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Abstract

While revenue management (RM) frequently claims to provide a competitive advantage,
its long-term competitive effects have hardly been explored. Current research on RM
under competition has started to examine competitive interactions in RM with the
help of game theory. However, single-stage game analyses predominate, although for
most practical applications of RM, a multi-stage view would be more appropriate. In
fact, a single-stage view of RM under competition is dangerous, since—similarly to
the Iterated Prisoner’s Dilemma (IPD)—the single-stage optimum can prove disastrous
in the repeated game. This thesis provides a formal model of two competing service
providers implementing RM in an environment with price-elastic demand who face each
other repeatedly. Based on approximations to the solutions of the single-stage game, we
present a heuristic to transfer strategies from the IPD to the repeated RM game. In this
thesis, we use both computational results derived using a stochastic simulation system
and mathematical analyses of a simplified version of the game to analyze repeated-game
strategies. We investigate the influence of capacity restrictions, forecasting techniques
and observation errors on the performance of multi-stage strategies. Our results stress
the relevance of a multi-stage view of revenue management games. Furthermore, our
results show the strong impact of observation errors and the resulting importance of
robust strategies.
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Zusammenfassung

Obwohl Revenue Management (RM) häufig mit einem Wettbewerbsvorteil verbunden
wird, wurden die langfristigen Effekte von RM im Wettbewerb bisher kaum untersucht. In
der aktuellen Forschung wird zwar Spieltheorie genutzt, um im RM die Wechselwirkungen
von Wettbewerbern zu untersuchen. Allerdings wird dabei fast ausschließlich ein einma-
liges Spiel betrachtet, obwohl in den meisten praktischen Anwendungen eine Darstellung
als wiederholtes Spiel angebracht wäre. Ähnlich wie beim Gefangenendilemma (IPD)
ist eine Betrachtung als einmaliges Spiel sogar gefährlich, da die Wiederholung der
optimalen Strategien des einmaligen Spiels im wiederholten Spiel zu sehr schlechten
Ergebnissen führen kann. In dieser Arbeit stellen wir ein Modell für zwei RM-nutzende
Dienstleister auf, die sich wiederholt im Wettbewerb um preissensitive Kunden gegenüber
stehen. Aufbauend auf Annäherungen an die Lösungen des einmaligen Spiels präsen-
tieren wir eine Heuristik, mit der Strategien vom IPD auf das wiederholte RM-Spiel
übertragen werden können. Wir verwenden sowohl Simulationen mit einer stochastischen
Simulationsumgebung als auch mathematische Analysen eines vereinfachten Spiels, um
Strategien des wiederholten Spiels zu analysieren. Dabei untersuchen wir den Einfluss
von Kapazitätsbeschränkungen, Prognosemethoden und fehlerhaften Beobachtungen auf
das Abschneiden der Strategien. Unsere Ergebnisse unterstreichen die Bedeutung einer
Betrachtung von Wettbewerb zwischen RM-Betreibern als wiederholtes Spiel. Weiterhin
verdeutlichen unsere Resultate die starken Auswirkungen von Beobachtungsfehlern und
daraus resultierend die Wichtigkeit robuster Strategien.
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1 Motivation

Finding the right price for a perishable product is no easy task. A seller has to gather
enough information to balance the gain earned from a sale against the possible revenue
from selling the same resource at a different occasion, at the risk of not selling the
product at all before it turns worthless. As additional difficulties, a firm often has to
face capacity constraints and uncertain demand, when determining the optimal selling
price. Revenue Management (RM) or yield management is the field encompassing the
techniques dedicated to solving this problem. Put more eloquently for the case of the
airline industry, airline RM has been described as in The Art of Managing Yield (1987)
“selling the right seats to the right customers at the right prices”.

While research on RM had started earlier (e.g. Littlewood, 1972), it was the deregulation
of the U.S. airline market in 1978 that enabled the transfer from theory to practice (Smith,
Leimkuhler, & Darrow, 1992). Since then, RM has been applied to industries as diverse
as hotels (Choi & Mattila, 2004), rental cars (Geraghty & Johnson, 1997), retail (Vinod,
2005), cruise lines (Ladany & Arbel, 1991) and advertising (Kimms & Müller-Bungart,
2007).

Given the broad distribution of RM in practice, it comes as no surprise that research
on the topic has evolved to solve increasingly realistic and complex problems. Early
RM research modeled customers as independent demand in a monopoly with a single
resource (Littlewood, 1972). In the last decades, researchers have contributed new
methods accounting for network effects (Bertsimas & Popescu, 2003), dependent de-
mand (Weatherford & Ratliff, 2010) and new fare structures (Fiig, Isler, Hopperstad, &
Belobaba, 2009).

Despite the progress of RM in many areas, “RM competition is not well understood
and practically all known implementations of RM software and most published models
of RM do not explicitly model competition” (Martínez-de Albéniz & Talluri, 2011).
Nevertheless, the influence of competition on demand is so important that it cannot be
ignored in practice. Even without a system yielding optimal control in the presence of
competition, service providers react to their competitor’s prices in one way or another. As
a consequence, a large part of the providers’ price dispersion is due to competition (Hayes
& Ross, 1998).

Such a behavior leads to lower prices (Kwoka & Shumilkina, 2010; Stavins, 2001) and
lower occupancies (Kalnins, Froeb, & Tschantz, 2010) under competition, which is a very
costly combination. In fact, the airline industry in the U.S. alone faces losses of several
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1 Motivation

hundred million dollars every year due to fare wars of competing carriers (Morrison,
Winston, Bailey, & Carlton, 1996). Additionally, the rise of the internet has led to a
higher transparency of prices in recent years. Nowadays, the possibility to compare prices
within seconds has effectively eliminated the search costs for the customer. As a result,
prices in RM industries have dropped, especially in competitive markets (Orlov, 2011).

Owing to the importance of competition in Revenue Management, recent years have seen
researchers increase efforts to include “competitive awareness” into RM systems (Ratliff
& Vinod, 2005). However, the presence of competition leads to challenges in both
forecasting and optimization, the cornerstones of any RM system.

The forecast provides the basis of a RM system. Even in a monopoly, producing accurate
and reliable information is not a simple task, since the behavior of each potential customer
can only be partially observed. If a customer buys a ticket for a given price, the selling
firm does not know whether he would have paid for a more expensive alternative. The
situation gets even worse for potential customers that end up not purchasing a ticket
at all, or that have bought a competitor’s product. All this missing information has to
be reconstructed from past observations with the help of assumptions to the demand
model. However, this usually means a loss in quality of the forecast. Attempts to account
for competitor influences in the forecast present a way to improve forecast quality in a
competitive situation. However, this has to be balanced against the considerable increase
in complexity that this approach may bring. Modern forecasting systems have raised
their level of complexity quickly in order to cope with the challenges of the monopoly
forecasting problem. Simply adding more explanatory variables to such models may
hurt the performance more than it helps (Bartke, Cleophas, & Zimmermann, 2013). On
the other hand, completely ignoring competitive influences means ignoring the basis of
potential customers’ decision.

The optimization part of a typical RM system is closely related to optimal control theory.
It is commonly assumed that it is possible to control the demand flow by varying the
set of classes and prices in the market for any one firm. This holds no longer true in
the presence of competitors. With competitors offering comparable products, a provider
treating the demand flow as a result of its price-setting actions risks losing customers
to the competition. Instead of forcing customers to pay higher prices, it may end up
forcing them away. In fact the interaction between competing firms may result in the
optimization problem being closer related to game theory than optimal control theory.

Game theory has been used to analyze competitive interactions between firms for a very
long time (Bertrand, 1883; Cournot, 1838). Unfortunately, simple models of price or
quantity competition fail to model the RM problem sufficiently well, since in typical RM
applications, a firm has to face capacity constraints, uncertain demand spread over time
and more (Kalnins et al., 2010). Due to this shortcoming of traditional game theory,
recent years have seen an increased interest in research in game theory applied to revenue
management (e.g. Bertsimas & Perakis, 2006; Kwon, Friesz, Mookherjee, Yao, & Feng,
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2009; Lin & Sibdari, 2009; Martínez-de Albéniz & Talluri, 2011; Mookherjee & Friesz,
2008; Netessine & Shumsky, 2005; Perakis & Sood, 2006; Simon, 2007; Zhao, 2003).

While modeling RM under competition as a game, it should be noted that in practice,
RM is used to yield optimal pricing and capacity decisions for reoccurring events, e.g.
flights in the airline industry or overnight stays in the hotel industry. Thus, RM under
competition should be modeled as a repeated game with an infinite horizon (Isler &
Imhof, 2008). However, due to the complexity of the RM problem under competition,
the only analyses of similar repeated games treat simple price or quantity competition,
while the research on the RM problem focuses almost exclusively on the single-stage
game. This is consistent with the theory of RM in a monopoly, which deals with finding
the best solution to a single sales period for one or more products. In this case, treating
more than one sales period is unnecessary, since a repetition of the optimal solution
yields the best strategy for any repetitions of such events. However, with the addition
of competitive effects, a long-term aspect of the problem emerges. When two or more
service providers face each other repeatedly for the same problem, they may learn from
previous encounters and adapt their strategy accordingly. In particular, threats can
enforce collusion in repeated games and thus help avoid price wars (Chamberlin, 1929).

While overt collusion is usually illegal, tacit collusion represents simply a set of strategies
that avoids aggression out of fear of retaliation (Feuerstein, 2005). In practice, some
weakened forms of tacit collusion can be found as well as forms of non-cooperative
behavior (Fischer & Kamerschen, 2003). Researchers stress that the competitive behavior
of service providers tends to be “far from collusive” (Brueckner & Spiller, 1994). It remains
unclear whether this is due to an imperfect implementation of purely non-cooperative
behavior or due to practitioners being alert to the danger of price wars.

Unfortunately for firms trying to prevent fare wars, successful strategies in the repeated
RM game have hardly been researched at all. Inspiration for such strategies can be drawn
from the similarity of the repeated RM game to the much simpler Iterated Prisoner’s
Dilemma (IPD) (Isler & Imhof, 2008). In the IPD, each player faces a dilemma during
each stage. He can either follow the cooperative solution and risk being exploited, or
he can choose the non-cooperative option and risk a very low payoff if his competitor
does the same. Due to its simplicity and applicability to many practical more complex
problems, the IPD has seen a host of research examining the success of various strategies
(e.g. Axelrod, 1984; Imhof, Fudenberg, & Nowak, 2007; Nowak & Sigmund, 1993; Press
& Dyson, 2012).

However, concentrating only on game-theoretic methods for the analysis of RM competi-
tion provides pitfalls. A typical game theoretic treatment of the problem relies on the
assumption that each carrier acts rationally by following game-theoretic reasoning. With
current RM systems using monopoly methods, such assumptions seem hardly realistic.
In this thesis, we will analyze the long-term behavior of standard RM strategies as well
as of strategies inspired by game theory in a competitive environment. We will develop a
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heuristic to adapt strategies from the IPD to the RM game, which will be evaluated via
simulations in a realistic setting and via thorough mathematical analysis in a simplified
case.

First, we will use Chapter 2 to give an overview of existing research on RM, game theory
and simulations and put it in context to our problem. Based on our analysis of the
literature, we will identify research gaps and outline our course of action in Chapter 3.
In Chapter 4, we will use a simulation approach to the problem, while in Chapter 5, we
will perform mathematical analysis on a simplification of the repeated RM game. Finally,
in Chapter 6 we will present a conclusion to our work, where we highlight our findings as
well as the limitations of this thesis and outline future research.
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2 Literature Review: RM and Game Theory

In this chapter, we will give an overview of the literature in various fields that help
analyzing the revenue management problem under competition. In Section 2.1, we review
the large body of research covering the classic case of Revenue Management (RM) in a
monopoly. In Section 2.2, we take a look at the game theoretic approaches to competitive
situations. Next, we present research combining both aspects in Section 2.3. Finally, in
Section 2.4, we document research on the use of simulations to answer similar questions.

2.1 Revenue Management in a Monopoly

RM or yield management deals with the problem of selling perishable goods with negligible
unit costs under capacity restrictions so that revenue is maximized. As an example,
the airline industry, which has pioneered RM, faces relatively fixed costs in the short
term, so that maximizing revenue is sufficient for maximizing profit. Here, a typical RM
decision consists of whether to accept a booking request in a cheap booking class or not.
This has to be weighed against the possibility of selling this seat for a higher price to a
high-value customer arriving later in the booking horizon. On the other hand, when the
flight leaves, the value of any unsold seats perishes completely.

A simple form of RM is treated in the so-called newsvendor or newsboy problem. In
the newsvendor problem, a service provider tries to find the optimal capacity allocation
to a perishable good with fixed costs, which is sold at a fixed price over a single time
period to an uncertain amount of customers. This problem has occupied researchers
for over a century. Already in 1888, Edgeworth analyzed how much money a bank
should store in order to fulfill stochastic withdrawal requests. This is a classic inventory
problem, which we will see quite often in slight variations in the following sections. If
the decision maker allocates too much capacity for the withdrawal requests, he suffers
losses in revenue, since he could not use all of his capacity to earn revenue. However, if
he stores insufficient capacity, he suffers a loss as well, in this case from having to raise
money in short notice to satisfy the withdrawal requests. Several decades later, Arrow,
Harris, and Marschak (1951) gave a treatment of the newsvendor problem that inspired a
lot of related research. The interested reader can find a summary of the literature on the
newsvendor problem in the book of Silver, Pyke, Peterson, et al. (1998). The very simple
form of RM in the newsboy problem lends itself well to a thorough analysis and allows
for many extensions as outlined by Khouja (1999). However, its simplicity has limited
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2 Literature Review: RM and Game Theory

the range of applications of its solution concepts to real life. Especially the restriction
to a single time period prevents a transfer of solutions of the newsvendor problem to
industries such as the airline, hotel or car rental businesses.

Since the 1950s, airlines have tried to find ways to deal with the uncertainty of demand
in the form of cancellations and no-shows by developing overbooking policies (Beckmann,
1958). In contrast to this, the so-called seat inventory control problem of optimizing
the mix of booking classes, so that revenue is maximized, has only seen attention from
researchers and practitioners since the 1970s. For this problem, decision makers have
to balance their prices so that they sell a fixed capacity of their resource in a way that
they neither ignore low-value demand nor accidentally shut out late-arriving high-value
customers. As Gallego and van Ryzin (1994) put it, “yield management is an attempt to
‘synthesize’ a range of optimal prices from a small, static set of prices in response to a
shifting demand function”. In the following, we will concentrate on the seat inventory
control problem when discussing revenue management.

As a field of research of its own, RM has been growing ever since Littlewood (1972)
published the first RM optimization technique for the seat inventory control problem.
It has also seen tremendous use in practice since British Overseas Airways Corporation
implemented Littlewood’s techniques to manage their mix of full and discounted fares.
This has only increased after American Airlines used RM successfully in order to fight
off competition after the deregulation of the U.S. airline market (The Art of Managing
Yield, 1987). Back then, American Airlines famously introduced new discounted fares
managed by inventory management techniques, so that they could match the market’s
low prices without diluting their whole inventory.

There are several excellent articles providing an overview over the state of the art of
revenue management. McGill and van Ryzin (1999) examine the evolution of RM from its
very beginnings until the end of the millennium. For a fully comprehensive account of RM
methods, we refer the reader to the book of Talluri and van Ryzin (2004b). Dana (2008)
and Chiang, Chen, and Xu (2007) give an account of more recent research opportunities,
while Pölt (2011) and Cross, Higbie, and Cross (2011) focus on the challenges imposed
on practitioners by recent changes of the market environment.

2.1.1 Forecast

In revenue management, information is the key to success. Great effort is put into
forecasting demand to obtain an accurate estimate of the market situation. An overview
of common forecasting techniques used in RM can be found in the review articles of
Weatherford and Kimes (2003) and Cleophas, Frank, and Kliewer (2009a).

The main problem in forecasting demand is caused by the censoring of observations via
the firm’s availability control, so that customer behavior can hardly ever be observed
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in an unbiased way. Unconstraining is the process of reconstructing the true demand
process from the censored observations (for an overview see Guo, Xiao, & Li, 2012).
This is similar to problems in signal processing (e.g. Foxlin, 1996; Grewal, Henderson, &
Miyasako, 1991), where a standard solution approach consists of applying the Kalman
filter invented by Kalman et al. (1960). As a consequence, Bartke (2013) adapted the
Kalman filter to the unconstraining problem in RM.

The unconstraining process depends heavily on the customer model, which represents
the core of every forecasting system. Customer models used in early RM systems relied
on a number of assumptions, many of which have been weakened in recent years. As a
consequence, unconstraining has become ever more challenging and even evaluating the
forecast performance has become a difficult task (Cleophas, 2009).

Since an oversimplification of the customer model may significantly decrease forecast
accuracy, it might be tempting to model customer behavior as accurately as possible.
However, Bartke et al. (2013) showed that a sophisticated customer model can lead to a
high degree of complexity. This can lead to instability of estimation results as well as to
decreases in performance due to usability problems.

It is also important to keep in mind that a misspecified demand model may lead to the
calculation of incorrect optima or even to a chaotic behavior already for very simple
models (Bischi, Chiarella, & Kopel, 2004). In order to avoid misspecification, it may
be beneficial to use less assumptions on the underlying functional relationship between
product properties and demand. Instead of modeling demand as a parametric function
of product properties, where unconstraining consists of estimating the parameters, a non-
parametric demand model may be used. In fact, the non-parametric approach is applied
frequently in the industry (Weatherford & Kimes, 2003). However, non-parametric
models should be used with caution. Compared to the correctly specified parametric
model, a non-parametric demand model represents a loss of information and thus results
in a loss of revenue (Besbes & Zeevi, 2009).

In Littlewood’s (1972) model, customers were supposed to

1. request a ticket on a flight instead of a pair of Origin and Destination (O&D),

2. arrive ordered by their willingness-to-pay with low-value customers first and high-
value customers last,

3. arrive sequentially without simultaneous arrival of groups,

4. never cancel their ticket and always show up for the flight,

5. demand a single product independently of the availability of substitutes and

6. request a ticket exactly once, independently of offers at other times in the booking
horizon.
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Assumptions 1 – 4 are constraints of the early optimization techniques in revenue
management, rather than conditions met in the real world or limitations of the available
forecasts. As soon as optimization techniques improved, these requirements could be
relaxed or dropped (McGill & van Ryzin, 1999).

In contrast to the above, assumptions 5 and 6 of statistically independent demand per
booking class and time were fulfilled in the early days of revenue management. This has
changed recently, which has prompted significant changes for RM forecasting techniques.
In the following, we will outline challenges and solution concepts related to the loss of
assumptions 5 and 6.

Dependent demand In previous years, service providers ensured the validity of the
assumption of customers’ demand targeting a single class by attaching a set of restrictions
to each booking class. For example in the airline industry, in order to keep high-value
demand targeting expensive classes, cheaper booking classes were typically offered only
in combination with a longer duration of stay, thus making it inconvenient for business
travelers. Using appropriate restrictions, airlines were able to separate high-value demand
from low-value demand. In recent years, the rise of low-cost carriers triggered a change
in the industry. The success of low-cost carriers using simple fare structure with hardly
any restrictions caused a decrease in use of restrictions in the whole airline industry.
Therefore, demand cannot be separated as efficiently anymore (Zeni, 2007).

Ignoring the substitution effects of demand of similar classes leads to an effect called
Spiral Down. If customers can substitute high-value classes for low-value classes, the
airline will observe only low-value sales whenever both options are available to the
customer. Failing to account for potential sales in the high-value classes leads to a lower
forecast and consequentially lower protected seats for the high-value classes. Thus, in
the next departure, both classes are more likely to be available at the same time and the
cycle starts over anew. This feedback loop can ultimately lead to drastically decreasing
revenues (Cooper, de Mello, & Kleywegt, 2006).

In so-called Q-Forecasting, customers are assumed to always buy the cheapest class
available, if they can afford it (Belobaba & Hopperstad, 2004; Cléaz-Savoyen, 2005). In
this model the willingness to pay is exponentially distributed, so that demand for every
price level can be deduced from observing the purchases in the cheapest available class.
In the hybrid forecasting technique, the forecast consists of a linear combination of the Q-
Forecasting customer model and the independent demand model (E. A. Boyd & Kallesen,
2004). This approach has been extensively studied (Reyes, 2006; Weatherford & Ratliff,
2010) and is also widely used in practice (Wishlinski, 2006). In a recent contribution
using the hybrid demand model, Bartke (2013) calculated theoretical boundaries for the
quality of estimates and adapted variations of the Kalman filter to provide a superior
estimation technique for hybrid demand.
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Some modern RM forecasting systems adopt a more customer-centric approach, assuming
that each customer will consider a set of appropriate classes and then choose the most
attractive option (Akçay, Natarajan, & Xu, 2010; Cirillo & Hetrakul, 2011). This process
can be modeled by discrete choice models. A comprehensive overview of general discrete
choice models is given in the book of Train (2003), while Shen and Su (2007) focus on the
application of these models in revenue management. Another approach to modeling and
estimating such complex customer behavior has been put forward by Winter (2010), who
represented a firm’s product in an ordered graph, on which demand flowed depending on
the availability situation of the firm’s products.

Strategic customers The task of modeling customers’ decision process as longer-term
process, during which they might compare prices and wait for bargains, has been tackled
first by Zhou, Fan, and Cho (2005) and C. Anderson and Wilson (2003). An overview
on the advances of modeling these so-called strategic customer behavior can be found
in Shen and Su’s (2007) overview on customer modeling. However, while more recent
articles on the subject refine the customer modeling and explore the service provider’s
optimal policy, they do not treat the problem of estimating and forecasting demand. The
inclusion of strategic customers further expands the choice set for each customer, which
may complicate the estimation procedure significantly.

2.1.2 Optimization

In RM, the optimization step is used to find the revenue-maximizing strategy to sell
the remaining resources given the forecasted demand. We distinguish two different
approaches, depending on the strategic variable chosen. Quantity-based RM uses a set
of booking classes with fixed prices for each travel opportunity. The result of the RM
process is an availability situation, i.e. a subset of booking classes offered to customers.
In this case, the optimization consists mainly of the decision of how many seats of each
class to offer in a particular situation. Instead of choosing quantity as a control variable
and keeping prices fixed, it is also possible to keep quantity fixed and optimize prices.
This is called price-based Revenue Management or Dynamic Pricing. We will first focus
on quantity-based RM, before we will turn toward Dynamic Pricing.

Quantity-based revenue management

The first optimization technique in RM was published by Littlewood (1972). In his
seminal paper, Littlewood described a simple and intuitive rule to decide whether to
accept a booking or not for the two fare class problem. A request for the lower class is
accepted if the revenue earned by this sale is greater or equal than the expected revenue
for this seat if it is protected for the higher class. This new method was necessitated by
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a change of fare structures and enabled by increasing data quantity and quality due to
the introduction of computer reservation systems, two factors that have proved decisive
for a great part of innovations in Revenue Management. Given that Littlewood’s rule
had been implemented by British Overseas Airways Corporation (BOAC), this was not
only the first theoretical work in RM, but also its first practical application.

As we have mentioned in the forecasting section, Littlewood had to impose several con-
straints on the demand process in order to find an optimal solution. For the convenience
of the reader, we reproduce these assumptions here. Customers were supposed to

1. request a ticket on a flight instead of a pair of O&D,

2. arrive ordered by their willingness-to-pay with low-value customers first and high-
value customers last,

3. arrive sequentially without simultaneous arrival of groups,

4. never cancel their ticket and always show up for the flight,

5. demand a single product independently of the availability of substitutes and

6. request a ticket exactly once, independently of offers at other times in the booking
horizon.

Using the same assumptions, Littlewood’s rule was later applied to more than two classes
by Belobaba’s (1987; 1989) Expected Marginal Seat Revenue (EMSR) heuristics, the two
best-known versions being called Expected Marginal Seat Revenue—Version a (EMSRa)
and Expected Marginal Seat Revenue—Version b (EMSRb). In the first version, EMSRa,
Littlewood’s rule is applied pairwise for all adjacent classes. Thus, this results in the
amount of seats to protect for the higher class of the pair, if there were no other classes.
The final protection levels are then calculated by summing over the pairwise protection
levels. EMSRa has been shown to be overly conservative, leading to too many protected
seats for high-value classes (Talluri & van Ryzin, 2004a, pp.47–48). In order to mitigate
this, EMSRb aggregates demand and prices of lower classes beforehand in order to create
a virtual class representing demand for all classes lower than a given class. Littlewood’s
rule is then applied for each class compared with the representation of all lower classes.
This procedure results directly in protection levels that can be used for the particular
flight.

Optimal policies for the single-leg problem have since been developed independently by
Curry (1990), S. L. Brumelle and McGill (1993) and Wollmer (1992). These controls
often differ significantly from the EMSR heuristics, but the resulting revenue has been
shown to be very similar for typical airline demand distributions (Wollmer, 1992). Thus,
the EMSR heuristics have spurred immense interest among researchers (e.g. Gallego, Li,
& Ratliff, 2009; Walczak, Mardan, & Kallesen, 2009) as well as practitioners (Netessine
& Shumsky, 2002; Weatherford, 2004) because of their appealing simplicity.
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Network effects The above approaches have only treated the single-leg problem, in
which every customer requests a single resource, e.g. a seat on a flight in the airline
case. This is an oversimplification, since an airline usually has to manage a network
of multiple flights. Since customers traveling on connecting flights may use more than
one resource per request, control strategies on different flights may affect each other.
Rejecting a request for a connection of multiple flights on one flight results in losing the
request on all other flights as well. Thus, the optimal control of a network of flights
does not consist of independent single-flight solutions. In fact, treating the network
problem as a collection of single-resource problems may result in significant loss in
revenue (Williamson, 1992). The first formulation of the RM problem for multiple
resources was given by Glover, Glover, Lorenzo, and McMillan (1982). In the following,
there have been many proposed solutions, for which we refer the reader to the overview
given by McGill and van Ryzin (1999) and Talluri and van Ryzin (2004b, pp.81–128).
Unfortunately, it is well known that “in the network case, exact optimization is for all
practical purposes impossible” (Talluri & van Ryzin, 2004b, p.83), so that researchers
and practitioners have to use simplifying assumptions and develop heuristics to make
a solution feasible. In particular, two heuristics to the network problem have proved
very successful in practice, because they enabled the use of the established single-leg
techniques. Both Displacement Adjusted Virtual Nesting (DAVN) (Bertsimas & De Boer,
2005) and Dynamic Programming Decomposition (Talluri & van Ryzin, 2004a, p.107)
solve a linear program to obtain static valuations of each leg in the network. These
valuations are then used to solve the interdependence of the different flights and reduce
the problem to the single-resource case.

Arrival order Lee and Hersh (1993) describe demand for each fare class as a Poisson
process with time-varying intensity. This way, arbitrary arrival patterns of demand
are possible. This formulation transforms the RM problem into a Markov Decision
Problem, which can be solved via Dynamic Programming. For an overview on Dynamic
Programming, we refer the reader to the book of Bertsekas (1995). Dynamic Programming
was invented by Bellman, who noted that “[a]n optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision” (Bellman, 1954).
This is called Bellman’s Principle of Optimality and reduces the problem to solving
smaller and simpler subproblems. However, because of the connection of Bellman’s
Principle of Optimality with the Markov property of the demand process, using Dynamic
Programming imposes restrictions on the modeling of demand, since the demand process
needs to possess the Markov property as well. In fact, researchers have concentrated
on an even smaller subgroup of discrete Markov processes, namely the Poisson and
Bernoulli processes. The memorylessness of these two processes allows for stochastically
independent increments of the demand process, which is a feature that fits the intuition
of a demand process. This has led to the almost exclusive use of Poisson and compound
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Poisson processes for continuous time and Bernoulli processes in discrete time in the RM
literature (McGill & van Ryzin, 1999).

Batch orders Lee and Hersh (1993) incorporate batch orders into their dynamic pro-
gramming approach. Batch orders are requests for multiple seats on the same flight, that
can only be accepted or rejected as a whole. They show that in this case, the optimal
policy may not have the same structural properties as in the single-order case. Other
researchers have treated this problem as well (S. Brumelle & Walczak, 2003; Örmeci &
Burnetas, 2004). They all show that the optimal policy’s structure may deviate from the
case without batch orders.

