
Chapter 2

Theory

2.1 Optimal control of quantum systems over

finite time interval

In this section we present an analytical theory for optimal control of time-
averaged quantities in quantum systems with relaxation.

In the first subsection a general variational formulation for the optimal
control problem is given. The presented theory allows to describe optimal
control of a quantum system over a finite [0,T] time interval. Optimal
control of the system at a given time T is only a special case of our
general theory. We also introduce a new type of constraint on the control
field which limits the minimal width of the envelope of the resulting field.
This constraint naturally arises if one tries to find the optimal pulses with
experimentally achievable modulation of the control field.

In the second subsection we derive explicit ordinary differential equa-
tions for the optimal control fields using a certain functional form of the
solution of the Liouville equation.

In the third subsection we derive an approximate analytical solution of
the Liouville equation for the case of a two level system. We also analyze
conditions under which the obtained solution is valid.

In the fourth subsection we present the analytical solution for the
optimal control field for some simple problems. This is also a new result.

2.1.1 The Lagrangian formalism

Using the Lagrangian formalism for the control problem, it was shown
[7, 8] how to construct optimal external fields to drive a certain physical
quantity like the population of a given quantum state to reach a desired
value at a given time. However, following the above cited procedures it is
very difficult to obtain any analytical solution even for the simplest control
problems.
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CHAPTER 2. THEORY

In this section we develop a new theory that permits to obtain solutions
of analytical form in some simple cases. The obtained solutions represent
global extrema of the control problems. In order to solve the problem
analytically we focus on the case of monochromatic control fields only.
This means that we fix the carrier frequency and search for the optimal
envelope of the field. Thus, we do not consider any frequency modulation
in our theory. For simplicity we consider in this work only the case of
one-photon resonance, however, our theory can be also applied when the
multiphoton resonance takes place in the system [70].

Our method consists of two steps:

(1) Under certain conditions we derive an approximate analytical solu-
tion for the density matrix of the system that satisfies the quantum Li-
ouville equation. This solution has a simple functional dependence on the
control field.

(2) With the help of this solution we derive an explicit ordinary differ-

ential equation for the optimal control field.

Note, that one can guess the form of such equations from general phys-
ical arguments. Since memory effects are expected to be important, one
should search for a differential equation containing both the pulse area θ
[56] and its time derivatives θ̇, with θ defined as

θ(t) = µ

∫ t

t0

dt′V (t′), (2.1)

where V (t) is the external field envelope, and µ being the dipole matrix
element of the system. Therefore, for the case of optimal control of dy-
namical quantities at a given time t0, the differential equation satisfied
by θ(t) must be of at least second order to fulfill the initial conditions
θ(t0) and θ̇(t0) ≡ V (t0). In the same way, the control of time averaged
quantities over a finite time interval [t0, t0 + T ] with boundary conditions
requires a differential equation of at least forth order for θ(t) due to the
boundary conditions for θ(t) and θ̇(t) at t0 and t0 + T . It will be shown
below, that for certain quantum systems with relaxation a forth order dif-
ferential equation for the control fields arises naturally using variational
approach as an Euler-Lagrange (EL) equation.

Let us consider a quantum-mechanical system which is in contact with
environment and interacting with an external field E(t) = V (t) cos(ωt).
Here V (t) is a pulse shape and ω is a carrier frequency. The evolution of
such system obeys the quantum Liouville equation for the density matrix
ρ(t) with dissipative terms. The control of a time averaged dynamical
quantity requires the search for the optimal shape V (t) of the external
field.

Thus, in order to obtain the optimal shape V (t) during a finite control
time interval [0, T ] we propose the following Lagrangian (that is different
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from the Lagrangian, proposed, for example, in [2] by Rabitz and cowork-
ers)

L =

∫ T

0

Θ(t)
( ∂

∂t
+ iẐ(t)

)

ρ(t)dt + β

∫ T

0

L1dt. (2.2)

β is a Lagrange multiplier and Θ(t) is a Lagrange multiplier density. Note,
that throughout the section atomic units ~=m=e=1 are used.

The first term in Eq. (2.2) ensures that the density matrix satisfies
the quantum Liouville equation with the corresponding Liouville operator
Ẑ(t):

i
∂ρ

∂t
= Ẑ(t)ρ(t). (2.3)

We assume that ρ(t = 0) = ρ0 is a density matrix corresponding to the
initial conditions.

∆

V(t)

t
Figure 2.1: Constraint on the minimal width ∆ of the envelope V (t) of the optimal

pulse (see Eq. [2.7]).

The second term in Eq. (2.2) explicitly includes the description of the
optimal control. The functional density L1 is given by

L1(ρ(t), V (t),
dV (t)

dt
) = Lob(ρ(t)) + λV 2(t) + λ1

(

dV (t)

dt

)2

, (2.4)

where λ and λ1 are Lagrange multipliers. Lob(ρ(t)) refers to a physical
quantity to be maximized during the control time interval. The control
at a given time T can be obtained as a special case, as:
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∫ T

0

Lob(ρ(t))δ(t− T )dt = Lob(ρ(T )), (2.5)

where δ() is the Dirac delta function. The second term in Eq. (2.4)
represents a constraint on the total energy E0 of the control field

2

∫ T

0

E2(t)dt ≈
∫ T

0

V 2(t)dt =

∫ T

0

θ̇2(t)

µ2
dt = E0. (2.6)

The third term in Eq. (2.4) represents a further constraint on the prop-
erties of the pulse envelope. The requirement

∫ T

0

(

dV (t)

dt

)2

dt =

∫ T

0

θ̈2(t)

µ2
dt ≤ R, (2.7)

where R is a positive constant, bounds the time derivative of the pulse
envelope dV (t)

dt
and therefore excludes infinitely narrow or abrupt step-like

solutions, which cannot be achieved experimentally. Let ∆ be a min-
imal experimentally achievable duration of the pulse, then ∆−1 ∝ R (see
Fig. [2.1]).

The above formulated control problem is highly complicated due to
nonlinearity in the functional Lob(ρ(t)) and time dependence of the op-
erator Ẑ(t) in the Liouville equation Eq. [2.3] that leads to a nontrivial
dependence of the density matrix ρ(t) on the field shape V (t). However,
we shall show that under certain conditions it is possible to obtain an
analytical solution for the field envelope V (t).

2.1.2 Derivation of the differential equation for the

optimal control field

The formal solution of the Liouville equation Eq. [2.3] can be written in
the time-ordered form:

ρ(t) = T̂ exp

(

− i
~

∫ t

0

Ẑ(t)dt
)

ρ0, (2.8)

where T̂ is the time ordering operator.
Let us assume that one can apply the Rotating Wave Approximation

that eliminates fast oscillating terms like exp (iωt) and exp (−iωt) in the

operator Ẑ(t), so in new variables the evolutionary operator ˆ̃Z(V (t)) de-
pends only on the field envelope V (t). Using the adiabatic approximation
(see Appendix A), one can neglect the time ordering in Eq. [2.8]. Under
this approximation the density matrix ρ(t) depends only on the pulse area
θ(t) and time t (see Appendix B), then we obtain an explicit expression for
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the functional L1 = L1(θ, θ̇, θ̈, t). The corresponding extremum condition
δL1 = 0 yields the high-order Euler-Lagrange equation

− d2

dt2
∂L1
∂θ̈

+
d

dt

∂L1
∂θ̇
− ∂L1

∂θ
= 0, (2.9)

or, using Eq.(2.4)

−λ1
d4θ

dt4
+ λ

d2θ

dt2
− µ2

2

∂Lob(ρ)
∂θ

= 0. (2.10)

In order to solve Eq. [2.10] one can assume natural boundary conditions
θ(0) = θ̇(0) = θ̇(T ) = 0, θ(T ) = θT , which also ensure that the con-
trol field is zero at the beginning and at the end of the control interval:
V (0) = V (T ) = 0. The choice of the constant θT depends on the control
problem. In general, the constants θT , R and E0 can be also object of the
optimization. Note, that Eq. [2.10] is highly nonlinear with respect to the
pulse area θ(t) and usually can be solved only numerically. However, us-
ing Eq. [2.10] we shall obtain some analytical solutions for simple control
problems, which were not known before.

