Chapter 2

A Motivating Case Study

In this chapter we demonstrate Form-Oriented Analysis for an example appli-
cation. We will see, how Form-Oriented Analysis yields a simple and intuitive
overview as well as a formal description of the intended system. Our example
system is a form-based seminar registration system as it is suited for a single
course. The screen shots of the system are shown in Figure 2.1. The front
page shows the students registered so far and contains links to the different in-
teraction options. New students can register themselves. From the homepage,
students already registered can change or delete their registration. Each link
leads to a new page specific for the chosen option.

This example system is already suited to explain the main properties of a
submit /response style system and to compare it with other system types. The
first important property of submit/response style systems is that they follow a
strict two-staged interaction paradigm. Submit/response style systems present
to the user at each point in time a page which offers two kinds of interaction
options: page interaction and page change. The registration page for our ex-
ample offers a back link as well as input fields for text input, which comprise
a form together with the submit button. The back link and the submit button
on the one hand and the input fields on the other hand differ in the effect of
input. Input into the input fields is only preliminary until the submit button
is pressed, it cannot change the system state permanently. Links and a submit
button change the page with an atomic interaction. They are the only interac-
tions that change the system state permanently. Hence the difference between
both kinds of interaction options is that page interaction is fine grained, volatile
and reversible, while page change affects the system state and consists of singu-
lar atomic actions. Supposed the user has chosen to insert a new address record
and has already filled out all fields of the new record, but she has not submitted
the new address. Then in our system there would be no new address record in
the non-transient system state up to this time. Only if she submits the record
to the system, the new address record would be entered in the database. But if
she presses the back button instead, the input is lost. Page interactions are well
understood and can be offered by an application independent browser, which

CHAPTER 2. A MOTIVATING CASE STUDY

Seminar Registration

New student home

name []
phone []
student D []
passwd [
repeatpwd []

[_submit]

reset

&
Nr. name phone o
(¢}
1. Alon 00198765 M
2. Bert 089 1234 |
3. Charles 003584567 N
4. Dan 00123456 W
[register yourself |
Delete Record home
name: Bert

passwd []
confirm delete

N /7N

Change your Data

name [|
prone [|
studentD []
passwd [|

[submit] | reset

Figure 2.1: Overview of the screens of an online seminar registration system.

2.1. PAGE DIAGRAMS 7

is able to interpret a declarative page description and provide a sufficiently
powerful standard page interaction paradigm. This explains the success story
of concrete technologies like the HTML form concept together with the web
browser as a standard ultra-thin client. This two-staged interaction paradigm
is an important difference of a submit/response style system to other types of
systems. Most telling is here a comparison with a system based on a so-called
desktop database. Such tools can be found in many office suites. They are
typically not multi-user systems, therefore our example is not typical for such
an application, but a similar single user application for desktop databases could
use a similar screen layout, e.g. for a personal address list. But in such an
application a new database record is created as soon as the user goes to the edit
mask. Furthermore, each field entry is entered immediately into the persistent
system state. The interaction in these systems is hence single staged. Another
important difference is the update policy for pages. In our submit/response
style interface, the list shown to the user is not updated until she revisits the
page. In desktop databases on the other hand, views of the complete table may
be updated immediately.

Submit/response style systems form an important and distinct system class.
They are a formal defined class of form-based, request/response systems. Form-
Oriented Analysis is an analysis method tailored for submit/response based
systems. The structure of the analysis artifacts reflects the two-staged inter-
action paradigm. In the following we will develop the different artifacts of
Form-Oriented Analysis for the given example application. These artifacts will
be page diagrams, form storyboards and finally the combination of form chart
and model. Concerning formality they range from informal to formal.

2.1 Page Diagrams

Naive screenshot diagrams can be found frequently in practice, showing pages
and connections between them. We have already introduced a naive screenshot
diagram of our system in Figure 2.1. Screenshot diagrams, also called GUI pro-
totype, can have various meaning concerning the connections between pages.
In our approach we see pages as states and connections between pages as pos-
sible state transitions. We discuss other approaches with different semantics in
Chapter 3, e.g. WebML [139], a visual language specifically for designing Web
Applications. We now introduce our notion of page transition diagrams, which
we call page diagrams. This diagram type is intended to introduce the modeler
into the notion of submit/response style dialogues in a hands-on fashion. It is
especially suited as a starting point for the discussion with the domain expert
about the intended task of the system. The conceptual insights of the page
diagram will be later fully expressed in the form storyboard. A page diagram
as shown in Figure 2.2 describes a system as consisting of a finite set of pages,
each page offering a finite number of interaction options. A finite description
of the interaction options is the conceptually preferable notion in contrast to
an unspecified potentially infinite description as it is shown in Figure 2.3. All