Cancellations Coping with customers’ cancellation behavior inspired overbooking opti-
mization, one of the first RM methods. In seat inventory management however, many
researchers ignore cancellations in order to get feasible solutions of the optimization
problem. Subramanian, Stidham, and Lautenbacher (1999) discuss methods to include
cancellations in a dynamic programming approach. They observe that the state space
grows prohibitively large, as soon as cancellation behavior is modeled as class-dependent.
Therefore, they propose two heuristics that allow for a treatment of cancellations with
class-specific cancellation rates in a dynamic optimization approach. Bertsimas and
Popescu (2003) incorporate cancellations into various network RM techniques.

Dependent demand In recent years, advances in forecasting led to the development of
dependent demand models. These new developments call for appropriate optimization
techniques, since using independent demand optimization with dependent demand fore-
casts leads to suboptimal results (Gallego et al., 2009). Weatherford and Ratliff (2010)
give an overview over the emerging optimization models, that can cope with dependent
demand. Besides the multitude of techniques that require completely new structures in
order to calculate an optimal policy in this setting, Fiig et al. (2009) describe a way to
transform dependent demand so that traditional optimization techniques for independent
demand may be used.

Strategic customers Dealing with strategic customers is a problem that researchers
have started to approach in the last few years. In their survey article on customer
modeling, Shen and Su (2007) include an overview on strategic customers in revenue
management. They review both modeling and optimization approaches to the problem.
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Dynamic pricing

To the best of our knowledge, the first work on Dynamic Pricing was done by Kincaid and
Darling (1963). In their setting, a firm tries to find optimal prices for a single product.
Demand arrives as a Poisson process with an arbitrary willingness-to-pay distribution.
They find sufficient conditions for the existence of an optimal solution but do not present
a method to find the optimal control.

Gallego and van Ryzin (1994) later studied a similar problem, where demand arrives as
a Poisson or Compound Poisson process. They find an exact solution for the simple, yet
insightful case of exponentially distributed willingness-to-pay. They also demonstrate
that the optimal pricing policy can be approximated by a time-independent pricing policy.
Additionally, they describe asymptotically optimal policies for several extensions of the
problem, including seasonality and cancellations.

2.1.3 Inventory

For Dynamic Pricing, the structure of the optimal control is simply the price calculated
by the optimization for each product. For quantity-based RM however, the form of
the control may depend on the optimization technique. The simplest, albeit inefficient,
form of control consists of a fixed allocation of capacity to each resource and is called
partition control. Nested partition control is an optimal control that extends the partition
control (Talluri & van Ryzin, 2004a). Virtual nesting represents a possibility to translate
the nested partition control to the network case (Smith & Penn, 1988). Bid prices
represent an elegant control, since they are easily extended to the network case. Talluri
and van Ryzin (1998) have shown that although bid prices do not describe an optimal
policy, they are asymptotically optimal.

2.1.4 Summary and Implications

In the past decades since its inception, RM has been a growing field of research. In this
section, we have concentrated on research on RM in a monopoly, which still encompasses
the overwhelming majority of research on RM. Starting with Littlewood’s (1972) simple
model, research on RM in a monopoly has led to the development of forecasting and
optimization techniques that can deal with far more realistic customer behavior. This
state of the art constitutes a fruitful basis for researchers who want to analyze competitive
effects in RM (see Section 2.3.1). Similarly, the RM model in this thesis will profit from
the research presented in this section, as we will rely on forecasting and optimization
techniques described above.
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2.2 Game Theory

Classical RM deals with the problem of a single decision maker trying to maximize
revenue on a given market. As soon as more than one decision makers act on the same
market, their decisions may influence each other. Thus, solutions of classical RM need
not be applicable in a competitive setting. For such a problem, game theory provides a
large variety of tools that help to understand the problem as well as to find solutions.

Game theory deals with the process of decision making of rational interacting individuals.
Given the broad range of this topic, it comes as no surprise that researchers have tackled
game theoretic problems for a long time.

Inspired by observations of competition of mineral water producers, Cournot (1838) was
the fist researcher to analyze optimal strategies in an oligopoly. In his model, firms
simultaneously set quantities of homogeneous goods, while prices are determined by the
market as a linear function of the quantities. He showed that the optimal strategy results
in a price higher than the marginal costs. In a review of Cournot’s book, Bertrand (1883)
argued that instead of setting quantities, firms would much rather set prices. Thus,
in this setting, firms would set prices and sell as many quantities as the demand in
the market requested. Contrary to the results of Cournot, he showed that the optimal
strategy even in a duopoly consists of setting the marginal costs. His results imply that
firms in an oligopoly do not have any market power, which deviates from the observed
behavior in real life. Edgeworth (1897) addressed this discrepancy by introducing a
capacity constraint. He showed that when sellers only have a limited amount of products
to sell, the results of Bertrand do no longer hold. In fact he showed that there may exist
no deterministic optimal strategy at all.

While researchers such as Cournot, Bertrand and Edgeworth intuitively used concepts of
modern game theory, its foundations were laid by the work of von Neumann (1928), who
started to formalize concepts of game theory.

2.2.1 Basics

An overview on the foundations of game theory is given by Osborne and Rubinstein
(1994). Nevertheless, due to the great popularity of the field and the abundance of
subtopics, we have not found an all-encompassing reference to the field. Additionally,
many concepts of game theory will be left untouched by us. Therefore, in the following
we will briefly present the necessary tools and ideas for our purposes.

Game theory has been applied to a great variety of decision making problems. We make
no claim of completeness for our presentation. On the contrary, we will try to focus
only on the facets necessary for understanding the problem of oligopolistic competition
between service providers using revenue management.
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Structure and Properties of a Game

To present a decision making problem in the game-theoretic framework, it is necessary
to specify a payoff function for each player as well as a set of strategies available to him.
Deterministic strategies are called pure strategies and have been treated already by the
first researchers of game theory. Choosing probabilistically between pure strategies yields
mixed strategies, which represent a strict generalization of pure strategies. A strategy
profile is a set of strategies for each player in the game.

Dynamic games introduce a time dimension. In a dynamic game, at least one player
can choose a strategy that conditions its actions on previous actions of himself or other
players. If the game is set in continuous time, this is called a differential game.

There are two well-studied different information structures that influence the structure of
strategies for dynamic games. If players can observe other players’ previous actions and
adapt their strategy accordingly, we speak of a closed-loop game. If players cannot observe
other players actions and thus have to commit themselves to a strategy beforehand, this
is called an open-loop game. Open-loop games are often easier to analyze compared
to closed-loop games, which has led researchers to study open-loop games, even when
a closed-loop representation would have been more appropriate (Fudenberg & Levine,
1988).

A dynamic game can be played either with a finite or an infinite horizon, depending
on whether players believe that the game will be played a finite or infinite amount of
periods. Setting a finite horizon is not necessarily the same as playing the game only a
finite amount of periods. As long as the players do not know that the game will end,
they will still play as in a game with infinite time periods.

The best-known form of dynamic games are the repeated games, also called supergames
or iterated games. In a repeated game, players face the same base game, called a stage
game, in each time period. A game consisting of only a single execution of the stage
game is called a one-shot game or single-stage game.

In a repeated game, setting a finite horizon offers little insight compared to the one-shot
game, since it can be demonstrated via backwards induction that any rational player will
always choose the solution to the single-stage game at every stage (Rubinstein, 1979). But
in infinite-horizon repeated games, the optimal solution for each player is not necessarily
a repetition of the optimal solution of the stage game (Garcia & Smith, 1996). This
has been noted for the first time by Chamberlin (1929), who argued that the repeated
interaction can lead to tacit collusion, since the threat of retaliation in later stages may
be enough to enforce a cooperative strategy. A generalization of this idea is known as the
folk theorem, which has been discussed in many versions (Friedman, 1971; Fudenberg &
Maskin, 1986; Rubinstein, 1979). Regardless of the variations, the folk theorem states
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that in a repeated game, any combination of strategies satisfying the minimax-property
can be a subgame perfect equilibrium.

Solution Concepts

In game theory, the most famous solution concept is the Nash equilibrium. Introduced
by Nash (1950), it implements a very intuitive meaning of optimality. A strategy profile
constitutes a Nash equilibrium if no player has an incentive of deviating from his strategy
as long as the other players follow the Nash equilibrium.

For dynamic games, the notion of the Nash equilibrium needs to be refined, since it
ignores the sequential nature of the game. A subgame perfect equilibrium is a strategy
that is a Nash equilibrium for the remaining part of the game at every intermediate point
in time of a game. An appealing feature of a subgame perfect equilibrium is the fact that
it cannot depend on non-credible threats as opposed to a Nash equilibrium. In RM, a
non-credible threat can occur when one firm threatens to react to a competitor lowering
his prices by engaging in a ruinous price war in the next stages. As long as this price war
would hurt the threatening firm’s revenue more than some other reaction, this threat
is not rational and can be dismissed. Thus, removing non-credible threats serves to
strengthen the intuition of a Nash equilibrium as a rationally optimal set of strategies. If
a subgame perfect equilibrium consists of only strategies possessing the Markov property
and the state contains only payoff-relevant information, the equilibrium is called a Markov
Perfect Equilibrium (Maskin & Tirole, 2001). Depending on the information structure
of the differential game, subgame perfect equilibria are called closed-loop equilbria or
open-loop equilibria.

Another refinement of the concept of a Nash equilibrium is the notion of an Evolutionary
Stable Strategy (ESS). Maynard Smith and Price (1973) gave the first definition of
ESSs, but we will present here a variation by Thomas (1985) that highlights better the
connection of the ESS with the Nash equilibrium: A Nash equilibrium is an ESS if not
only there is no incentive to deviate from the Nash equilibrium to another strategy, but
also there is an incentive to deviate from any other strategy to the Nash equilibrium.
ESSs are especially insightful in the study of repeated games. If a strategy of the
single-stage game is shown to be an ESS, then it will be successful in the repeated game
as well (Maynard Smith, 1982).

2.2.2 The Prisoner’s Dilemma

The prisoner’s dilemma is one of the most famous examples of problems studied by game
theory. It has first been presented by Flood (1958) and Dresher (1981) and has advanced
to one of the most extensively studied topics in game theory.
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The prisoner’s dilemma is particularly attractive to researchers, since it models a very
common problem in non-zero sum games, that has been observed in many practical
applications (Axelrod, 1984): While mutual cooperation is Pareto-efficient and leads to
the highest combined payoff for all players, mutual non-cooperative behavior is the Nash
equilibrium.

Studying a simple model such as the Iterated Prisoner’s Dilemma (IPD) can help to
establish a better understanding of the situation in more complex problems displaying a
similar behavior (Grüne-Yanoff, 2009).

Formulation of the Game

The most popular formulation of this game is about two arrested men that are interrogated
separately by the police (e.g. Tucker, 1980). During interrogation, each suspect is offered
a deal by the police. If he testifies against his partner and his partner does not cooperate
with the police, he will be given a reward of one unit and his partner will be fined two
units. If both confess, they will each have to pay a fine of one unit. However, if they
both cooperate with each other and do not testify against each other, they will both go
clear. If both men act rational, i.e. only care about their personal consequences, the only
Nash equilibrium of this game results in both men testifying against each other.

More generally, the prisoner’s dilemma is a symmetric two-player game, where each
player can either cooperate or defect. In the prisoner’s dilemma, mutual cooperation
maximizes the joint payoff, whereas mutual defection is the unique Nash equilibrium.
While the analysis of this game is trivial as a one-shot game, allowing players to learn
from past moves and adapt their strategies appropriately greatly increases difficulty,
but also insight. The repetition of the prisoner’s dilemma with an infinite horizon is
commonly known as the IPD and is used as a standard model for direct reciprocity.

Successful Strategies

Interest in the IPD was raised by Axelrod’s (1980) famous tournaments, later covered in
more detail by Axelrod (1984). In these tournaments, Axelrod invited game theorists
to contribute computer programs that would play IPD games against each other. Even
though many participants had entered quite sophisticated strategies, the first and second
tournaments were won by the simplest and most cooperative participating strategy, sub-
mitted by mathematical psychologist Anatol Rapoport. This strategy, called Tit for Tat
(TFT), starts cooperatively and then always reproduces what the other player has played
the round before. By design, TFT can never obtain a higher payoff than its opponent.
Its cooperative stance however led to consistently strong second places when paired
with a cooperating player. One interpretation of these results put forward by Axelrod
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and Hamilton is that cooperation is likely to evolve naturally due to being profitable to
egoistic individuals. Experiments with humans have since confirmed the results of the
computer tournament (Wedekind & Milinski, 1996), adding to the significance of this
experiment.

The importance of mathematical analysis of repeated games can be highlighted at the
example of the IPD. The success of TFT in Axelrod’s simulation does not prove its
general efficiency and robustness. Indeed it has been shown that no pure strategy such as
TFT can be evolutionary stable in the IPD (R. Boyd & Lorberbaum, 1987). In fact, an
even stronger result holds: No finite mixture of pure strategies and no mixture of Tit for
n Tats can be evolutionarily stable (Farrell & Ware, 1989). This may seem to contradict
the idea of TFT as a successful strategy in the IPD, but the authors rather “interpret
[their] negative results to suggest that evolutionary stability is too demanding a criterion”.
If the possibility of mistakes is added to the setting of the iterated prisoner’s dilemma,
this is not true anymore. In this case, any strategy that is always the uniquely best
response to itself is an ESS, as long as error probabilities are positive, but sufficiently low,
and the amount of players playing a different strategy is kept sufficiently low (R. Boyd,
1989).

Following his famous tournaments of the IPD, Axelrod (1984) implemented a so-called
ecological simulation. In such a simulation, players interact with each other repeatedly
and may change their strategy randomly after each round, with a bias towards more
successful strategies. The pool of strategies in this simulation corresponded to the
strategies entered in his tournaments. When searching for a more general strategy space,
researchers have described strategies by their transition probabilities given the game’s
elapsed history. The resulting game can be described as an infinite-order chain (see e.g.
Iosifescu & Grigorescu, 1990), i.e. a process depending on all previous stages s. Compared
to Markov chains of finite order, infinite-order chains are not as well researched and not
as easily analyzed. However, a slight modification greatly helps simplifying the situation
without limiting its generality. Press and Dyson (2012) showed that at least in the IPD, a
longer memory does not lead to superior strategies compared to strategies relying solely on
the most recent observation. These single-stage memory strategies enable the description
of the game as a Markov chain, which helps in the investigation of the game’s long-term
behavior. For a general class of Markov chains, a unique limiting measure—the so-called
stationary measure—exists, against which the process converges in the long run (see
e.g. Pinsky & Karlin, 2010, pp.199 – 266). Molander (1985) has studied the stationary
measure for a particular set of strategies for the IPD, while Hauert and Schuster (1997)
has computed the stationary measure for randomly chosen strategies. Note that due to
the simplicity of the IPD, researchers have computed the transition matrices of the game
without giving a thorough derivation (Boerlijst, Nowak, & Sigmund, 1997b; Molander,
1985; Nowak & Sigmund, 1990). The modeling of the IPD as a Markov chain was used by
a group of researchers, who refined Axelrod’s idea of an ecological simulation to so-called
evolutionary simulations (Boerlijst et al., 1997b; Hauert & Schuster, 1997; Nowak &
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Sigmund, 1992, 1993). In contrast to Axelrod’s ecological simulation, these authors saved
time and computational effort by relying on the stationary measure of each matchup,
instead of simulating the interactions move by move. In these simulations, players were
able to explore the whole strategy space, which was restricted to Markov strategies.
In order to save time and computational effort, these authors relied on the stationary
measure of each matchup, instead of simulating the interactions move by move. However,
by allowing for additional players or a longer memory, the size of the strategy space can
inhibit the exploration of the strategy space (Hauert & Schuster, 1997).

Since Axelrod’s tournaments, the evolutionary approach has helped to discover other
strategies that have been shown to perform well in the IPD. These have been mainly
modifications of TFT, that addressed the weaknesses of this strategy. More precisely,
TFT is vulnerable to errors (Wu & Axelrod, 1995). For example in the case of two TFT
players competing against each other, a single accidental non-cooperative action of one
of the players can lead to both players never cooperating again. Molander (1985) has
shown that with noisy observations, two players using TFT will on average receive a
similar payoff as two players using a random strategy. The first suggestion to solve this
problem was made by Axelrod (1984) with the Tit for 2 Tats (TF2T) strategy, which
retaliates only after two rounds of the other player’s non-cooperation. This modification
leads to more robustness against noise, while still performing quite well even without
any noise, as was the case in the computer tournament. When analyzing the results of
his first tournament, he found that TF2T would have even outperformed TFT. However,
when entered in the second competition, TF2T was not as successful as TFT, due to the
change of competitor strategies that were able to exploit TF2T’s generosity (Axelrod,
1984).

Another variation of TFT that is more robust to errors is called Generous Tit for Tat
(GTFT) (Nowak & Sigmund, 1992). Following this mixed strategy, a player cooperates
with some fixed probability even though the other player has defected the round before.
This kind of forgiveness can help avoid long vendettas in the presence of errors or
imperfectly observable actions. The best probability of forgiveness has been computed
by Molander (1985). Nowak and Sigmund (1992) have shown that GTFT dominates
strategies that take the competitor’s last action into consideration, although it needs
TFT as a catalyst against aggressors.

TFT as well as GTFT base their decision solely on the opponent’s last action. This can
be changed by introducing a reputation for each player (Sugden, 1986). Each player
starts with a good reputation. If a player defects without having been given a reason by
his opponent, i.e. against an opponent with a good reputation, the player’s reputation
will drop to bad. If however a player defects against a competitor with a bad reputation,
this does not change the player’s reputation. For any player, cooperation will always
restore a good reputation in the next stage.
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A simple strategy using the reputation of each player is called Contrite Tit for Tat
(CTFT) (R. Boyd, 1989). A CTFT player with a bad reputation will always cooperate to
reestablish his good reputation, which explains the name of the strategy. Also, a CTFT
player will always cooperate with an opponent with a good reputation. However, against
a player with a bad reputation, a CTFT player with a good reputation will defect until the
opponent cooperates, which will restore the opponent’s good reputation. This procedure
constitutes a possibility to deal with Tit for Tat’s susceptibility to errors and in fact can
constitute an ESS in the presence of errors (R. Boyd, 1989). In contrast to Generous
Tit for Tat (see Nowak & Sigmund, 1992), Contrite Tit for Tat is good at invading
population of defectors (Boerlijst et al., 1997b). Unfortunately, while the introduction
of a reputation renders CTFT immune to errors in implementation of actions, it also
introduces the possibility of errors during perception of an opponent’s actions (Boerlijst
et al., 1997b).

If players are allowed to not only react to their opponent’s actions, but also to their
own, another simple strategy emerges that has been shown to be even more successful
and robust in an evolutionary sense for some settings (Nowak & Sigmund, 1993). The
PAVLOV strategy in the prisoner’s dilemma consists of cooperating if and only if both
players played the same action in the run before. This is an example of a simple kind of
strategy called win-stay, lose-shift, because it keeps the previous strategy if it has proved
successful and switches strategies if the previous payoff was low. If errors are introduced,
the strategy can exploit blind cooperation, while being itself robust against errors due
to its error-correction in the symmetric setup (Kraines & Kraines, 2000). However, due
to its interaction with aggressors, PAVLOV is only successful as long as the benefit of
cooperation is high enough. PAVLOV profits from the presence of TFT-like strategies,
since Tit for Tat is more effective against aggressors. But ultimately the ability to
prevent blind cooperators from spreading and thus attracting aggressors leads to better
performances for the PAVLOV strategy than TFT (Imhof et al., 2007). However, until
TFT has paved the way, PAVLOV may perform poorly. Wu and Axelrod (1995) report
that PAVLOV finished one of their tournaments as one of the worst strategies.

A combination of PAVLOV and CTFT has been dubbed Prudent Pavlov by Boerlijst
et al. (1997b). This strategy is robust both against errors in the implementation of
players’ actions, but also to errors in the perception of these moves. Pelc (2010) follows
another approach in creating a robust strategy against observation errors. The author
demonstrates the existence of perfectly fault-tolerant strategies. However, these strategies
require an unbounded memory and thus do not possess the Markov property.

Boerlijst, Nowak, and Sigmund (1997a) took a different point of view on the IPD. They
found that there exist Equalizing Strategies, which allow a player to unilaterally set the
score of his opponents, independently of the opponents’ strategy. Later, Press and Dyson
(2012) generalized this concept. They proved that the IPD allows the existence of a
broader set of strategies, which allow a player to unilaterally set an affine relationship
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between both players’ payoffs. The feasibility of any particular affine relationship depends
on the choice of parameters of the affine relationship as well as on the payoffs of the
game. These strategies are called Zero-Determinant Strategies. A particularly interesting
special case are the Extortionate Strategies. Using such a strategy, a player can fix a
linear relationship between both players’ profits, where the profit of a player is his payoff
minus the payoff for mutual defection. Press and Dyson showed that every possible
Extortionate Strategies is feasible in the IPD, so that a player can choose to receive any
multiple of the opponent’s profit. For the special case, in which the player fairly sets his
share of profits equal to the opponent’s, they found the resulting strategy to be TFT.
The power of Extortionate Strategies lies in the relationship with evolutionary players.
Since a player, who is following an evolutionary approach, will aim to maximize his profit,
he will inevitably maximize the extorting player’s profit as well, albeit at a higher level.
The only way out of this extortion is playing an ultimatum game. However, this requires
a theory of mind and is not possible via evolution.

Given the amount of insight extracted from the IPD, it comes as no surprise that there have
been many attempts at broaden its scope in order to gain a better understanding of similar
situations. The IPD has been extended to the case of more than two players (Berkemer,
2006; Yao, 1996). Other modifications include the Alternating Prisoner’s Dilemma (APD),
in which players choose their moves in a non-simultaneous way, which has led to new
dominating strategies (Frean, 1994). The extension of the amount of moves, that players
may base their decision on, yields more successful strategies in the APD (Neill, 2001),
but not in the IPD (Hauert & Schuster, 1997).

2.2.3 Summary and Implications

Game theory is applicable to any situation in which multiple decision makers interact.
Thus, the concepts of game theory presented in this section lend themselves well for
the problem of RM under competition, as we will show in Section 2.3.2. However, most
insight has been gained from studying simple games such as the IPD, where the effects of
repeated interactions could be studied in a thorough way. In this thesis, we will transfer
ideas from the game theoretic treatment of the IPD to the RM scenario with repeated
interactions between service providers.

2.3 Revenue Management under Competition

In the last decades, the ongoing work of researchers and practitioners has seen RM
forecasting and optimization techniques come a long way. However, up to this day, most
RM models do not take into account the effects of competition (Martínez-de Albéniz &
Talluri, 2011). The effectiveness of these methods has been proven in monopoly settings
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only, but it is often assumed that they perform well in a competitive setting (Talluri & van
Ryzin, 2004b, p.186). This is usually credited to the fact that estimating and forecasting
in a competitive environment leads to data that implicitly accounts for competition.
A case in point would be the above mentioned success story of the first use of RM
by American Airlines (1987), where a very simple model performed well enough in a
competitive setting to drive the competition out of business. However, Cooper, de Mello,
and Kleywegt (2009) showed that while this implicit incorporation of competition in RM
might in some cases be sufficient, in other cases it can lead to considerably suboptimal
results.

Therefore, recent years have seen increased efforts to establish models that explicitly
consider competitive effects in revenue management.

2.3.1 Amendments to the Monopoly Model

With the rise of the internet, prices of each competitor are much more transparent. Now
customers have the possibility to compare prices for similar products across different
competitors. This changes the nature of the competition, as S. P. Anderson and Schneider
(2007) have shown that a costly search for prices can lead to even higher prices in a
duopoly than in a monopoly. Additionally, each service provider now has the possibility
to monitor prices from all their competitors quite easily. This information can be used
as additional information about the competitor strategy compared to traditional RM
forecasts. There are specialized firms who offer competitor price information on a varied
range of level of detail (e.g. Infare Solutions, 2013), which can then be used in a RM
system.

Lua (2007) analyzed the strategy of matching the lowest available fare of an airline on top
of a standard RM system. In simulations with Passenger Origin-Destination Simulator
(PODS), he found that price matching has a negative effect on the matching airline and
a positive effect on the matched airline. Thus, this overly simplistic solution seems far
from optimal.

A more systematic approach to price matching—albeit in a much simpler scenario—was
used by Marcus and Anderson (2008). Under the assumption that the demand process
and the competitor price process are known and follow simple ordinary differential
equations, Marcus and Anderson analyzed the optimal strategy of a carrier with a service
disadvantage. In their work, that carrier has to price lower than the competitor in order
to attract the same level of demand due to customers perceiving its service as worse than
the competitor’s. The resulting optimal control takes the form of a simple bang-bang
control.

Currie, Cheng, and Smith (2008) consider a generalization of this problem. Instead of the
overly simplistic assumption that competitor prices are governed by ordinary differential
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equations, they allow for any function depending only on time. They formulate a capacity
constraint that is meant to prevent overbooking, although in the formulation they use
it, the constraint only states that there is no overbooking on average. This capacity
constraint is then used to reduce the optimization problem to solving a set of differential
equations with the help of calculus of variations and Lagrangian multipliers. Given an
unresponsive competitor with a known price function, they find the best strategy for the
rational carrier. However, they need to know competitor prices beforehand, which is a
strong restriction of the model. Since competitor prices are assumed to be dependent on
time only, this could be replaced by forecast of competitor prices.

Zhang and Kallesen (2008) present such a modification to a standard RM optimization
technique, using of the availability of competitor prices. They observe competitor prices
in order to fit parameters of a Markov chain, which helps them produce a forecast of
the future competitor price. The resulting stochastic process depends only on time
and observed competitor prices and thus disregards competitive interactions between
suppliers. In their optimization problem, the authors use a dynamic program to find the
best solution given the transition probabilities of the competitor’s prices. Simulation
results show that their method performs superior to standard approaches not considering
competition, as long as the competing carrier remains unresponsive.

While Marcus and Anderson and Currie et al. model competitor prices as time-dependent
exogenous functions, Ledvina (2011) uses a different approach, in which competitor prices
are a result of some form of optimization of the competitor. If the competitor prices
result from a control that would be optimal in a monopoly setting, Ledvina (2011) is able
to calculate the best response. Ledvina requires the true demand to be known for both
firms. However, the true demand for each provider in a duopoly depends on the strategy
of the competitor as well. Thus, there is no true demand for a single firm, independent
of the competitor’s actions. But this is the input needed for the optimization of the
irrational firm and its value. The choices made regarding the monopolistic demand may
very well have a significant input on the carrier’s strategy. In a realistic environment,
these choices will depend on the forecast employed by the irrational provider, which calls
for an analysis of different monopolistic strategies.

Both the works of Ledvina and Marcus and Anderson assume that demand in the market
is known. Already in a monopoly setting, forecasting is one of the most difficult parts of
any RM system, since it is impossible to observe potential customers that refrain from
booking. Since in a competitive setting, the portion of observable customers further
declines for each carrier, the task of forecasting is even more difficult.

A simple possibility to include competition in standard monopoly RM by using competitor
information to enhance the forecast has been proposed by d’Huart and Belobaba (2012).
The core idea is to form a belief about the competitor’s booking situation by comparing
its current lowest fare to historic observations of his lowest fare. This belief is used to
modify the forecast in order to accommodate variations from the historic observations
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due to a change in competitive behavior. Simulation results show low but statistically
significant gains over monopoly forecasts, as long as only one firm in the market uses
this approach. However this positive effect vanishes, as soon as multiple airlines adopt
the method.

2.3.2 Game Theory in Revenue Management

Game Theory has proven to be an effective tool for problems closely related to RM such
as the newsvendor problem, which is essentially the single-resource RM problem with
two fare classes over a single time period (Huang, Zhou, & Zhao, 2010; Jiang, Netessine,
& Savin, 2011; Lippman & McCardle, 1997; Zhao & Atkins, 2008). In recent years,
researchers have started to apply game theoretic ideas directly to RM problems. Most
researchers try to find the Nash equilibrium of the single-stage game describing a single
booking horizon. Sometimes the exact equilibrium is replaced by a heuristic that may be
easier to compute.

In one of the first papers to explicitly incorporate competition on Dynamic Pricing,
Dockner and Jørgensen (1988) study optimal dynamic pricing policies in an oligopoly
without capacity constraints. They formulate a differential game and solve for an
open-loop Nash equilibrium.