Eq. [2.10] is the kernel of the presented theory and provides an explicit
ordinary differential equation for the pulse area θ(t). Note, that this
equation is only applicable if one is able to determine an approximate
explicit expression for the density matrix ρ ≈ ρ(θ(t), t). In order to show

1

γ
1 

ε

E(t)γ

ρ

,

22
ρ

11

2

2ε

Figure 2.2: A two level system with energy levels ε1,ε2 interacting with resonant
external field E(t) and characterized by relaxation and dephasing constants γ1,γ2

(see text). The occupations of the levels are described by diagonal density matrix
elements ρ11 and ρ22.

that Eq. [2.10] can describe optimal control in real physical situations,
we apply our theory to a two level quantum system with relaxation (see
Fig. [2.2]).
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2.1.3 An approximate analytical solution for the case

of a two level system

In order to illustrate our approach let us consider control of a two level
system. We represent the system Hamiltonian Ĥ0 plus interaction with
external field E(t) = V (t) cos(ωt) in the form:

Ĥ = Ĥ0 + Ĥint =

(

ε1 0
0 ε2

)

+

(

0 −µ12E(t)
−µ21E∗(t) 0

)

(2.11)

where ε1 and ε2 are energy levels, µ12 = µ∗21 is a dipole matrix element, and
the sign ∗ denotes complex conjugation. Without loosing the generality
one can set µ21 = µ12 = 1. This means that we measure the field amplitude
in energy units. Evolution of the system is described by the Liouville
equation for the density matrix ρ(t) [72]:

i
∂ρ11
∂t

= E∗(t)ρ21 − E(t)ρ12 + iγ1ρ22,

i
∂ρ22
∂t

= E(t)ρ12 − E∗(t)ρ21 − iγ1ρ22, (2.12)

i
∂ρ12
∂t

= ω0ρ12 + E(t)(ρ22 − ρ11)− iγ2ρ12,
ρ21 = ρ∗12,

where ω0 = ε2− ε1 and γ1 and γ2 are relaxation and dephasing constants,
respectively. Eqs. [2.12] are used for the description of different effects, like
for instance, the response of donor impurities in semiconductors to tera-
hertz radiation [12], or the excitation of surface- into image charge states
at noble metal surfaces [53]. Let us assume that the carrier frequency of
the control field ω is chosen to be the resonant frequency ω = ω0. Using
the Rotating Wave Approximation one derives the following equations:

i
∂ρ``
∂t

= (−1)`(V (t)(ρ̃21 − ρ̃12)− iγ1ρ22),

i
∂ρ̃12
∂t

= V (t)(ρ22 − ρ11)− iγ2ρ̃12, (2.13)

where ` = 1, 2 and

ρ̃12 = ρ12 exp(iωt), (2.14)

ρ̃21 = ρ21 exp(−iωt).

Note, that ρ11 + ρ22 = 1 and ρ̃21 = ρ̃∗12. We set the initial conditions as
ρ11 = 1, ρ22 = ρ̃12 = ρ̃21 = 0.
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Eqs. [2.13] have the form i∂ρ(t)/∂t = ˆ̃Z(t)ρ(t) and are difficult to in-

tegrate, since the operator ˆ̃Z(t) explicitly depends on time, or in other

words, the commutators [ ˆ̃Z(t), ˆ̃Z(t′)] 6= 0, t 6= t′. However, the com-
mutators [Ẑ(t), Ẑ(t′)] become arbitrarily small under the condition (see
Appendix B)

∣

∣

∣

∣

γ` T
2

V (t)

(

∂V (t)

∂t

∣

∣

∣

∣

t′

)∣

∣

∣

∣

¿ 1, (2.15)

with ` = 1, 2, and we obtain an approximate solution for the density
matrix ρ(t) (see Appendix B). For the occupation of the excited level
ρ22(t) this solution reads:

ρ22(t) = 2θ2(t)F−1
(

1− cosh(H) exp(−(γ1 + γ2)t/2)

+(γ1 + γ2)t sinh(H) exp(−(γ1 + γ2)t/2)H
−1
)

, (2.16)

where

H =
√

((γ1 − γ2)2t2 − 16θ2(t))/2,

and

F = γ1γ2t
2 + 4θ2(t).

Note, that this approximate solution becomes exact when γ1 = γ2 = 0 or
for a constant amplitude of the control field V (t) = V0, that is reflected
by Eq. [2.15]. The expression of Eq. [2.16] has the form ρ = ρ(θ(t), t) and
therefore Eq. [2.10] is applicable.

In order to determine the control problem let us construct the func-
tional density

Lob(ρ) =
1

T
ρ22(t), (2.17)

so that an average occupation of the upper level n2 =
1
T

∫ T

0
ρ22(t)dt is the

quantity to be maximized. Note, that n2 is proportional to the observed
photo-charge in the terahertz experiments on semiconductors [12]. The
resonant tunneling photo-charge through an array of coupled quantum
dots is also proportional to such a value [54].

2.1.4 The analytical solution for the optimal control

field with a simplified Lagrangian

In order to obtain an analytical solution for the optimal control field, we
analyze the problem in certain limiting cases. For instance, if γ1,2T ¿ 1
one can neglect relaxation and dephasing effects within the control interval
and Eq. (2.16) becomes ρ22(t) = sin2 (θ(t)). In order to make the problem
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analytically solvable, we reduce the order of the Euler-Lagrange equation
Eq. [2.10]. For that purpose we exclude the constraint on the derivative
of the field envelop (see Eq. [2.7]). Thus, the Lagrangian density L1 for
optimal control becomes

L1 = ρ22(t)/T + λθ̇2(t)/µ2, (2.18)

while the corresponding Euler-Lagrange equation is given by

2λθ̈(t)− µ2 sin(2θ(t))/T = 0. (2.19)

The second order differential Eq. (2.19) requires two boundary condi-
tions, for which we choose θ(0) = 0 and θ(T ) = π/2 (which ensure the
population inversion). Eq. [2.19] is similar to the equation for a mathem-
atical pendulum and can be solved analytically (see Appendix D). The
resulting field envelope V (t) is given by the expression

V (t) = V (0) dn(µV (0)t, B), (2.20)

where dn is the Jacobian elliptic function, and B = −(λTV 2(0))
−1
. Note

that the control field is nonzero at the beginning V (0) 6= 0. Eq. [2.20] can
be understood as a limiting case of the solution of the equation Eq. [2.10]
with λ1 → 0 and R→∞. The corresponding optimal dynamics of ρ22(t)
in these two cases is similar.

Using the condition given by Eq. [2.6] for the pulse energy E0 we
determine the Lagrange multiplier λ. In the limit B → 1 that corresponds
to the case of rapid excitation (all pulse energy is concentrated in the
beginning of the control interval) the formula given by Eq. [2.20] can be
significantly simplified to

V (t) =
1

µ

∂

∂t
arccos[2 exp (µV (0)t)/(1 + exp (2µV (0)t))]. (2.21)

Let us now consider the opposite control problem, namely the problem
to minimize the integral over the occupation of the excited level ninf =
∫ +∞

−∞
ρ22(t)dt. We consider infinitely large control interval t ∈ (−∞,∞)

with natural boundary conditions V (−∞) = V (+∞) = 0 and θ(+∞) = π.
Thus, the system remains in the ground state after the interaction with
the control field. Integrating the corresponding Euler-Lagrange equation
one can easily obtain that the optimal field in this case is described by a
soliton solution (see Fig. [2.3]):

V (t) = (
√
λ cosh((t)/

√

λ/µ2)
−1
. (2.22)

Using the normalization condition for the pulse energy E0 given by Eq. [2.6],
we obtain that

λ =
( 2

µE0

)2

. (2.23)
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Figure 2.3: Solid line: the soliton solution for the optimal control field V (t) which
minimizes the value of ninf (see text). Dashed line: corresponding dynamics of
the occupation of the upper level ρ22(t).

This remarkable result means that the soliton Eq. [2.22] is not only one
possible solution that propagates without losses (since we have no spatial
variable one can treat the Eq. [2.19] as the sine-Gordon equation in the
limit of the optically thin media), but it also minimizes the energy losses
which are proportional to ninf in the limit of the weak relaxation and
dephasing. Using other asymptotic values of the pulse area θ(+∞) = Nπ,
where N is an integer number N = 2, 3, ..., one can immediately reproduce
2π, 3π... soliton solutions.

2.1.5 Optimal control at a given time

Now we show that there is an essential difference between optimal control
in order to maximize an objective at a given time T or to maximize the
same objective over time interval [0, T ]. For this purpose we consider
instead of Eq. [2.18] the Lagrangian density:

L1 = ρ22(T ) + λθ̇2(t)/µ2, (2.24)

that corresponds to a problem of maximization of the occupation of the
upper level ρ22(T ) at a given time T . In order to make a comparison
with the solution given by Eq. [2.20] we set γ1 = γ2 = 0. Using the same
procedure, as for derivation of Eq. [2.19], we obtain the corresponding
Euler-Lagrange equation

2λθ̈(t)− µ2δ(T − t) sin(2θ(t)) = 0. (2.25)
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The solution of Eq. (2.25) is a field with constant amplitude of the envelope

V (t) =
π

2Tµ
, (2.26)

that reflects the fact that there is only one optimal pulse with energy
E0 = π2/(4Tµ2) which drives the occupation ρ22 to 1 at given time T .
This analytical result one can compare with the numerical solution for
the similar problem obtained by Wusheng Zhu, Jair Botina, and Herschel
Rabitz by using the iterative numerical technique [10].

