Appendix A

The adiabatic approximation

The essence of the adiabatic approximation is as follows. Following [118] we suppose that we a have system of linear differential equations:

$$
\begin{equation*}
\frac{d}{d t} \rho(t)=\hat{Z}(t) \rho(t) \tag{A.1}
\end{equation*}
$$

where $\rho(t)$ is the n -dimensional vector, while $\hat{Z}(t)$ is the n by n matrix. We choose initial conditions: $\left.\rho(t)\right|_{t_{0}}=\rho_{0}$. If eigenvectors $a_{n}(t)$ and eigenfrequencies $\omega_{n}(t)$ of the matrix $\hat{Z}(t)$ vary slowly with t :

$$
\begin{equation*}
\frac{d}{d t} \omega_{n}(t) \ll\left(\omega_{n}(t)\right)^{2}, \frac{d}{d t}\left|a_{n}(t)\right| \ll \omega_{n}(t)\left|a_{n}(t)\right|, \tag{A.2}
\end{equation*}
$$

then the adiabatic approximation of the solution of the set of linear equations Eq. [A.1] may be represented in the form:

$$
\begin{equation*}
\rho_{n}(t)=a_{n}(t) \exp \left(\int_{t_{0}}^{t} \omega_{n}\left(t^{\prime}\right) d t^{\prime}\right) \tag{A.3}
\end{equation*}
$$

Indeed, let us substitute Eq. [A.3] in Eq. [A.1] and get

$$
\begin{array}{r}
\dot{a}_{n}(t) \exp \left(\int_{t_{0}}^{t} \omega_{n}\left(t^{\prime}\right) d t^{\prime}\right)+\omega_{n}(t) a_{n}(t) \exp \left(\int_{t_{0}}^{t} \omega_{n}\left(t^{\prime}\right) d t^{\prime}\right)= \\
\hat{Z}(t) a_{n} \exp \left(\int_{t_{0}}^{t} \omega_{n}\left(t^{\prime}\right) d t^{\prime}\right) . \tag{A.4}
\end{array}
$$

Under the slowness condition Eq. [A.2], the first term on the left-hand side of Eq. [A.4] is small compared to the second one and may by omitted. Then Eq. [A.4] only keeps the terms yielding the identity that determines the eigenfrequency ω_{n}.