Netessine and Shumsky (2005) study the effects of competition in airline RM on the
single-leg time-static model with two fare classes. In their model, demand may switch
carriers, if one carrier does not offer the desired class, but will not switch classes. They
find the existence of a pure strategy Nash equilibrium, in which each carrier protects
more seats for the higher class than in the optimal solution for the monopoly.

Adding the effect of pricing, Zhao (2003) studies a similar problem, albeit with a different
demand spill-over model. Here carriers can change prices for the high fare class as well
as choose a booking limit. Zhao finds that the best strategy depends on the type of
competition in the market. In his work, the effect of customers choosing the competitors’
lowest price is called “price competition”, and the effect of spill from one carrier to
another due to stock-out of one carrier is denoted “seat inventory competition”. The
author points out that in a market dominated by price competition, carriers should
price lower and protect less seats for the high fare class than in a monopoly, which is in
line with classical economic literature. Similarly to Netessine and Shumsky’s findings,
airlines should price higher and protect more seats when seat inventory competition
predominates. For a mix of both types, carriers should price the highest class lower than
in a monopoly, but protect more seats for it.

Martínez-de Albéniz and Talluri (2011) analyze a discrete-time finite-horizon model of
price competition under capacity asymmetries, where each firm offers a single perfectly
substitutable product. In this model, customers always purchase the cheapest product
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as long as it is cheaper than their willingness-to-pay, which is common knowledge for
each firm. Under the assumption that each firm can observe the inventory level of its
competitor, the authors prove the existence of a unique subgame-perfect equilibrium in
the duopoly setting.

The above papers assume that service providers know the booking limits of their com-
petitors. However in reality, it is not possible to observe the inventory of a competing
carrier, so that competitor’s booking limits as well as remaining capacities cannot be
assumed to be known (Talluri, 2003). Since competitor prices are easily observable since
the rise of the internet, many researchers have focused on using prices as the available
information in the modeling of their games.

Lin and Sibdari (2009) use another approach at the problem of unobservable inventory
levels. Their model is a variation on the single-resource case, where each firms sells
substitutable products using a single resource. They use a dynamic model in discrete
time, in which customers arrivals are modeled as a Bernoulli process. Each customer’s
choice is modeled by a discrete choice model. In game-theoretic terms they analyze a
discrete-time, finite-horizon game. The authors first calculate Nash equilibria of the
game under the assumption of observable demand and inventory levels. In the next step,
they present an interpolation heuristic for the case that inventory levels are only known
in the beginning of the booking period.

The following articles in this section use competitor prices as the observable quantity.

Mookherjee and Friesz (2008) analyze a discrete-time, finite-horizon game with a known
demand model in combination with other typical RM problems, such as overbooking
and networks. The authors prove the existence and uniqueness of a pure strategy Nash
equilibrium. They find that in the equilibrium, service providers price lower than in the
monopolistic setting. In numerical experiments, they compute the revenue gap between
cooperative and non-cooperative optimal control.

Perakis and Sood (2006) consider a discrete-time, finite-horizon stochastic game with
continuous demand. In their variation of the problem, demand information that is
extracted of observed prices still contains some level of uncertainty. They use ideas from
robust optimization to find a unique open-loop solution and present a simple iterating
learning scheme converging towards the equilibrium.

For a similar setting, another attempt at relaxing the assumption of knowing the demand
model exactly in advance is made by Bertsimas and Perakis (2006). They consider a
finite-horizon, discrete-time game, where firms compete on price for a single perfectly
substitutable product. In their work, only the functional form of the demand model is
known in advance, whereas its parameters have to be estimated by each firm during the
booking period.
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An extension to this approach is made by Simon (2007), who analyzes inequilibrium states
of the game. Furthermore, Simon (2007) builds on the work of Gallego and van Ryzin
(1994) on Dynamic Pricing, where the author formulates a game in continuous time and
computes a closed-loop solution for a small example. Since this turns out to be infeasible
for larger problems and general demand models, Simon introduces several heuristics
improving on the open-loop solution consisting of either a simple feedback control or
approximations of the closed-loop revenue function in the Dynamic Program. In the
same setting, Ledvina (2011) calculates closed-loop equilibria for linear and exponential
demand models.

Kwon et al. (2009) use an evolutionary game theory approach to model a continuous-time,
finite-horizon game, for which parameters of the demand model have to be estimated by
each carrier. Their demand model is based on deviations from an averaged reference price.
The dynamics of this non-cooperative market model are formulated as a differential
variational inequality, which can be transformed into an equivalent optimal control
problem given the assumption that competitive prices are known beforehand. With
functional form of the demand model known to each player, they use a Kalman filtering
approach to estimate demand and solve the optimal control problem to obtain a open-loop
solution.

Isler and Imhof (2008) suggest a way to introduce non-cooperative Nash equilibria into a
RM simulation model by idealizing the behavior of a typical RM forecasting system. The
authors construct a “psychic” forecast considering competitor availability information:
After every booking request, each carrier learns which classes it could have sold given
the customer’s willingness-to-pay and the competitor’s actual offers. This information is
used to forecast future bookings. The simplicity of this approach guarantees usability
in much more complex settings, where the actual Nash equilibria might be hard to
compute. Isler and Imhof test their method in a discrete-time game with an exponential
demand model, where the calculation of the exact Nash equilibria is tractable. They
compare their technique to the actual Nash equilibrium and find it to perform sufficiently
similar. In their setting, the Nash equilibria lead to a Competitive Spiral Down: Revenue
decreases with increasing capacity as soon as a threshold capacity value has been reached,
eventually converging to the Bertrand equilibrium in the case of no capacity constraints.
Considering the discrepancy between their result and real-life observations, the authors
reason that RM should be considered as a repeated game.

As a follow-up, Isler and Imhof (2010) present a solution to the problem of the Competitive
Spiral Down, which they identify as a pricing problem. If both players agree not to choose
prices below some threshold level, the price war can be limited. If this threshold value is
chosen as the lowest price that a carrier should offer in the monopoly situation without
capacity restrictions, the strategies end up close to the cooperative Nash equilibrium. In
a repeated game, this tacit collusion corresponds to cooperative behavior.
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Despite the remark of Isler and Imhof, there is not much research on the dynamics of RM
under competition modeled as a repeated game. In a paper extending the seminal work
on dynamic pricing by Gallego and van Ryzin (1994), Gallego and Hu (2007) introduce
competition into the RM setting, thus creating a finite-horizon continuous-time stochastic
game. Given that the demand model is known, demand intensities can be calculated from
observed competitor prices. The authors find an open-loop solution for the single-stage
game, in which the optimal prices have a similarly simple structure as in the monopoly.
Furthermore, they compute the best strategies against irrational competitors that do not
follow the optimal strategy. They also analyze the problem in an iterated game setting,
where they prove a version of the folk theorem. However, they admit that their “result
seems to be vague in that which equilibrium eventually is settled upon is determined by
each firm’s strategic behavior that is hard to model.”

2.3.3 Summary and Implications

In the literature, there have been two different approaches to the problem of RM under
competition: While some researchers have put forward amendments to the monopoly
case of RM described in Section 2.1, others have presented applications of the game
theoretic concepts presented in Section 2.2. However, for both approaches the literature
concentrates on the single-stage case, although a multi-stage view is more appropriate
for the problem. In fact, employing a single-stage view can prove very costly, since it
can lead to the Competitive Spiral Down. On the other hand, the only approach to
model RM competition with repeated interactions stresses the difficulties in modeling the
players’ strategic behavior and determining the game’s stationary state. In this thesis,
we will present a possibility to introduce repeated-game strategies into RM, so that we
can investigate the limiting state of the game.

2.4 Simulation

Before any new strategy is put into practice, it first has to be evaluated to ensure its
performance and robustness in a broad range of scenarios. If the interaction of this
strategy with its environment is well understood and easily described analytically, an
analytical evaluation offers the most complete insight. However, if a mechanism is not
well understood, its impact has to be determined by experiments. The experiment can
be executed in real life (e.g. Talluri, Castejon, Codina, & Magaz, 2010) or in a simulation
environment (e.g. Belobaba & Hopperstad, 2004; Fiig et al., 2009).

However, experiments in real life have several disadvantages compared to simulations. In
real life, an experiment may soon turn out very costly if the scale of the experiment is
sufficiently large. If the experiment is kept small, the range of scenarios, against which
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the method is tested, is kept smaller as well. Also despite the idea of working with a
control group in real life by Talluri et al., an experiment ceteris paribus is not possible in
real life. In a simulation however, it is possible to test strategies ceteris paribus against a
wide variation of scenarios without risking great costs.

Law and Kelton (2000) give a thorough guide to simulation, which helps the reader gain
an understanding of challenges and solution concepts of simulations.

2.4.1 Simulations in Revenue Management

In RM there are many opportunities that fulfill the above points making a simulation
necessary in order to gain a better understanding of the system. A typical use case of
simulation in RM is the evaluation of forecast performance, since in the real world, the
real demand can never be observed (Cleophas, Frank, & Kliewer, 2009b). This necessity
has sparked interest in RM simulators for a long time.

About 20 years ago, researchers at Boeing developed probabilistic simulators as a means
of simulating air travel passengers (Decision Window Path Preference Model (DWM),
1994). Since this early simulator was aimed at providing decision support for fleet
planning and scheduling, it featured a relatively sophisticated customer choice model,
but no RM methods. Realizing that this model could not explain observed booking
realizations, Boeing used this system as a basis to develop the PODS in collaboration
with the Massachusetts Institute of Technology (MIT) (Hopperstad, 1995). Since then,
PODS has served as decision support for research questions both from researchers and
practitioners (e.g. Fiig et al., 2009; Gorin & Belobaba, 2004).

While PODS features a rich set of RM methods and is capable of simulating very
large networks, criticism of its shortcomings has grown in recent years. In particular,
the inaccessibility of the code to other researchers, an oversimplified customer model,
inflexible booking class restrictions and simplistic schedules have inspired the creation
of similar simulators. For example, the RM simulator REMIGIUS allows for dynamic
capacity control in the optimization (Frank, Friedemann, & Schröder, 2007a). Following
another approach, the Travel Market Simulator (Travel Market Simulator , 2013a) is
built using a modular approach and released as open source. The creators of this
simulator hope to attract researchers willing to contribute modules, so that the software
can grow “to become the new generation PODS” (Travel Market Simulator , 2013b).
Building on experience with PODS and REMIGIUS, Frank, Friedemann, and Schröder
(2007b) describe a set of guidelines for simulations in revenue management. REvenue
Management Training for Experts (REMATE) is a RM simulator developed by Lufthansa
in cooperation with several universities and a software provider, that is built following
the principles presented by Frank et al. (2007b). Earlier versions of REMATE have
been described by Zimmermann, Cleophas, and Frank (2011) and Gerlach, Cleophas,
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and Kliewer (2013), while the state of implementation used in this dissertation will be
described in Section 4.3. Compared to PODS, REMATE offers a more flexible customer
model, schedule and booking class system. On the other hand, simulations in REMATE
have to be run on considerably smaller networks.

2.4.2 Simulations in Game Theory

The amount of insight gained from Axelrod’s simple computer tournament (1984) proves
the worth of simulations to analyze repeated games. A simulation can often offer insights
into the behavior of models that are too complex to examine in a mathematical model. In
fact, research in simulations may stimulate further theoretical research in this area which
aims at validating these results in a more rigorous fashion. However, due to the limiting
assumptions of these mathematical models, agent-based simulations can in some cases
even offer a more rigorous approach than mathematical modeling (Chattoe, 1996).

Gotts, Polhill, and Law (2003) give a survey over the advances in agent-based simulations
for repeated games. Nevertheless, the authors stress the importance of theoretical
approaches. The authors argue that the analysis of a simple simulation model should
always be accompanied by examination of related theoretical research, while the use of
more complex simulation models should include references to simpler models. This way
theoretical analysis and agent-based simulations can profit from each other: Insights
gained from simplified models can help explain phenomena in a more complex setting,
while analysis of complex models helps validate ideas gained in a simplified setting as
well as study interactions that have been ignored for the sake of simplicity.

2.4.3 Summary and Implications

Simulations have proven successful in the analysis of RM, where PODS has been used
extensively in research and practice. In game theory, simulations such as Axelrod’s
(1984) computer tournament have helped raise interest and gain insights in the IPD.
Nevertheless, an investigation led by simulations should always be complemented by
theoretical analysis, if possible. In this thesis, we will use a combination of theoretical
analysis and simulations to examine the competitive interactions of service providers.
We will first use simulations with REMATE in Chapter 4. Then, we will turn to a
mathematical analysis in Chapter 5, accompanied by simulations based on the analytical
results.
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Revenue Management (RM) has been credited with helping firms succeed in a competitive
environment since the early days of balancing full fares against discounted fares. As
one of the first adapters of revenue management, American Airlines managed to drive
its low-cost competitor out of business with the help of its RM techniques (The Art of
Managing Yield, 1987). Since then Belobaba and Wilson (1997) have shown that using a
RM system is beneficial in a duopoly as well as in a monopoly. Thus, it appears clear
that the benefits of using RM are not restricted to the monopoly case. However, the
question for the best RM strategy in a competitive environment is still unanswered.

As outlined in the literature review in Section 2.3, the RM problem in a competitive
environment has been approached from two disciplines: RM, reviewed in Section 2.1,
and game theory, discussed in Section 2.2. From a RM perspective, researchers have
examined the problem in a realistic setting and applied or adapted RM techniques
that were originally developed for the monopoly case (see Section 2.3.1). Because
of the high complexity of the setting, the evaluation of these approaches is usually
restricted to simulations (see Section 2.4), since a mathematical analysis is often unfeasible.
Several researchers have employed the Passenger Origin-Destination Simulator (PODS)
to analyze competition between service providers using standard monopoly RM systems.
Subsequently there have been different attempts to extend monopoly systems to account
for competitive effects as well. Similarly to the simulation results of the monopoly RM
systems, the performance of these expansions has been evaluated by comparison with
other standard RM systems only. Therefore, the effects of interaction of competitive RM
systems with each other have not been analyzed.

On the other hand, in Section 2.3.2, we have discussed a tremendous amount of research
from a game-theoretic perspective, which explicitly accounts for interaction between
the players. These authors have modeled games describing the RM problem of a single
booking horizon, each describing a slightly different simplification of the original problem.
In these papers, the evaluation process consisted of showing that the resulting strategies
formed a Nash equilibrium. The resulting strategy profile is never put in comparison
with standard RM techniques. Thus, the question of similarities and discrepancies of
standard RM systems and game-theoretic solutions remains unanswered.

In Section 2.3, we found that the vast majority of research on RM under competition—
relying on RM or on game theory—aim at finding an optimal solution for the problem
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during a single sales period. However, Isler and Imhof (2008) showed that the single-
stage Nash equilibrium leads to the Competitive Spiral Down effect that can lead to
the ruin of both players. Thus, each player faces a dilemma: He can either follow the
non-cooperative solution, which will lead to the Competitive Spiral Down. Or he can
implement cooperative behavior that approximates the joint optimum, but is vulnerable
to non-cooperative aggressors. However, as Isler and Imhof (2008) pointed out, it is
much more suitable to think of competition in RM as a repetition of similar events. This
lends itself perfectly to modeling as a repeated game. Unfortunately, there is hardly any
published research in that direction.

The dilemma faced by players engaged in the RM game is not unique. In fact, the
most famous and best example of such a dilemma is formulated in the simple Prisoner’s
Dilemma, which may serve as an inspiration for the analysis of the RM game. In its
repeated form as the Iterated Prisoner’s Dilemma, this game has seen a tremendous
amount of research that has produced several successful strategies (see the literature
review on the Iterated Prisoner’s Dilemma (IPD) in Section 2.2.2). Although Isler and
Imhof (2008) and Gallego and Hu (2007) have acknowledged the similarity of the RM
game to the IPD, this has not resulted in a new approach to the problem of RM under
competition anywhere in the literature.

Research Question 1. How can strategies of the IPD be adapted to the repeated RM
game?

Gallego and Hu (2007) provide us with an adapted version of the famous folk theorem
for the repeated RM game, stating that, by choosing an appropriate discount factor, any
payoff greater than the payoff for the single-stage Nash equilibrium can be obtained by
a Nash equilibrium of the repeated game. Therefore, at least in the slightly simplified
setting of Gallego and Hu, we are guaranteed that there exist strategies in the repeated
RM game that solve the dilemma of the RM game by forming a jointly optimal Nash
equilibrium. Unfortunately this does not help in the search for the best strategy.

Research Question 2. Which strategy leads to a jointly optimal Nash equilibrium in
the repeated RM game?

To the best of our knowledge, the connection between monopoly-based RM systems, as
they are currently wide-spread in practice and research, and game-theoretic solution
approaches has not been made in the literature (see Section 2.3). The work of Ledvina
(2011) represents a step in this direction as discussed in Section 2.3.1. Ledvina has
computed the optimal strategy for a carrier under the assumption that its competitor
uses a standard monopoly RM system. However, as pointed out in the literature review,
this procedure depends on the monopoly-based RM system in question. Isler and Imhof
(2008) showed in simulations that an idealized standard RM system leads to Nash
equilibrium. Building on this method, Isler and Imhof (2010) presented a heuristics
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to approximate the jointly optimal solution as well. On the other hand, Cooper et al.
(2009) demonstrated that a RM system trying to estimate demand as independent of the
competitor does not necessarily converge to the Nash equilibrium and instead lead to
different steady states such as the cooperative solution. Thus, the question, whether and
how well a realistic standard RM system approximates these game-theoretic solutions,
has not been answered yet.

Research Question 3. How closely do standard RM methods approximate the game-
theoretic solutions?

The ongoing struggle to find optimal feasible strategies in competitive RM has led
to service providers using simple irrational, yet competitive techniques such as price-
matching and underpricing. In spite of the significant share of carriers using these
methods, the literature offers no guidance on how to react to these strategies.

Research Question 4. Which strategies are best suited to react to simple irrational
strategies like price-matching or underpricing?

In a realistic RM environment, it is impossible to completely avoid observation errors.
Thus, while evaluating the success of strategies in the repeated RM game, it is essential
to account for the possibility of flawed observations of the competitor’s actions. The
importance of errors is stressed by the fact that researchers have shown that the intro-
duction of observation errors can severely change the dynamics of the game in the IPD
(see literature review in Section 2.2.2).

Research Question 5. What is the effect of observation errors on strategies in the
repeated RM game?

As discussed in Section 2.2.2, there is no singular best strategy in the IPD, since the
results depend on the possibility of observation errors as well as on the frequency of
competing strategies in the environment. Therefore, a rational player will choose the
optimal strategy for his environment by learning from his repeated interactions with
other competitors. In the literature review in Section 2.2.2, we have pointed out that for
the IPD, such a learning scheme can be formulated as an evolutionary game, where each
player reassesses his strategy after each round with the possibility to change towards
more successful strategies. Due to the similarity of the IPD to the repeated RM game, a
similar procedure may lead to insights about the success of RM strategies in different
competitive environments.

Research Question 6. Which repeated-game strategy is competitively robust in the
sense that it fares best against a diverse set of competing strategies?
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However, we stressed Section 2.2.2 that such a learning strategy can be dangerous in the
IPD. As Press and Dyson (2012) have shown, the IPD allows for Extortionate Strategies,
which allow a player to unilaterally enforce to obtain an unfair share of the total payoffs.
Against such a strategy, the best response is to cooperate, even though the extorting
player does not always cooperate. Consequently, implementing such an Extortionate
Strategy will lead a rational competitor to the cooperative solution, where the extorting
player’s payoff is maximized as well.

Research Question 7. Do Extortionate Strategies exist in the repeated RM game?

As discussed in the literature review, the RM problem under competition can be tackled
either via simulations or analytically. The computational approach via simulations
enables the researcher to embed the problem in a realistic and complex setting. This
way, the researcher does not have to make possibly oversimplifying assumptions in his
analysis. On the other hand, a mathematical analysis might not always be feasible, but
it can provide deeper insights into the structure and the mechanics of the game. In this
thesis, we will endorse both a computational as well as an analytical approach in order
to examine the RM game as thoroughly as possible from as many angles as possible.

First, in Chapter 4, we will describe competition in a quite general RM context. We will
use simulations to evaluate different strategies in a realistic setting, concentrating on
questions 1 – 5.

In Chapter 5, we will examine the problem from an analytical point of view. In order to
enable a mathematical analysis of the RM problem under competition, we will simplify
the RM game from Chapter 4, mainly by focusing on the situation, where competitive
effects are not dampened by capacity constraints. The resulting game will be both a
simplification of the RM game and a generalization of the IPD. In this chapter, we will
focus on questions 2 and 5 – 7.
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In this chapter, we will present a model of RM-using service providers under competition.
We will develop a heuristic to adapt strategies from the Iterated Prisoner’s Dilemma (IPD)
to the repeated RM game and evaluate different strategies with the help of simulations.

As indicated in the literature review in Chapter 2, researchers have approached the
problem of competition between service providers from two different directions. One
stream of research has discussed the problem in a realistic setting, using simulations
to evaluate the performance of standard Revenue Management (RM) systems under
competition (see Section 2.3.1). Another has examined simplified versions of the problem
from a game theory perspective, usually solving the problem for the Nash equilibrium
(see Section 2.3.2).

With the research divided in such a way, researchers as well as interested practitioners have
had to balance advantages and disadvantages of the two research directions. While the
treatment of realistic scenarios is intriguing, the dependence on an unmanageable amount
of parameters can make a thorough analysis infeasible. In particular, the restricted set
of tested strategies implies that these studies cannot answer the question for the best
possible strategy. On the other hand, the game theoretic treatment usually provides
an exact optimal solution through mathematical analysis. But in order to be able to
calculate the Nash equilibrium, researchers have to make simplifying assumptions that
can hinder the transfer of these results to realistic scenarios. This is a stark contrast
to analyses using a simulation environment such as the Passenger Origin-Destination
Simulator (PODS) or REvenue Management Training for Experts (REMATE), where
scenario details can be tuned to create an almost arbitrarily complex scenario.

To bridge the gap between simulation-based and game theoretic analyses, we can adopt
ideas from Isler and Imhof (2008), who showed that an idealized version of the forecast
in a RM system can approximate the Nash equilibrium. Later, Isler and Imhof (2010)
built on this approach and presented an approximation of the jointly optimal solution.
As outlined in the literature review in Section 2.3.1, they find that the Nash equilibrium
leads to the so-called Competitive Spiral Down: As long as the demand to capacity ratio
is sufficiently low, service providers find themselves in a race to the bottom converging
to the Bertrand Nash equilibrium. We will use their ideas to compute approximations of
the single-stage non-cooperative and cooperative solutions.

Isler and Imhof (2008) remark that the RM game should not be treated as a single-stage
game consisting of a single sales period, but instead as a repeated game. They argue
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that a repetition of the cooperative solution would solve the Competitive Spiral Down
faced by the non-cooperative Nash equilibrium strategy of the one-shot game (Isler &
Imhof, 2010). However, the similarity of this game to the IPD hints at different solutions.
We will present a heuristic that will allow us to adapt successful strategies from the
IPD to the repeated RM game. Since mistakes can happen in RM, it is important to
implement a strategy that is robust against errors. In this chapter, we will analyze
various strategies for the multi-stage RM game, both with and without the possibility of
observation errors.

We will also reexamine Isler and Imhof’s approximation of the single-stage game theo-
retic solutions, relying on an idealized forecast, which is only feasible in a simulation.
Additionally, we will test whether a realistic forecast in a standard RM system will lead
to similar results. For this purpose, we will use several standard RM methods of varying
degrees of complexity to represent realistic RM systems. These methods were designed
for the monopoly setting and consequently do not incorporate competitive effects in an
explicit way. Because of the interaction of the two service providers, there is however an
implicit consideration of the competitor’s actions. The widespread use of these techniques
is based on the belief that over time the implicit learning of competitive effects will suffice
to reach an optimal strategy. However, Cooper et al. (2009) have shown that while this
approach may converge to the non-cooperative Nash equilibrium, it may also converge to
the cooperative solution or to an altogether different strategy. In this chapter, we will
compare strategies using a standard forecast to strategies based on an idealized forecast
similar to Isler and Imhof’s. We will analyze the severity of the Competitive Spiral Down
effect as well as the effect of using repeated game strategies on top of standard RM
systems. Furthermore, we will use the approximations to the non-cooperative and to the
cooperative solution of the single-stage as benchmarks, against which the standard RM
techniques are measured.

Continuing our analysis of realistic and wide-spread competitive behavior, we will also
investigate the effects of firms using irrational strategies like price matching. There
are essentially two different possibilities to perform price matching. A service provider
can either copy all the prices filed by its competitor, which is a pricing mechanism.
Alternatively he can try to copy its competitor’s availability situation, which is a RM
mechanism and therefore more suited for our purposes. Price matching strategies are a
simple way to explicitly integrate competition into a RM system. Consequently, these
strategies have been used extensively in research and practice, as discussed in Section 2.3.1.
Price-matching firms usually only use the information about the competitor’s lowest
available class, which can be gathered easily since the rise of the internet. Assuming a
nested fare structure, this is enough to reach a sufficient precision about the competitor’s
availabilities.

In the following Section 4.1, we will give a mathematical model of RM in a single
sales period under competition. We will build on this model to formulate strategies
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for the repeated interaction of the competitors in Section 4.2. Then, in Section 4.3,
we will present the simulation environment REMATE, which we will rely on to yield
computational results. In Section 4.4, we will design and evaluate simulation experiments
that help us investigate the nature of RM with repeated competitive interactions. Finally,
in Section 4.5 we will provide the reader with a conclusion of this chapter’s results.

4.1 Modeling Revenue Management under Competition

In this section, we develop a model to describe competitive interactions resulting from
RM decisions between two service providers S1 and S2. Both firms have a limited capacity
of a single resource. They offer the same set of products J = {1, . . . , n}, each consuming
one unit of the resource, ordered in descending fare f(j), j ∈ J . S1 and S2 face each other
repeatedly for stages s ∈ N+. In each of these stages, they have to decide simultaneously
on the subset of products to make available for every time step t of a discretization of
the sales period {0, . . . , T}. Remaining capacity turns worthless at the end of the sales
period T .

RM aims at finding optimal control strategies without being able to observe demand
in an uncensored way. Thus, most RM systems rely on a forecasting engine, that tries
to reconstruct true customer behavior from limited observations, and an optimization
module, that uses this information to compute a control strategy. We will first describe
the underlying demand process. Then, we will present different forecast methods that
will be used in this chapter, before we will treat solutions of the single-stage optimization
problem.

4.1.1 Demand

We assume that the arrival of demand is governed by a Poisson process with an inho-
mogeneous, but piecewise constant intensity. The behavior of each customer follows a
utility-maximizing discrete choice model, conditional on the subset of available products
with a lower price than the customer’s willingness-to-pay. When faced with an offer set
of available products of both service providers, the customer associates disutility values
for the price and the product’s restrictions. These disutilities are randomly generated, as
is the willingness-to-pay of each customer. Choosing an alternative of the offer set is a
two-step process:

1. The customer reduces the offer set to products with a lower price than his willingness-
to-pay.

2. Of all these offers, the customer chooses the product with the lowest combined
disutility.
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As a result, we find for all availability situations of S1 and S2 the true demand Dk of
product j of service provider Sk at time step t of stage s.

4.1.2 Forecast

Talluri and van Ryzin (2004a) have shown for quite general choice models that optimal
control strategies take a nested form, i.e. allN optimal (depending on capacity constraints)
subsets Ji ⊆ J of offered products may be ordered so that J1 ⊂ · · · ⊂ JN . Even for
demand models that do not possess this property, Fiig et al. (2009) argued that the
computational advantages of nested models justify using an approximate nested model
instead of working with the original. As a special case of nested models, we restrict
ourselves to availabilities that are nested by fare order. That means that service provider
Sk always offers a subset {1, . . . , jmin} ⊆ J , jmin ≤ n, of classes ordered descending by
price. Thus, the offer set is entirely described by its cheapest available product.

The true demand Dk(j, jmink , jminl , t, s) of product j of service provider Sk at time step t
of stage s depends on the availability of substitute products from provider Sk as well
as from the competitor Sl, l 6= k. Here jmink denotes the cheapest available product of
service provider Sk. Similarly to the true demand, control strategies depend on s and
t. However, for the sake of clarity we omit this dependency in our notation whenever
possible.