From the comparison between solutions Eqs. [2.20] and [2.26] one can
conclude, that the formulation of the optimal control over time interval is
a nontrivial generalization of the optimal control theory, and permits to
perform more detailed coherent control of quantum systems.

The Lagrangian density of the form of Eq. [2.18] or Eq. [2.24] always
leads to a second order differential equation for the control field which
can be easily integrated analytically, as long as the approximation ρ ≈
ρ(θ(t), t) holds. However, the obtained optimal field V (t) cannot satisfy
boundary conditions V (0) = V (T ) = 0. Otherwise one would obtain a
trivial solution V (t) ≡ 0, which is not consistent with the condition on
the pulse energy (see Eq. [2.6]). In order to impose conditions on V (0)
and V (T ) a Lagrangian leading to a forth order differential equation is
necessary. Despite of the fact that the optimal control fields with the
same energy will satisfy different boundary conditions, the corresponding
dynamics of the optimally controlled system ρ(t) will be quit similar in
both cases.

2.1.6 Estimation of the absolute bound for the con-

trol due to relaxation and dephasing effects

As it was recently shown [7], the relaxation and dephasing processes in
the systems creates obstacles for the optimal control. In order to estimate
quantitatively, how relaxation and dephasing processes limit control of the
time average of the occupation of upper level n2, we analyze the occupation
ρ22(t) (see Eq. [2.16]) in more detail. In the limit of a strong control field
satisfying

γ1,2t/θ(t)¿ 1, t ∈ [0, T ], (2.27)

that means that excitation of the system prevails over relaxation pro-
cesses, the Eq. [2.16] can be significantly simplified and one finds that the
instantaneous occupation ρ22(t) lies always lie under the curve ρmax

22 (t) =
(1 + exp(−(γ1 + γ2)t/2))/2. This means that ρ22(t) exhibits an absolute
upper bound. In order to illustrate this bound we plot in Fig. [2.4] the dy-
namics of the occupation ρ22(t) for 40 randomly generated control pulses
applied to a two level system with relaxation and dephasing parameters
γ1T = 2γ2T = 1 and setting T = 1. Therefore, due to dissipative pro-
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Figure 2.4: Dynamics of the occupation ρ22(t) for 40 randomly generated control
pulses using γ1T = 2γ2T = 1 (thin solid lines). The thick solid line represents a
bound for the possible values of ρmax

22 (t) = (1 + exp(−(γ1 + γ2)t/2))/2.

cesses the following inequality holds for the controlled averaged value of
ρ22:

n2 ≤
1

T

∫ T

0

ρmax
22 (t)dt = 1/2 +

(1− exp(−(γ1 + γ2)T/2)

(γ1 + γ2)T
. (2.28)

Using this inequality one can estimate the maximal possible value of n2
for given parameters of the problem γ1, γ2, T .

Using the expression Eq. [2.28], let us investigate two limiting cases.
For a system with weak relaxation and dephasing (γ1,2T ¿ 1) the popu-
lations can be fully inverted and remain in this state during the control
time interval so that ρ22(t) ' 1, the maximum possible value of the con-
trolled quantity is n2 = 1. In the limit of strong relaxation and dephasing
γ1,2T ' 1 system is in the saturation regime, so that ground and ex-
ited levels are approximately equally occupied within control interval and
n2 ' 0.5.

It is not possible to overcome the limit given by Eq. [2.28] within the
considered model. The optimal pulse that satisfies Eq. [2.10] provides
the highest possible value of the objective for a given pulse energy. For
example, in comparison with pulses having square amplitude or Gaussian
pulses, the optimal fields, obtained in our calculations, lead to a value of
n2, that is up to 50% higher.

With Eq. [2.28] we can, for example, estimate the maximal possible
lifetime for an excited (image) electron state at a Cu(111) surface which
can be achieved by application of the control field with a proper pulse
shaping. According to Hertel et al. [53], those states are characterized
by γ1 = 5 · 1013s−1 and γ2 = γ1/2. Thus, our theory predicts in that
case an effective decay constant γeff ≥ (γ1 + γ2)/2 = 3.75 · 1013s−1. By
controlling the excitation of the surface states one can possibly achieve an
enhancement of certain chemical reactions.
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2.2 Calculation of the excitation spectrum

of quantum systems using genetic al-

gorithms

In this section we present a new method to calculate the excitation spec-
tra of few-body quantum systems. Our theory is based on a variational
formulation of the eigenvalue problem. Thus, we can treat it as an optim-
ization problem. In order to perform an effective search for the optimum
we use genetic algorithms (GA). This technique is orders of magnitude
faster than, for instance, the random walk (Monte Carlo) method [58].
However, the direct application of the GA to quantum problems is not
possible due to reasons which will be described below. Therefore, we for-
mulate an extended method which we call Quantum Genetic Algorithm
(QGA) and which can be applied to various quantum mechanical systems.

In the first subsection we give a short introduction to the evolutionary
algorithms, which we use for almost all sections of the present work.

In the second subsection we outline the main principles of the QGA,
which is the first formulation of the genetic algorithm for quantum prob-
lems.

2.2.1 Introduction to evolutionary algorithms

Genetic algorithms were formally introduced in the 1970s by John Hol-
land at University of Michigan [78, 79]. Genetic algorithms are especially
useful for treating strongly nonlinear physical systems with a complicated
(multi-dimensional, etc.) configurational space and where a hint of the op-
timal state (for instance, the ground state) is very difficult. Rather than
looking for the optimal state by performing small variations of a single
trial function, a more effective strategy is used which includes in addition
more drastic changes. These may consist of combining states which are
taken from the pool of trial states. A possible improvement with respect
to the optimal state is controlled by the decrease of the energy, for ex-
ample, which is a kind of a fitness test. This strategy is reminiscent of
the evolution in life. The set of trial states corresponds to a population,
the drastic changes to the crossover between genomes of two members
of the population, and the control function for survival and adaptation.
Small changes consisting of local variations of a single trial solution are
also included and correspond to mutations.

The genetic algorithm creates an initial population of solutions, and
applies genetic operators such as mutation and crossover [80] to evolve the
solutions in order to find the best one(s). Genetic algorithms belong to
the class of stochastic search methods (other stochastic search methods
include, for example, simulated annealing [59]). Whereas most stochastic
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search methods operate on a single solution for the problem under con-
sideration, genetic algorithms operate on a population of trial solutions.

Let us outline some basics of genetic algorithms. The three most im-
portant aspects of using genetic algorithms are:

1. definition of the objective (fitness) function,

2. definition and implementation of the genetic representation,

3. definition and implementation of the genetic operators.

The genetic algorithm is very simple, yet it performs well on many
different types of problems. However, there are many ways to modify the
basic algorithm, and many parameters can be varied. Basically, in the case
of the correctly chosen objective function, representation of the solutions
and genetic operators, any further variations of the genetic algorithm and
its parameters will result in only minor improvements. Following the
seminal work of Holland [78], the most common representation for the
individual genomes in the genetic algorithm is a string of bits. The reason
is that the definition of the genetic operators in this case is very simple.

Let us now discuss the main genetic operators: copy, crossover and
mutation. The copy or reproduction operator simply transfers the in-
formation of a “parent” to an “offspring” of the next generation without
any changes. Typically the crossover is defined by the consideration of two
individuals (the “parents”) in order to produce two new individuals (the
“children”). The primary purpose of the crossover operator is to transfer
genetic material from the previous generation to the subsequent genera-
tion. In a simple crossover operation, a random position in the string of

1      0      1      1     0    1     0

Parent 1

0      0      1      0     1    0     0

Parent 2

Offspring 1

Offspring 2

1      0      1      1     1    0     0

0      0      1      0     0    1     0

Figure 2.5: Illustration of the crossover operation between randomly chosen Parents
1 and 2 at a random position (marked by dashed line). The parents exchange
their genetic material in order to generate two new offsprings.
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bits is chosen at which each partner in a randomly chosen pair of “parents”
is divided into two parts. Each parent vector then exchanges a subsection
of itself with its partner (see Fig.[2.5]). The application of the crossover
operation between identical “parents” leads to the same “children”.

The mutation operator introduces a certain amount of randomness
to the search. It helps the search to find solutions which the crossover
operation alone cannot encounter. Usually the mutation operation applies
the logical ”NOT” (negation) operation to a single bit of a randomly
chosen single “parent” at a random position.

Two of the most common implementations of the genetic algorithm
are called “simple” and ”steady state”. The “simple” genetic algorithm
is described by Goldberg [62]. It is a generational algorithm in which
the entire population is replaced within each generation. In the “steady
state” genetic algorithm only a few individuals are replaced within each
generation. This type of replacement is often referred to as overlapping
populations.

Often the output values of the fitness function must be transformed
in order to maintain diversity of the genetic algorithm or to differentiate
between very similar individuals. The transformation from raw objective
scores to scaled fitness scores is called scaling.

