Appendix B

Derivation of an approximate solution for a two level system

Using the Magnus series [119] we can write the time ordered product Eq. [2.8] for the Liouville operator $\hat{Z}(t)(\hbar=1)$ as:

$$
\begin{equation*}
\rho(t)=\exp (-i \Omega(t)) \rho_{0}, \tag{B.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega(t)=\int_{0}^{t} \hat{Z}\left(s_{1}\right) d s_{1}+\frac{1}{2} \int_{0}^{t}\left[\hat{Z}\left(s_{1}\right), \int_{0}^{s_{1}} \hat{Z}\left(s_{2}\right) d s_{2}\right] d s_{1}+ \tag{B.2}\\
& \quad+\frac{1}{4} \int_{0}^{t}\left[\hat{Z}\left(s_{1}\right), \int_{0}^{s_{1}}\left[\hat{Z}\left(s_{2}\right), \int_{0}^{s_{2}} \hat{Z}\left(s_{3}\right) d s_{3}\right] d s_{2}\right] d s_{1}+\ldots
\end{align*}
$$

Our assumption that $\rho=\rho(\theta, t)$ means that we neglect all terms in the series Eq. [B.2] except the first one. The condition that this will be a good approximation is:

$$
\begin{equation*}
\left\|\hat{Z}\left(s_{1}\right)\right\| \gg\left\|\left[\hat{Z}\left(s_{1}\right), \int_{0}^{s_{1}} \hat{Z}\left(s_{2}\right) d s_{2}\right]\right\|, \tag{B.3}
\end{equation*}
$$

with $s_{1} \in[0, T]$. Here the sign $\|\|$ denotes the norm of a matrix. Now let us use the mean value theorem, that for a function $f(x)$ (if one can define $f^{\prime}(x)$ on the interval $\left.(a, b)\right)$ the following equality holds $f(b)-$ $f(a)=f^{\prime}(c)(b-a)$, where $c \in(a, b)$. Applying the theorem to the term $\int_{0}^{s_{1}} \hat{Z}\left(s_{2}\right) d s_{2}$ in Eq. [B.3] we obtain:

$$
\begin{equation*}
\left\|\hat{Z}\left(s_{1}\right)\right\| \gg\left\|\left[\hat{Z}\left(s_{1}\right), \hat{Z}(c) s_{1}\right]\right\| \tag{B.4}
\end{equation*}
$$

where $c \in\left(0, s_{1}\right)$. Let us know apply the mean value theorem to the term $\hat{Z}(c)$ again that gives:

$$
\begin{equation*}
\left\|\hat{Z}\left(s_{1}\right)\right\| \gg\left\|\left[\hat{Z}\left(s_{1}\right),\left(\hat{Z}\left(s_{1}\right)+\frac{\partial \hat{Z}\left(c_{1}\right)}{\partial t}\left(s_{1}-c\right)\right) s_{1}\right]\right\|, \tag{B.5}
\end{equation*}
$$

where $c_{1} \in\left(c, s_{1}\right)$. Replacing the terms $s_{1}-c$ and s_{1} by their maximum value T and taking into account that $\left[\hat{Z}\left(s_{1}\right), \hat{Z}\left(s_{1}\right)\right]=0$ we write Eq. [B.5] as

$$
\begin{equation*}
\left.\left|\hat{Z}\left(s_{1}\right)\right| \gg T^{2} \|\left[\hat{Z}\left(s_{1}\right), \frac{\partial \hat{Z}\left(c_{1}\right)}{\partial t}\right)\right] \| \tag{B.6}
\end{equation*}
$$

Then, using the explicit form of the operator \hat{Z} we finally obtain:

$$
\begin{equation*}
|V(t)| \gg T^{2}\left|\frac{\partial V\left(t_{1}\right)}{\partial t} \gamma_{i}\right|, i=1,2 \tag{B.7}
\end{equation*}
$$

Here $t, t_{1} \in(0, T)$. For a two level system under the RWA the Liouville operator \hat{Z} reads (see Eq. [2.13]) as

$$
\hat{Z}(t)=\left(\begin{array}{cccc}
0 & i \gamma_{1} & -V(t) & V(t) \tag{B.8}\\
0 & -i \gamma_{1} & V(t) & -V(t) \\
-V(t) & V(t) & -i \gamma_{2} & 0 \\
V(t) & -V(t) & 0 & -i \gamma_{2}
\end{array}\right)
$$

While the initial conditions for the density matrix ρ_{0} we set as

$$
\rho\left(t_{0}\right)=\left(\begin{array}{c}
\rho_{11}\left(t_{0}\right) \tag{B.9}\\
\rho_{22}\left(t_{0}\right) \\
\rho_{12}\left(t_{0}\right) \\
\rho_{21}\left(t_{0}\right)
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Using Eq. [B.8] and truncating the series Eq. [B.2] after the first term, it is easy to obtain an approximate analytical solution for the occupation $\rho_{22}(t)$:

$$
\begin{align*}
\rho_{22}(t) & =2 \theta^{2}(t) F^{-1}\left(1-\cosh (H) \exp \left(-\left(\gamma_{1}+\gamma_{2}\right) t / 2\right)\right. \\
& \left.+\left(\gamma_{1}+\gamma_{2}\right) t \sinh (H) \exp \left(-\left(\gamma_{1}+\gamma_{2}\right) t / 2\right) H^{-1}\right) \tag{B.10}
\end{align*}
$$

where

$$
H=\sqrt{\left(\left(\gamma_{1}-\gamma_{2}\right)^{2} t^{2}-16 \theta^{2}(t)\right)} / 2
$$

and

$$
F=\gamma_{1} \gamma_{2} t^{2}+4 \theta^{2}(t)
$$