Unfortunately for the service providers, the true demand Dk(j, jmink , jminl , t, s) cannot be
observed directly. Instead, they have to rely on the observation ̂mink (t, s) of Sk’s lowest
available class jmink at time step t during stage s and the resulting bookings

bk(j, ̂mink (t, s), ̂minl (t, s), t, s) =

Dk(j, ̂mink (t, s), ̂minl (t, s), t, s) if j ≤ ̂mink (t, s)
0 else

(4.1.1)
From these sales data, each firm tries to estimate demand d(jk, jmink , t, s). In order to
formulate a feasible optimization problem, estimated demand is independent of the
competitor situation.

The development of a reliable forecast is a long-term process. For every stage s, the
service provider computes an estimate, which is then combined with previous estimates
to construct a smooth estimate for future stages. The technique of exponential smoothing
is a simple method that uses a weighted average of the current observation d̂ and the
past reference d with α ∈ [0, 1] to produce an updated reference.

d(·, s) = αd̂(·, s) + (1− α)d(·, s− 1) (4.1.2)

This simple method has been shown to outperform alternative approaches under a variety
of settings (Makridakis & Hibon, 2000; Weatherford & Kimes, 2003).
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Independent demand Until fairly recently, the standard forecasting engines assumed
demand to materialize independent of available alternatives. In an environment in which
this assumption holds true, simple pick-up forecasting as described in Equation 4.1.3 can
produce robust estimates of high quality (Weatherford & Kimes, 2003).

d̂I(j, ·, t, s) =

bk (j, ̂mink (t, s), ̂minl (t, s), t, s) if j ≤ ̂mink (t, s)
dI (j, ·, s− 1) else

(4.1.3)

Separately for each product j, time step t and stage s, the estimation process of Sk
counts observed bookings, as long as j was available. Else the reference is used as an
estimate. This yields an estimate d̂I for the demand in class j at time step t and stage s,
which is used to update the reference dI via exponential smoothing. The independence
of this forecast is demonstrated by the independence of 4.1.3 of the chosen availability
situation of Sk defined by the lowest class jmink .

Hybrid demand In the last years, dependent demand models have started to become
both more important due to changes in traditional RM industries and more popular
due to research advances. These models account for substitution effects between each
firm’s offered products. A common approach to this problem consists of combining an
estimate using the independent demand model dI and a purely price-dependent model
dD into a hybrid forecast dH (E. A. Boyd & Kallesen, 2004). Bookings are classified
as either price-oriented or product-oriented, depending on whether they occurred in
the lowest available class. The previously described method may be applied to the
product-oriented subset of bookings, whereas for the price-oriented bookings, usually a
functional relationship between price and demand is postulated. This way, it is possible to
infer information about demand for any product from sales of possibly different products.
A particularly simple and popular technique is the so-called Q-Forecasting (Belobaba
& Hopperstad, 2004), where customers’ willingness to pay is assumed to follow an
exponential distribution.

dD(j, jmink , t, s) =

dbase(t, s) exp
(
−ce(t, s) f(j)

f(n) − 1
)

if j = jmink

0 else
(4.1.4)

The base demand dbase and the elasticity ce are estimated as the best fit, which can be
achieved using different estimation methods (Bartke, 2013; Cléaz-Savoyen, 2005). In the
following, we will describe the estimation technique used in the remainder of this chapter
for the hybrid forecast dH .

Since this is a method designed to work in a monopoly, we will without loss of generality
take the perspective of provider Sk, but drop the index denoting the provider to shorten
the notation.
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First, all observed bookings are classified as price-sensitive or product-sensitive bookings.
For this purpose, all bookings observed in the lowest available class will be denoted
price-sensitive, the rest product-sensitive. The product-sensitive part will be estimated
using the procedure outlined in Equation 4.1.3 for the independent demand dI . For the
price-sensitive part, we assume that demand obeys Equation 4.1.4, so that we only need
to estimate two parameters: the elasticity ce and the base demand dbase = d(n).

In order to obtain more stable results for stage s, booking results from the last s0 stages
are pooled and used in the estimation process.

The base demand dbase is estimated by reverting Equation 4.1.4

d̂base(t, s) = 1
s0

s−1∑
r=s−s0−1

n∑
j=1

exp
(
ce(t, r)

f(j)
f(n) − 1

)
bprice(j, t, r) (4.1.5)

before applying exponential smoothing to obtain dbase.

The estimation of the elasticity ce requires a little more work. First, we define the
indicator function

δ(j, t, s) =

1 if ̂mink (t, s) = j

0 else
(4.1.6)

indicating whether a product j was the cheapest available for a given time step t and
stage s. This can be used to calculate the weight w(j, t, s) of the observation of price-
sensitive bookings of product j for all time steps t and stages r ∈ {s− s0 − 1, . . . , s− 1}
as w(j, t, s) =

s−1∑
r=s−s0−1

n∑
j=1

δ(j, t, r). The weight turns out useful when averaging price-

sensitive bookings during time step t over stages r ∈ {s− s0 − 1, . . . , s− 1}:

b̄(j, t, s) =

∑
j,r

bk(j,·,·,t,r,)
dbase(t,r) δ(j, t, r)

w(j, t, s) (4.1.7)

Ideally, we would want to solve the optimization problem
n∑
j=1

w(j, t, s)
(
b̄(j, t, s)− κ(t, s) exp(−ce(t, s)

f(j)
f(n) − 1)

)2

→ min (4.1.8)

with the scaling parameter κ(t, s) under the positivity constraint ce(t) > 0. However,
since this non-linear optimization problem is hard to solve, we instead solve the following
problem in the log-space

n∑
j=1

w(j)
(

log
(
b̄(j, t, s))

)
− log(κ(t, s)) + exp

(
−ce(t, s)

f(j)
f(n) − 1

))2

→ min, (4.1.9)
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under the same positivity constraint ce(t) > 0, where log denotes the natural logarithm.

For the case b̄(j, t, s) = 0 of no price-sensitive bookings, it is necessary to introduce an
auxiliary parameter. However, by choosing an appropriately high value for the runs used
in the estimation s0, this problem is less likely to appear. The optimization problem
4.1.9 allows an analytical solution, so that we find an elasticity parameter ce for every
time step t. To weaken the influence of outliers, these parameters are then used in a
linear regression over the time steps t.

As Bartke (2013) pointed out, the estimation method presented here is rather naive,
although it is quite similar to procedures outlined in the literature (Cléaz-Savoyen, 2005;
Reyes, 2006).

Dependent demand Another dependent demand forecast due to Bartke (2013) is based
on the filtering technique invented by Kalman et al. (1960) among others. As noted in the
literature review in Section 2.1.1, Bartke observed that the RM problem of estimating a
stochastic process based on censored observations is closely related to estimation problems
in signal processing and adapted the well-known Kalman filtering technique to the RM
forecasting problem.

Similarly to the previous methods, this forecast is oblivious to competition. Therefore,
the presentation of this approach will focus on the monopoly case. In order to save some
notation describing this estimation technique, we will take the point of view of service
provider Sk, but avoid indexing by k.

The Kalman filtering approach for forecasting can be applied to a host of different demand
models. In this case, the demand model is based on a graph describing the relations of
booking classes of a single service provider (see e.g. Winter, 2010). Figure 4.1 shows an
example of a booking class graph for four classes. This graph is ordered by price and
created using product properties such as booking class restrictions. Each node represents
a booking class of the service provider, while the edges represent connections of related
booking classes. If the availability situation allows it, a part of the demand of a node
will flow down outgoing edges to available classes. For each node, the service provider
estimates the mean demand Dk(j, jmink = j, t, s) in this class at time step t during stage
s, if all lower classes were not available independently of the competition. For each edge,
the firm estimates the mean buydown b, i.e. the demand that is willing to buy the lower
class if given the possibility. Additionally to the estimation of the mean demand and
buydown, the Kalman filter provides the firm with a covariance matrix Σd of all demand
and buydown values.

As before, n is the number of classes of a single service provider. Additionally, the graph
yields the number of buydown edges m. We introduce the reference vector d̂K , comprising
both demand as well as buydown of Sk’s products with m + n entries, as well as the
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j = 2
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Figure 4.1: Booking class graph

booking vector b̃ with n entries. In order to save some notation, we will not explicitly
denote the dependence on t, s and jmin wherever possible.

The basic assumptions of a Kalman filtering approach are that the demand follows a
noisy Markov process that cannot be observed without an additional measurement error.
In this model, the true demand vector D̃ consisting of means of demand and buydown
for Sk’s classes is assumed to evolve via

D̃(s+ 1) = D̃(s) + ws (4.1.10)

with normally distributed random variables ws ∼ N (0,Σp). The (m + n) × (m + n)
matrix Σp is called the process covariance matrix. According to this model, every booking
contains a measurement error

b̃(s+ 1) = H(jmin)D̃(s+ 1) + vs (4.1.11)
(4.1.12)

with vs ∼ N (0,Σb), where Σb is the n × n booking covariance matrix. Here, H is a
(m+ n)× n matrix, used to reconstrain demand based on the graph and the availability
situation. Reconstraining is the process of finding the correct demand based on the
availability situation. In Winter’s model, the reconstrained demand of any class is the
difference between the demand for this class and the sum of the buydown associated to
all outgoing edges to available classes. In our case, the availability situation is completely
described by the lowest available class jmin and therefore H depends simply on jmin.
However, the reconstraining matrix H can be constructed in more general cases in a
similar way.

Estimation of the process covariance matrix Σp and the booking covariance matrix
Σb in a Kalman filtering model is usually hard and an ongoing topic of research (e.g.
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Rajamani, 2007). In our implementation of the RM filtering problem, Σp is derived using
Dijkstra (1959)’s algorithm to calculate the distance matrix ∆ of nodes and edges in the
graph. Note that ∆ describes the shortest distance between any pair of nodes, edges or
combination thereof using the booking class graph. We assume that proximity in the
graph implies higher stochastic covariation, the absolute value of which can be regulated
via two input parameters σp > 0 and −1 < cp < 1.

Σp
i,j = Σp

j,i = max(d̂Ki d̂Kj , 1)σ2
pc

∆i,j
p for i, j = 1, . . . , n, j ≥ i (4.1.13)

Here, d̂Ki denotes the i-th entry of d̂K , and likewise Σp
i,j denotes the entry in the i-th row

and j-th column of Σp.

The booking covariance matrix Σb is computed using the reconstraining matrix H, the
current reference vector d̂K and a positive user parameter σb > 0. The main assumption
imposed on the structure of Σb is the stochastic independence of bookings in different
booking classes.

Σb
i,j = 0 for i, j = 1, . . . , n, i 6= j (4.1.14)

Σb
i,i = max((Hd̂K)2

i , 1)σ2
b for i = 1, . . . , n (4.1.15)

Then the update and prediction steps can be combined to yield a new reference for the
next stage s+ 1. Note that in contrast to any other forecast described in this chapter, the
Kalman filter does not use exponential smoothing to combine different point estimates
to an updated reference. Instead, the Kalman filter is a Bayesian method and relies
on the calculation of an optimal step size, the Kalman gain. This filter enables an
analytical representation of the optimal gain, which helps the speed and robustness of the
calculation of the new reference. The Kalman filter produces the minimum squared error
estimates, as long as the model is correct and the errors are normally distributed. For
errors following a different distribution, the Kalman filter at least generates the minimum
squared error linear estimate.

As shown in Equations 4.1.16 – 4.1.19, the innovation covariance S enables us to find the
optimal Kalman gain K. K can be used in combination with the innovation vector y to
compute the new reference vector d̂K(s+ 1) as well as the updated reference covariance
Σd(s+ 1).

S = HΣd(s)H t + Σb (4.1.16)
K = Σd(s)H tS−1 (4.1.17)

d̂K(s+ 1) = d̂K(s) +Ky (4.1.18)
Σd(s+ 1) = (Iq −KH)Σd(s) + Σp (4.1.19)

Here H t denotes the transpose of the matrix H.
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Note that the reference d̂K contains values both for the demand of all booking classes
as well as for the buydown between connected pairs of booking classes. The demand
dK(j, jmink , s) for a single class j of Sk given an availability situation defined by the lowest
class jmink can be found by applying the reconstraining matrix H to the reference vector
d̂K

dK(j, jmink , s) = (H(jmink )d̂K(s))j (4.1.20)

Competitor-dependent demand To account not only for dependence on own substitute
products, but as well on the competitor’s available products is beyond the capabilities of
current forecasting systems. However, any RM forecasting system automatically takes the
competitor situation into consideration in an implicit way during the estimation process,
because it is indistinguishable whether customers do not arrive due to their low willingness-
to-pay or due to the competitor offering a preferable product. This indistinguishability
leads to complications in the estimation process of any real-world forecasting system. It
is however possible in a simulation to use knowledge of the true demand process in a
so-called psychic forecast that represents an idealization of a real-world forecast. Similarly
to Isler and Imhof’s (2008) psychic forecast, the forecast dP is constructed using the
true demand as observed under the competitor’s availability situation during time step
t in stage s. However, whereas Isler and Imhof use maximum-likelihood estimation to
estimate customer choice probabilities and propose an appropriate updating scheme, we
follow a different approach similarly to the other forecasting techniques presented in this
section. Recall that ̂minl (t, s) denotes the observation of Sl’s lowest available class jminl

at time step t during stage s. In every time step t during each stage s we use the true
demand given the observed availability of the competitor Sl as this stage’s estimate for
the demand

d̂P (j, jmink , t, s) = Dk(j, jmink , ̂minl (t, s), t, s) (4.1.21)

at this time step and use exponential smoothing to update the estimates.

4.1.3 Optimization of Single Stage

Optimal control strategies for both independent and dependent demand forecasts can be
found via dynamic programming. This means that for every combination of remaining
capacity x and time t the value function Ut(x) can be calculated in a recursive way. The
boundary conditions for Ut(x) are

UT (x) = Ut(0) = 0, (4.1.22)

since remaining capacity at the end of the sales period is worthless, as is remaining time
with no capacity left.
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We rescale the demand forecast d by refining the time discretization, so that at most one
arrival is expected per time step. By abuse of notation, we keep denoting elements of this
new discretization t. For notational clarity in our treatment of the single-carrier single-
stage optimization, we drop the k indices, as well as the stage variable s. Furthermore,
we omit the time variable t in d.

Let us first focus on the independent demand case. We calculate the value function Ut(x)
recursively via the following Bellman equation:

Ut−1(x) = max
jmin

 ∑
j≤jmin

d(j)(f(j) + Ut(x− 1)) + (1−
∑

j≤jmin

d(j))Ut(x)

 (4.1.23)

= Ut(x) +
∑
j

d(j)(f(j)−∆Ut(x))+, (4.1.24)

where we introduced the notation ∆Ut(x) = Ut(x)− Ut(x− 1) and x+ = max(x, 0). The
optimal control policy takes the simple form

accept request for product j ⇐⇒ f(j) ≥ ∆Ut+1(x) (4.1.25)

Fiig et al. (2009) showed that the dependent demand case can be reduced to the
independent demand case by substituting regular demand d and fares f with marginal
demand d̃ and marginal fares f̃ respectively. We calculate d̃ and f̃ with the help of total
demand Q and total revenue R:

Q(j) =
∑
i≤j

d(i, f(j)) (4.1.26)

R(j) =
∑
i≤j

d(i, f(j))f(j) (4.1.27)

d̃(j) = ∆Q(j) (4.1.28)

f̃(j) = ∆R(j)
∆Q(j) (4.1.29)

Note that for the independent demand case, the marginal fare is just the regular price
and the marginal demand just the regular demand. The resulting Bellman equation takes
the same form as in the independent demand case 4.1.23:

Ut−1(x) = Ut(x) +
∑
j

d̃(j)(f̃(j)−∆Ut(x))+ (4.1.30)

Consequently, the optimal control strategy for dependent demand forecasts consists of a
transformation of 4.1.25:

accept request for product j ⇐⇒ f̃(j) ≥ ∆Ut(x) (4.1.31)
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In order to be able to find the non-cooperative Nash equilibrium, every player Sk needs
complete information about the true demand D as well as the competitor’s inventory
level xl, l 6= k. Using this complete information, the value function Uk of player Sk in a
Nash equilibrium can be computed recursively via the Bellman equation

Uk
t−1(xk, xl) = max

jmin
k


∑

j≤jmin
k

(Dk(j, jmink , jminl )f(j) + Uk
t (xk − 1, xl))

+
∑

j≤jmin
l

Dl(j, jmink , jminl )Uk
t (xk, xl − 1)

+

1−
∑

j≤jmin
k

Dk(j, jmink , jminl )

Uk
t (xk, xl)

+

1−
∑

j≤jmin
l

Dl(j, jmink , jminl )

Uk
t (xk, xl)

 .

(4.1.32)

Here jminl is the result of Sl’s optimization problem, since it is sufficient to react to
the best response of other players in a Nash equilibrium. Consequently, the Bellman
Equation 4.1.32 needs to be solved simultaneously for both players, which complicates
the search for a Nash equilibrium. However, we know that the dynamics of the non-
cooperative Nash equilibrium strategies can be replicated by using a psychic forecast
implicitly accounting for dependency on competitor’s products (Isler & Imhof, 2008). This
psychic forecasts translates the information about demand and competitor’s inventories
into the forecast. After applying fare transformation to this forecast, we can put it in
4.1.30 and get control strategy 4.1.31.

The exact jointly optimal solution can be found by maximizing U1+U2. An approximation
to the jointly optimal strategies is given if both service providers do not offer any product
cheaper than an appropriate threshold product (Isler & Imhof, 2010). There exists
c ∈ {1, . . . , n} so that the cooperative policy can be approximated by

accept request for product j ⇐⇒ f̃(j) ≥ ∆Ut(x) ∧ j ≤ c (4.1.33)

The optimal threshold product c ∈ J is found as the cheapest product a firm would offer
in a monopoly without capacity constraints.

4.2 Multi-stage Strategies

The control strategies presented in Section 4.1 focus on the single-stage game only.
However, as pointed out in Chapter 3, the view as a repeated game may be more
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appropriate to model RM under competition. As outlined in Chapter 3, we find close
similarities between the RM game and the thoroughly studied IPD. We have argued in
the literature review in Section 2.2.2 that a model as small and simple as the IPD can be
used to establish a better understanding of the situation and help finding solutions to the
underlying, more complex, problem (Grüne-Yanoff, 2009). Taking this perspective, we
use this section to present strategies for the repeated game, mainly building on successful
strategies from the IPD.

4.2.1 Heuristic to Adapt Strategies from the IPD to the Repeated RM Game

As shown in Figure 4.2, each player in the IPD chooses one of only two actions—cooperate
and defect—for each stage. The payoffs satisfy the conditions T > R > P > S and
2R > T + S, so that mutual cooperation maximizes the combined payoffs, but mutual
defection is the unique single-stage Nash equilibrium.

Cooperate Defect
Cooperate R,R S,T

Defect T,S P,P

Figure 4.2: Normal form of the prisoner’s dilemma

In the RM game, each player uses a combination of forecasting and optimization to
choose a policy that makes a subset of n products available during the booking horizon
of every stage. As described in Section 4.1.3, this subset can depend on the time elapsed
in the booking horizon as well as on the bookings observed by the player. In order to
reduce complexity, we assume these subsets to be characterized by their cheapest product
(see Section 4.1).

Although the repeated RM game offers far more possibilities in each stage than the IPD,
the dynamics of the games are very similar. Choosing an aggressive price lower than the
competitor leads to higher revenue than sharing revenues with the competitor. However,
a more cooperative stance can lead to a higher payoff than mutual aggression. More
specifically, we have shown that the use of a standard RM system leads to policy 4.1.31,
which maximizes revenue in a monopoly. In a duopoly, the use of the psychic forecast
dP enables this policy to converge to the non-cooperative best response, thus the most
efficient way of choosing an aggressive price (see Isler & Imhof, 2008). However, if both
players follow this kind of strategy, revenues will drop far lower than in the case of both
players following a more cooperative strategy such as 4.1.33 (see Isler & Imhof, 2010).
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In order to adapt strategies from the IPD to the repeated RM game, we have to classify
the actions of the RM game into cooperation and defection. This is necessary both for
actions to play as well as for observing the competitor’s action.

The effects of the policies 4.1.31 and 4.1.33 as described above provide us with natural
candidates for providers to play ’cooperate’ or ’defect’. Thus, we say a service provider Sk
using demand forecast d plays COOP(d) in stage s at time t, if Sk follows the cooperative
control strategy 4.1.33. Likewise, we say Sk plays DEFECT(d) in stage s and time t, if
Sk follows the non-cooperative control strategy 4.1.31.

However, in contrast to the prisoner’s dilemma, a service provider still needs to interpret
the competitor’s observed actions in order to determine whether the competitor was
defecting or cooperating. As Isler and Imhof (2010) showed, in cases of very high demand,
playing DEFECT(dP ) and COOP(dP ) may result in the same availability situation,
making them indistinguishable to the competitor. Furthermore, keeping accurate and
reliable information about competitor availabilities is a challenging task. To account for
this, we introduce noise into observations in our model. Recall that ̂minl denotes the
observation of Sl’s lowest available class jminl . Then, for a positive error parameter ε,
there is a positive probability of an observation error

P(̂minl = jminl + 1) =

ε if jminl < n

0 if jminl = n
(4.2.1)

P(̂minl = jminl − 1) =

ε if jminl > 0
0 if jminl = 0

(4.2.2)

where we implicitly introduced the notation j = 0 for the situation in which no products
are available at all. This observation can be used to interpret competitor behavior. We
say that player Sk perceives competitor Sl to be cooperating at time t, if and only if the
lowest available product does not underprice the cooperative threshold product c, i.e.
if ̂minl (t) ≤ c. This is decided independently for every time step t ∈ {0, . . . , T} in the
booking horizon.

Additionally players can assign each player a reputation as a tool to help interpret the
competitor’s actions. In the IPD, this concept was first introduced by Sugden (1986).
The evolution of a player’s reputation is displayed in Figure 4.3. Each player starts with
a good reputation. Any player being observed as defecting against a competitor with a
good reputation will lose his good reputation. The only way to regain a good reputation
is by cooperating. Note that a player may retaliate against an opponent with a bad
reputation without losing his good reputation.
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Good Bad

unprovoked defection

cooperation

elseelse

Figure 4.3: Evolution of reputation

4.2.2 Strategies

The interpretation of competitor behavior as cooperating or defecting allows us to adapt
the strategies from the IPD presented in Section 2.2.2. In a fixed stage s, these strategies
can exhibit different behavior at different time steps t, depending on the classification of
competitor behavior at time step t of the previous stage s−1. Using COOP and DEFECT,
we can construct repeated-game strategies as repetitions of single-stage strategies.

ALLD This is the repetition of the single-stage non-cooperative solution (Axelrod &
Hamilton, 1981). We say Sk plays ALLD(d), if he always plays DEFECT(d). Note that
ALLD does not make use of the categorization of competitor behavior. In a RM context,
Isler and Imhof (2008) argued that a standard RM system should converge towards
ALLD, but Cooper et al. (2009) showed that this depends on the forecast in use.

ALLC Similarly to ALLD, the repetition of the single-stage cooperative solution is
called ALLC. We say Sk plays ALLC(d), if he always plays COOP(d). Similarly to
ALLD, ALLC is independent of the categorization of the competitor’s behavior. Isler
and Imhof (2010) showed that both players using this strategy in a RM game leads to an
approximation of the joint optimum and thus avoids the Competitive Spiral Down.

Tit for Tat Tit for Tat (TFT) is a strategy that has been shown to perform extraordi-
narily well in the IPD (Axelrod, 1984). A player plays TFT(d), if he starts with COOP(d)
in all time steps of the first stage game. In the following stage games, he decides for
every time step t whether to cooperate or defect. He plays COOP(d), if he perceived the
competitor as cooperating in the previous stage, and plays DEFECT(d), if he perceived
the competitor to be defecting. Despite its success in the IPD with perfect information,
TFT is vulnerable to errors (Molander, 1985). Variations of TFT, that have been shown
to be robust in the presence of errors, are Generous Tit for Tat (GTFT) and Contrite
Tit for Tat (CTFT) (Wu & Axelrod, 1995).
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Generous Tit for Tat In order to cope with noise, GTFT introduces a bias towards
cooperation into the mechanics of TFT: GTFT cooperates with a fixed probability γ
even though it should defect according to TFT. In the IPD, the optimal generosity
probability for GTFT γ = min(2R−S−T

R−S , R−P
T−P ) depends on all four possible payoffs of the

single-stage game Molander (1985). Thus, this strategy requires detailed knowledge of
the expected revenue dependent on the availability situation of the competing service
provider. This information is obviously beyond the scope of a realistic forecast, but it is
not even included in the psychic forecast dP , which covers only the case in which the
competition plays DEFECT. We use psychic knowledge of the customers in the scenario
to calculate the optimal generosity. In our simulations, we will use the optimal level of
generosity of the IPD as well as different fixed generosity parameters and analyze their
performance via means of simulation.

Contrite Tit for Tat CTFT is a robust TFT variant that does not need additional
parameters, but relies on players’ reputations instead (R. Boyd, 1989). If a CTFT
player has a bad reputation, he will cooperate in order to regain a good reputation.
Otherwise, if a CTFT player has a good reputation, he will cooperate against players
with a good reputation, but defect against players with a bad reputation until they
cooperate. Thus, CTFT is similar to TFT in that both rely on reciprocity to enforce
cooperative behavior.

PAVLOV We will not restrict our analysis to TFT-variants. In the IPD, the PAVLOV
strategy is an example of a win-stay, lose-shift strategy, where players try to avoid the
both low payoff for mutual defection P and the sucker payoff S (Nowak & Sigmund,
1993). A player Sk following this strategy cooperates at time step t if the players have
either both cooperated or both defected in the previous stage at this time step. In
the RM game, this means that Sk plays COOP(d) at time step t during stage s, if
̂minl (t, s− 1) ≤ c∧ ̂mink (t, s− 1) ≤ c or if ̂minl (t, s− 1) > c∧ ̂mink (t, s− 1) > c. Otherwise,
a PAVLOV player will play DEFECT(d).

Matching A simple multi-stage strategy in the RM game not derived from the IPD is
price matching, which has seen use in research and practice due to its simplicity (S. P. An-
derson & Schneider, 2007; Hess & Gerstner, 1991). In the single-stage game, simultaneous
price-setting prevents one player matching the competitor’s actions. In the repeated
game, a player can easily copy the competitor’s last action. We say a player Sk plays
MATCH, if he accepts a request for product j at time step t in stage s if and only if
j ≤ ̂minl (t, s− 1). This strategy does not require any demand forecast. Note that we call
matching the RM mechanism of copying the competitor’s last availability situations. In
other publications, the term may refer to the pricing mechanism of copying all the prices
filed by its competitor (e.g. Evans & Kessides, 1994; Nomani, 1990).
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Underbidding Similarly to MATCH, we say Sk plays UNDER, if he accepts a request
for product j at time step t in stage s if and only if j ≤ ̂minl (t, s− 1) + 1. This is another
strategy that does not rely on a demand forecast.

4.2.3 Properties of Successful Multi-stage Strategies

In this chapter, we analyze strategies for the repeated RM game. Due to its resemblance
to the IPD, we want to build on the thorough treatment of the IPD in the literature
described in Section 2.2.2. In the analysis of his IPD tournaments, Axelrod (1984, p.54)
claimed that a successful strategy in the IPD should be

nice : cooperative unless provoked,

forgiving : able to cooperate after the opponent has defected,

retaliating : able to punish defectors,

clear : easy to understand for any opponent.

This characterization of successful strategies was motivated by the success of TFT in
Axelrod’s IPD tournaments. Therefore, it comes as no surprise that all Tit for Tat
variations such as TFT, GTFT and CTFT possess these properties. The success of
the PAVLOV strategy several years later however showed that Axelrod’s properties can
be relaxed by a successful strategy (Nowak & Sigmund, 1993). PAVLOV is neither as
forgiving nor as retaliating as the variations of Tit for Tat. Instead, the success of this
strategy is based on exploiting suckers.