There are many different scaling algorithms. Some of the most com-
mon are the linear (fitness-proportionate) scaling, the sigma truncation
scaling, and sharing. Linear scaling transforms the objective score based
on a linear relationship using the maximum and minimum scores in the
population as the transformation metric. Sigma truncation scaling uses
the population standard deviation to perform a similar transformation and
diminishes the poor individuals. Sharing decreases the score of individuals
which are similar to other individuals in the population. For a complete
description of each of these scaling methods, see Goldberg book [62].

The selection method determines how individuals are chosen for mat-
ing. If one uses a selection method which picks only the best individual,
then the population will quickly converge to that individual. Thus, the
selection method should be biased toward better individuals, but should
allow also to pick some which aren’t quite as good, but hopefully have
some good genetic material. Some of the more common selection methods
include the roulette wheel selection (the likelihood of picking an individual
is proportional to the individual’s score), the tournament selection (a num-
ber of individuals are picked using roulette wheel selection, then the best
of these is (are) chosen for mating), and rank selection (pick the best in-
dividuals every time). Sometimes the crossover operator and the selection
method lead to a fast convergence of the population of individuals that are
almost exactly the same. If the population consists of similar individuals,
the likelihood of finding new solutions typically decreases. As a result,
the population becomes trapped into a local extremum. On the one hand,
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it is desirable that the genetic algorithm finds “good” individuals, but on
the other hand this method must maintain diversity.

One can introduce a simple physical interpretation of the genetic op-
erators. The initial population one can interpret as “particles” on the po-
tential surface of the problem. The problem of optimization corresponds
to the search of the highest/lowest point of this surface. The mutation
operation on a member of the population can be interpreted as a ran-
dom fluctuation due to the interaction of a “particle”, described by this
individual, with a “thermal bath”. The crossover operation between two
individuals refers to some effective “interaction” between two “particles”
described by these individuals. Starting from the initial population of
“particles” at random positions, the mutation and crossover operations
propagate them stochastically over the potential surface. The procedure
of acceptance or rejection of the generated offsprings leads to concentra-
tion of “particles” near the extremal sites on the potential surface.

In general, genetic algorithms are much more effective than other
search methods, if the search space has many local extrema. Genetic
search methods have been recently applied, for example, to optimize the
atomic structures of small clusters [45, 46, 47, 48]. In these studies the
global minimum of the energy functional was obtained for different cluster
species using Lennard-Jones potentials [45], ionic potentials [47], or in-
teraction potentials derived from the tight-binding Hamiltonian [46, 48].
Especially successful applications of GA were performed in control theory
[5].

However, in all extensions or applications of evolutionary algorithms
performed up to now, including the above mentioned optimization of the
clusters structure, only classical objects (position of atoms, harmonics of
the pulse etc.) have been treated. The reason is that “classical” GA op-
erators like mutation or crossover do not take care about newly generated
wavefunctions which must be smooth functions. This leads to generation
of “offsprings” with discontinuities at the positions of crossover or muta-
tion operations and, therefore, having infinitely large energies. In the next
subsection the first extension of a genetic algorithm to quantum problems
is presented.

2.2.2 Definition of the representation, fitness and ge-

netic operators for quantum ground-state prob-

lem

Let Ĥ be the hermitian Hamiltonian operator of aN -body quantum mech-
anical system:

Ĥ = Ĥkin + Ĥpot + Ĥint, (2.29)
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where (throughout the section we use atomic units ~=m=e=1)

Ĥkin =
1

2

N
∑

i=1

~∇2i ,

Ĥpot =
N
∑

i=1

U(~xi), (2.30)

Ĥint =
N−1
∑

i=1

N
∑

j=i+1

V (~xi − ~xj).

Operators Ĥkin, Ĥpot, Ĥint refer to the kinetic, potential and interaction
energy.

Let us first consider a quantum mechanical ground state problem for
the system described by the Hamiltonian Eq. [2.29]. Let Ψ(~x1, ~x2, ..., ~xN )
be an arbitrary N -body wavefunction. We assume that Ψ is normalized:
〈Ψ|Ψ〉 = 1. One can write an inequality for the ground state energy E0 in
this case:

E0 ≤ 〈Ψ|Ĥ|Ψ〉. (2.31)

Starting with a population of the trial wavefunctions one can run the
evolutionary procedure until the global minimum of the energy functional
given by Eq. [2.31] is attained.

For simplicity let us first consider a ground state problem for a single
particle in a one dimension. As we mentioned before, there are many
different ways to prescribe the evolution of the population and the creation
of the offsprings. The genetic algorithm which we propose to obtain the
ground state of a quantum system can be described as follows:

(i) We create a random initial population {Ψ(0)
j (x)}, j = 1, .., Npop

consisting of Npop wave functions.

(ii) The fitness function E[Ψ
(0)
j ] of all individuals is determined.

(iii) A new population {Ψ(1)
j (x)} is created through application of the

genetic operators.
(iv) The fitness of the new generation is evaluated. The best new

members replace the worst members from the previous population.
(v) Steps (iii) and (iv) are repeated for the successive generations

{Ψ(s)
j (x)} until convergence is achieved and the ground-state wave function

is found.
Usually, real space calculations deal with boundary conditions on a

box. Therefore, in order to describe a wave function within a given interval
in one dimension a ≤ x ≤ b we have to choose boundary conditions for
Ψ(a) and Ψ(b). For simplicity we set Ψ(a) = Ψ(b) = 0, i.e., we consider a
well with infinite walls at x = a and x = b. However, one can employ, for
example, periodic boundary conditions considering a ring system [73].
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Figure 2.6: Two randomly chosen wavefunctions for the crossover operation. The
vertical dashed line shows the position of the crossover.
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Figure 2.7: An example of the direct application of the ”classical” crossover opera-
tion. Note the discontinuity of the function ΨS+1

1 at the position of the crossover
operation.

Inside the box one can consider different kinds of external potentials.
If the size of the box is large enough, boundary effects on the results of
our calculations can be minimized.

As an initial population of wave functions satisfying the boundary
conditions Ψj(a) = Ψj(b) = 0 we choose Gaussian-like functions of the
form

Ψj(x) = Aj exp(−(x− xj)2/σ2j )(x− a)(b− x), j = 1, .., Npop, (2.32)

with random values for the peak position xj ∈ [a, b] and the width σj ∈
(0, b−a]. The amplitudes Aj are determined from the normalization condi-
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tion
∫ b

a
|Ψ(x)|2dx = 1 for given values of xj and σj. One can significantly

0 0.5 1

Coordinate x (arbitrary units)

0

0.5

1

St
(x

)

Figure 2.8: An example of a smooth step function St(x) used in the crossover oper-
ation. x0 = 0.4, kc = 0.1 (see text).

reduce computational costs choosing a proper form of initial wavefunc-
tions. If any approximate form of the solution is known, one can generate
random initial population ”near” this solution. After a few iterations suc-
cessful offsprings will converge to the improved solution. It also seems
useful to generate an initial population with the symmetry properties, re-
flecting the symmetry of the Hamiltonian. However, we shall show that
the QGA successfully finds solutions starting from a population defined
by Eq. [2.32].

As we mentioned above, we should define three kinds of operations on
the individuals: the copy, the mutation of a wavefunction, and the cros-
sover between two wavefunctions (see Fig.[2.6]). While the copy operation
has the same meaning as in previous applications of the GA, both the cros-
sover and the mutation operations have to be redefined for application to
the quantum mechanical case. The reason is that after straightforward ap-
plication of crossover operation between two ”parents” one unavoidably
obtains both “children” with discontinuities at the position of crossover.

This implies that “offsprings” have an infinite (practically, very large)
kinetic energy, and therefore, cannot be considered as good candidates to
be the ground state wavefunction (see Fig. [2.7]).

To avoid this problem we suggested a new modification of the ge-
netic operations for application to smooth and differentiable wavefunc-
tions. The smooth crossover is defined as follows. Let us take two ran-
domly chosen ”parent” functions Ψ

(s)
1 (x) and Ψ

(s)
2 (x) (see Fig.[2.6]). We

can construct two new functions Ψ
(s+1)
1 (x),Ψ

(s+1)
2 (x) as
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Figure 2.9: An example of the application of the ”smooth” crossover operation. The
vertical dashed line shows the position of the crossover operation.