CHAPTER 2. A MOTIVATING CASE STUDY

{invalid password}

Delete Record home
name: Bert

A

Seminar Registration

&
Nr. name phone 2:
1. Alon 00198765 W
2. Bert 089 1234 [|
3. Charles 003584567 N
4. Dan 001 23 456 |

| register yourself |

| passwd []

o3ueyo

| confirm delete |

A

[delete] ome

Change your Data

name []
phone [|
studentD []
passwd [|

A submit | | reset
!

{invalid password}

New student home
name
phone []

student ID

A

passwd |
repeatpwd [

[submit] ' reset

{passwd<> repeat}

A

Figure 2.2: Page diagram of the online seminar registration system.

2.1. PAGE DIAGRAMS 9

Seminar Registration |
[e)

& B
Nr. name phone & 2

(¢} (¢}
1. Alon 001 98 765 u
2. Bert 089 1234 I
3. Charles 00358 4567 I\ Dl e Rese home
4. Dan 00123456 E—M

name: Bert
passwd []

[confirm delete |

| register yourself |

Figure 2.3: A list of options forms a single conceptual option

delete options of the list together form a single conceptual delete option. In page
diagrams the pages represent at the same time the set of states of the system.
The page diagram is therefore explicitly identified as a state transition diagram.
At this point we see the impact of the two-staged interaction paradigm: Only
the page changes are modeled as state transitions in the page diagram. The
page interaction obviously is implicit in each single page prototype. We want to
conceive our page diagram as being executable by a high level kind of a browser.
This browser is not a technological browser, but an abstract machine executing
our specification. The state transition diagram is a coarse grained state transi-
tion since it depicts only page change as state change. This is a major difference
in contrast to common user interface modeling with state transitions [54] [76],
where the fine-grained page interaction is modeled.

But the most crucial observation we have to make, which immediately opens
the conceptual path to form storyboards, is the observation that system response
may be conditional: a single page change triggered by the user can result in
different response pages, depending on the system state. A typical case is that
either the regular response page or an error page is shown. Hence page diagrams
as an interface prototype notation offer also conditional transitions. An example
is the submission of a registration form in the diagram. The transition has a
branching point depicted by a square from which different branches lead to
different response pages. These branches are annotated with the conditions
under which they occur. In which sense such a system can be formally still
seen as a state transition diagram will be explained in the context of form
storyboards.

10 CHAPTER 2. A MOTIVATING CASE STUDY

7\\ menu
4
newPage,
deletePage, home - igy
changePage

changeLink

deleteLink = person

= person \\

v

changePage

newForm deletePage v

= name changeForm

= phone - : = person

= studentID S ® name

= passwd - pcrsond = phone

.

= passwd2 SRR = studentID

= passwd

finvalid pass v
{passwd<>passwd2} {invalid password }

{invalid password }

Figure 2.4: Form storyboard for the seminar registration system

2.2 Form Storyboards

Form storyboards take the understanding of submit/response style applications
a step further by introducing into the system model one of the major conceptual
cornerstones of Form-Oriented Analysis: in form storyboards the system is seen
as a bipartite state transition diagram. The bipartite state machine is the
basic structure of form storyboards as can be seen in Figure 2.4. In this view
the system is alternating between two kinds of states. The first kind of states
corresponds to the pages of the system as before. These states are called client
pages, they are depicted by rounded rectangles. The system remains in such
a client page state until the user triggers a page change. In that moment the
record with her previous input is sent to the system. The type of this record, as
one can see in Figure 2.4, is specified within the rectangles depicting the second
kind of states. They represent the systems action in response to a page change
and are therefore called server actions. These states are left automatically by
the system and lead to a new client page.

Form storyboards are designed for communication between domain experts
and IT experts, but under utilization of the conceptual achievements of Form-
Oriented Analysis.

The modeling of the system as a bipartite state transition diagram brings
a number of benefits for modeling as we will see in the further development
throughout the thesis.