Nevertheless, Axelrod’s characterization is helpful to identify relevant strategies of the RM
game. The ability to forgive and retaliate with a clear agenda is of special importance
for human players. Forgiveness and retaliation are necessities for any competitive
strategy, whereas clarity simply represents an attractive feature. Thus, it is not surprising
that the majority of human players in the IPD choose either GTFT or PAVLOV as
strategies (Wedekind & Milinski, 1996). Keeping in mind that the RM game is played
between businesses, we note that competitive strategies are not the result of random
mutation, but instead the consequence of human analysts’ choices or of an automated
system designed by humans. This is a difference to some applications of the IPD, which
have aimed to model behavioral patterns in nature that may mutate completely at
random. Therefore, we argue that the scope of opposition strategies in our analysis is
wide enough, as it encompasses not only the most successful strategies (see e.g. Boerlijst
et al., 1997b; Imhof et al., 2007; Nowak & Sigmund, 1993), but also those most often
chosen by human opponents (Wedekind & Milinski, 1996). We can thus restrict ourselves
to the study of the strategies presented in Section 4.2, although there is an infinite
amount of possible strategies.
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Among these strategies, we aim to find a strategy that is optimal in a sense that we
will specify in the following. Obviously, a simple repetition of the single-stage strategies
does not represent an ideal non-cooperative strategies of the repeated RM game. While
ALLD cannot be exploited by any strategy, it displays the Competitive Spiral Down
effect against aggressive competitors. On the other hand, ALLC completely avoids the
Competitive Spiral Down effect, but is exploited by ALLD. Ideally, we would like to
find a strategy of the repeated RM game combining the strengths of the single-stage
equilibrium strategies, while avoiding their weaknesses.

In order to avoid the danger of exploitation, a prospective strategy should constitute
a non-cooperative Nash equilibrium of the repeated game when paired against itself.
In contrast to ALLD, the strategy should furthermore avoid the Competitive Spiral
Down, ideally by reaching the joint optimum. Therefore, the ideal competitive strategy
in RM should be part of a jointly optimal non-cooperative Nash equilibrium of the
repeated game. Whether such a strategy exists for the repeated RM game is part of our
investigation.

Thankfully, the folk theorem assures that a repeated game with an infinite horizon can
have far more Nash equilibria than its constituent single-stage game. Fudenberg, Levine,
and Maskin (1994) showed that imperfect public signals—such as flawed but public
competitor price observations—allow that any feasible payoff vector Pareto-dominating
mutual defection can be realized through a non-cooperative Nash equilibrium of the
repeated game.

The dependence on past time steps via capacity constraints and on stages via exponential
smoothing prevents an analytical discussion of repeated-game strategies. Furthermore,
since there is no limit on the amount of possible strategies, we cannot compare all
strategies against each other using stochastic simulations. Instead, we restrict ourselves
to analyzing necessary conditions for a jointly optimal Nash equilibrium. To test whether
a strategy is the best response against itself, we will run it against the most aggressive
strategy possible, ALLD. If the strategy can be exploited by ALLD, it cannot be a part
of a Nash equilibrium. Proximity to the joint optimum is tested by comparison of the
symmetric setup of a strategy against itself with ALLC vs. ALLC.

4.3 Simulation Environment

In order to evaluate strategies in RM, we will use simulations throughout this chapter. As
a tool for these simulations, the author has extended and used the simulation environment
REvenue Management Training for Experts (REMATE). Although REMATE was created
as an airline RM simulator, its use is not restricted to the airline case. In this section,
we will give an overview of the relevant functionality of REMATE to this thesis, using
the notation introduced in the previous sections.
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This RM simulator is the product of a cooperation of Lufthansa with the universities of
Paderborn, Heidelberg, Kaiserslautern and the Freie Universität Berlin. The main aim
of REMATE is to provide insights via simulation, where testing in the real world might
prove costly. The implementation was performed by a software development company.
REMATE is written mostly in Java, using MySQL as database management system.
The code is available to Lufthansa and researchers from cooperating universities, which
allows researchers to build extensions on top of thoroughly tested versions that provide
a vast functionality. Based on Law and Kelton (2000) and work with PODS, Frank
et al. (2007b) formulated principles for the design of RM simulations, which served as
guidelines in the design of REMATE. The simulator is subject to continual improvement
and extensions, which renders previous descriptions by Zimmermann et al. (2011) and
Gerlach et al. (2013) inaccurate. Thus, in this section we will give an overview of the
state of the implementation of REMATE used in this dissertation.

From its inception, REMATE was devised as a multi-purpose simulation tool. As the
name suggests, it should not only provide a platform for researchers, but also serve as
a training and decision support tool for revenue managers. Therefore, the simulator
includes modes specifically targeted at analysts. Guided by a simpler interface, they can
perform analyses using scenarios that model a typical workday. Alternatively, they can
test competitive strategies in games against each other. In these games, analysts occupy
roles of different airlines in a single market, aiming at maximizing revenue of a set of
flights for a single departure. However, since the game covers only a single departure,
the long-term effects of competition cannot be analyzed. Thus, this method is not suited
to investigate the aspects of competition focused on in this dissertation.

However, the functionality of REMATE is not reduced to these aspects targeting RM
analysts. Additionally to answering specific requests from revenue managers, a researcher
may also use REMATE to model and analyze a broad range of scenarios. While complexity
needed to be reduced in favor of clarity for the use as a decision support tool for revenue
managers, there is no need for such a restraint for the use as a research tool. Thus, it
is possible to select arbitrary schedules, products, prices, capacity restrictions as well
as several RM methods. Similarly to the decision support mode, scenario construction,
simulation and analysis can be performed via a graphical user interface.

Structure

Figure 4.4 shows a simplified view of the RM process of two competitors in REMATE.

For each service provider, the basis of a scenario is provided by the supply consisting of
schedules, products, prices and capacities. This, along with expected demand, is fed into
an optimization routine, which generates optimal control values stored in an inventory.
REMATE provides the possibility to modify these values manually via user influences,
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DemandMarket

BookingsForecast

AvailabilityInfluencesInventoryOptimizer

Supply

Player 1

BookingsForecast

AvailabilityInfluencesInventoryOptimizer

Supply

Player 2

Figure 4.4: Flowchart of the RM process in REMATE
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before they are met by the demand in the market module. Resulting bookings as well as
the underlying availability situation are used to estimate and forecast demand for the
following sales periods.

Supply

Like any model, REMATE is based on simplifications of the complexities of the real
world, so that the RM problem becomes feasible. The core of any scenario consists of a
set of service providers operating a schedule and offering products at various prices for
a set of customers over a fixed booking horizon. For each simulation, REMATE runs
repetitions of this sales period for a given number of runs.

For our purposes, any product consumes one unit of a resource and consists of a set of
restrictions and a price. Being a RM simulator, REMATE has modeled the pricing process
in a simpler way than real firms do. In REMATE, a product is linked globally with a
set of restrictions, so that each service provider’s products have the same restrictions
independent of the market in which they are sold. For each simulation, each resource
is tied to a fixed capacity configuration. In the airline case, this corresponds to a flight
being served with an aircraft with a fixed amount of available seats.

Forecast

Although demand is spread continuously over time, the processes of both forecasting
and optimizing require a discretization of time. This is done via sets of time steps. The
forecaster yields expected demand between two time steps, while the optimizer performs
a reoptimization given forecasted and actual bookings at each time step.

REMATE provides an implementation of the independent demand forecast dI , the hybrid
demand forecast dH and the dependent demand forecast dK described in Section 4.1.2.
Additionally, the author implemented the psychic forecast dP , presented in Section 4.1.2
as well.

All of these forecasting methods provide updating schemes for the estimated demand.
In a simulation as well as in the real world, a starting point is required. Furthermore,
the researcher may choose to use the initialization method throughout the simulation
instead of estimating demand. This may serve as a benchmark in a monopoly, with
the constant initialization providing an upper bound. The initialization method we
employ in this chapter uses knowledge of the generated demand in the underlying
scenario in order to provide an airline with the best possible fit of the employed demand
model. For the initialization, demand per product and time step is computed as a linear
combination of first and second choice products. Because of the significant differences in
the underlying demand models of the forecasters, the demand per product and buydown
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between products is determined in a different way for each demand model. This is
particularly problematic for independent demand models, which cannot represent the
true dependence of the customer choice on the offer set. In this case, the initialization
counts customers in the most expensive product that they can afford, which evidently is
a very optimistic choice from the firm’s point of view. Due to these differences between
the customer model in REMATE and the demand models used in estimation, even this
best case scenario is not perfect. However since it represents the best fit of the—possibly
oversimplified—demand model, it represents a very good starting point. Therefore, this
initialization method introduces a bias towards not changing anything or at least towards
slow-changing methods and parameter choices.

Optimization

The optimization module in REMATE consists of several submodules taking care of
finding the best capacity configuration for each flight, taking care of cancellations and
no-shows by overbooking, and solving the seat inventory problem. In this sketch of the
functionality of REMATE, we will focus on the seat inventory problem, since this mirrors
the focus of this dissertation.

For this purpose, REMATE offers an implementation of the optimization techniques
based on dynamic programming described in Section 4.1.3. These optimization methods
cover dependent as well as independent demand models, so that they are applicable to
all forecasting methods implemented in REMATE.

Additionally, it is possible to choose to use First Come, First Serve (FCFS) instead
of an optimization technique. FCFS does not perform any optimization. Instead, it
makes every product available, as long as the necessary resources are available. If a
provider relies on the availabilities produced by FCFS, its performance may serve as
lower bound on any strategy. Alternatively, the resulting availability situation can be
adjusted manually. This complete manual control is useful to model low-cost-carriers.

Inventory

The inventory stores all necessary information to implement the control policies described
in Section 4.1.3. It serves to calculate the availability situation based on control values
calculated by the optimization module, prices and capacities from the supply as well as
observed bookings. More precisely, the inventory used in our experiments relies on bid
price vectors representing the value of a free seat given an arbitrary number of already
observed bookings.
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User Influences

In many simulation studies, the availabilities stored in the inventory after the optimization
process are identical to the ones used in the market module (e.g. Belobaba & Wilson,
1997; Gorin & Belobaba, 2004). However, in real life, human analysts adjust availabilities
on a daily basis in order to react to competition, unforeseen events or changes in the
market structure (Mukhopadhyay, Samaddar, & Colville, 2007; Weatherford, 2009; Zeni,
2003). Since REMATE is intended to help in training and decision support of revenue
managers, the simulator includes a possibility to alter the control values in the inventory
after the optimization. We will use this module to implement the competitive strategies
for the repeated game presented in Section 4.2.

Demand

Demand is generated following a Poisson process with an intensity that is piecewise
constant between time steps in the booking horizon. The behavior of each customer
follows a two-step process as described in Section 4.1.1: Given that the product’s price
does not exceed the customer’s willingness-to-pay, the final product is chosen using a
utility-maximizing discrete choice model.

Market

In the market module, booking and cancellation decisions are generated. These are
the result of the generated customers following the demand model and the calculated
availability situation of all providers.

4.4 Simulation Experiments

We analyze two symmetric service providers offering a single resource in a common
market. The constant demand volume counts 30 customers, requests are uniformly
distributed over 23 time steps. In order to approximate Isler and Imhof’s (2008) results,
the customers’ willingness-to-pay is normally distributed with µ ≈ 100 and σ ≈ 40.
Furthermore, the products of each service provider Sk are associated with a restriction
that serves to introduce uncertainty into the customers’ decisions. This provider-specific
restriction is normally distributed with µk ≈ 2 and σk ≈ 0.6. As described in Section 4.2,
demand and prices are set up similarly to the prisoner’s dilemma. Therefore, the resource
is sold at 16 different price points between 2 and 260 EUR as displayed in Table 4.1.
These prices may seem unrealistic, but they guarantee that it is optimal for each service
provider to undercut the competitor. However, as soon as the price offered falls below
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f(j) 260 147 109 87 71 58 47 38 30 23 17 12 8 5 3 2

Table 4.1: Prices used in the simulation

the price of the cooperative threshold product c, both players’ undercutting results in
lower revenue for each.

Figure 4.5 shows the expected revenue for a service provider in a monopoly depending on
the lowest available product. According to this graph, the cooperative threshold product
is c = 4 with f(c) = 87 for our choice of parameters.
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Figure 4.5: Revenue in a monopoly

Since we consider the dependence of competitive effects on the ratio of capacity and
demand, we are interested in the revenue for capacity values from 1 to the amount of
the total demand. For each possible capacity value, we execute 200 repetitions of the
single-stage game. We will use the first 100 stages as a burn-in period and average the
results over the last 100 stages, when the system has reached a relatively stable state.
After a set of trial runs, we determined 200 and 100 respectively to be the perfect number
for this purpose.
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4.4.1 Psychic Forecast

Throughout this section, we will use the psychic forecast dP presented in Section 4.1.2
with the exponential smoothing parameter α = 0.2. To save some notation, we will omit
the forecast when specifying strategies and write e.g. ALLD instead of ALLD(dP ).

Single-Stage Nash Equilibria

The heuristics using the psychic forecast dP and the cooperative threshold product c
described in Section 4.1 approximate the non-cooperative Nash equilibrium strategy
and the cooperative, jointly optimal strategy of the single-stage game, leading to the
strategies ALLD and ALLC for the repeated game.

In order to evaluate the quality of our approximation to the cooperative solution, we
introduce the strategy JOI. In our symmetric setup, the exact jointly optimal solution is
achieved when both players share the market fairly and each player acts optimally on
his share. The strategy JOI describes the RM control of a service provider acting as a
monopolist on half of the market equipped with a perfect knowledge of the demand. This
perfect knowledge of the demand is achieved by using the psychic demand initialization
of REMATE. Since there is no competition, this psychic forecast is sufficient to describe
the demand, and we do not need our competitive psychic forecast dP .

Similarly, we introduce the lower bound LOW, which represents the average revenue of a
service provider, if both players always make the lowest price available. This behavior is
equivalent to using FCFS as a RM control.

Figure 4.6 shows from left to right the average revenue over capacity of the simulation
results of ALLC vs. ALLC, ALLC vs. ALLD and ALLD vs. ALLD. For comparison, we
have added the revenue of a single service provider when both use LOW and when both
follow the exact jointly optimal solution JOI.

As a repetition of the single-stage non-cooperative Nash equilibrium strategy, ALLD also
represents a non-cooperative Nash equilibrium strategy of the repeated game. However,
ALLD vs. ALLD leads to the Competitive Spiral Down. With growing capacity, each
player has a greater incentive to undercut the competitor as a best response, leading to a
very low revenue comparable to LOW. Note that this strategy, along with the incentive
to undercut, is a direct consequence of the RM forecasting mechanism and may thus be
interpreted as natural behavior for real RM systems.

ALLC vs. ALLC approximates JOI, thus avoiding the Competitive Spiral Down effect.
However ALLC is exploited by ALLD, proving that ALLC is not the best response
against itself in the repeated game.
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Figure 4.6: ALLD and ALLC

Although we have employed a different demand model as well as a slightly different
implementation of the psychic forecast dP , our computational results for ALLD vs. ALLD
resemble the findings of Isler and Imhof (2008), and our results for ALLC vs. ALLC
resemble those of Isler and Imhof (2010). We interpret this reproduction of results as
a validation of the basic ideas behind the construction of the approximations of the
single-stage solutions. This indicates that this approach can be used flexibly in different,
possibly complex settings without amounting to a lot of implementational effort.

Tit-for-Tat

Plots 4.7, 4.8, 4.10, 4.11 and 4.12 display the average revenue of a service provider using
various strategies against ALLC, ALLD and in the symmetric matchup. In these figures,
we display the average payoff of ALLD vs. ALLD as an example of Competitive Spiral
Down, as well as the revenue in ALLC vs. ALLC as an example of a jointly optimal
strategy pair.

Without observation errors, i.e. ε = 0, Figure 4.7 shows that TFT fulfills the necessary
conditions of an ideal strategy formulated in 4.2.3. The result of TFT vs. TFT is very
close to ALLC vs. ALLC, so that there is no Competitive Spiral Down. Since it is not
exploited by an aggressor, the RM version of TFT may well be a Nash equilibrium.

However, the introduction of a positive observation error probability ε = 0.1 leads to
the Competitive Spiral Down seen in Figure 4.8. This shows that TFT is not robust
against observation errors in the RM game. This effect is even more extreme than in
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Figure 4.7: TFT for ε = 0
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Figure 4.8: TFT for ε = 0.1
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the IPD, where observation errors turn TFT vs. TFT into a random walk on the payoff
space Molander (1985).

Generous Tit-for-Tat

To compensate for the observation error ε, we analyze the performance of more robust
strategies such as GTFT. Note that Figure 4.8 shows that a lack of generosity leads to
the Competitive Spiral Down, which is at its worst at the rightmost point of the graph,
i.e. at the maximal capacity configuration. The introduction of generosity is supposed
to weaken the Competitive Spiral Down effect, although this can lead to GTFT being
exploited by aggressors.
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Figure 4.9: GTFT for range of generosity probabilities, ε ∈ [0, 0.2] and CAP=30

Figure 4.9 shows the revenue of GTFT when paired against ALLD or GTFT at the
maximal capacity configuration for a range of generosity parameters γ and observation
error probabilities ε. Additionally to γ ∈ {0, 0.1, 0.2}, we have used the optimal level of
generosity in the IPD as determined by Molander (1985) denoted by γ = γIPD. As is
expected against an aggressor ALLD, the revenue of GTFT seems to be independent
of the error probability for all parameter choices. For GTFT against GTFT, we find a
decline in revenue for growing error rates for the fixed generosity probabilities, while
the optimal generosity of the IPD seems to be relatively stable at a high level. For
most error probabilities, the dynamic choice γ = γIPD outperforms the static choices
in the symmetric matchup, while we find the results of γ = γIPD against an aggressor
between the results of γ = 0.1 and γ = 0.2. In the rest of this chapter, we will always
use γ = γIPD, whenever we show simulation results of GTFT.
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Figure 4.10: GTFT for ε = 0.1

Figure 4.10 shows that GTFT avoids the Competitive Spiral Down, but provides an
incentive for the competitor to exploit its cooperative stance. The level of generosity can
be used to control the trade-off between the two necessary conditions. Nevertheless, it is
impossible to fulfill both conditions, since any positive level of generosity is exploited
by an aggressive strategy such as ALLD, and Figure 4.8 shows that no generosity at all
leads to a complete competitive spiral-down.

Contrite Tit-for-Tat

In contrast to GTFT, where each player can cooperate after a mistake of either player,
each player corrects only his own mistakes in CTFT. For CTFT to be robust, it is
necessary that both players base their decisions on the same possibly flawed observations,
which corresponds to the importance of public signals for the folk theorem. Figure 4.11
shows that the introduction of reputation leads to a strategy that fulfills the necessary
conditions for a jointly optimal Nash equilibrium of the repeated game formulated in
Section 4.2.3.

Pavlov

Figure 4.12 displays the simulation results of the PAVLOV strategy for an observation
error probability of ε = 0.1. Similarly to the Tit for Tat variations, PAVLOV approximates
the jointly optimal solution in the symmetric matchup. However, PAVLOV vs. ALLD
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Figure 4.11: CTFT for ε = 0.1

shows that PAVLOV is no Nash equilibrium. On the other hand, PAVLOV exploits
ALLC, resulting in a far higher revenue than any Tit for Tat variant against a cooperative
player. Thus, in a predominantly cooperative environment, PAVLOV can outperform
cooperative players as well as Tit for Tat players, despite not fulfilling our desired
properties summarized in Section 4.2.3. Note that similarly to the IPD, observation
errors are necessary for PAVLOV to exploit ALLC in the repeated RM game.

Robust Strategies vs. Non-robust Strategies

While Figure 4.8 demonstrated the fragility of TFT in the presence of observation
errors, Figures 4.10, 4.11 and 4.12 showed the robustness of the GTFT, CTFT and
PAVLOV strategies. However, these three robust strategies implement a different logic
to achieve robustness. CTFT corrects only own mistakes, while GTFT can correct
both players’ mistakes. PAVLOV follows a completely different intuition, but its error-
correcting features apply to both players’ actions as well. In a symmetric matchup,
there is no disadvantage in having each player correct his own mistakes. As a result,
Figure 4.11 demonstrates a superior performance of CTFT compared to the results of
GTFT displayed in Figure 4.10. However, players may encounter competitors employing
multi-stage strategies without the necessary robustness. Therefore, a strategy performing
well against less robust strategies may prove beneficial.

Figure 4.13 shows each of GTFT, CTFT and PAVLOV paired with a competitor using a
simple TFT strategy. The results suggest that the generosity of GTFT is best suited to
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Figure 4.12: PAVLOV for ε = 0.1
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Figure 4.13: Robust strategies against TFT for ε = 0.1
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this environment, since GTFT outperforms both CTFT and PAVLOV in this situation.

Irrational Strategies

Since they are not based on a forecast and instead only use competitor prices as input,
both MATCH and UNDER depend completely on their competitor’s strategy. As a
consequence, MATCH necessarily leads to a similar outcome as the symmetric matchup.
Thus, against strategies which are successful in a mirror matchup, MATCH can produce
good results. In particular, Figure 4.14 demonstrates that MATCH approximates the
non-cooperative solution against ALLC and the cooperative solution against ALLD.
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Figure 4.14: MATCH for ε = 0.1

However, in a mirror matchup against another price matching service provider, the results
can be quite poor. As demonstrated by Figure 4.14, the effects of flawed competitor
price monitoring cause MATCH vs. MATCH to become a random walk. Consequently,
the revenue of the matching service providers is unlikely to come close to the optimal
payoff achieved by the non-cooperative Nash equilibrium for high demand to capacity
ratios. However, the payoff of two matching players can be higher than the payoff of a
pair of ALLD or even TFT players for large capacities, since a random walk at least does
not exhibit the Competitive Spiral Down behavior.

Figure 4.15 displays the results of an underpricing service provider in competition with
cooperating and non-cooperating opponents and in the mirror matchup. Against ALLC,
UNDER exploits its competitor’s cooperative stance, which leads to a similar revenue as
for ALLD against ALLC. When facing an always defecting ALLD opponent, UNDER is
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Figure 4.15: UNDER for ε = 0.1

exceedingly aggressive, leading to a slightly lower revenue than its competitor’s. Against
another underpricing service provider, both players end up with extremely low revenue
close to the lower boundary set by LOW. In fact, only observation errors prevent UNDER
vs. UNDER from falling on the level of LOW as displayed in Figure 4.6.

We examine the performance of previously successful strategies against irrational strate-
gies. Since MATCH produces results close to the symmetrical mirror matchup, we do
not provide simulation results for this case. For this case, keep in mind that in the
mirror matchup with observation errors, TFT suffered due to its lack of robustness,
whereas the other strategies GTFT, CTFT and PAVLOV approximated the jointly
optimal outcome. In contrast to this, the results of a simulation pairing a rational firm
using TFT, GTFT, CTFT or PAVLOV against an irrational firm relying on UNDER
are not evident. Figure 4.16 demonstrates that against an underpricing competitor, the
performance of all of the strategies TFT, GTFT, CTFT and PAVLOV is similar. For
all these strategies, the rational providers earn far more than the irrational competitor,
and slightly more than in the complete Competitive Spiral Down caused by ALLD vs.
ALLD, which is displayed in the background. Thus, the strategies GTFT, CTFT and
PAVLOV that have proved successful so far, represent an appropriate choice against an
irrational competitor as well.
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Figure 4.16: UNDER vs. various repeated game strategies for ε = 0.1

4.4.2 Standard Forecasts

In this section, we will analyze the duopoly using real world forecasts. In contrast to this,
in the previous section, we relied on the psychic forecast dP , yielding an approximation
to the single-stage non-cooperative Nash equilibrium strategy. Combined with a tacit
collusion scheme, this psychic forecast also produced an approximation to the single-stage
jointly optimal solution. These single-stage strategies represent the basis of all repeated-
game strategies presented in Section 4.2 except for the irrational strategies MATCH
and UNDER. The psychic forecast dP is therefore crucial to construct strategies such as
TFT, GTFT, CTFT and PAVLOV. However, this forecast uses information about the
real underlying demand, which cannot be observed by any service provider in a realistic
setting. The psychic forecast dP represents an optimum of knowledge, thus freeing us
from the limitations of current techniques.

Real life RM forecasts strive to use past observations to produce an estimate of expected
customer behavior that will lead to the highest possible revenue. As pointed out in
Section 4.1.2, these methods were designed for the monopoly setting and consequently
do not incorporate competitive effects in an explicit way, although there is an implicit
consideration of the competitor’s actions because of the interaction of the competing
service providers. The widespread use of these techniques is based on the belief that
over time the implicit learning of competitive effects will suffice to reach an optimal
strategy. The goal of these techniques is to find the best response to given market
conditions, possibly including one or more competitors. Success in this endeavor means
that the service providers’ forecasts converge to a Nash equilibrium, which highlights the
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importance of our previous analysis. Cooper et al. (2009) have shown that this approach
may converge to the non-cooperative Nash equilibrium. However, they also showed that
this can also converge to the cooperative solution or to an altogether different outcome.

In this section, we will examine whether RM systems using standard forecasts exhibit
the same behavior in a competitive setting as systems using the psychic forecast dP . In
particular, we want to find out whether standard forecasts lead to the Competitive Spiral
Down, which is necessary in order to approximate the single-stage Nash equilibrium
strategy. Similarly, we are interested in the effect of tacit collusion used with standard
forecasts. We investigate whether it is possible to use some of these forecasts to construct
successful strategies for the repeated game. Furthermore, we want to analyze the
performance of standard RM forecasts against the psychic forecast dP . The performance
against the psychic forecast can indicate how the standard forecast could fare against a
competitor with a superior competitive RM system.

As representatives of standard RM forecasts, we will use the independent demand forecast
dI , the hybrid forecast dH and the dependent demand forecast based on the Kalman
filter dK presented in Section 4.1.2. Thus, we have a range of forecast systems with a
varying degree of complexity; from the simple independent demand forecast to more
complex dependent demand forecasts.

As explained in Section 4.1.2, these estimation techniques require different parameters.
For the independent demand forecast dI , we will use the exponential smoothing parameter
α = 0.2, since this leads to stable results within a reasonable amount of stages. When
using the hybrid demand forecast dH , we will rely on the previous s0 = 5 stages for the
estimation in a given stage s and once more use the exponential smoothing parameter
α = 0.2. The dependent demand forecast dK requires no exponential smoothing, since
this is a Bayesian method based on Kalman filtering. Here, we will use the relative
process deviation σp = 0.05 and correlation factor cp = 0.6 to construct the process
covariance matrix and the relative booking deviation σb = 0.3 to create the booking
covariance matrix. These parameters have been shown to perform well in a variety of
scenarios during testing with REMATE.

Similarly to the figures in the previous section, the x-axis represents the capacity of each
service provider in the simulation. Every single combination of integer capacity value and
revenue represents the average revenue of a service provider in a simulation consisting of
200 stages for this fixed capacity, where the first 100 stages serve as a burn-in period.
Between integer values of capacity we use a linear interpolation to enhance the readability
of the graph.
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ALLD and ALLC

Similarly to the previous section, we start by examining ALLD and ALLC with standard
RM forecasts. In order to facilitate comparisons between graphs, we continue displaying
the revenue of mutual defection ALLD vs. ALLD as well as of mutual cooperation and
ALLC vs. ALLD with the psychic forecast dP in the background.
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Figure 4.17: Independent demand forecast dI

Figure 4.17 displays all combinations of ALLC and ALLD using the independent demand
forecast dI . In the mutually non-cooperative case ALLD(dI) vs. ALLD(dI), we find a
stronger decline than explained by the Competitive Spiral Down effect. This is due to
the inability of the independent demand forecast to model the customer choice process
adequately, resulting in the classical Spiral Down effect as described by Cooper et al.
(2006). Similarly, Isler and Imhof (2008) have also shown that the Spiral Down can be
even more disastrous than the Competitive Spiral Down.