Ψ
(s+1)
1 (x) = Ψ

(s)
1 (x) St(x) + Ψ

(s)
2 (x) (1− St(x))

Ψ
(s+1)
2 (x) = Ψ

(s)
2 (x) St(x) + Ψ

(s)
1 (x) (1− St(x)), (2.33)

where St(x) is a smooth step function involved in the crossover operation.
We consider St(x) = (1 + tanh((x − x0)/k2c ))/2, where x0 is chosen ran-
domly (x0 ∈ (a, b)) and kc is a parameter which allows to control the sharp-
ness of the crossover operation. The function St(x) is shown in Fig [2.8].
The result of the smooth crossover is presented in Fig. [2.9] In the limit
kc → 0 one obtains the usual Heaviside step function St(x) = θ(x − x0)
and Eqs. [2.33] become the “classical” crossover operations. Note, that
the crossover operation does not violate the boundary conditions and ap-
plication of the crossover between identical wavefunctions generating the
same wavefunctions.

The mutation operation in the quantum case must take into account
also the smoothness of the generated wavefunctions. It is not possible to
change randomly the value of the wave function at a given point without
producing dramatic changes in the kinetic energy of the state. To avoid
this problem we define the mutation operation as

Ψ(s+1)(x) = Ψ(s)(x) + Ψr(x), (2.34)

where Ψr(x) is a random mutation function. In the presented work we
choose Ψr(x) as a Gaussian-like function Ψr(x) = B exp(−(xr−x)2/k2m)(x−
a) (b − x) with a random center xr ∈ (a, b), width km ∈ (0, b − a), and a
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small amplitude B which can be both positive or negative. The so defined
mutation does not violate the boundary conditions.

In order to find the ground state, for each step of the QGA iteration
we randomly perform copy, crossover and mutation operations. After
each application of the genetic operation (except coping) the new-created
functions are normalized. For the extension of the QGA in order to treat
quantum systems in two dimensions see Appendix C. We have used Pm =
0.03 for the probability of a mutation and Pc = 0.97 for the probability
of a crossover operation. During our calculations we set different sizes of
the population Npop up to 1000. However, the population size of only 200
parents usually guarantees a good convergence of the algorithm.

In our approach a wavefunction Ψ(x) is discretized on the mesh {xi},i =
1, .., L, where L is a number of discretization points, and represented by
the genetic code vector Ψ(xi).

2.2.3 Extension of the QGA for the solution of quantum

statistical problems

In order to compute not only a ground state, but also exited states one
needs a further extension of the QGA. For this purpose we use a variational
formulation for the partition function Z of many-body quantum system.

Let {Ψk} be an arbitrary orthonormal set of M N-body wave func-
tions (Ψk = Ψk(~x1, .., ~xN ), k = 1..M). It can be shown that the partition
function Z of the quantum system satisfies the following inequality [61]:

Z ≥ Z ′ ≡
M
∑

k=1

e−β〈Ψk|Ĥ|Ψk〉, (2.35)

where the Hamiltonian Ĥ is defined by Eq. [2.29] and parameter β is pro-
portional to the inverse temperature: β = 1

kBT
, where kB is the Boltzmann

constant. The equality holds only if {Ψk} is the complete set of eigenfunc-
tions of the Hamiltonian Ĥ. Note, that {Ψk} does not have to be a com-
plete set. In practice, for finite temperatures calculations using Eq. [2.35],
one can take into account the lowest M levels of the system, neglecting the
occupation of the levels with a higher energy. The number of considered
levelsM can be chosen in such way, that occupation of the neglected levels
does not exceed a certain value for a given temperature. In the limit the
temperature T goes to zero (T → 0 or β → +∞) one can neglect all terms
in Eq. [2.35] except the largest one (let it be the term containing Ψ1). In
this case Eq. [2.35] becomes equivalent to the variational principle for the
ground state energy E0:

E0 ≤ 〈Ψ1|Ĥ|Ψ1〉. (2.36)

38



2.2. CALCULATION OF THE EXCITATION SPECTRUM OF

QUANTUM SYSTEMS USING GENETIC ALGORITHMS

Following the spirit of the QGA we assume that each member of the
population represents the set of M trial orthonormal wavefunctions {Ψk}.
According to Eq [2.35] one can obtain eigenfunctions of the Hamiltonian
Ĥ and also the partition function Z by running an evolutionary procedure
until the sum in Eq. (2.35) attains its maximum possible value.

In practice, full quantum mechanical calculations of the excitation
spectrum are quite difficult to perform even for the case of very few in-
teracting particles. The reason is the huge data amount rapidly increases
with the number of particles considered in the system [38]. Therefore,
quantum mechanical calculations with exact many body wave function
are limited to 3-4 particles.

For a simplified study of the problem, we reduce the dimension of
the many particle wavefunction Ψ using the Hartree-Fock approxima-
tion. This is the simplest way to account for electron-electron interactions
within the quantum system [87]. The Hartree-Fock level is implemented
across nuclear and atomic physics as a first step towards solution of the
quantum many-body problem [64].

Let us consider a system of N spinless particles occupying K one
particle states (N≤K). For such a system one can constructM = K!

N !(K−N)!

N -particle wavefunctions Ψk(~x1, ..~xN ), 1 ≤ k ≤ M , corresponding to all
possible configurations. The N -particle wavefunction is represented by
the Slater determinant:

Ψk(~x1, ..~xN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

ψi1(~x1) ψi1(~x2) . . .
ψi2(~x1) ψi2(~x2) . . .

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

. (2.37)

Where indexes 1 ≤ i1, i2, ..., iN ≤ K counts the one particle states in the
state k. This means that the set {Ψk} will represent the exact excitation
states for the case of noninteracting particles. For the interacting case
{Ψk} will correspond to the Hartree-Fock approximation. For simplicity
let us consider one dimensional problems. However, generalization of the
presented algorithm to higher dimensions is straightforward. As in the
case of searching for the ground state, we perform calculations on a finite
region [a, b] where we discretize the real space.

The algorithm is implemented as follows. An initial random population
of Npop trial sets of one-particle wave-functions {ψj

i }, where the index j
counts each member of the population: j = 1, .., Npop, and the index
i counts one-particle wave-functions: i = 1, .., K. For this purpose we
construct K × Npop one particle wavefunctions ψj

i using a Gaussian-like
form

ψj
i (x) = Aj

i exp
(

− (x− x̄ji )2/σji
2)

(x− a) (b− x), (2.38)

and index j denotes that the one particle wavefunction ψj
i (x) belongs to

the member with index j. We generate random values x̄ji ∈ (a, b), and
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σji ∈ (0, b − a] for each one particle wavefunction. The defined in such
way wavefunctions ψj

i (x) fulfill zero conditions on the boundaries. All
one-particle wave functions {ψj

i } which belong to the same member j are
orthogonalized and normalized for the initial population, and then ordered
in respect to their energy expectation value.

As in the case of searching for the ground state, offsprings of the initial
generation are formed through application of genetic operators on the ge-
netic codes. As in previous cases, we define “quantum” analogies of three
kinds of genetic operations on the individuals: the copy, the mutation,
and the crossover.

For each iteration of the QGA procedure we randomly perform copy,
crossover and mutation operations, applied to one particle wavefunctions
ψj
i (x). The crossover operations are applied between randomly chosen one

particle wave functions ψj1
i (x) and ψ

j2
i (x) (members j1 and j2 respectively)

corresponding to the same one-particle excitation state i.
The fitness function, i.e. the functional to be maximized by the QGA,

is the sum Z ′ defined in Eq. (2.35). After each application of a genetic
operation the new-created one particle wavefunctions are normalized and
orthogonalized. Then, the fitness of each new member is evaluated and the
fittest members are selected. The procedure is repeated until convergence
of the fitness function to the optimal value is reached.

Maximizing Z ′, one obtains the “best” set of the excitation spectrum
{Ψk} for a given system. Then one can use this set in order to compute any
kind of quantum statistical values, for example, the density of particles
ρ(x) for any value of the parameter β (see [65]):

ρ(x) = ρ(β, xN) =

∫ b

a

ρ(β,x)dx1...dxN−1,

where ρ(β,x) is given by

ρ(β,x) =

∑

k exp(−β〈Ψk(x)|Ĥ|Ψk(x)〉)|Ψk(x)|2
∑

k exp(−β〈Ψk(x)|Ĥ|Ψk(x)〉)
,

and here we use notation x = {x1, ..., xN}.
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2.3 Photon assisted tunneling between quantum

dots: optimal control approach

In this section we investigate optimal control of the carrier dynamics in
nanostructures. As a model device we consider an electron pump based
on resonant photon-assisted tunneling through a double quantum dot [95].
We search for the shape of the optimal control field in order to maximize
the transfered charge in the system.

In the first subsection a physical picture and equations of motion in
terms of density matrix are given.

In the second subsection we formulate the control problem that is
reduced to the control of a time averaged current between two quantum
dots. In this paragraph we also describe the method that we employed for
the numerical solution.

2.3.1 Equations of motion in terms of density matrix

We consider a double quantum dot device coupled to two metallic contacts
(reservoirs) and configured as an electron pump as described in Ref. [95].
This device is illustrated in Fig. [2.10]. The double quantum dot can be
modeled by only two non-degenerate and weakly coupled electron levels
with energies ε1 and ε2. By sweeping the gate voltages one can vary
∆ε = ε2 − ε1.