At this point we encounter the first benefit of this bipartite model. Form
storyboards give a formal model for the conditional page transition. The branch-
ing points in the conditional transitions of the page diagrams are identified with

2.2. FORM STORYBOARDS 11

server actions in the form storyboard. The branching transitions are split into a
transition going from the client page to the server action and transitions going
from the server action to the client pages. The first type of transitions is called
page/server transitions, the second kind of transitions is called server/page tran-
sitions.

Since the form storyboard is a bipartite state transition diagram, each un-
conditional transition in the page diagram which leads from a page to another
page has to be transformed into two transitions with an intermediate server ac-
tion. In the example form storyboard we also see a so called menu feature, which
gives a terse description of the fact that a link to the home page is contained
on all pages except the home page itself.

2.2.1 Typed calls to the system

The bipartite structure of form storyboards clarifies the difference between pages
and forms, which can be seen as the motivation for the term form storyboard.
Let us consider the page of the example application with title ”Change your
Data”, which is named changePage in the form storyboard. This page is domi-
nated by the form for changing the prefilled personal data. However, the page
and the form are different concepts, as can be seen by the fact that the page
also offers another option for deleting the record. Each client page offers a finite
number of interaction options in our conceptual view already introduced for
page diagrams. Each interaction option corresponds to a page change.

Page change is seen as the submission of a data record together with a
command to the system. Hence page change can be seen as a method call by
the user. This method call is editable. Its actual parameters are edited by
the kind of interaction we have called page interaction, either by textual input,
also called direct input, or by selecting from a list. In form storyboards, the
signature of a server action is written in the rectangle in order to resemble a
form.

The important web technology often uses links to choose a certain parameter.
Consider again the main page of our seminar registration system. The student
can delete himself by clicking the delete square beside his entry. This could be
realized by a link. At this point we can illustrate the difference between this
technical perspective and the high level perspective taken by our Form-Oriented
Analysis method. The difference between links and forms is a purely technical
one, residing on the implementation level of the system. On the analysis level
on the other hand such a link is simply a selection. The analysis level is not
concerned with the technical realization, not even with the layout, i.e. the
selection could be realized as a list of links as well as a list of radio buttons or
a pull down list. In other words, a list of links is equivalent to a radio button
group with a submit button. So analysis deals with the logical effect of the
interaction option.

Since in Form-Oriented Analysis page change is seen as an editable method
call, the server action represents the state of method execution. In form sto-
ryboards each server action can have more than one ingoing edge, representing

12 CHAPTER 2. A MOTIVATING CASE STUDY

menu

newPage,
deletePage, home 1~ list
changePage

—

changeLink

deleteLink > person

N

h 4

» person

changePage

newForm deletePage v

Oname changeForm

QOphone < * person

OstudentID) deleteForm 0 name

QOpasswd O e o phone

Qpasswd2 U passwd o studentID
o passwd

(passwd<>passwd2} {invalid password }

{invalid password }

Figure 2.5: Form storyboards can be annotated with interaction information

calls from different client pages to the same method. All ingoing edges to the
same server action must provide the same parameters. In form storyboards the
parameters of a server action are specified within the square representing the
server action. The parameters provided by a form and submitted to a server
action are considered as a single record data type which is called the superpa-
rameter of the server action.

Page/server transitions represent the submission options that are offered by
the page i.e. the forms offered by the page.

In order to support form storyboards as a tool for efficient communication
with the domain expert, form storyboards can be annotated with information
about the interaction type used for submitting the form parameters. Figure 2.5
shows the form storyboard with annotated interaction information. It differs
from the form storyboard version in Figure 2.4 in the icons preceding the param-
eters. These icons explain, how the parameter is provided. The arrowhead icon
indicates a selection or a link list. The square indicates a text input field. The
empty bubble indicates a text input field with default value. The dot indicates
a hidden parameter.

The form storyboard provides obviously a more abstract view of the system
interface than the page diagram, however the form storyboard can still be seen
as an intuitive high-level prototype of the system. In the form storyboard each
client page together with its accessible server actions give a representation of the
page with its interaction options, as it is shown in Figure 2.6. Therefore each
such subgraph is called a page image. Page images can share server actions, as
can be seen in the example of the deleteLink server action. This server action
is contained in the page image of the main page as well as in the page image of

2.2. FORM STORYBOARDS 13

._/V home

{

L 4
: v
deleteLink vl
newLink > person »person
’]
v / Q ¥
newPage changePage
newForm deletePage v
Qname changeForm
Ophone < *person
QOstudentID deleteForm 0 name e
Upasswd "person o phone
Opasswd2 Upasswd o studentID
o passwd
{invalid password }
d<> d2
passwd=passwaz] {invalid password }

Figure 2.6: All page images of the system.

the change dialogue.

