## Contents

| Zι | Zusammenfassung |                                                              |                                                                       |    |  |  |  |  |
|----|-----------------|--------------------------------------------------------------|-----------------------------------------------------------------------|----|--|--|--|--|
| Al | Abstract        |                                                              |                                                                       |    |  |  |  |  |
| 1  | Introduction    |                                                              |                                                                       |    |  |  |  |  |
| 2  | Theory          |                                                              |                                                                       |    |  |  |  |  |
|    | 2.1             | Optimal control of quantum systems over finite time interval |                                                                       |    |  |  |  |  |
|    |                 | 2.1.1                                                        | The Lagrangian formalism                                              | 19 |  |  |  |  |
|    |                 | 2.1.2                                                        | Derivation of the differential equation for the opti-                 |    |  |  |  |  |
|    |                 |                                                              | mal control field                                                     | 22 |  |  |  |  |
|    |                 | 2.1.3                                                        | An approximate analytical solution for the case of a two level system | 24 |  |  |  |  |
|    |                 | 2.1.4                                                        | The analytical solution for the optimal control field                 |    |  |  |  |  |
|    |                 |                                                              | with a simplified Lagrangian                                          | 25 |  |  |  |  |
|    |                 | 2.1.5                                                        | Optimal control at a given time                                       | 27 |  |  |  |  |
|    |                 | 2.1.6                                                        | Estimation of the absolute bound for the control due                  |    |  |  |  |  |
|    |                 |                                                              | to relaxation and dephasing effects                                   | 28 |  |  |  |  |
|    | 2.2             | Calcul                                                       | ation of the excitation spectrum of quantum systems                   |    |  |  |  |  |
|    |                 | using genetic algorithms                                     |                                                                       |    |  |  |  |  |
|    |                 | 2.2.1                                                        | Introduction to evolutionary algorithms                               | 30 |  |  |  |  |
|    |                 | 2.2.2                                                        | Definition of the representation, fitness and genetic                 |    |  |  |  |  |
|    |                 |                                                              | operators for quantum ground-state problem                            | 33 |  |  |  |  |
|    |                 | 2.2.3                                                        | Extension of the QGA for the solution of quantum                      |    |  |  |  |  |
|    |                 |                                                              | statistical problems                                                  | 38 |  |  |  |  |
|    | 2.3             | Photon assisted tunneling between quantum dots: optimal      |                                                                       |    |  |  |  |  |
|    |                 | contro                                                       | l approach                                                            | 41 |  |  |  |  |
|    |                 | 2.3.1                                                        | Equations of motion in terms of density matrix                        | 41 |  |  |  |  |
|    |                 | 2.3.2                                                        | The control problem                                                   | 43 |  |  |  |  |
|    | 2.4             | Explos                                                       | sion of noble gas clusters in strong laser fields                     | 46 |  |  |  |  |
|    |                 | 2.4.1                                                        | Time and length scales for the cluster explosion                      | 46 |  |  |  |  |
|    |                 | 2.4.2                                                        | Explosion scenario                                                    | 48 |  |  |  |  |
|    |                 | 2.4.3                                                        | Equations of motion                                                   | 50 |  |  |  |  |

|              |                                                            | 2.4.4                                                    | Integration of the equations of motion: the split operator method | 52  |  |  |  |  |
|--------------|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|-----|--|--|--|--|
| 3            | Results                                                    |                                                          |                                                                   |     |  |  |  |  |
|              | 3.1                                                        | Optimal control of a time averaged occupation of the ex- |                                                                   |     |  |  |  |  |
|              |                                                            | cited level in a two-level system                        |                                                                   |     |  |  |  |  |
|              |                                                            | 3.1.1                                                    | 1                                                                 | 56  |  |  |  |  |
|              |                                                            | 3.1.2                                                    |                                                                   |     |  |  |  |  |
|              |                                                            |                                                          | Lagrangian                                                        | 60  |  |  |  |  |
|              | 3.2                                                        |                                                          | cation of the QGA to the eigenstate problem for in-               |     |  |  |  |  |
|              |                                                            |                                                          | ing electrons in quantum dots                                     | 63  |  |  |  |  |
|              |                                                            | 3.2.1                                                    | The ground state problem in one and two dimensions                |     |  |  |  |  |
|              |                                                            | 3.2.2                                                    | Formation of a "Wigner molecule" and its "melting"                | 70  |  |  |  |  |
|              | 3.3                                                        |                                                          | nal field for control of the photon assisted tunneling            |     |  |  |  |  |
|              |                                                            |                                                          | en quantum dots                                                   | 75  |  |  |  |  |
|              |                                                            | 3.3.1                                                    | 0 0                                                               |     |  |  |  |  |
|              | 2.4                                                        | Б. 1                                                     | influence of relaxation on the optimal control                    | 75  |  |  |  |  |
|              | 3.4                                                        |                                                          | sion of $Xe_N$ clusters                                           | 83  |  |  |  |  |
|              |                                                            | 3.4.1                                                    | Ionization and explosion dynamics                                 | 83  |  |  |  |  |
|              |                                                            | 3.4.2                                                    | 1                                                                 |     |  |  |  |  |
|              |                                                            | 0.40                                                     | cluster size                                                      | 85  |  |  |  |  |
|              |                                                            | 3.4.3                                                    | Isotropic inhomogeneous 3D Coulomb model                          | 89  |  |  |  |  |
| 4            | Con                                                        | clusio                                                   | ns and outlook                                                    | 91  |  |  |  |  |
| $\mathbf{A}$ | The                                                        | adiab                                                    | patic approximation                                               | 97  |  |  |  |  |
| В            | Derivation of an approximate solution for a two level sys- |                                                          |                                                                   |     |  |  |  |  |
|              | tem                                                        | l                                                        |                                                                   | 99  |  |  |  |  |
| $\mathbf{C}$ | Gen                                                        | neraliz                                                  | ation of the QGA for higher dimensions                            | 101 |  |  |  |  |
| D            | Inte                                                       | egratio                                                  | on of the pendulum equation                                       | 103 |  |  |  |  |
| Bi           | Bibliography 1                                             |                                                          |                                                                   |     |  |  |  |  |
| D-           | ıblic                                                      | otions                                                   |                                                                   | 117 |  |  |  |  |
| Γt           | Publications                                               |                                                          |                                                                   |     |  |  |  |  |
| A            | Acknowledgments                                            |                                                          |                                                                   |     |  |  |  |  |
| Cı           | Curriculum vitae 1                                         |                                                          |                                                                   |     |  |  |  |  |