Nevertheless, mutual cooperation ALLC(dI) vs. ALLC(dI) works well, since the value
of the cooperative threshold product c is known. In fact, for high capacity values, the
revenue resulting of cooperation using the independent demand forecast is virtually
identical to the revenue for mutual cooperation using the psychic demand forecast dP .
The graph in the center, displaying the exploitation matchup ALLC(dI) vs. ALLD(dI),
shows a very different behavior to the psychic forecast case, where the defector ALLD(dP )
was able to exploit the cooperator ALLC(dP ). This difference in behavior is a consequence
of the Spiral Down effect, which prevents ALLD(dI) from keeping a price level just below
the cooperating competitor using ALLC(dI). Instead, the Spiral Down effect causes
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the price level to deteriorate, so that ALLD(dI) cannot exploit a blindly cooperating
competitor.
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Figure 4.18: Hybrid demand forecast dH

Figure 4.18 presents the simulation results for all ALLC(dH) and ALLD(dH) combinations.
In the hybrid case, neither combination of ALLC(dH) and ALLD(dH) shows any signs of
the Competitive Spiral Down effect. However, although this keeps revenues high, it is
rather a sign of inaccurate estimation. In any case, the result is close to the jointly optimal
solution. Thus, if all service providers were to provide this forecast, the Competitive
Spiral Down effect would be rendered insignificant without implementing any elaborate
multi-stage strategy such as those presented in 4.2.

Figure 4.19 shows the results of ALLC(dK) and ALLD(dK). In contrast to the results for
dI and dH , the results for dK are far closer to the results of the psychic forecast dP . In
particular, mutual defection leads to the Competitive Spiral Down, although the effect is
weakened compared to the psychic case. Furthermore, we find that unilateral cooperation
using ALLC(dK) can be exploited by an aggressor using ALLD(dK). Similarly to the
other forecasts, the results for ALLC(dK) vs. ALLC(dK) show that mutual cooperation
leads to similar results as in the psychic forecast case ALLC(dP ) vs. ALLC(dP ), indicating
that the success of cooperation depends more on the knowledge of the correct value c for
the tacit collusion than on the underlying forecast.
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Figure 4.19: Dependent demand forecast dK

Successful Strategies

Similarly to our analysis for the psychic forecast dP , we will also investigate the perfor-
mance of the strategies TFT, GTFT, CTFT and PAVLOV, that rely on our heuristic
to transfer strategies from the IPD to the RM game. Since the previous results in this
section showed that the other forecasts cannot adequately replicate the behavior of the
psychic forecast dP and are thus not appropriate for the use by these strategies, we will
concentrate on the dependent demand forecast dK ,

Figures 4.20 – 4.23 show simulation results of the revenue of a pair of providers over
varying capacity restrictions, where one provider uses TFT, GTFT, CTFT or PAVLOV
against a competitor following the cooperative strategy ALLC(dK), the non-cooperative
strategy ALLD(dK) and in the mirror matchup.

We find similar results to the experiments with the psychic forecast dP in Section 4.4.1
displayed in Figures 4.8 and 4.10 – 4.12. Figure 4.20 shows that TFT(dK) is not robust
against observation errors, so that the mirror matchup leads to the Competitive Spiral
Down. However, TFT(dK) is cooperative against pure cooperation ALLD(dK) and not
exploited against the aggressor ALLD(dK). In Figure 4.21, we observe that GTFT(dK)
prevents the Competitive Spiral Down in the mirror matchup, but is exploited by the
aggressor ALLD(dK). Figure 4.22 demonstrates that CTFT(dK) is jointly optimal against
cooperation and in the mirror matchup, while giving the competitor no incentive to
defect as indicated by the poor result of ALLD(dK). Thus, CTFT represents an ideal
candidate for a repeated game strategy, whether it uses realistic forecasting technique
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dK or the idealized forecast dP as shown in Figure 4.11. Finally, Figure 4.23 shows that
PAVLOV(dK) is able to exploit cooperation such as ALLC(dK), but is vulnerable against
aggression as demonstrated by ALLD(dK).

TFT(dK) vs ALLC(dK) TFT(dK) vs TFT(dK) TFT(dK) vs ALLD(dK)

0

250

500

750

1000

0 10 20 30 0 10 20 30 0 10 20 30

Capacity

R
e
ve

n
u
e

Strategy

ALLD(dE) vs ALLD(dE)

ALLC(dE) vs ALLC(dE)

ALLC(dK): 2

TFT(dK): 1

TFT(dK): 2

ALLD(dK): 2

Figure 4.20: TFT using dependent demand forecast dK with ε = 0.1

Standard Forecast vs. Psychic Forecast

While we have shown in this section that the behavior of standard forecasts can vary
from that of the psychic forecast dP , we want to examine their performance against a
competitor with a superior forecast. Therefore, we will compare the standard forecasts to
the psychic forecast dP representing the ideal forecast. For this purpose, we will consider
both providers using the non-cooperative strategy ALLD, which arises naturally if a
provider does not implement any repeated-game strategy.

Figure 4.24 displays the results of this experiments for the standard forecasts dI , dH and
dK . In all three matchups, we find that the better forecast dP leads to more revenue.
Thus, service providers investing in newer and better forecasting methods automatically
enhance their competitive performance, even if they do not implement explicit strategies
for the repeated game. However, although the ideal forecast dP always dominates the
competitor, there are great differences between the outcomes depending on the standard
forecast in use. We find that the independent demand forecast dI leads to the Spiral
Down and thus to a low payoff, although the provider using the standard forecast earns
almost as much revenue as the provider using the psychic forecast. The provider using
the hybrid demand forecast dH gets exploited by the competitor, while the dependent
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Figure 4.21: GTFT using dependent demand forecast dK with ε = 0.1
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Figure 4.22: CTFT using dependent demand forecast dK with ε = 0.1
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Figure 4.23: PAVLOV using dependent demand forecast dK with ε = 0.1
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Figure 4.24: Standard forecast vs. psychic forecast
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demand forecast dK comes closer to the result of the psychic forecast. The provider
using the dependent demand forecast still gets exploited, but performs reasonably well,
considering its natural disadvantage against a psychic forecast.

Irrational Strategies

Similarly to the analysis for the psychic forecast dP in Section 4.4.1, we will analyze
the competitive interactions between a rational provider and an irrational competitor
following either MATCH or UNDER. Since the dependent demand forecast dK has
outperformed the other standard forecasting methods in this section, we will concentrate
on this forecast. Analogously to above, we will focus on ALLD as the most natural
strategy of the repeated game.
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Figure 4.25: Standard forecast vs. irrational strategies with ε = 0.1

Figure 4.25 shows that MATCH leads to a similar result as the symmetrical case, as was
to be expected. However, the matching provider receives a slightly lower payoff than his
competitor for low capacities, which is caused by the great effect of observation errors for
the MATCH strategy. As the result of ALLD(dK) approximating the optimal solution for
low capacities, the ideal response from the competitor would be to mirror this strategy.
However, since MATCH has no own forecast to rely on, observation errors can cause an
immediate deviation from the optimal strategy.

Against an underpricing provider, we can observe two different outcomes differentiated
by the severity of the capacity restriction. As in the case of a matching provider, the
rational provider receives a higher share of the payoff as long as capacities are low. In
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this case, the estimation procedure of the dependent demand forecast works well and
leads to a good approximation of the optimal price level. Since UNDER deviates from
this price level, the resulting revenue is distinctly lower. However, for higher capacities,
the underpricing provider earns more revenue. This is due to the demand model used in
estimation, which is independent of the competitor, becoming less and less correct as the
capacity restriction vanishes: If the competitor has the capability to serve almost all or
all the customers in the market, ignoring competition can become ruinous.

4.5 Summary

In this chapter, we provided a formal model for repeated interactions of two RM service
providers and evaluated strategies in the repeated game via simulations.

In our analyses, we focused on research questions 1 – 5 posed in Chapter 3. Thus, we
aimed to find a way to exploit the similarities of the IPD and the repeated RM game in
order to find successful strategies for the repeated RM game. We wanted to reproduce
the strategies’ success using standard RM methods available to real-life service providers.
Furthermore, we were interested in the strategies’ behavior against irrational strategies
and in the effect of observation errors.

In this section, we will summarize our approach in this chapter and give an overview of
our findings.

First, we gave an introduction and motivation, where we outlined our approach of
bridging the gap between game theoretic treatment of simplified models and realistic
revenue management simulations. We pointed out the dilemma faced by RM employing
service providers mentioned in Chapter 3: In a duopoly, both providers employing a RM
strategy that focuses on maximizing only the provider’s own revenue over the course of
a single sales period leads to the Competitive Spiral Down, significantly reducing both
players’ revenues. On the other hand, a cooperative price selection avoids this problem,
but is vulnerable against a more aggressive price selection of the competitor. In order
to handle this dilemma, we stressed the importance of examining revenue management
under competition as a repeated game, thus setting the agenda for the remainder of this
chapter.

In Section 4.1, we gave an overview of our demand model as well as of the two main
components of RM systems, namely a forecasting engine and an optimizer. We included
realistic forecasts of varying degrees of complexity as well as an idealized, so-called
“psychic”, forecast relying on customer data. The idealized forecast is not possible in
the real world, but in a simulation environment this forecast allows us to abstract from
the imperfections of current forecasting technology. Finally, we described optimization
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techniques appropriate for each of the forecasts presented and the resulting control
strategies.

In Section 4.2, we highlighted the similarities between the IPD and the repeated RM
game. We developed a heuristic to transfer strategies from the IPD to the repeated RM
game and used this to describe a host of repeated-game strategies for the repeated RM
game, adapting the most successful strategies from the IPD. Furthermore, we described
simple strategies inspired by the wide-spread RM practice of price matching.

In Section 4.3, we described the state of the art of the simulation environment REMATE,
which was used to assess our proposed solutions to the dilemma in the repeated RM
game. Since we had access to the source code of REMATE, we could build on this basis
and add details to the implementation that enabled us to use it for the evaluation of
competitive strategies in the remainder of this chapter.

Section 4.4 was devoted to the evaluation of the strategies presented in Section 4.2.
We simulated a simple scenario of a duopoly of service providers with varying capacity
restrictions using the simulation environment REMATE described in Section 4.3.

Before discussing simulation results, we outlined the properties a successful strategy in
the repeated RM game should possess and how we would test for them in Section 4.2.3.
In particular, a successful strategy should solve the dilemma outlined in Chapter 3 and
thus be a part of a jointly optimal Nash equilibrium of the repeated RM game. However,
since it is not possible to analyze all combinations of possible strategies via simulations,
we presented a set of necessary conditions for a solution to the dilemma that we could
test in our analyses.

In Section 4.4.1, we focused on simulation results for the psychic forecast dP . Similarly
to Isler and Imhof (2008), we found that the effect of competition depends heavily on the
severity of the capacity restriction. For low capacities, competitive effects were almost
irrelevant, with cooperative and non-cooperative behavior resulting in the same outcome.
However, for high capacities the importance of competition grew significantly, so that
pure non-cooperative behavior led to the ruinous Competitive Spiral Down effect. We
were able to show that there exist strategies in the repeated RM game that seem to solve
the dilemma, as they achieve the jointly optimal solution in a mirror matchup and do
not let an aggressor exploit their cooperative stance. However, we demonstrated that the
possibility of observation errors can profoundly change the behavior of strategies. Without
errors, Tit for Tat represented a solution to the dilemma in the repeated RM game, but
as soon as we introduced observation errors into the game, the mirror matchup of two
TFT players led to the Competitive Spiral Down instead of the jointly optimal solution.
Thus, observation errors have an even greater effect in the repeated RM game than in
the IPD. Nevertheless, we showed that robust variations of TFT such as CTFT—and
to a lesser degree GTFT—were able to transfer the desired properties of TFT to the
case with observation errors. Additionally, we analyzed the PAVLOV strategy, which
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cannot be part of a Nash equilibrium, but has the possibility to exploit suckers. Finally,
we analyzed the irrational strategies MATCH and UNDER based on price-matching.
As expected, they were completely dependent on the competitor, on whose price they
relied. Thus, these strategies could lead to good results, but had little control over
their performance. We found that the strategies that had proven most successful in our
analysis so far also performed best against the irrational strategies MATCH and UNDER:
Each of the robust strategies GTFT, CTFT and PAVLOV fared well against irrational
competition, whereas TFT suffered from its lack of robustness. When accounting for the
possibility of the competitor following a simpler, non-robust strategy, we found GTFT to
be the best strategy, which presented a change from the results of the symmetrical mirror
matchups. Thus, choosing the right strategy may well depend on the environment.

Section 4.4.2 was devoted to Isler and Imhof (2008)’s hypothesis that standard forecasts
should behave similarly to the psychic forecast dP under competition. However, Cooper
et al. (2009) showed that this is not necessarily true for arbitrary demand forecasts. In
our analysis, we found great differences between the results of the standard forecasts
presented in Section 4.1.2. As expected, using an oversimplified demand model like
the independent demand forecast dI is not sufficient to reproduce the results of the
psychic forecast dP . Instead, this led to the Spiral Down, caused by an inappropriate
demand model, with even worse consequences than the Competitive Spiral Down. We
showed that the widely-used hybrid demand model dH prevents the Spiral Down, but
is vulnerable against aggressors. For high capacities, the estimation procedure failed to
react to the growing influence of the competitor’s prices and proceeded to compute the
same price elasticities as for low capacities. Thus, in a symmetric matchup the providers
did not approximate the Nash equilibrium. Although this helped avoid the Competitive
Spiral Down, the fact that the system did not reach the competitive best response can
be dangerous against more aggressive competitors or simply competitors with a better
estimation technique. Finally, we examined the forecast dK , a prototype of a forecast
based on a dependent demand model that has not seen extensive use in the industry
yet. This forecast came closest to emulating results of idealized forecast dP . Using the
forecast dK , we found that simulation results for our repeated game strategies turned out
similar to the same strategies using the idealized forecast dP . Thus, in order to render
Isler and Imhof’s hypothesis true and be able to use the results of Section 4.4.1, it seems
necessary to use a high quality forecast with a sufficiently complex demand model. We
also investigated the performance of standard forecasts against the psychic forecast dP .
As expected, the psychic forecast outperformed the standard forecasts, with a similar
ranking of standard forecasts as before, emphasizing the importance of a high-quality
forecast.
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In this chapter, we will build on the insights gained in the previous Chapter 4 to study a
simplification of the repeated Revenue Management (RM) game to a Markov process. In
contrast to the previous chapter, this variation allows a mathematical analysis, reducing
our reliance on the use of simulations in this chapter.

The competition between two service providers leads to a high degree of complexity that
hinders a thorough analysis. Even for the single resource case, an analytical treatment of
the RM game is hard because of the interdependence of each player’s states at different
time steps and stages. In the previous Chapter 4, we used simulation as a tool to gain
insight into the RM game despite its inherent complexity. Although the simulation
approach is suited to analyze competitive interactions in complex scenarios, Bartke et al.
(2013) showed that a high degree of complexity can complicate the analysis of the results
and even introduce chaotic behavior. Consequently, we simplified the scenario to both
firms using only a single resource in order to enhance the clarity of our results.

However, as stressed in the literature review in Section 2.4, computational results gained
through simulation should always be accompanied by mathematical analysis. Ideally,
simulation and mathematical analysis should complement each other. While simulation
enables us to examine the problem in a more realistic setting, the results do not hold the
same clarity as an analytic formula. On the other hand, mathematical analysis has the
prospect of delivering provable relationships between scenario parameters. Unfortunately,
the mathematical analysis of the repeated RM game in the form presented in Chapter 4
is not feasible.

Similarly to the computational results in Section 4.4, we will ignore network effects and
focus on the single-resource case. In the single-resource RM game, each state is dependent
on other states via two mechanisms: The learning mechanism during forecasting causes
the state of the game during any stage s and time step t to depend on all previous stages
at the same time step, whereas the optimization ties together all time steps t during one
stage s via the capacity constraints. In this chapter, we will study a simplification of the
original problem that will enable an analytical treatment of the RM game.

Throughout this chapter we will use the psychic forecast dP . As we have argued in
Chapter 4, this forecast represents an optimal case, towards which real life forecasts are
striving. As simulation results in Section 4.4 showed, the Competitive Spiral Down is
most extreme without capacity constraints. In this case—achieved when each service
provider has sufficient capacity to accommodate the whole demand—the non-cooperative
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strategy ALLD(dP ) leads to the Bertrand Nash equilibrium. In this chapter, we will focus
on this extreme point, where competitive effects are at their strongest. We will therefore
drop the capacity constraint, enabling us to analyze a single time step t in isolation.
The resulting game during each time step t can be described independently of all other
time steps as an infinite-order chain, i.e. a process depending on all previous stages s.
Unfortunately, infinite-order chains are not as well-researched as Markov chains. However,
as discussed in Section 2.2.2, at least in the Iterated Prisoner’s Dilemma (IPD), the
restriction to single-stage memory strategies does not imply a loss of generality. Therefore,
we use only the most recent observation to create dP , which can be accomplished by
setting the exponential smoothing parameter α = 1.

With the information provided by the psychic forecast dP , it is irrational to price higher
than f(c), rendering products with a higher price than the cooperative threshold product
superfluous. To save some notation, we ignore products i with i < c and assume that the
players’ joint payoff is maximized by the most expensive product, i.e. c = 1.

In summary, we will use the following assumptions to describe the RM game during each
time step t by a Markov chain of order 1 over the stages s:

1. Each provider sells a single resource.

2. Both players use the psychic forecast dP .

3. There is no capacity restriction.

4. Strategies are restricted to a single-stage memory.

5. The most expensive product is jointly optimal, i.e. c = 1.

The Markov version of the RM game is a generalization of the IPD. At each stage, instead
of having only two options, each player has to decide which of his n products should be
the lowest available. Since the transfer of ideas from the IPD to the RM game proved
successful in Chapter 4, the even closer relationship between the RM game and the
Markov version presented in this chapter leads us to believe that findings for the Markov
game should be transferable even more easily. The great advantage of modeling the game
as a Markov chain lies in the simplicity of the Markov concept. Markov processes in
discrete time are thoroughly-studied stochastic processes with well-known properties (for
an overview see Section 5.1.1).

Research on the IPD provides an array of thoroughly-studied simple strategies. However,
a transfer of these strategies to the repeated RM game is not trivial, since even in the IPD,
the construction of the game’s Markov process for arbitrary strategies is cumbersome.
In the study of the IPD, researchers have resorted to using transition matrices without
providing a derivation, which led to a lack of insight into the structure of the transition
probabilities. In the RM game, where the choice of an arbitrary amount of prices or
even a continuous price range, observation errors and the concept of reputation further
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complicate the construction of the game as a Markov chain, an examination of the
structure of the Markov transition kernels will be necessary.

As outlined in the literature review in Section 2.2.2, the formulation as a Markov chain
helps examine the long-term behavior of the game, since for a general class of Markov
chains, the stationary measure exists and is unique. This measure describes the process’s
long-term behavior, which has been used extensively in the analysis of the IPD. However,
a similar analysis of stationary measures of the RM game has to build on a possibility to
construct transition kernels of the RM game, which has not been done in the literature
so far.

While the stationary measure describes the outcome of the game as long as nothing
changes, researchers have tried to reproduce the players’ pursuit of the optimal strategy,
emulating behavior that can be found in environments of rational learning players. The
basis of such an evolutionary simulation are the stationary measures of every combination
of strategies, which are used to compute the game’s long-term payoffs. Building on the
formulation of the RM game as a Markov process, a similar approach may be useful
to implement temporal dynamics into the players’ strategies. However, even for the
IPD, the strategy space can grow large, so that a thorough statistical analysis of the
simulations can become difficult.

As mentioned in Section 2.2.2, Press and Dyson (2012) recently discovered a class of
strategies in the IPD that can exploit evolutionary players. These so-called Extortionate
Strategies allow a player to unilaterally enforce a linear relation between his and his
opponent’s payoffs. Following such a strategy against an evolutionary competitor enables
the player to have the competitor drag him to the optimal payoff, all the while gaining
a disproportionately high payoff. In Press and Dyson’s paper and—to the best of our
knowledge—the following research, it is always assumed that players can observe their
competitor’s moves perfectly. However, in the literature review in Section 2.2.2, we
pointed out the influence of flawed observations in the IPD. As stated in Chapter 3, we
will demonstrate the importance of observation errors in the RM game similarly to the
IPD. Additionally, we will analyze the effect of observation errors on the existence of
Extortionate Strategies.

In this chapter, we will first provide the mathematical background needed in the remainder
of the chapter in Section 5.1. In Section 5.2, we will examine the structure of the Markov
chain and derive the chain’s transition matrices. In order to establish the link to the
Iterated Prisoner’s Dilemma, we will describe and analyze the payoff structure of the
RM game in Section 5.3. In Section 5.4, we will put the considerations of the previous
sections into practice by defining strategies and investigating their long-term behavior. In
particular, we will first use the framework described in Section 5.2 to adapt the repeated-
game strategies presented in Chapter 4 in section 5.4.1, then analyze the long-term
behavior of the Markov chain for pairs of strategies in Section 5.4.2. In Section 5.4.3, we
will examine the effect of errors in the determination of the jointly optimal product c used
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for cooperation. In order to help the reader get a better understanding of Section 5.4’s
results, we will give an extensive example in Section 5.4.4. Building on the insights
from the previous sections, we will study an evolutionary game by means of simulation
in Section 5.5, where we will introduce additional temporal dynamics into the game’s
strategies. Subsequently, we will use Section 5.6 to discuss the existence of Extortionate
Strategies, which can exploit evolutionary behavior. As an excursus, we will apply our
methodology to the case of continuous prices in Section 5.7. Finally, in Section 5.8 we
will give a conclusion of this chapter, where we summarize and discuss our findings.

5.1 Mathematical Basics

In this section, we will give an overview of the mathematical basics needed in this chapter.
We will focus on stochastic processes, which enable the analysis of the evolution of the RM
game, and tensor products, which help describe competitive interactions in a linear way.
A profound introduction into the field of probability theory including stochastic processes
is given by Kallenberg (2002), while Pinsky and Karlin (2010) give a more application-
oriented review of stochastic processes with a focus on Markov processes. Tensor products
are introduced both mathematically rigorously and intuitively by Hungerford (1974),
while a host of applications specifically of the Kronecker product is reviewed in by Loan
(2000). Throughout this section, we will use examples to provide a connection between
the mathematical concepts and the application in competitive revenue management.

5.1.1 Stochastic Processes

In the mathematical analysis of stochastic processes, we want to measure the probability
of events. Given the set of all possible outcomes, we can characterize any event as a
subset of a set J .

Example 1. In a RM context, consider a single service provider with a set of products
J who offers a subset of products characterized by the cheapest product. Then the subset
{j} with j ∈ J corresponds to the event that the provider offers j as the cheapest product.
More generally, the event A with A ⊂ J means that the provider offers any j ∈ A as the
cheapest product.

Unfortunately, Vitali (1905, for n=1) and Comfort and Gordon (1961, for arbitrary n)
showed that it is impossible to apply the natural measure of length, area, volume and so
on to all subsets of Rn. Later, Banach and Tarski (1924) demonstrated the existence of
so-called non-measurable sets in J = R3, for which no measure at all can be defined that
is invariant to rotations and translations (for a more recent review see e.g. Stromberg,
1979). Therefore, we have to restrict ourselves to a set of subsets for which a probability
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measure can be assigned. For this purpose, we define a σ-Algebra J on a set J as a set
of subsets A ⊂ J fulfilling

∃A ⊆ J :A ∈ J (5.1.1)
A ∈ J =⇒ J \ A = {j ∈ J | j /∈ A} ∈ J (5.1.2)

Ai ∈ J ∀i ∈ N+ =⇒
∞⋃
i=1

Ai ∈ J (5.1.3)

Thus, J is a non-empty set of subsets of J that is closed under complementation and
under countable union.

The definition of a σ-Algebra allows for a lot of different σ-Algebras for any but the most
trivial sets J . For any J , the trivial σ-Algebra {∅, J} is the smallest possible σ-Algebra,
while the power set P(J), denoting the set of all subsets of J , is always the biggest. If J
is finite, it is possible to use the power set as σ-Algebra, since in this case any subset
of J can be assigned a measure in a meaningful way. However, for uncountably infinite
sets such as R+, we are limited in the choice of measures on the power set, due to the
existence of non-measurable sets. Thus, for J = R+ we have to use a smaller σ-Algebra
containing all the relevant subsets—but no non-measurable sets—instead of the power
set. The natural choice is the Borel-σ-Algebra B(R+), which is the smallest σ-Algebra
that contains all the intervals of R+. This σ-Algebra will prove useful for the study of
the RM game with continuous prices in Section 5.7.

The tuple (J,J ) of a set J equipped with σ-Algebra J is called a measurable space. As
the name suggests, we can define a probability measure on a measurable space (J,J ) as
a map µ : J → [0, 1], so that µ(∅) = 0, µ(J) = 1 and for every countable collection of
pairwise disjoint sets Ai, we have µ

(⋃
i
Ai

)
= ∑

i
µ(Ai).

This enables us to define a probability space (J,J , µ) as a set J equipped with a σ-
Algebra J and a probability measure µ, or equivalently as a measurable space (J,J )
with a probability measure µ. When it is clear which probability measure is meant, the
probability measure is often denoted by P.

Of the many possible probability measures, a particularly simple example used in this
dissertation is the Dirac measure. The Dirac measure δx is a probability measure that
can be defined on any measurable space (J,J ) by

∀A ∈ J : δx(A) =

1 if x ∈ A
0 else

. (5.1.4)

On a discrete space, any probability measure can be defined as a convex combination of
Dirac measures. This is no longer true for spaces based on R.
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Example 2. For a single service provider offering a finite product set J = {1, . . . , n},
we can use the σ-Algebra J = P(J). Then, any probability measure takes the form
µ(A) =

n∑
j=1

cjδj(A) for A ∈ J , where the constants cj are non-negative and sum to one,
n∑
j=1

cj = 1. Here, the constants cj represent the probability that the provider chooses

product j.

Example 3. For a continuous state space J = R+ and J = B(J), as we consider
in Section 5.7, the Dirac measure is useful to choose a single specific element of the
uncountably infinite product set, e.g. in order to set an exact price.

With the help of measurable spaces and probability spaces, we can define random
variables. Given two measurable spaces (G,G) and (J,J ), we say a function X : G→ J
is measurable, if its preimage is included in the domain’s σ-Algebra, i.e. X−1(A) ∈ G
for all A ∈ J . If the domain of the function is even a probability space (G,G, µ), a
measurable function is called a random variable. The probability of any measurable
outcome A ∈ J of the random variable X can be found as P(X−1(A)).

A stochastic process (Xs)s∈S is a sequence of random variables Xs, so that for every time
index s, Xs is a measurable function Xs : (G,G, µ) → (J,J ) from a probability space
to a measurable space. Although this definition holds for general time sets S, we will
restrict this outline to the discrete case S = N0, since we will not need the more general
case in the following of this thesis.

In order to analyze a stochastic process, it is necessary to determine which parts of the
process’s history can influence its future behavior. A filtration (Gs)s∈S is an increasing
sequence of σ-Algebras Gs so that s1 ≤ s2 =⇒ Gs1 ⊆ Gs2 . Each σ-Algebra Gs in a
filtration can be thought of as the information available up to time s. Usually, the
filtration is chosen so that each Xs is measurable with respect to Gs, i.e. in order to
calculate the probability of any event at a point in time s, it is sufficient to know the
information available up to s without having to know the future. While there are many
possible filtration candidates to choose when modeling a stochastic process, the natural
choice is the natural filtration σ(Xt, t ≤ s) = σ{X−1

t (A) : A ∈ J , t ≤ s} of process Xs

generated by all values of X up to stage s.

A Markov process is a stochastic process that is memoryless in the sense that the future
evolution of a process depends only on the present state of the process and not on its past.
This so-called Markov property greatly facilitates the analysis of this class of stochastic
processes. In this thesis, we will call a Markov process a Markov chain, if not only time
S but also the state space J is discrete.
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For a Markov chain, it is sufficient to formulate the Markov property for all elements of
the state space as

P(Xs+1 = js+1 | Xt = jt, t ≤ s) = P(Xs+1 = js+1 | Xs = js), (5.1.5)

where P(A | B) denotes the conditional probability of A ∈ J given B ∈ J and
js, js+1, jt ∈ J . Such a simple definition is not possible for continuous state spaces.
Instead, we can use the natural filtration σ(Xt, t ≤ s) to generalize the Markov property
5.1.5 to

P(Xs+τ ∈ A | σ(Xt, t ≤ s)) = P(Xs+τ ∈ A | σ(Xs)) ∀A ∈ J , τ > 0 (5.1.6)

for a Markov process on a general state space.

