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Without the balancing and bias-removal corrections, the method has been used before>*. Here,
we demonstrated that the uncorrected estimate converges when using a much larger sample size
(see Fig. 2.3). However, balancing and bias-removal corrections accelerate convergence in a
synergistic fashion and enable a more efficient use of the available simulated frames. The
balancing method allows for a more efficient systematic cancellation of sampling errors in entropy
differences, which works well even if the individual entropy contributions are poorly converged.
Applied simultaneously with balancing, the bias-removal method compensates systematic bias

due to a limited sample size.

However, just paying attention to the convergence of an entropy estimator does not guarantee
that the algorithm works properly and that the results are reliable. In the test phase of an
algorithm to compute entropies, a careful comparison with benchmark values is necessary before
one can consider applying it to larger macromolecules, where benchmark values are not easily
available. This is the purpose of the present study. Such comparisons have been done before?%,
proceeding then to calculate entropy for large molecular systems. We show here that the
converged entropy differences obtained with the balanced and bias-free histogram method agree
well with thermodynamic benchmarks. For the trialanine model system, the conformational
entropy estimates agree with benchmarks to an average deviation of 0.3 J/(mol K), or alternatively
an estimate-to-benchmark ratio of 1.01 £0.037 (see Table 2.2). A small standard deviation and an

average estimate-to-benchmark ratio close to unity together indicate converged estimates and a

thermodynamically relevant result.

We tested the suggestions of Briischweiler et al.”"** of just using the main torsion angles
(excluding phase angles, bond angles and bonds), as well as using the 1% order MI expansion only.
For trialanine, this resulted in an estimate-to-benchmark ratio of only 0.71 +0.089. However,
following this line of thought and using only the main torsions and phase angles in the 2" order
MI expansion yielded results almost as good as those of the full BAT coordinate set, with an
estimate-to-benchmark ratio of 0.97 £0.024. This reduced set of coordinates is only about 1/3 of
the full set of BAT coordinates. As a consequence, the computational cost for the 2™ order MI

expansion is reduced to about 1/9™.
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When estimating conformational entropy differences with the methods presented here, the
following guidelines are important: (i) The molecular dynamics trajectories need to be long
enough to provide a Boltzmann distribution of equilibrated microstates representative for the
considered conformer macrostates; (ii) The full set of BAT coordinates, or alternatively only the
torsion and phase angles (plus any external bonds and angles analog to the ones we defined in Fig.
2.2) need to be considered; (iii) To perform a 2™ order MI expansion, necessary to achieve a
sufficient accuracy of a few percent, a trajectory with a large number of independent frames is
needed (at least 10° frames with random frame selection for balancing); (iv) Avoid using more
frames for the dominant molecular conformer, since the best bias cancellation in entropy
differences occurs when the number of frames is balanced; (v) When balancing requires
considering only a subset of the total number of frames, select the frames randomly from the
whole trajectory to utilize the conformational space explored by the simulation as completely as

possible.

Since entropy estimators are generally biased, the balancing method presented here is likely also
applicable for algorithms estimating entropy differences by methods other than histogram
binning. The complete method, including 1* to 3 order MI expansion, balancing and bias-
removal can be performed with the program ENTROPICAL, which can be obtained from the
author and used with CHARMM and NAMD topologies and trajectories.

4 A

“X-ray structures of proteins are like a tree in
winter, beautiful in its stark outline but lifeless in
appearance. Molecular dynamics gives life to this
structure by clothing the branches with leaves that
flutter because of the thermal winds.”

Claude Poyart, 1988 paraphrased by Martin
Karplus, Spinach on the Ceiling: A Theoretical
Chemist’s Return to Biology (Autobiography). Annu.
Rev. Biophys. Biomol. Struct. 2006, 35, 1- 47.

N %
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