The bonding and antibonding states, which are a superposition of the
wavefunctions corresponding to an electron in the left or in the right dot,
have an energy splitting of ∆E = Eantibonding − Ebonding =

√
∆ε2 + 4d2

where d is the tunnel coupling between the two dots.

The quantum dot 1 is connected to the reservoir on the left, and the
second quantum dot is coupled to the right reservoir. The applied voltage
is biased in such a way that the chemical potential of the left reservoir
µR is lower than that on the right reservoir µL. Therefore, in absence
of external perturbation the level 1 is occupied whereas level 2 is empty.
Since we also assume that the coupling between the quantum dots is very
weak, no current flows in the absence of external fields.

If an external resonant electric field is applied to the system, it works
as a pump: Rabi oscillations of the electron occupations occur between
the levels 1 and 2, and electrons can tunnel from the left to the right
reservoir [95, 96].

The Hamiltonian of the double QD coupled to the external field can
be expressed as

HDQD =
2
∑

i=1

εi(t) c
+
i ci + d (c+1 c2 + c+2 c1), (2.41)
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Figure 2.10: Illustration of the ”electron pump” device: two quantum dots coupled
to contacts. Electron can tunnel from the left contact to the left quantum dot. If
the resonant control field is applied the electron can jump to the right quantum
dot and it can further tunnel to the right contact.

where c+i (ci) is the creation (annihilation) operator for an electron on dot
i and the diagonal matrix elements are given by εi(t) = (−1)i/2 (∆ε +
V (t) cosωt). V (t) cosωt is the time-varying external field, which causes
the on-site energies to oscillate against each other. The amplitude V (t) is
also time-dependent and describes the pulse shape.

The Hamiltonian for the metallic reservoirs and the tunnel barriers is
given by [95]

HRT =
∑

k,`=L,R

εk` c
+
k` ck` +

∑

k

WkL (c+kL c1 + c+1 ckL)

+
∑

k

WkR (c+kR c2 + c+2 ckR) + Un1n2. (2.42)

Here, c+k`, with ` = L,R creates an electron of momentum k in reservoir `.
The quantities Wk`, with ` = L,R represent the tunnel matrix elements
between the reservoirs and the QDs. U is the magnitude of the interdot
electron-electron repulsion, and the occupation operators n1 and n2 are
given by n1 = c+1 c1 and n2 = c+2 c2. For simplicity, the electron spin is
neglected.

In the derivation of equations of motion we have used the following
approximation. We assume that the reservoir on the right has a broad
band of unoccupied states, so that after an electron has jumped from the
second quantum dot to the right reservoir it cannot jump back. Thus,
the time scale for the tunneling process between the second dot and the
reservoir on the right is determined by a transfer rate Γ2 = 2πρR(ε)|WkR|2,
where ρR is the density of states in the right reservoir. Similarly, the
transfer rate to the left contact Γ1 is given by Γ1 = 2πρL(ε)|WkL|2.

42



2.3. PHOTON ASSISTED TUNNELING BETWEEN QUANTUM

DOTS: OPTIMAL CONTROL APPROACH

In order to describe the electron dynamics we use a density matrix
approach similar to that was derived in [54]. For the given above Hamilto-
nian, the master equation for the density matrix ρ(t) which describes the
evolution of the system reads

i~
∂

∂t
ρ11 = iΓ1ρ0 + d(ρ12 − ρ21),

i~
∂

∂t
ρ22 = −iΓ2ρ22 + d(ρ21 − ρ12), (2.43)

i~
∂

∂t
ρ12 = −iΓ2

2
ρ12 + 2ε1(t)ρ12 + d(ρ22 − ρ11),

i~
∂

∂t
ρ21 = −iΓ2

2
ρ21 + 2ε2(t)ρ21 + d(ρ22 − ρ11).

Eqs. (2.43) allow to investigate the case of zero and infinite interdot Cou-
lomb repulsion U by choosing the proper expression for the quantity ρ0.
For U = 0 we put ρ0 = 1 − ρ11, whereas the case U → ∞ requires
ρ0 = 1 − ρ11 − ρ22, which projects out double occupancies [54]. The ini-
tial situation is ρ11 = 1, ρ22 = 0, as can be inferred from Fig.[2.10]. We
consider photon assisted tunneling if the one-photon resonance condition
~ω =

√
∆ε2 + 4d2 is satisfied.

Equations Eqs. [2.43] can be solved analytically for certain limiting
cases. For instance, considering only an isolated system of two QD’s (Γ1 =
Γ2 = 0) in an electric field, periodic in time and with a constant amplitude
V (t) = V0, an electron placed on one of the dots will oscillate back and
forth between the dots with the Rabi frequency ωR:

ωR =
2d

~
JN(

V0
~ω

), (2.44)

where JN is the Bessel function of order N . N refers to the number of
photons absorbed by the system in order to fulfill the resonance condition
N~ω =

√
∆ε2 + 4d2.

2.3.2 The control problem

From the integration of Eqs. (2.43) one obtains the charge transferred from
the left into the right reservoir due to the action of the external field over a
finite time interval [0, T ]. For that purpose we write the current operator
Ĵ = id/~ (c+1 c2 − c+2 c1) which leads, in combination with Eqs. (2.43) to
the time dependent average current

〈I(t)〉 = e Tr
{

ρ̂ Ĵ
}

= e
∂ρ22(t)

∂t
+
eΓ2
~

ρ22(t), (2.45)

where e is the electron charge and Tr is the trace operation. The net
transferred charge from left to the right QD QT is obtained as

QT =

∫ T

0

dt 〈I(t)〉 = eΓ2
~

∫ T

0

dt ρ22(t) + e ρ22(T ) . (2.46)
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Obviously, QT only represents the transferred charge to the right reservoir
only if Γ2 6= 0. The second in Eq. [2.46] term indicates that, after the field
is switched off (t > T , the charge remaining in the second quantum dot
e ρ22(T ) is completely transferred to the right reservoir.

It is important to point out that QT = QT [V (t)] is a nonlinear func-
tional of the field amplitude V (t), and can exhibit different types of beha-
vior depending on the form of V (t). For instance, if the external field has
a Gaussian shape V (t) = V0 exp (−t2/2τ 2) of duration τ , then QT shows
Stückelberg-like oscillations as a function of τ [96]. However, the Gaussian
shape of V (t) does not necessarily maximize the transferred charge. Our
goal is to find the optimal pulse shape Vopt(t) which maximizes QT , i.e.,
which satisfies Qmax

T = QT [Vopt(t)].
The problem of finding Vopt(t) is very complicated due to its high

nonlinearity and the large number of degrees of freedom. Therefore, we
use the genetic algorithm (GA) as a global search method.

In our present approach the vector representing the genetic code is just
the pulse shape V (t) discretized on a time interval t ∈ [0, T ]. The fitness
function, i.e. the functional to be maximized by the successive generations
is the transferred charge QT [V (t)] (see Eq. [2.46]. The genetic algorithm
applied to pulse shaping consists of the following steps:

(i) We create a random initial population {V (0)
j (t)}, j = 1, . . . , N ,

consisting of N different pulse amplitudes V
(0)
j (t).

(ii) The fitness function QT [V
(0)
j (t)] of all individuals is determined.

(iii) A new population {V (1)
j (t)} is created through application of the

genetic operators.
(iv) The fitness of the new generation is evaluated.
(v) Steps (iii) and (iv) are repeated for the successive generations

{V (n)j (t)} until convergence is achieved and the optimal pulse shape which
maximizes QT is found. We implement the same realization of the GA as
in the Theory section [2.2].

We assume that the control field is active within a time interval [0,T]
with boundary conditions V (0) = V (T ) = 0. As initial population of field
amplitudes satisfying the boundary conditions we choose Gaussian-like
functions of the form

V
(0)
j (t) = I0j exp(−(t− tj)2/τ 2j ) t (t− T ), (2.47)

with random values for the position of the maximum tj ∈ [0, T ] and the
duration τj ∈ (0, T ]. The peak amplitude I0j for each pulse is calculated
from the condition that all pulses must carry the same energy

E =

∫ T

0

V 2(t) cos2(ωt)dt. (2.48)

Eq. (2.48) represents a constraint for our calculations. One could consider
the value of the pulse energy E also as a parameter to be optimized.
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DOTS: OPTIMAL CONTROL APPROACH

The above formulated control problem (Eqs. [2.43,2.46,2.48] is applied
to a rather simple quantum system. However, as we shall see, the optimal
control fields have a nontrivial shape and induce a complicated dynamics
of the electron occupations in the system.
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2.4 Explosion of noble gas clusters in strong

laser fields

In this section we give a theory in order to describe the explosion of Xe
clusters interacting with very strong femtosecond laser fields. Because the
strength of the laser field is comparable with the Coulomb attraction of an
electron to an nucleus in the Hydrogen atom, this excludes the possibility
of a perturbative treatment of the problem.