Example 4. Consider a single service provider offering a finite set of products J =
{1, . . . , n} repeatedly over the stages s ∈ N+. At each stage s, the provider chooses a
cheapest product depending on his choices in the previous stages. Therefore, at each stage
s, the provider’s cheapest product is a random variable with values in the measurable
space (J,P(J)). The collection of these random variables is a stochastic process that is
also a Markov process if and only if the provider relies only on his action in the previous
stage s− 1 to choose a product in stage s.

The evolution of the state of the Markov process is governed by its transition probabilities.
We will focus on the time-homogeneous case, in which the transition probability between
states of the Markov process is independent of the stage s. Therefore, we will omit the
time-dependence in the notation of transition probabilities.

In the discrete case with finite J = {j1, . . . , jn} and J = P(J), it is sufficient and
convenient to use a transition matrix M with entries pi,l = P(Xs = jl | Xs−1 = ji) to
describe the Markov chain’s transition probabilities. This matrix operates on the space
of probability vectors V = {(v1, . . . , vn) ∈ [0, 1]n |

n∑
i=1

vi = 1} so that the evolution of
the Markov process probability vector follows µs+1 = µsM , where µs, µs+1 ∈ V and
µsM denotes the matrix product. Note that in the discrete case, a probability vector
is equivalent to a probability measure. If a measure µ satisfies µM = µ, we call µ a
stationary measure.

In the more general case of a possibly infinite state space J , it is impossible to represent
the transition probabilities in matrix form. Instead, the more general concept of a
transition kernel is used. A transition kernel K is a map on the measurable space (J,J ),
for which

• K(x, ·) is a probability measure for all x ∈ J and

• K(·, A) is J -measurable for all A ∈ J .
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We can find the probability measure µs+1, describing the state of the Markov process at
time s + 1, with the help of the transition kernel K and µs as µs+1(A) = (Kµs)(A) =∫
J K(x,A)µs(dx) for any A ∈ J . In this case of infinite state spaces, we call a measure
µ a stationary measure, if Kµ = µ. The case of infinite state spaces will be important in
our analysis of continuous prices in Section 5.7.

Example 5. For a single provider offering a finite product set with only two products
J = {1, 2} based on his previous price, the transition matrix takes the form

M =
(
p1,1 1− p1,1
p2,1 1− p2,1

)
. (5.1.7)

In the pursuit of the stationary measure, it is helpful to analyze the elements of the
state space. In the following, we will concentrate on the discrete case, since we will not
need the general case in this thesis. This allows for a more simple notation. A state
j1 ∈ J is accessible from j2 ∈ J , if P(Xs+m = j1 | Xs = j2) > 0 for m ≥ 0. Using this
concept, the state space J can be partitioned into communicating classes C. We say
two states j1, j2 ∈ J belong to the same communicating class, if they are accessible from
each other. A communicating class C is called closed, if it cannot be escaped, i.e. for all
j1 ∈ C, j2 ∈ J we have

P(Xs+m1 = j2 | Xs = j1) > 0 =⇒ j2 ∈ C. (5.1.8)

A Markov chain with a single closed communicating class is called irreducible. As the
stationary measure of the Markov chain is concentrated on its closed communicating
classes, we can only expect a unique stationary measure for irreducible Markov processes.
A special case of communicating classes is created by so-called absorbing states. A state
j ∈ J is called absorbing, if P(Xs+1 = j | Xs = j) = 1. An absorbing state j is always
the only member of its own closed communicating class {j}. Furthermore, we call a
state ji ∈ J unreachable, if P(Xs+1 = ji | Xs = jl) = 0 for all jl ∈ J . In other words,
unreachable states are not accessible from any state in the state space.

Example 6. Using the transition matrix from Example 5 with the values p1,1 = 0.5 and
p2,1 = 0 we get

M =
(

0.5 0.5
0 1

)
. (5.1.9)

Since the state 1 is not accessible from state 2, we find two separate communicating
classes {1} and {2}. However, only the class {2} is closed and in fact consists of the
absorbing state 2. Here, the stationary measure—represented as a vector—is π = (0, 1).

We can combine probability spaces to help describe stochastic processes on a larger state
space. We call the natural combination of probability spaces (J1,J1, µ1) and (J2,J2, µ2)
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the product space (J1×J2,J1⊗J2, µ1⊗µ2). Here, the tensor product σ-Algebra J1⊗J2
denotes the smallest σ-Algebra that contains all subsets {A1×A2 | A1 ∈ J1, A2 ∈ J2} of
the cartesian product J1×J2, whereas the product measure µ1⊗µ2 is the unique measure
that satisfies µ1 ⊗ µ2(A1 × A2) = µ1(A1)µ2(A2) for all Ak ∈ Jk. The original measures
µk are called marginal measures and can be reconstructed with the help of the product
measure via integration µ1(A) =

∫
J2

µ1 ⊗ µ2(A× dj2). In the following Section 5.1.2, we

will examine tensor products in more detail.
Example 7. Consider competition between two service providers S1 and S2, each offering
a set of products Jk, k = 1, 2. As long as each player Sk acts independently of the
competitor, we can find a probability space (Jk,Jk, µk) that completely describes and
evaluates Sk’s actions. The measurable space (J1 × J2,J1 ⊗ J2) contains all possible
events that can result from combinations of both players’ actions, while the product measure
µ1 ⊗ µ2 yields the probability of both players’ actions if both providers act independently
from each other.

5.1.2 Tensor Products

In many natural contexts, a researcher can encounter relationships between entities that
depend linearly on more than a single entity. As an example, this can happen in game
theory when the outcome of the game depends linearly on both players’ strategies. If
the entities can be embedded in vector spaces, these relationships may be expressed as
multilinear maps from many vector spaces to a single vector space. However, the study
of multilinear and even bilinear maps on vector spaces is by far not as simple and well
developed as the study of linear maps. Tensor product offers a possibility to transform
bilinear—and, by extension, multilinear—maps to linear maps. Although the concept
exists in more general contexts, we only cover tensor products on real vector spaces in
this section, since this is sufficient for this thesis.

We define a tensor product of two real vector spaces as a real vector space that enables the
use of linear maps instead of bilinear maps. This is called the universal property of the
tensor product. More precisely, given two real vector spaces V1 and V2 we define a tensor
product of V1 and V2 to be a pair (T, t), where T is a real vector space and t : V1×V2 → T
is a bilinear map with the following property: Given any bilinear map Q : V1 × V2 → W ,
there exists a unique linear map L : T → W such that Q = L ◦ t, where ◦ is the
composition of maps. Writing T = V1 ⊗ V2 and t(v1, v2) = v1 ⊗ v2 for v1 ∈ V1, v2 ∈ V2,
this means that we have a unique linear map L with Q(v1, v2) = L(v1 ⊗ v2).

For finite-dimensional real vector spaces, the construction of the tensor product is simple.
Given two real vector spaces V1 with basis {e1, . . . , en} and V2 with basis {f1, . . . , fm}, a
basis of the tensor product V1 ⊗ V2 can be found as

{e1 ⊗ f1, . . . , e1 ⊗ fm, e2 ⊗ f1, . . . , e2 ⊗ fm, . . . en ⊗ f1, . . . , en ⊗ fm}. (5.1.10)
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Thus, in this choice of basis every basis vector v1 ⊗ v2 of V1 ⊗ V2 is associated with a
pair (v1, v2), where vi is a basis vector of Vi.

The tensor product also operates on linear maps on vector spaces. Given linear maps
φ1 : V1 → W1 and φ2 : V2 → W2, the tensor product φ1 ⊗ φ2 is defined as

φ1 ⊗ φ2 : V1 ⊗ V2 → W1 ⊗W2 (5.1.11)
v1 ⊗ v2 7→ φ1(v1)⊗ φ2(v2). (5.1.12)

Example 8. Consider repeated competitive interactions between two service providers.
Each provider offers a finite product set J1 = J2 = {1, . . . , n} based on his own action in
the previous stage independently of the competitor. The transition probabilities φ1 : V1 →
V1 and φ2 : V2 → V2 for each player’s state operate linearly on the space of probability
vectors Vk = {(vk1 , . . . , vkn) |

n∑
j=1

vkj = 1} associated with provider Sk. Then, the transition

probabilities for the combination of both players’ actions are given by the tensor product
φ1 ⊗ φ2.

In order to employ matrix notation for the tensor product φ1 ⊗ φ2 of the linear maps
φ1 : V1 → W1 and φ2 : V2 → W2, we need to choose a basis of the tensor products
V1 ⊗ V2 and W1 ⊗W2. If we use the standard choice of basis 5.1.10 of the tensor product
of vector spaces, the so-called Kronecker product uses matrix representations of the
linear maps φ1 and φ2 to yield a matrix representation of the tensor product φ1 ⊗ φ2.
The Kronecker product represents an efficient and simple way of calculating the tensor
product of linear maps. Consequently, in this thesis we will always choose the standard
basis of the tensor product of vector spaces, so that we can employ the Kronecker product.
Let V1, V2,W1,W2 be finite-dimensional vector spaces with bases

b(V1) = {e1, . . . , en} (5.1.13)
b(V2) = {f1, . . . , fq} (5.1.14)
b(W1) = {g1, . . . , gm} (5.1.15)
b(W2) = {h1, . . . , hp}, (5.1.16)

V1 ⊗ V2 and W1 ⊗W2 tensor product vector spaces with bases

b(V1 ⊗ V2) = {e1 ⊗ f1, . . . , e1 ⊗ fq, e2 ⊗ f1, . . . , e2 ⊗ fq, . . . , en ⊗ f1, . . . , en ⊗ fq}
(5.1.17)

b(W1 ⊗W2) = {g1 ⊗ h1, . . . , g1 ⊗ hp, g2 ⊗ h1, . . . , g1 ⊗ hp, . . . , gm ⊗ h1, . . . , gm ⊗ hp},
(5.1.18)

and φ1 : V1 → W1 and φ2 : V2 → W2 two linear maps. Given the chosen bases, A = (aij)
denotes the m×n matrix representation of φ1, while B is the p× q matrix representation
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of φ2. Then, the matrix representation A⊗B of φ1 ⊗ φ2 given the chosen bases can be
computed as the Kronecker product

A⊗B =


a11B · · · a1nB
... . . . ...

am1B · · · amnB

 . (5.1.19)

Example 9. In a repeated competitive interaction between S1 and S2, each player
offering the product set J1 = J2 = {1, 2}, providers choose their product based on their
own previous action, independently of each other. The transition matrices of each player
can be written as

M1 =
(
p1 1− p1
p2 1− p2

)
,M2 =

(
q1 1− q1
q2 1− q2

)
. (5.1.20)

The Kronecker product

M1 ⊗M2 =


p1 q1 p1 (1− q1) (1− p1) q1 (1− p1) (1− q1)
p1 q2 p1 (1− q2) (1− p1) q2 (1− p1) (1− q2)
p2 q1 p2 (1− q1) (1− p2) q1 (1− p2) (1− q1)
p2 q2 p2 (1− q2) (1− p2) q2 (1− p2) (1− q2)

 (5.1.21)

represents the transition matrix on the product space J1 × J2. This matrix gives the
transition probabilities between all combinations of single-player states if S1 follows M1
and S2 follows M2 independently of each other.

As mentioned in Section 5.1.1, the notion of tensor products has also been applied to
probability spaces, where J1 ⊗ J2 denotes the tensor product σ-Algebra of σ-Algebras
J1 and J2, and µ1 ⊗ µ2 denotes the product measure of measures µ1 and µ2.

Among the many useful features of dealing with linear maps on vector spaces, the adjugate
matrix is particularly interesting to us. The adjugate or classical adjoint of a n × n
matrix A is

adj(A)i,j = (−1)i+j det(m(A, j, i)), (5.1.22)

where m(A, i, j) is the matrix produced by removing the i-th row and the j-th column of
A. The adjugate matrix has the property that

A adj(A) = det(A)In, (5.1.23)

with In denoting the n× n identity matrix. This property can be proved using Cramer’s
rule (see e.g. Hungerford, 1974) and will be exploited in Section 5.6.
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5.2 Construction of the Markov Chain of the RM game

For research of the endearingly simple IPD, the analysis of the game’s Markov chain
for a given pair of strategies was feasible—although cumbersome—without thorough
derivation of the transition matrices (see e.g. Boerlijst et al., 1997b; Molander, 1985;
Nowak & Sigmund, 1990). However, due to the growing dimensions of the strategy space,
such a naive procedure quickly becomes impractical for more complex games such as the
RM game.

In this section, we will examine the structure of the RM game as a Markov chain. We will
build on the description of the matrices describing the constituent dynamics of the game
such as each player’s strategy, observation errors and the evolution of players’ reputation
to derive the form of the game’s transition matrices.

Since we have not yet specified the payoff structure of the game, the analysis in this
section applies to a more general class of games than just the RM game. More specifically,
the construction described in this section can be carried out for any 2-player symmetrical
Markov game with an n-dimensional strategy space.

5.2.1 Prerequisites

As described in Section 4.1.2, any availability situation of a service provider Sk is entirely
characterized by its lowest available product jmink ∈ Jk, where Jk = {1, . . . , n} denotes
the set of products of Sk.

By abuse of notation, we write for the elements of (J1 ∪ {0})× (J2 ∪ {0})

(i, j) = (jmin1 = i ∧ jmin2 = j), (5.2.1)

where jmink = 0 denotes the state that no product is available from Sk.

Since we have removed the capacity constraints, service providers cannot run out of
resources and we can ignore the possibility jmink = 0. Consequently, we can use J1 × J2
as the state space of the Markov chain (Xs)s∈N0 describing the RM game. Since the state
space is finite, we can use the σ-Algebra P(J1 × J2), where P(J1 × J2) is the power set
of J1 × J2. For the same reason, we can express the probability measure on the state
space as a probability vector. The space of possible probability vectors of the Markov
chain is the tensor product V1 ⊗ V2, where

Vk =
{

(v1
k, . . . , v

n
k ) ∈ [0, 1]n


∑
i

vik = 1
}
, k = 1, 2, (5.2.2)

denotes the space of probability vectors describing the probability measure of player Sk’s
lowest available product with P(jmink = j) = vjk. Note that the lower index indicates the
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service provider and the upper index the product. The probability distribution of the
Markov process Xs evolves via a transition matrix operating on V1 ⊗ V2.

The tensor product guarantees that the probability P((i, j)) = vi1v
j
2 of state (i, j) corre-

sponds to the basis vector ei ⊗ ej in V1 ⊗ V2, where ei denotes the i-th standard basis
vector of Rn ⊃ Vk, k = 1, 2. However, the order of the basis elements ei⊗ ej is important
for the form of the matrix representation of linear maps on the state’s probabilities. In
the following, we will use

{e1 ⊗ e1, . . . , e1 ⊗ en, e2 ⊗ e1, . . . , e2 ⊗ en, . . . , en ⊗ e1, . . . , en ⊗ en} (5.2.3)

as the basis of the underlying vector space Rn⊗Rn ⊃ V1⊗V2. This choice of basis allows
us to use the Kronecker product to represent the tensor product of linear maps on V1
and V2 in matrix form.

In the RM game, each service provider Sk follows a strategy for the repeated game, which
we will denote by σk. Without observation errors, the interaction of these strategies
yields the transition matrix

Mσ1,σ2 : V1 ⊗ V2 → V1 ⊗ V2. (5.2.4)

5.2.2 General Markov Strategies

Any Markov strategy σk of player Sk can be expressed as

Mσk
: V1 ⊗ V2 → Vk. (5.2.5)

We call strategies represented in this form general Makov strategies.

The strategy matrix can differ for different players playing the same strategy due to our
choice of basis. But the matrix for player S2 can be deduced from the strategy matrix
for player S1. Let Mσ1 be the strategy matrix for player S1. Then, the matrix for player
S2 following the same strategy σ1 = σ2 is B ·Mσ1 , where B is the matrix of the change
of basis

B : V1 × V2 → V1 × V2 (5.2.6)
ei ⊗ ej 7→ ej ⊗ ei. (5.2.7)

The matrix B accounts for the fact that the roles of own and competitor prices are
reversed for player S2 compared to player S1.

The transition matrix Mσ1,σ2 depends on both players’ strategies, where both players
choose their prices simultaneously based on the same input:

Mσ1,σ2 : V1 ⊗ V2 → V1 ⊗ V2 (5.2.8)
(v1 ⊗ v2)t 7→

(
(v1 ⊗ v2)t ·Mσ1

)
⊗
(
(v1 ⊗ v2)t ·B ·Mσ2

)
(5.2.9)
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With the forking matrix

Q : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V1 ⊗ V2 (5.2.10)
ei ⊗ ej 7→ ei ⊗ ej ⊗ ei ⊗ ej (5.2.11)

that provides both players with the same input, we can write Mσ1,σ2 as a combination of
matrix products and tensor products:

Mσ1,σ2 = Q ·
(
Mσ1 ⊗ (B ·Mσ2)

)
(5.2.12)

5.2.3 Reactive Strategies

If players choose their next action independently of their previous action, we can construct
the transition matrix in an easier way. Following common notation, we call these strategies
reactive strategies. Reactive strategies are an important subset of possible strategies, so
that in some previous studies of the IPD, researchers have restricted themselves to the
analysis of reactive strategies (e.g. Nowak & Sigmund, 1990, 1992).

Each player Sk reacts to its competitor Sl’s previously offered lowest product jil by
choosing one lowest product jmk of his own for the next stage, which is found by the map
Mσk

:

Mσk
: Vl → Vk (5.2.13)

With the help of the map

Bk : Vl → Vk (5.2.14)
ei 7→ ei, (5.2.15)

which accounts for the fact that each player needs its competitor’s prices as input, we
can write each player’s strategy as

Mσk
= M̃σk

◦Bk (5.2.16)

with the linear map

M̃σk
: Vk → Vk. (5.2.17)

Given our canonical choice of basis for V1 and V2, Mσk
and M̃σk

have the same matrix
representation.

The Markov process of this game takes the form of a Markov chain, in which its single-
player strategies provide the components used in the construction of the game’s transition
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matrix. In fact, the transition matrix can be computed as a tensor product of the
single-player strategies

Mσ1,σ2 = Mσ1 ⊗Mσ2 (5.2.18)
=
(
M̃σ1 ◦B1

)
⊗
(
M̃σ2 ◦B2

)
(5.2.19)

=
(
M̃σ1 ⊗ M̃σ2

)
◦B, (5.2.20)

where ⊗ denotes the tensor product and B is the matrix of the change of basis

B : V1 × V2 → V1 × V2 (5.2.21)
ei ⊗ ej 7→ ej ⊗ ei. (5.2.22)

Since each M̃σk
is a linear map from Vk to Vk and due to our choice of basis for V1 ⊗ V2,

we can use the Kronecker product to compute the tensor product in 5.2.20.

Ignoring the possibility of observation errors, the distribution vector thus evolves in the
following way:

Mσ1,σ2 : V1 × V2 → V1 × V2 (5.2.23)
(v1 ⊗ v2)t 7→ (v1 ⊗ v2)t ·B ·

(
M̃σ1 ⊗ M̃σ2

)
. (5.2.24)

In case we need to test a reactive strategy with another strategy that depends on its
player’s previous action, we have to describe both strategies in their general form. Due
to our choice of basis, we can find the form of the general Markov strategy for the first
player as

Mσ1 = 1n ⊗ M̃σ1 , (5.2.25)

where 1n = (1, . . . , 1)t is the n× 1 matrix with only ones as elements and ⊗ denotes the
Kronecker product. As mentioned in Section 5.2.2, the form of the matrix for the second
player can differ. It can be constructed with the help of the basis permutation B as
B ·Mσ1 .

5.2.4 Observation Errors

As explained in Section 4.2, we want to account for the possibility of observation errors.
The lowest available price of the observed availability situation price is shifted lower or
higher from the real availability situation, each with probability ε.

E : Vk → Vk (5.2.26)
e1 7→ e1(1− ε) + e2ε (5.2.27)
ei 7→ ei(1− 2ε) + ei−1ε+ ei+1ε 1 < i < n (5.2.28)
en 7→ en(1− ε) + en−1ε (5.2.29)
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In summary, we can construct the transition matrix of the Markov process of two
competing service providers in the presence of errors using each player’s strategy and the
error transition matrix E:

M ε
σ1,σ2 = (E ⊗ E) ·Mσ1,σ2 (5.2.30)

where ⊗ denotes the Kronecker product. First, each service provider’s observations are
subject to errors. Then, these observations are combined and used as basis for each
player’s strategic decision via Mσk

.

5.2.5 Reputation

Some strategies require the introduction of a reputation as described in Section 4.2.1.
Each player Sk is assigned a reputation of rk ∈ Rk = {g, b}, where rk = g represents a
good and rk = b a bad reputation. For every stage s ∈ N0, the Markov process Xs of the
RM game is now a (J1 × J2 ×R1 ×R2)-valued random variable. We denote the vector of
the probability distribution of rk by ρk ∈ Pk, where Pk = {(ρ1

k, ρ
2
k) ∈ [0, 1]2 | ρ1

k + ρ2
k = 1}.

With the basis {eg, eb} of R2 ⊃ [0, 1]2, where eg corresponds to good and eb to bad
reputation, a probability vector in Pk can be written as (ρ1

k, ρ
2
k) = ρ1

keg + ρ2
keb.

Combining this with the model without reputation, we find that the space of probability
vectors of the Markov chain with reputation is V1 ⊗ V2 ⊗ P1 ⊗ P2. The evolution of the
distribution of reputation is defined by the map R for p, r ∈ {g, b}:

R : V1 ⊗ V2 ⊗ P1 ⊗ P2 → V1 ⊗ V2 ⊗ P1 ⊗ P2 (5.2.31)

ei ⊗ ej ⊗ ep ⊗ er 7→



ei ⊗ ej ⊗ eg ⊗ eg if i, j = 1
or i = 1, j > 1, p = b, r = g

or i > 1, j = 1, p = g, r = b

ei ⊗ ej ⊗ eg ⊗ eb if i = 1, j > 1, p = g

or i = 1, j > 1, p = b, r = b

or i, j > 1, p = g, r = b

ei ⊗ ej ⊗ eb ⊗ eg if i > 1, j = 1, r = g

or i > 1, j = 1, p = b, r = b

or i, j > 1, p = b, r = g

ei ⊗ ej ⊗ eb ⊗ eb if i, j > 1, p = r

(5.2.32)

Recall that in this chapter, c = 1 denotes the product maximizing the players’ combined
payoffs, while i corresponds to the cheapest product of S1 and j to the cheapest product
of S2. Note that since the players’ products are sorted in descending order by their price
f , i < j is equivalent to f(i) > f(j). The indices p and r refer to the reputation of S1
and S2 respectively and can take values of g for a good or b for a bad reputation.
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Thus, a player will gain a bad reputation for defecting without provocation, i.e. against
a competitor with a good reputation. Players can restore their good reputation by
cooperating, and in all other cases, the players’ reputations remain unchanged.

The introduction of reputation leads to general Markov strategies Mσk
that may depend

on the probability of all states in the previous stage:

Mσk
: V1 ⊗ V2 ⊗ P1 ⊗ P2 → Vk (5.2.33)

With these general single-player strategies, we can construct the transition matrix as

Mσ1,σ2 : V1 ⊗ V2 ⊗ P1 ⊗ P2 → V1 ⊗ V2 ⊗ P1 ⊗ P2 (5.2.34)
xt 7→ xt ·Q ·

(
Mσ1 ⊗

(
(B ⊗ A) ·Mσ2

)
⊗ πP

)
(5.2.35)

with the forking matrix

Q : V1 ⊗ V2 ⊗ P1 ⊗ P2 → (V1 ⊗ V2 ⊗ P1 ⊗ P2)⊗3 (5.2.36)
x 7→ x⊗ x⊗ x, (5.2.37)

the projection

πP : V1 ⊗ V2 ⊗ P1 ⊗ P2 → P1 ⊗ P2 (5.2.38)
ei ⊗ ej ⊗ ep ⊗ er 7→ ep ⊗ er (5.2.39)

and the permutation matrices

B : V1 ⊗ V2 → V1 ⊗ V2 (5.2.40)
ei ⊗ ej 7→ ej ⊗ ei (5.2.41)

and

B̃ : P1 ⊗ P2 → P1 ⊗ P2 (5.2.42)
ep ⊗ er 7→ er ⊗ ep. (5.2.43)

By abuse of notation, we keep writing M for general Markov strategies and Q for the
matrix that provides the other maps with the input.

Of course, for reactive strategies we can construct the transition matrix simply as

Mσ1,σ2 =
(
B ⊗ B̃

)
· (M1 ⊗M2 ⊗ I4), (5.2.44)

where In is the n-dimensional identity matrix. However, since in this case neither strategy
depends on reputation, we will save some notation and ignore reputation.
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At every stage s, the reputation will be updated based on the previous actions including
observation errors. Then, each player sets prices according to his strategy and the
updated reputation:

M r
σ1,σ2 = R ·Mσ1,σ2 (5.2.45)

M ε,r
σ1,σ2 = (E ⊗ E ⊗ I4) ·R ·Mσ1,σ2 (5.2.46)

Here, the upper index r indicates the consideration of reputation in the transition
matrix.

5.3 Payoff Structure in the Markov RM game

As mentioned in Section 4.2 of the previous chapter, demand and prices of the RM game
are setup like in the IPD, which results in a similar dilemma for the players: Each service
provider has an incentive to underprice his competitor, since there is always a price level
that leads to higher revenues than sharing earnings with the competitor at the higher
price level. However, if both players keep underpricing each other, they will end up with
the unprofitable Competitive Spiral Down effect.

In this section, we will describe the payoff structure of the Markov RM game that allows
us to maintain these properties. We will show that the dilemma occurs naturally for a
host of demand models, as long as the prices are set up in a myopic way. In particular, the
pricing structure needs to provide prices that make narrowly underpricing the competitor
a profitable option, at least for a single stage.

In the prisoner’s dilemma, the payoffs are characterized by two inequalities:

T > R > P > S (5.3.1)
2R > T + S (5.3.2)

As Boerlijst et al. (1997a) put it, “R stands for the reward for mutual cooperation, P is
the penalty for mutual defection, T is the temptation payoff for unilaterally defecting
and S the sucker payoff for being exploited.”

For k = 1, 2 we introduce the maps Yk : J1 × J2 → R+ describing the revenue made by
service provider Sk. In our symmetric setting, we have Y1(i, j) = Y2(j, i). In order to
have the RM game represent a generalization of the IPD, we have to adapt Inequalities
5.3.1 and 5.3.2 to the state space J1 × J2.
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5.3.1 Assumptions

For a generalization of T > R, we have to keep in mind that the RM game offers
each player many possibilities to undercut its opponent due to multiple price points.
Assuming that the price levels are chosen appropriately for the demand model, narrowly
undercutting is always profitable. However, this cannot be guaranteed for undercutting
by multiple classes, since a player may end up dropping prices so far that the advantage of
attracting the demand from his competitor is outweighed by the disadvantage of earning
far less per customer. It is therefore only necessary that a player is always better off
being the only player undercutting than having both players drop their prices.

Y1(i+ 1, i) > Y1(i, i) (5.3.3)
Y1(i+m, i) > Y1(i+m, i+m) (5.3.4)

The first Inequality 5.3.3 shows that it is optimal for each service provider to marginally
undercut its competitor, thus we have T > R for undercutting by a single class. Unilat-
erally undercutting by multiple classes as in Inequality 5.3.4 is still better than mutually
choosing the low price, therefore we always have T > P . However, it is not guaranteed
that the payoff is higher than the payoff for mutual cooperation.

In the RM game without capacity constraints, the cooperative threshold product c denotes
the product that maximizes the joint revenue of both players. Since in this chapter, the
most expensive product is jointly optimal, we have Y1(c, c) = Y1(1, 1) > Y1(i, i) for any
i > 1. As a regularity assumption on the prices and the demand model, we assume that
there exists no other local maximum of both players’ joint revenue.

Y1(i, i) > Y1(i+m, i+m) ∀i,m ≥ 1 (5.3.5)

Consequently, as soon as the price of the offered products falls below the price of c = 1,
both players undercutting results in lower revenue for both players, R > P .

Intuitively, there is not much reason for any customer in a sensible demand model to buy
a product at a higher price than the lowest offered, which leads to next to no expected
purchases.

Y1(i, i+m) < Y1(n, n) (5.3.6)

Inequality 5.3.6 refers to the sucker payoff, which in our symmetric setup is always lower
than complete mutual defection, thus P > S.

