
Appendix C

Generalization of the QGA for

higher dimensions

Now let us extend the Quantum Genetic Algorithm in order to treat quan-
tum systems in two dimensions. We perform calculations on a finite region
Ω where we discretize the real space Ω ≡ {(x, y), 0 ≤ x ≤ d, 0 ≤ y ≤ d}.
We assume that the external potential outside Ω is infinitely high.

Let us consider, for example, a two-particle system described by a
wave function ΨHF (~r1, ~r2), with ~r = (x, y), which is the Slater determi-
nant consisting of orthogonal and normalized one particle wave functions
ψν(~r), ν = 1, 2. This means that the optimized ΨHF will represent the
exact ground-state wave function for the case of noninteracting particles,
whereas for the interacting case ΨHF will correspond to the Hartree-Fock
approximation to the ground-state wave function.

As in the one dimensional case, an initial population of trial two-body
wave functions {Ψi}, i = 1, .., Npop is chosen randomly. For this purpose,
we construct each Ψi , using a Gaussian-like one-particle wave functions
of the form

ψν(x, y) = Aν exp{−(x− x̄ν)
2/σ2

X,ν − (y − ȳν)
2/σ2

Y,ν} x (d− x) y (d− y),
(C.1)

with ν = 1, 2 and random values for x̄ν , ȳν and for σX,ν , σY,ν for each
wave function. The amplitude Aν is calculated from the normalization
condition

∫ ∫

|ψj(x, y)|2dxdy = 1, and its sign is chosen randomly.
Note, that defined in such way the wave functions ψj(x, y) fulfill zero

condition on the boundary ∂Ω:

ψν(x, y)
∣

∣

∣

∂Ω
= 0. (C.2)

The constructed initial population {Ψi} corresponds to the initial genera-
tion. Now, the fitness of each individual Ψi of the population is determined
by the evaluating of the energy functional

Ei = E[ψi] ≡
∫

Ω

Ψ∗
i (~r1, ~r2)Ĥ(~r1, ~r2)Ψi(~r1, ~r2)d~r1d~r2, (C.3)
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where Ĥ is the Hamiltonian of the corresponding problem. This means
that the expectation value of the energy for a given individual is a measure
of its fitness, and we apply the QGA to minimize the energy. By virtue
of the variational principle, when the QGA finds the global minimum, it
corresponds to the ground state of Ĥ in the Hartree-Fock approximation.

Now we define the smooth crossover in two dimensions. For two ran-
domly chosen single-particle “parent” functions ψ

(old)
iν (x, y) and ψ

(old)
l,µ (x, y)

(i, l = 1, .., Npop; µ, ν = 1, 2), one can construct two new functions ψ
(new)
iν (x, y),

ψ
(new)
lµ (x, y) as

ψ
(new)
iν (x, y) = ψ

(old)
iν (x, y) St(x, y) + ψ

(old)
lµ (x, y) (1 − St(x.y)) (C.4)

ψ
(new)
lµ (x, y) = ψ

(old)
lµ (x, y) St(x, y) + ψ

(old)
iν (x, y) (1 − St(x, y)),(C.5)

where St(x, y) is a 2D smooth step function which produces the crossover
operation. We define this function as: St(x, y) = (1 + tanh((ax + by +
c)/k2

c ))/2, where a, b, c are chosen randomly, so that the line ax+by+c = 0
cuts Ω into two pieces. kc is a parameter which allows to control the
sharpness of the crossover operation.

In the same manner we modify the mutation operation for random
“parent” ψ

(old)
iν (x, y) as

ψ
(new)
iν (x, y) = ψ

(old)
iν (x, y) + ψr(x, y), (C.6)

where ψr(x, y) is a random mutation function. We choose ψr(x, y) as a
Gaussian-like function ψr(x, y) = Ar exp(−(xr−x)2/R2

x−(yr−y)2/R2
y)x(d−

x)y(d−y) with random values for xr, yr, Rx, Ry and Ar. Note, that appli-
cation of the defined above mutation operation does not violate boundary
conditions.

As usual, for each iteration of the QGA procedure we randomly per-
form copy, crossover and mutation operations. After each application of
a genetic operation the new-created functions should be normalized and
orthogonalized. Then, the fitness of the individuals is evaluated and the
fittest individuals are selected. The procedure is repeated until conver-
gence of the fitness function (the energy of the system) to a minimal value
is reached. Inside the box Ω one can consider different kinds of external
potentials. If the size of the box is large enough, boundary effects become
negligible.
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