In the first subsection we describe the main time and length scales
and physical quantities that characterize the cluster explosion process.
This analysis helps us to derive a physically relevant and computationally
tractable model.

In the second subsection possible mechanisms of ionization and explo-
sion are discussed.

In the third paragraph equation of motion for electrons and nuclei are
given. In our model we treat electrons quantummechanically using density
functional approach. The point-like nuclei are described classically.

In the forth paragraph a short sketch of the implemented numerical
methods is given.

2.4.1 Time and length scales for the cluster explo-

sion

Let us discuss the time scales that characterize the main processes during
the cluster explosion. The fastest process is represented by the electron
dynamics inside the atoms. It is characterized by the fundamental atomic
time scale:

tau =
2mea0

~
, (2.49)

where me is electron mass and a0 is atomic Bohr radius. Using Eq. [2.49]
one can estimate that relevant electron dynamics happens on time scales
of tau = 2.27 × 10−1 fs. Another characteristic time scale corresponds to
the period of the laser field oscillations. Because in experiments mostly a
T i : sapphire laser with wavelengths in the range of 620−840 nm is used,
the period of oscillation can be estimated as tl = λ/c ≈ 2 fs. The next
time scale is related to the ionization process that occurs mainly during
the first 5 − 50 optical cycles [60]. The laser pulse duration represents
a very significant time scale that is usually in the range of 20 − 800 fs.
The largest time scale in the considered problem is defined by a motion
of heavy nuclei. The correspondent times are of the order of 100 − 1000
fs. In order to make realistic quantum mechanical calculations one has to
take into account all above mentioned time scales (see Fig. [2.11]).

Let us now estimate the length scales involved in the cluster explosion.
The smallest length scale is defined by the De Broglie wavelength λDB of
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Figure 2.11: Main time scales (in femtoseconds) involved in a cluster explosion.

the most energetic electrons:

λDB =

√

2π~2
meEkin

, (2.50)

where Ekin is the kinetic energy of electrons. Substituting in Eq. [2.50]
the typical kinetic energy Ekin ≈ 3 keV of ejected electrons observed
in experiments [55] one obtains λDeB ≈ 0.25 a0. This means that for
such energetic electrons a classical treatment is relevant because their
wavelength is considerably smaller than the internuclei spacing d, which
is typically d = 8.5 a0 for Xe clusters [17].

However, if one wants to describe the ionization, that is essentially a
quantum mechanical process, one needs to use a quantum treatment and
to make very fine discretization of the real space with ∆x¿ λDeBroglie in
order to account for such energetic electrons. The size of the clusters we
are interested in, is in the range of 10 a0 − 100 a0. This corresponds to
approximately 100−2500 atoms in the cluster. In order to make real space
calculations, one needs to define a certain region (box). This box should be
large enough in order to make the border effects negligible. Because of the
explosion process the size of the box L should be at least ten times larger
than initial size of the cluster: L is in the range of 100a0 − 1000a0 (see
Fig. [2.12]). The wavelength of the laser field is typically few hundreds
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Figure 2.12: Main length scales involved in cluster explosion.

of nanometers and hence significantly larger than all above mentioned
lengthscales. Therefore we assume in our simulations a uniform laser field.

The regime of fast and energetic excitations in cluster explosion ex-
periments [15, 16, 17] goes far beyond any peturbative treatment. For
example, the laser pulse with a peak intensity 3.16 × 1016W/cm2 corres-
ponds to the Coulomb field strength experienced by an electron in the
ground state of atomic Hydrogen. This requires a fully nonadiabatic de-
scription of both electronic and ionic response.

2.4.2 Explosion scenario

The physical scenario for cluster explosion which emerges from the dif-
ferent experimental observations and calculations can be divided into 3
stages:

(1) The laser pulse excites electrons into states of very high kinetic
energy. Thus, both ionization and expansion of the cluster occur. Because
of the very strong external field, high-order multiphoton ionization and
strong electric field tunnel ionization are possible.

One can specify two types of ionization processes: inner ionization and
outer ionization. Inner ionization corresponds to the removal of electrons
from their host atoms (ions) so that it determines the charge qi of the
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cluster ions. Note that inner ionization does not necessarily imply that
the electron leaves the cluster.

Outer ionization is manifested by electron removal from the cluster to
infinity so that it determines the total cluster charge Q. The complete
simulation of the ionization process has to treat both inner and outer
ionization since they affect each other [31] .

(2) During the expansion the cluster can reach a certain critical radius
for which the absorption of energy is particularly favored. There are two
main mechanism which are responsible for the enhanced ionization. The
first mechanism corresponds to the so called microplasma model [55]. Ex-
cited electrons are treated as a small spherical plasma with characteristic
plasmon frequency

ωpe =
( n0e

2

3meε0

)
1/2

, (2.51)

where n0 is electron plasma density, e is elementary charge of electron and
ε0 is vacuum permittivity constant. When the charged cluster starts to
expand, the plasmon frequency becomes resonant with the laser frequency
[22, 23, 29] that leads to very effective heating of electrons in the cluster.
The second possibility is so called ”ignition mechanism”. In this case the
lowering of the Coulomb potential that attracts electrons to one ion, by
the Coulomb attraction due to its neighboring ions, enhances the rate of
the over-the-barrier ionization.

As was shown by Rost and coworkers in [33] this mechanism also ex-
hibits resonant features, i.e it becomes especially efficient for a certain
internuclei distance. Because both resonances occur approximately at the
same stage of explosion, it is difficult to distinguish these two mechanisms
using available experimental data. If the external field is still large when
resonance conditions are satisfied, then an enormous increase in the en-
ergy absorption occurs, which leads to the emission of a large fraction of
electrons of the cluster.

(3) The final stage is the destruction of the cluster involving produc-
tion of highly charged and highly energetic ions, which show an interesting
dependence on the initial cluster radius. For cluster size more than 60nm,
that corresponds to approximately 2500 atoms in the cluster, the meas-
urements indicate highly energetic ions with energy up to 1 MeV (see
Fig [1.1]) [16, 55].

There are two conventional mechanisms responsible for the ion acceler-
ation. The first one corresponds to the case when the loss of electrons will
lead to a charge buildup Q on the cluster surface that can be associated
with the Coulomb pressure on the sphere with the radius r: PC = Q2

2(4π)2ε0r4
.

Because of the mutual repulsion between the ions the cluster becomes un-
stable and Coulomb explosion occurs.

The second mechanism is associated with the pressure of the hot elec-
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trons (microplasma model). It is assumed that expanding electron plasma
accelerates cold heavy ions. It is possible to compare the Coulomb pres-
sure to the hydrodynamic pressure PH = ne(r)kbTe(r).

Suppose that the radial velocity of the expanding cluster with elec-
tron plasma density ne ∝ r−3 reaches a constant value shortly after the
laser pulse, the plasma temperature Te(r) ∝ r−1 solves the hydrodynamic
differential equation for the electron density [17]:

∂Te
∂t

= −2Te
r

∂r

∂t
. (2.52)

This implies that PC and PH will be competing over a long expansion
time, since they both decrease with 1/r4.

In experiment made by Lezius and coworkers [17] the distribution of
emitted Xeq+ ions as a function of their kinetic energy Ekin and charge q
were measured with high accuracy. The production of measured highly en-
ergetic ions were partially associated with the hydrodynamic mechanism.
This misleading conclusion were made on a base of ”linear” dependence
between the kinetic energy Ekin and the charge state q of the atom (see
Fig. [1.2]). It seems, that the authors of Ref. [17] did not mention that for
distributions plotted in Fig. [1.2] the logarithmic scale for the energy has
been used. And correct conclusion should be that log (Ekin) ∝ q. There-
fore, we conclude that the cluster explosion mechanism is not understood
well.

For the understanding of all three stages a microscopic description of
the interplay between the quantum dynamics of the electrons and the
ionic motion is necessary. So far, no such microscopic description has
been achieved without significant simplification of the theoretical model.
Moreover, a unified theoretical description of the above mentioned stages
and a consistent explanation of all experiments is still lacking.

Therefore, one need a model which describes the response of a cluster to
intense radiation fields by simultaneous solution of the quantum-mechanical
equations of motion for the electrons and the classical equations of mo-
tion for the nuclei. Rather than computing the time evolution of a many-
electron wave function, a task which at present is computationally infeas-
ible, our theory deals with the time evolution of the electronic density
under the influence of nuclear attraction, electronic repulsion, and the ex-
ternal radiation field. Such density-functional approaches have a rigorous
foundation only for the treatment of ground-state total electronic energies
[41], although some promising work has been done on time-dependent
problems as well [42].