A server/page transition indicates that the server action may produce a
response page of the addressed type as a result of its action. Therefore the
server /page transitions must be annotated by the condition under which this
transition is chosen. These conditions must be mutually exclusive or must be
ordered. One outgoing transition of a server action may carry no condition and
then represents the default case, also called the else case. In the example the
transition from the newForm server action to the home page is the default case
and therefore carries no condition. The other server/page transition carries the
condition that the password is not correctly retyped.

Form storyboards are labeled directed multigraphs. Two states can be con-
nected by more than one edge in the same direction. In the case of page/server
edges, this represents several distinct submission options. An example may be
an online shop that has on each page two types of offers: featured articles with
in-depth information and an article list with only a short info. The purchase
option addresses the same server page, but the modeler wants to distinguish
these two classes of purchases.

14 CHAPTER 2. A MOTIVATING CASE STUDY
2.2.2 Patterns for submit/response style systems

Before we introduce the composition mechanism for form storyboards we make
some reflections about the overall structure of the system. In the form story-
board of our system it is clearly visible that the system offers three different
interaction strands, namely for insertion, deletion and change of enrolments.
Each of these dialogue strands is shown in a column-like fashion in the form
storyboard. Furthermore each of these interaction strands obviously consists
of three dialogue states which are connected with the home page to an in-
teraction circle. These three interaction strands follow a typical pattern for
submit/response style systems, which we call the link-page-form pattern. This
interaction pattern begins with a server action that represents the start of the
interaction. In the case of the server action changeLink the user selects the
data record under consideration by choosing his own enrolment. The link leads
to the page on which the actual interaction is performed. This client page is
typically characterized by the fact that it is dominated by a single form. The
server action representing this form therefore is the third dialogue state involved.
This pattern is so commonplace, as one can see in our example system, that
a special naming convention for the dialogue states is helpful. As one can see
in the example, the naming convention is to take the name of the functional-
ity and to append the role name within the pattern e.g. we get changeLink,
changePage, changeForm. This pattern applies for such actions which involve
two page changes. Simpler interactions can of course use only a single server
action for completion, e.g. if a system has a delete function which needs only a
single click without confirmation dialogue.

2.2.3 Feature Composition

Form-Oriented Analysis offers a powerful composition mechanism called feature
composition, which is chiefly used for form storyboards and the form charts
introduced in the next section. Feature composition allows the composition of
the complete system form storyboard from partial descriptions of the system
called feature storyboards or simply features. A feature storyboard is a form
storyboard that describes a part of the system. The graph underlying a form
storyboard has been defined as a bipartite directed labeled multigraph, and the
composition mechanism for features is basically graph union. If two features
are composed to a single form storyboard the node and edge sets are united.
Nodes of same name are identified, edges between the same nodes of the same
name are identified as well. The composition of features is shown in Figure
2.7. There are some rules that two features have to follow when they are to
be composed. These rules are explained in Chapter 4 together with techniques
for adapting features for composition. Feature composition is an astonishingly
powerful composition mechanism given its simple semantics.

2.3. FORM CHARTS AND MODEL

15

newPage

v.

{passwd<>passwd2}

|

» person

{invalid password }

v
newForm deletePage changeForm
Oname = person
Uphone < 0 name /
QOstudentID) Ceeiehonn o phone
Qpasswd " person o studentID
Opasswd2 Eipasswd o passwd

v changeLink
i <4 deleteLink > person
newlink deleteLink > person \\

changePage

{invalid password }

Figure 2.7: Two features which give together the complete system.

2.2.4 Communicating Form Storyboards

Form storyboards are designed for communication and joint development be-
tween domain experts and IT professionals. Therefore form storyboards present
a self contained system view comparable to page diagrams. At the same time
form storyboards achieve a much higher level of abstraction than page dia-

grams. Nevertheless form storyboards may be easily communicated with the
domain expert.

2.3 Form Charts and Model

The final and semantically most expressive diagram of Form-Oriented Analysis
is the form chart. The form storyboard already expresses the key elements
of the submit/response paradigm. The form chart has now the task to make
the analysis model amenable to formal constraint writing and coupling to the
semantic data model, and it is therefore accompanied by two other diagrams,
first the semantic data model and second the data dictionary mediating between
both. Furthermore a textual document containing formal constraints has to be
seen as attachment to the form chart. The document bundle consisting of
form chart with attached constraints, data dictionary and semantic data model
comprise the form-oriented specification of the system. The form chart will be
precisely explained in Chapter 4, together with the dialogue constraints. A
complete specification of a system is often a valuable goal, but in many cases it
may not be practically achievable. Our method allows the modeler to create a

16 CHAPTER 2. A MOTIVATING CASE STUDY

menu

home

newPage,

deletePage,

changePage

newLink deleteLink changeLink

deletePage changePage

— newForm

deleteForm changeForm

| —

Figure 2.8: Form chart of the seminar registration system.

complete specification, but of course it is usable for partial specification as well
and therefore gives the modeler the freedom to choose the degree of precision
which seems appropriate for the project.

The form chart is the successor diagram to the form storyboard. The form
chart as shown in Figure 2.8 contains the bipartite state machine. Server actions
are depicted as rectangles and client pages are depicted as bubbles. In the form
chart only the names of the states and transitions appear. The form chart also
contains the start marker.

Hence the form chart does not contain the signatures of the server actions as
they were depicted in the form storyboard. Instead, the signatures are contained
in the second new artifact type, the data dictionary, shown in Figure 2.9. The
data dictionary contains types and is therefore a class diagram in the terms of
modern modeling languages like the UML. However, the data dictionary types
are of a special kind of data types, namely algebraic data types. Instances
of these types are immutable values. The types can have structure, but only
a hierarchical structure, namely composition. They represent sent messages,
comparable to written and sent documents. Remaining in that metaphor, once
you have sent a letter the content is unchangeable. In the data dictionary there
must be a message type for each form chart state, and it must have the same
name, except that the initial letter is lower case in the form chart, but upper
case in the data dictionary.

The message represents the signature of the state of same name. Each time
this state is entered, a new message of this type has to be provided. we have
already encountered signatures of server actions in the form storyboard, but
in the form chart we specify also signatures for the client pages. These client

2.3. FORM CHARTS AND MODEL 17

Data Dictionary .
List Home
NewLink DeleteLink ChangelLink
person: Person person: Person ListEntr
ordered * LG
name: String
NewPage DeletePage ChangePage o hone: Strin
— - . . participants| P . 2
errorMsg: String errorMsg: String errorMsg: String @— person: Person
person: Person person: Person
name: String
Semantic Data Model
NewForm DeleteForm ChangeForm
passwd: Passwd person: Person person: Person <<Singleton>>
passwd2: Passwd passwd: Passwd passwd: Passwd PersonTable
.. .
: 1| personData : ordered Person
: : : o passwd: Passwd
Business PersonData participants
Signature name: String T
: hone: String H
¢ Repositor P
: p y studentID: int

Figure 2.9: Semantic data model and data dictionary

page signatures represent the information shown on the page. The page content
is immutable. A page shows the same content to the user until she triggers a
page change and therefore gets a new page, although possibly from the same
type. Page interaction, i.e. user input in forms is not considered a change of the
page content, but preparation of a new message. The fact that now the data
dictionary contains the information shown on pages as well as the information
sent back to the system as part of a page change is important with respect
to the specification of so called dialogue constraints. Indeed one of the main
advantages of form charts is that it allows more elaborate constraint writing
than the form storyboard. We want to be able to express e.g. that the data
record the user chooses for deletion must have been presented on the page. Such
a constraint is called client output constraint. It is written in the following style.

list to deletelLink {
clientOutput:
source.participants.person->includes(target.person)

3

As we see in this example, we need the signature of the client page as well
as the signature of the server action, called source and target, in order to set
both in relation to each other. There are a number of different types of dialogue
constraints, and they form together the dialogue constraint language, DCL for
short. The DCL constraints are typically written in an attachment of the form
chart, although in principle they can be written into the form chart diagram it-