2.4.3 Equations of motion

In this subsection we present our theoretical approach. We characterize all
electrons in the XeN cluster by the electronic density ρ(r, t) = |ψ(r, t)|2,
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with the normalization condition
∫

|ψ(r, t)|2 dr = Nel, where Nel is the
total number of electrons in the cluster. The quantum dynamics of ρ(r)
is coupled to the classical equations of motion for the nuclei. Thus, using
atomic units, the time evolution of the cluster is described by the equations

i
∂ψ

∂t
=

(

−1

2
∇2r + Uen + Ulaser + Uee + Uxc

)

ψ, (2.53)

and
MR̈j = −~∇R,j Hion(|ψ|2, {Rk}, t). (2.54)

Here, {Rj}, (j = 1, . . . , N), are coordinates of the nuclei, M refers to
the mass of the nucleus. In Eq. [2.53] Uen(r) and Ulaser(r, t) refer to the
potentials arising from the positive nuclei and the external laser field,
while Uee(r) and Ux(r) describe the Coulomb repulsion between electrons
and the exchange-correlation potential, respectively.

Since laser fields used in cluster explosion experiments have a linear
polarization of the light, we assume that all particles in the system move
in one spatial dimension along the vector of the polarization. The one
dimensional approximation has been used extensively in the treatment
of strong-field interactions with atoms and small clusters [28], and in
such cases it reproduces qualitatively many key phenomena encountered in
three-dimensional systems. It is perhaps better justified for the treatment
of small molecules which tend to become quickly aligned with the polar-
ization vector of the field, than for clusters treated here, which display
essentially isotropic dissociation [55]. However, we adopt this approxima-
tion in order to make the necessary computations tractable.

With this restriction, the potential Uen appearing in Eq. [2.53] is given
by

Uen(x) = −
N
∑

i=1

Q
√

(x−Ri(t))2 + a2
, (2.55)

whereQ = 54 for Xenon, and the (Hartree-like) Coulomb repulsion between
electrons Uee is described by

Uee(x) =
1

2

∫

dx′
|ψ(x′, t)|2

√

(x− x′)2 + b2
. (2.56)

In Eqs. [2.55] and [2.56], a and b are smoothing parameters to elimin-
ate the singularity at x=0, while retaining the long-range character of
the interactions. Using a = 2.5 a0 and b = 3.4 a0 we reproduce the
experimental equilibrium internuclear separation of the Xe2 molecule and
binding energy of 0.048 eV. The external laser field acting on the electrons
is given by Ulaser(x, t) = A(t)x sin(ωt), where A(t) is the envelope of the
laser pulse with frequency ω. In Eq. [2.53] we use the simplest form of the

exchange-correlation functional Uxc(x) = −3/4 (3/π)
1
3 |ψ(x, t)| 23 which one
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can obtain considering the non-interacting uniform electron gas. Finally,
the Hamiltonian Hion for the nuclei is given by

Hion =
N
∑

j=1

P 2j
2M

+
N−1
∑

j=1

N
∑

k=j+1

Q2
√

(Rk −Rj)2 + a2

+Q

∫

Uen(x) |ψ(x, t)|2dx−Q
N
∑

j=1

Rj A(t) sin(ωt), (2.57)

where the different terms describe the kinetic energy, the Coulomb repul-
sion between nuclei, the electron-ion attraction, and the coupling of the
ions to the external laser field, respectively.

2.4.4 Integration of the equations of motion: the

split operator method

In order to integrate Eq. [2.53] having the form

i
∂

∂t
Ψ = ĤΨ, (2.58)

we applied an accurate and efficient technique that is called the split op-
erator method. This technique was successfully applied to quantum dy-
namics problems [67]. In the following we describe the main idea of the
method.

Let us consider first the representation of the wavefunction and oper-
ators on the interval x ∈ [xmin, xmax]. We consider equidistant grids that
are defined as follows:

xj = xmin + (j − 1)∆x, j = 1, ..., N. (2.59)

The index j refers to the grid point and the number of grid points is given
by N . The grid spacing ∆x is given by ∆x = (xmax − xmin)/(N − 1).

The breakthrough in the numerical solution of the time-dependent
Schrödinger equation was achieved when the fast Fourier transformation
(FFT) technique was applied in [81, 67] for the evaluation of the kinetic
energy part of the Hamiltonian. The essence of the method is the fact
that the quantum mechanical momentum operators, nonlocal in the co-
ordinate representation, are local in the momentum representation, where
their action can be evaluated by a simple multiplication. This method
was originally intended for determining the modes of optical wave guides,
where the wave equations are similar to the Schrödinger equation. The
underlying principles of this method will be outlined.

Let us first assume that the Hamilton operator Ĥ in Eq. [2.58] is
explicitly time-independent. In this case its formal solution can be written
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in the following form:

ψ(x, t) = e−iĤtψ(x, 0) = e−i(T̂+Û)tψ(x, 0), (2.60)

where T̂ ,Û correspond to kinetic and potential energy operators. If we
consider the evolution of the wave function during one time step ∆t, the
equation Eq. [2.60] then becomes:

ψ(x, t+∆t) = e−i(T̂+Û)∆tψ(x, t). (2.61)

Since the potential and kinetic energy operators do not commute, we
cannot rewrite the exponential of the sum of operators in Eq. [2.61] as a
product of exponentials of each. Would such factorization to be performed,
an error of the order of ∆t2 would be introduced in the energy. However,
a certain arrangement of terms in the Hamilton operator allows to achieve
higher accuracy. Let us consider the Baker-Campbell-Hausdorff theorem,
applied to three operators Â, B̂, Ĉ :

exp
(

Â
)

exp
(

B̂
)

exp
(

Ĉ
)

= exp
(

Â+ B̂ + Ĉ +

1

2

(

[Â, B̂] + [B̂, Ĉ] + [Â, Ĉ]
)

+ ...
)

. (2.62)

Let us define the operators Â, B̂, Ĉ as follows:

Â = Ĉ = −i Û
2
∆t, B̂ = −iT̂∆t. (2.63)

Substituting Eq. [2.63] into the equation Eq. [2.62] yields:

exp
(

−i Û
2
∆t
)

exp
(

−iT̂∆t
)

exp
(

−i Û
2
∆t
)

= exp
(

−i(T̂+Û)∆t+O(∆t3)
)

.

(2.64)
Combining the equations Eq. [2.61] and Eq. [2.62], we obtain the split-
operator propagator in the final form:

ψ(x, t+∆t) = e−i
Û
2
∆te−iT̂∆te−i

Û
2
∆tψ(x, t) +O(∆t3). (2.65)

Thus, the split-operator method is accurate to the second term in the ∆t.
Practical implementation of the split operator propagation requires

the use of the FFT method, so that the actions of the operators will
be evaluated in their respective local representations. Since the kinetic
and potential energy operators are arguments of exponential functions,
this procedure works only when the kinetic energy operator is diagonal in
momentum space, for example, if it is given in Cartesian coordinates.

In order to derive the expression for the split-operator propagator an
assumption was made, that the Hamilton operator is not explicitly time-
dependent. If the Hamilton operator contains the time-dependent interac-
tion part, this assumption does not hold. However, Kouri and coworkers
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[68] have shown, that it is possible to derive an expression for the split-
operator which accommodates the explicitly time-dependent Hamiltonians
correctly, retaining the accuracy of the method. In this case the potential-
type splitting has to be used, and the final expression for the propagator
reads

ψ(x, t+∆t) = e−i
Û(t+∆t)

2
∆te−iT̂∆te−i

Û(t)
2
∆tψ(x, t) +O(∆t3). (2.66)

In the course of the propagation, an electron wavepacket may approach
the end of the grid, on which it is defined, due to fast ionization. In
this case further propagation will give rise to the reflection of the wave
packet from the grid boundary. To prevent the unphysical behavior of the
wave packet, one has to damp the wave function near the grid boundar-
ies. A possible way to achieve this is to multiply the propagated wave
function at each time step by a function which is equal to one in the grid
regions where the dynamics takes place and rapidly goes to zero in the
certain predefined region in the immediate vicinity of the boundary. This
approach was suggested by Bisseling et al. [69] and is named as “absorb-
ing boundary condition approach”. Alternatively, one can implement an
absorbing boundary condition by adding to the Hamiltonian an artificial
purely imaginary potential-type term. Drawing parallels from optics, such
a term is often called imaginary optical potential. With exponential-type
propagators, like split-operator, these terms lead to efficient damping of
the wave function in the regions, where this imaginary optical potential
is defined. In contrast with the previous approach, this term has to be
added to the potential only once before the propagation leading to con-
siderable speedup in computation. We determine the initial wavefunction
ψ0(x) = ψ(x, 0) and ions configuration {Rj} for a given number of atoms
N in the cluster using the Quantum Genetic Algorithm (see the Theory
section [2.2]). We have checked that without external field the obtained
1D clusters are stable on the time interval of more than 1000 fs.
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