18 CHAPTER 2. A MOTIVATING CASE STUDY

self. The last diagram in the bundle that forms the specification is the semantic
data model. This diagram is the conceptual data model that specifies the system
state. Pure data record specifications which are needed by both, the semantic
data model as well as the data dictionary, are put in a separate part of the data
dictionary, the business signature repository. In our example the semantic data
model is rather simple and consists mainly of the class holding the student infor-
mation. The semantic data model is connected with the data dictionary again
through the dialogue constraints, but also through so called opaque references.
Take the client page list as an example. The message type List contains a
list of different ListEntry objects that contain only the information presented
to the user. This ListEntry submessage contains an attribute of typePerson,
the class from the semantic data model. Such a reference from the data dictio-
nary to the semantic data model is called opaque reference. As one can see, if
one follows the message types associated e.g. with the delete subdialogue, this
reference is passed along the dialogue and hence specifies, which person object
is subject to the deletion process. The reference is passed along the form chart,
yvet the reference is opaque in the sense that only through certain operations
that again access the semantic data model the content of the person object can
be accessed. The whole semantic data model forms a single data abstraction
module with possibly as many opaque reference types as it contains classes. The
opaque references are therefore the border of the data dictionary. The reference
itself is part of the message, but not the referenced object. Therefore the object
can change without violating our demand, that messages are unchangeable.

2.4 Summary

We want to sum up the lessons learned from our hands-on introduction to
Form-Oriented Analysis. We have seen the following artifacts of Form-Oriented
Analysis applied to an example application.

2.4.1 Page Diagrams
Our page diagrams foster understanding of the following issues:
e Submit/response based interfaces are a distinct class of interfaces.

e User interaction in these interfaces is two-staged, consisting of volatile
page interaction and page change affecting the system state.

e Page interaction is well understood and can be offered as an application
independent browser.

e The system response is conditional. Therefore the state transition from
a page can lead to an intermediate state that leads again to alternative
response pages.

2.4. SUMMARY 19

e An adequate representation of the system by finite page states and finite
interaction options has to be found. The conditional system response is
based on the system state beyond this finite state model.

Page Diagrams may contain mock-up prototypes of pages as shown in the
example in Figure 2.2. Submit/response based interfaces should not be confused
with formlike interfaces without a two-staged paradigm. Examples for the latter
kind of interfaces are desktop databases.

2.4.2 Form Storyboards

In form storyboards each page change leads to an intermediate state, therefore
the state transition diagram is bipartite. The page states are called client pages,
the intermediate states are called server actions. The transitions leaving a client
page are called page/server transitions or options; the transitions form server
actions to pages are called server/page transitions. In form storyboards, server
actions have a record parameter type which is inlined into the graphical element
representing the server action.
Form storyboards foster understanding of the following issues:

e The state transition diagram is bipartite. A client page is left by a form
submission and leads to an intermediate server action. Server actions are
left automatically depending on the system state beyond the finite state
model. Hence in a dialogue client pages and server actions alternate.

e Forms have a record type which is the parameter signature of a server
action. The same server action can be called from different pages.

e As a consequence, the system interface offers a set of state transitions with
typed parameter list, but each state transition may be accessible only from
certain client pages.

e Subsumption of links under forms. Links and forms are editable or se-
lectable method call templates.

e The system response contains the new interaction options.

e A page state together with its accessible server actions is a high-level page
representation, the so-called page image. The form storyboard is a high
level prototype.

e Form storyboards offer a simple composition mechanism, namely graph
union tailored to form storyboards. Vice versa, the complete form story-
board can be decomposed into smaller subdiagrams called features. The
composition mechanism is called feature composition.

Form storyboards are based on the submission form metaphor. The user fills
out forms and submits them to the system. In submit/response systems, forms
are volatile until they are submitted.

20

CHAPTER 2. A MOTIVATING CASE STUDY

Form storyboards are intended for communication of the main conceptual
achievements of Form-Oriented Analysis with domain experts. Hence form sto-
ryboards are less prescriptive than form charts, in order to allow adaptive levels
of formality. Especially form modeling with opaque references is not required,
as it will be in form charts.

2.4.3 Form Charts

Form charts are the final and strict notational concept for Form-Oriented Anal-
ysis. They are given by rigorous semantics and rules of usage.

The user interface is set in relation to an analysis model consisting of
persistent and session data. The connection is established through a data
dictionary.

Object selection by opaque references. Pages can offer collections of ob-
jects and the user can select objects from the collection and pass them
back. No primary keys are passed across the state transition dataflow.

Rich annotation of the state transition diagram by so called dialogue con-
straints given in the dialogue constraint language DCL.

In Form-Oriented Analysis the responsibility for a system functionality is
not artificially delegated to participating objects. Instead system func-
tionality is modeled in procedural style and technically delegated to the
class representing the parameter list.