Finally, the last inequality in the prisoner’s dilemma’s payoff needs to be fulfilled for
every class with a lower price than the cooperative threshold product c = 1.

2Y1(i, i) > Y1(i, i+m) + Y1(i+m, i) ∀i ≥ 1 (5.3.7)
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Inequality 5.3.7 creates the dilemma that the joint revenue of mutual cooperation is
higher than that of unilateral defection, although unilateral defection is optimal for each
player due to Inequality 5.3.3.

The Inequalities 5.3.3 – 5.3.7 guarantee the connection of the RM game to the IPD. For
n = 2, c = 1, these inequalities can be simplified to the familiar Inequalities 5.3.1 and
5.3.2 of the prisoner’s dilemma.

5.3.2 Payoff Calculation

The payoff sk for each player Sk can be calculated as the scalar product of the stationary
distribution and a reward vector yk:

sk = πt · yk (5.3.8)

y1 =
n∑
i=1

n∑
j=1

Y1(i, j)ei ⊗ ej (5.3.9)

y2 =
n∑
i=1

n∑
j=1

Y2(i, j)ei ⊗ ej (5.3.10)

=
n∑
i=1

n∑
j=1

Y1(j, i)ei ⊗ ej (5.3.11)

= B · y1 (5.3.12)

where B is the change of basis

B : V1 × V2 → V1 × V2 (5.3.13)
ei ⊗ ej 7→ ej ⊗ ei (5.3.14)

introduced in Section 5.2.

5.3.3 Examples

In this section, we will examine a variety of demand models used frequently in the
RM literature (Talluri & van Ryzin, 2004b, pp.301–332). We will find that for many
demand models, the assumptions 5.3.3 – 5.3.7 applying to the revenue can be satisfied
by appropriately chosen prices.

In the following demand models, we will assume that the demand Dk for Sk’s products
is concentrated on the lowest product of each player at any stage s, so that we have
Dk(j, jmink , jminl ) = 0 for j 6= jmink . Thus, in order to shorten notation, we can concentrate
on the lowest products and write D1(i, j) = D1(i, jmin1 = i, jmin2 = j) and D2(i, j) =
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D2(j, jmin2 = j, jmin1 = i). This notation allows the formulation as a map Dk : J1 × J2 →
R+, which demonstrates the connection to the revenue function Yk. In fact, the revenue
for player Sk for a product constellation (jmink = i, jminl = j) can be calculated as

Yk(i, j) = Dk(i, j)f(i). (5.3.15)

Without loss of generality, we will take the point of view of the first player, similarly to
Section 5.3.1.

Fixed valuation A simple model to describe customer behavior is a fixed valuation
model (see e.g. Martínez-de Albéniz & Talluri, 2011). Customers can buy any class j
with a lower or equal price than an arbitrary class c̃ and no class with a higher price.
Obviously, c̃ is the jointly optimal product in this model. Without loss of generality,
we can ignore the more expensive products and assume that c̃ = c = 1. In this model,
customers always buy the cheapest product in the market, and if both players offer the
same price, each gets half the demand. The demand function can be written as

D1(i, j) =


D0 if i ≥ c, i > j
1
2D0 if i ≥ c, i = j

0 else
(5.3.16)

with a constant D0. In this model, the Inequalities 5.3.3 – 5.3.7 are fulfilled if and only if
2f(i+ 1) > f(i) > f(i+ 1).

Uniformly distributed valuation A uniform distribution of customers’ valuation leads
to a linear demand model. Keeping the assumption that customers buy the cheapest
class, and choose randomly between competitors if both players offer the same price, we
find the demand function

D1(i, j) =


D0

(
1− f(i)

f(n)

)
if i > j

1
2D0

(
1− f(i)

f(n)

)
if i = j

0 else
(5.3.17)

with a constant parameter D0. More generally, a linear form of demand leads to

D1(i, j) =


D0 − ψf(i) if i > j
1
2(D0 − ψf(i)) if i = j

0 else
(5.3.18)

with constant parameters D0 and ψ. Note that choosing ψ = D0
f(n) leads to the model

characterized by Equation 5.3.17. Similarly to the fixed valuation model, we find that
a game using this model satisfies Inequalities 5.3.3 – 5.3.7 if and only if the prices are
chosen in the range 2f(i+ 1) > f(i) > f(i+ 1).
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Linear demand Alternatively, the demand can be assumed to be linear in both players’
prices (see e.g. Ledvina & Sircar, 2011), so that the demand function takes the form

D1(i, j) = D0 − ψ(f(i)− f(j)). (5.3.19)

Inequalities 5.3.3 – 5.3.7 are fulfilled for every choice of prices, as long as ψ > D0
f(n) .

Utility maximization Isler and Imhof (2008) used a demand model with exponential
valuation. Each customer tries to maximize his utility, where a customer’s total utility
consists of the base utility U0 denoting the customer’s willingness-to-pay, the utility
U associated with player S1 and the utility Ū associated with S2. These utilities are
assumed to be distributed independently and according to the exponential distributions

U0 ∼ β exp(−βx), (5.3.20)
U ∼ α exp(−αx), (5.3.21)
Ū ∼ ᾱ exp(−ᾱx). (5.3.22)

The demand for a product is the result of a choice process, in which the customer weighs
up the alternatives. If the first player offers the lowest product i and the second player
offers j, a customer purchases product i if it does not exceed his valuation

U0 − U − f(i) > 0 (5.3.23)

and it is better than the competitor’s product

U0 − U − f(i) < U0 − Ū − f(j). (5.3.24)

For their simulation, Isler and Imhof used the parameters β = 0.01 and α = ᾱ = 0.5 and
the prices displayed in Table 5.1.

If we ignore the products with a higher price than the jointly optimal product j = 5 with
f(j) = 100, we can verify that this demand model with Isler and Imhof’s parameters and
prices fulfills Inequalities 5.3.3 – 5.3.7.

j 1 2 3 4 5 6 7 8 9 10 11 12 13
f(j) 300 240 180 140 100 65 40 28 20 14 10 7 5

Table 5.1: Prices used by Isler and Imhof (2008)
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Normally distributed valuation In the demand model used in Section 4.4 to simulate
the RM game with capacity constraints, customers always buy the cheapest class in
the market. Similarly to previous examples, demand is evenly split if both players offer
the same products at the same price. Customers’ willingness-to-pay is determined by a
normal distribution with mean µ ≈ 100 and standard deviation σ ≈ 40. We find that
Inequalities 5.3.3 – 5.3.7 define a range of possible prices. In particular, the set of prices
used in Section 4.4 and reproduced in Table 5.2 fulfills Inequalities 5.3.3 – 5.3.7, as long
as we ignore the products above the jointly optimal product j = 4 with f(j) = 87.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f(j) 260 147 109 87 71 58 47 38 30 23 17 12 8 5 3 2

Table 5.2: Prices used in the simulation in Section 4.4

5.4 Limiting Behavior of Repeated-Game-Strategies

Throughout this section, each service provider will use the psychic forecast dP , so that the
pair of strategies of both players playing DEFECT(dP ) converge to the non-cooperative
Nash equilibrium strategies of the single-stage game.

Without capacity constraints and dependence solely on the previous stage, DEFECT
reduces to undercutting the competitor’s previous availability situation j by making the
cheaper product j + 1 available. COOP consists of playing DEFECT, without offering
any product cheaper than the jointly optimal product c. Since we assume c = 1 in this
chapter, COOP reduces to choosing exactly the jointly optimal product.

5.4.1 Strategies

In Section 4.2, we have introduced strategies for the multi-stage RM game that served
as a basis for our further analysis of competitive interactions between service providers
in Chapter 4. Many of these strategies were adapted from the IPD, which can be seen
as a special case of the Markov version of the RM game formulated in Chapter 5. In
this section, we will show how the strategies used in Chapter 4 can be formulated in the
framework presented in Section 5.2.
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ALLD The strategy ALLD is simply a repetition of the non-cooperative single-stage
strategy DEFECT. Since we have removed the capacity constraints in this chapter, the
symmetric case of two ALLD playing competitors leads to the Bertrand Nash equilibrium,
in which both players always choose the lowest price. As ALLD depends only on the
competitor’s previous move, it can be formulated as a reactive strategy with a single-player
strategy matrix:

MALLD : Vl → Vk (5.4.1)
ei 7→ emin(i+1,n) (5.4.2)

ALLC Similarly, ALLC is a repetition of the cooperative single-stage strategy COOP,
which will lead to tacit collusion in the symmetric case. This strategy is independent of
any player’s actions. However, we present it here in reactive strategy form, since this is
the most compact form of describing strategies in our framework:

MALLC : Vl → Vk (5.4.3)
ei 7→ e1 (5.4.4)

TFT Tit for Tat (TFT) is a reactive strategy that has performed extraordinarily well
both in the IPD as well as in the RM game of Chapter 4, as long as there were no
observation errors. A TFT player will play DEFECT, if the competitor priced lower
than the level of tacit collusion given by the cooperative threshold product c. Otherwise,
he will play COOP.

MTFT : Vl → Vk (5.4.5)

ei 7→

e1 if i ≤ c

emin(i+1,n) else
(5.4.6)

GTFT A more robust version of TFT is Generous Tit for Tat (GTFT), which is also a
reactive strategy with the single-player strategy matrix

MGTFT : Vl → Vk (5.4.7)

ei 7→

e1 if i ≤ c

emin(i+1,n)(1− γ) + ecγ else
. (5.4.8)

Here, γ is the generosity probability, i.e. the probability with which a GTFT-playing
service provider will play COOP, although its competitor has played DEFECT in the
previous stage. This is the only deviation from the TFT strategy.
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CTFT Another robust modification of TFT is Contrite Tit for Tat (CTFT). Since it
uses reputation, CTFT is not a reactive strategy, and has to be modeled in the general
form for Markov strategies on the lifted state space J1 × J2 × R1 × R2. For player S1,
the strategy is given by

MCTFT : V1 ⊗ V2 ⊗ P1 ⊗ P2 → Vk (5.4.9)

ei ⊗ ej ⊗ ep ⊗ er 7→

e1 if p = b ∨ r = g

emin(j+1,n) if p = g ∧ r = b
. (5.4.10)

Thus, CTFT plays DEFECT, if its player has a good reputation and its competitor a
bad reputation. Otherwise it cooperates.

PAVLOV In the IPD, PAVLOV is an example of a win-stay, lose-shift strategy, that
works fundamentally different from TFT and its modifications. Instead of trying to
punish aggressors and cooperate with the rest, PAVLOV will try to avoid the two least
profitable situations: exploitation at the hands of the competitor and mutual defection.
After being exploited, PAVLOV will switch to playing DEFECT, and after a round of
mutual defection, PAVLOV will switch to playing COOP. Otherwise, PAVLOV will
repeat playing COOP or DEFECT respectively. This mechanism cannot be formulated as
a reactive strategy, since it depends on both players’ previous actions. Instead, we need
the general Markov strategy form on J1 × J2 with the single-player strategy matrix

MPAV LOV : V1 ⊗ V2 → Vk (5.4.11)

ei ⊗ ej 7→


e1 if i, j = 1

or i, j > 1
emin(j+1,n) else

. (5.4.12)

MATCH Simple price matching can be formulated as the reactive strategy MATCH
with the single-player strategy matrix

MMATCH : Vl → Vk (5.4.13)
ei 7→ ei. (5.4.14)

UNDER Similarly to MATCH, underpricing is a reactive strategy called UNDER with
the single-player strategy matrix

MUNDER : Vl → Vk (5.4.15)
ei 7→ emin(i+1,n). (5.4.16)
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Note that since we have removed the capacity constraints of the game and use the psychic
demand forecast dP in this chapter, UNDER is the same as the strategy ALLD. Recall
that these strategies are different in the more general case of Chapter 4, where the
single-stage non-cooperative best response does not need to be the same as underpricing
the competitor.

5.4.2 Stationary Measures

In this section, we will examine the long-term behavior of the Markov chain constructed
in Section 5.2 using strategies from Section 5.4.1. This is similar to Section 4.4.1, where
we investigated the long-term behavior of the RM game with capacity constraints with
the help of simulations. Instead of using simulations, we will analyze the stationary
measures of the Markov chains for different combinations of strategies. Since there are
too many combinations to present here in a compact form, we will focus on notable
combinations, similarly to Section 4.4.1. In particular, we will examine the symmetric
matchup of two players using the same strategy. This will help us to determine how
close strategies are to the joint optimum as well as their robustness against erroneous
observations. Additionally, the behavior of PAVLOV will require our special attention.

ALLC vs. ALLC In the matchup of two unconditional cooperators, the cooperating
state (c, c) = (1, 1) is absorbing and accessible from all other states (i, j) ∈ J1 × J2.
Since ALLC does not take the competitor’s previous actions into account, this is true
independently of the possibility of observation errors. Thus, the unique stationary
measure is the Dirac measure π = δ{(1,1)}, representing almost sure tacit collusion.

ALLC vs. ALLD For a cooperative ALLC player against an aggressive ALLD player,
the state (c, c+ 1) = (1, 2) is absorbing and accessible from all other states in the state
space, independently of observation errors. This results in the unique stationary measure
π = δ{(1,2)}. In the state (1, 2), the ALLD narrowly underprices the ALLC player, which
leads to an exploitation of the cooperative player.

ALLD vs. ALLD For two defectors that repeat playing the non-cooperative Nash
equilibrium of the single stage, the state of the lowest prices (n, n) is absorbing and
accessible from all other states (i, j) ∈ J1 × J2. Since this is true with and without
observation errors, the unique stationary measure in both cases is π = δ{(n,n)}. In this
case, the stationary measure demonstrates the effect of the Competitive Spiral Down,
where both players end up with the unprofitable repetition of the single-stage Bertrand
Nash equilibrium.
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TFT vs. TFT Without errors, the Markov chain of the symmetric case TFT vs. TFT
possesses three closed communicating classes in {(1, 1)}, {(1, n), (n, 1)} and {(n, n)}.
Therefore, the stationary distribution depends on the starting distribution. Since there
are no errors, neither player will deviate from mutual cooperation or mutual defection.
Therefore, the state of mutual cooperation (1, 1) is accessible only from itself, while
(n, n) is accessible only from all states of mutual defection {(i, j) | i, j > 1}. The
third closed communicating class {(1, n), (n, 1)} is accessible from the remaining states
{(1, j) | j > 1} ∪ {(i, 1) | i > 1}. Given a starting distribution of mutual cooperation
that typically characterizes TFT, the appropriate stationary measure is π = δ{(1,1)}.

The introduction of observation error drastically changes the shape of the stationary
measure. We analyze the cases n = 2 and n > 2 separately.

n = 2 This case is equivalent to the IPD, where n = 2, c = 1. For the IPD, Molander
(1985) showed that observation errors lead to a random walk on the state space
with the unique stationary measure π = 1

4

(
δ{(1,1)} + δ{(1,2)} + δ{(2,1)} + δ{(2,2)}

)
.

n > 2 This is the most important case for the RM game, since service providers can file
arbitrary prices. Consequently, we can assume that there is more than a single price
level below the price of the cooperative optimum. As before without observation
errors, the state (n, n) is absorbing and thus generates the closed communicating
class {(n, n)}. However, in contrast to the case without observation errors, (n, n) is
accessible from all other states and thus generates the only closed communicating
class of the Markov chain. Since stationary measures are concentrated on closed
communicating classes, the unique stationary measure is the Dirac measure π =
δ{(n,n)}. Thus, in this case, any possibility of observation errors will ultimately
lead to the Competitive Spiral Down, in which both players play the single-stage
Bertrand Nash equilibrium at every stage.

GTFT vs. GTFT Without observation errors, the state of mutual cooperation (1, 1) is
absorbing. Due to GTFT’s generosity, this state is also accessible from all other states.
Consequently, the stationary distribution of the symmetric case GTFT vs. GTFT without
errors is cooperation π = δ{(1,1)}.

With observation errors, we have to distinguish two cases similarly to the matchup TFT
vs. TFT.

n = 2 This case is equivalent to the IPD, which has been extensively studied by Molander
(1985), although the author does not explicitly give the stationary measure, which
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comes to

π = C

(
δ{(1,1)} + (1− γ)ε

(1− ε) γ − ε
(
δ{(1,2)} + δ{(2,1)}

)
+ (1− 2γ + γ2) ε2

(1− 2ε+ ε2) γ2 + (1− ε) 2εγ + ε2 δ{(2,2)}

)
.

(5.4.17)

with a constant C.

n > 2 There is only a single closed communicating class, since generosity causes the state
of mutual cooperation (1, 1) to be accessible from any state in the state space.
Starting from (1, 1), observation errors can trigger defection, so that the closed
communicating class in this case is {(i, j) | i, j ∈ {1, 3, 4, 5, . . . , n}}. Note that no
GTFT player will ever choose 2, since products i > 1 are only chosen as a means
of retaliation. In this case, the competitor was observed to be playing i > 1 and
thus the reaction consists of choosing i+ 1 > 2.

CTFT vs. CTFT In the scenario of two CTFT players without observation errors, the
state of mutual cooperation with good reputations (1, 1, g, g) is absorbing and accessible
from all states in the state space with reputation J1 × J2 × R1 × R2. Therefore, the
unique stationary measure is π = δ{(1,1,g,g)}.

Even with observation errors, we do not need a case-by-case analysis. The CTFT players
each correct their own mistakes. If one player is mistakenly observed to be defecting,
he gets assigned a bad reputation and is punished for one stage, before both return to
cooperating. If both players are observed to be defecting, they each get assigned a bad
reputation and immediately cooperate. Thus, there is only a single closed communicating
class {(1, 1, g, g), (1, 1, b, b), (1,min(3, n), b, g), (min(3, n), 1, g, b)}, on which the stationary
measure is concentrated. Since this closed communicating class only contains states
with the two products i = 1 and j = min(3, n), this is equivalent to the IPD and we
can compute the stationary measure explicitly. For the case n = 2 of the IPD, where
min(3, n) = n, we find

π = 1
1 + 2ε

((
1− ε2

)
δ{(1,1,g,g)} + ε2δ{(1,1,b,b)} + εδ{(1,2,b,g)} + εδ{(2,1,g,b)}

)
, (5.4.18)

and for n > 2, where min(3, n) = 3, we have

π = 1
1 + 2ε

((
1− ε2

)
δ{(1,1,g,g)} + ε2δ{(1,1,b,b)} + εδ{(1,3,b,g)} + εδ{(3,1,g,b)}

)
. (5.4.19)
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PAVLOV vs. PAVLOV For a pair of PAVLOV players without observation errors, the
state (1, 1) is absorbing and accessible from all other states. Thus, π = δ{(1,1)} is the
unique stationary measure of the Markov chain.

With observation errors, there exists only a single closed communicating class, since (1, 1)
is accessible from every state in the state space. Observation errors can lead to defection
from mutual cooperation, as long as one player is observed to be cooperating and the
other to be defecting. We have to distinguish two separate cases to determine the form
of the closed communicating class.

n = 2 This case represents the IPD case, in which players will react to an observation (i, j)
with i 6= j with mutual defection. Similarly, (i, i) will lead to mutual cooperation
in the next stage. The closed communicating class is thus {(1, 1), (2, 2)}.

n > 2 For a larger amount of products, the reaction to an observation of (1, 2) is to play
(3, 2). Without observation errors, this will lead to mutual cooperation in the next
stage. However, if players observe (3, 1) instead, this will lead to (2, 4) via mutual
defection in the next stage. The resulting closed communicating class in this case
is {(1, 1)} ∪ {(2, i) | i > 2} ∪ {(i, 2) | i > 2}.

MATCH vs. MATCH Without errors, the complete state space is partitioned into
closed communicating classes {(i, j), (j, i)}. Each of these closed communicating classes
possesses stationary measure π = 1

2

(
δ{(i,j)} + δ{(j,i)}

)
. In the case i = j, the closed

communicating class simplifies to {(i, i)} and the stationary measure is π = δ{(i,i)}.

With observation errors, MATCH vs. MATCH turns into a random walk on J1 × J2, for
which the stationary measure is the uniform distribution on the state space.

PAVLOV vs. MATCH While MATCH follows a similar logic as the Tit for Tat-like
strategies, it behaves very differently to PAVLOV. Thus, we will take a look at PAVLOV
vs. MATCH in more detail.

Without observation errors, we find that the stationary measure is concentrated on
separate closed communicating classes. More specifically, we have the following cases:

n = 2 There are two closed communicating classes, {(1, 1)} and {(1, 2), (2, 1), (2, 2)}. Thus,
the starting distribution is responsible for the resulting stationary distribution:
If the players start in the cooperative stance (1, 1), then the process will remain
at (1, 1) with probability one. Otherwise, the process will end up in the closed
communicating class {(1, 2), (2, 1), (2, 2)}.

n > 2 Similarly to the previous case, we find two closed communicating classes {(1, 1)}
and {(1, 2), (2, 3), (3, 1)}. The only difference to the previous case n = 2 is that
DEFECT is not restricted by the number of classes n.
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With observation errors, we find that there is always only a single closed communicating
class, with a structure depending on the parameter n.

n = 2 In this case, due to observation errors, any action can be considered as cooperative
by the competitor. Furthermore, we find that observation errors render all states
accessible, so that all states are members of the closed communicating class.

n > 2 In this case, the closed communicating class encompasses more states in which
MATCH exploits PAVLOV than the other way around. This is a result of the
interaction of PAVLOV and MATCH as well as of the influence of observation
errors. In particular, the mechanism of PAVLOV will lead to cooperation, after
which both strategies will spiral down to mutual defection, at which point the cycle
restarts. Observation errors lead to the accessibility of more states than in the case
without observation errors for n > 2 discussed above. The closed communicating
class is {(1, j) | j ∈ {1, . . . , n}} ∪ {(2, j) | j ∈ {2, . . . , n}} ∪ {(i, 1) | i ∈ {3, . . . , n}}.

5.4.3 Erroneous Threshold Products

So far, we have always assumed that both service providers have perfect knowledge of
the cooperative threshold product c. In this section, we will explore the consequences
of each player Sk having his own version ck of the cooperative threshold product. This
may be caused e.g. by errors during estimation, if the player tries to compute ck from
his observations, or it may be the result of communication mishaps, if the players try to
signal the correct value for ck to one another.

In the preceding sections of this chapter, we have only treated the case c1 = c2 = 1.
However, different values of ck lead to changes in the strategies. We will use TFT and
PAVLOV without errors to highlight typical behavior, since both strategies represent
different, but successful, approaches to the IPD and the RM game. TFT has proved
successful owing to its nice attitude, forgiveness, retaliation and clarity (as noted by
Axelrod (1984)) and the success of TFT was the catalyst for the creation of many other
similar strategies in the IPD as well as in the RM game. In fact, its robust variations
are intended to maintain these properties despite the presence of observation errors.
In contrast to this, PAVLOV adds the possibility to exploit suckers, while giving up
robustness against aggressors. Wedekind and Milinski (1996) found that human players
of the IPD ended up playing either a variation of TFT or PAVLOV. This highlights
the intuitive behavior of these strategies, which strengthens the case for their closer
examination.

Both strategies are easily adapted to this case. In this section, COOP amounts to playing
ck. DEFECT means underbidding the competitor, while never offering a more expensive
product than ck, since ck is taken to be jointly optimal. Recall that in this section, we
consider the case without observation errors.
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5 The Repeated RM Game as a Markov Process

TFT

MTFT : Vl → Vk (5.4.20)

ei 7→

eck
if i ≤ ck

emin(max(i+1,ck),n) else
, (5.4.21)

where we used the notation of Section 5.4.1.

• If c1 = c2 6= c, we only need to replace c = 1 by c1 to execute the changes in the
stationary distributions. More specifically, there are three closed communicating
classes in {(c1, c1)}, {(c1, n), (n, c1)} and {(n, n)}. Similarly to the case c = 1 in
Section 5.4.2, the state of mutual cooperation (c1, c1) is accessible only from itself,
while (n, n) is accessible only from all states of mutual defection {(i, j) | i, j >
c1}. The third closed communicating class {(c1, n), (n, c1)} is accessible from the
remaining states {(c1, j) | j > c1} ∪ {(i, c1) | i > c1}. Consequently, a pair of TFT-
playing service providers end up each playing c1 with probability 1 as long as they
start with a cooperative stance. The jointly optimal payoff is achieved by playing
c, thus mistakes in determining the correct cooperative threshold product lead to a
loss in revenue. However, there is no structural change and the Competitive Spiral
Down will be avoided just the same, as long as both players do not use c1 = c2 = n.

• If c1 6= c2, we find more drastic effects on the stationary distributions. In this
case, the state of a game of two TFT players will converge to the pair of lowest
prices (n, n) with probability 1. Thus, even without any observation errors, we find
the Competitive Spiral Down effect, so that the game ends up in the single-stage
Bertrand-Nash equilibrium.

PAVLOV In the notation of Section 5.4.1, PAVLOV takes the form

MPAV LOV : V1 ⊗ V2 → Vk (5.4.22)

ei ⊗ ej 7→


eck

if i, j ≤ ck

or i, j > ck

emin(max(j+1,ck),n) else
. (5.4.23)

• If c1 = c2 6= c, there is no structural change in the stationary distributions.
Similarly to TFT, a pair of PAVLOV-playing firms ends up cooperating, although
at a different level and therefore with a lower payoff than in the optimal case
c1 = c2 = c.

• If c1 6= c2, two PAVLOV players end up alternating between cooperation and
defection. This is the same level of cooperative behavior that PAVLOV shows
against a pure aggressor playing ALLD.
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5 The Repeated RM Game as a Markov Process

While knowing the exact value of c might be impossible in practice, slight deviations
from the optimal value lead only to slight deviations from the jointly optimal payoff.
However, our results indicate that it is paramount for both players to use the same value
for c when implementing a repeated game strategy. Otherwise, even the smallest error in
c can lead to a complete Competitive Spiral Down.

Consequently, we find that players should not try to estimate the correct value of c based
on their observations, as this bears the danger of ending up with different values for
different players. Instead, service providers should communicate with their competitors
in order to come to an agreement on the value of c. This way, it can be ensured that
both use the same value, even if it may be wrong. As we have demonstrated in this
section, neither player has an incentive to be dishonest in this situation due to the danger
inherent in using different values for the cooperative threshold product.

5.4.4 Example

Since the state space J1 × J2 of the RM game Markov chain is n2-dimensional, the
depiction of transition matrices can become infeasible quickly. Nevertheless, we believe
that an explicit discussion of the properties of the Markov chain for the strategies
presented in Section 5.4.1 can benefit the reader, as long as the examples are kept as
simple as possible. For the case n = 2, c = 1 of the IPD, Molander (1985) has analyzed
transition matrices and stationary measures of GTFT against some typical strategies.
However, in Section 5.4.2, we have seen that as soon as there is more than one price below
the price level of tacit collusion, the properties of the stationary measure of TFT vs. TFT
undergo a radical change in the presence of observation errors. Thus, for illustration
purposes we will give examples for typical pairs of strategies for the smallest choice of
parameters n = 3, c = 1 that satisfies n > c+ 1.

The matrices of the single-player strategies are the building blocks of the transition
matrices of the Markov chain. As discussed in Section 5.2, these can take different forms.
For a reactive strategy, the single-player strategy matrix M̃σ is a 3× 3 matrix, whereas
a single-player strategy Mσ in the form of a general Markov strategy requires a 9× 3
matrix. With reputation, as is necessary for CTFT, a single-player strategy is described
by a 36× 3 matrix even in this simple example. Since this renders the example not very
instructive, we will not present matchups involving CTFT here, even though the analysis
in this case can be carried out similarly to our examples.

The stationary measure vector π can be calculated as a left-eigenvector to the eigenvalue
1, since πM = π, where M is the transition matrix of the Markov process. However,
in some cases it can be more simple as well as more instructive to use a stochastic
reasoning. As a part of simplifying the analysis, we can identify unreachable states as
they are indicated by columns of the transition matrix containing only zeros. We will
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5 The Repeated RM Game as a Markov Process

call the restriction of a Markov chain to the state space without the unreachable states
the reduced Markov chain. Due to these states being unreachable, they cannot influence
the stationary measure of the process. Therefore, we can carry out the calculation of the
stationary measure vector for the reduced Markov chain and then lift the result to the
original state space.

Independently of the strategies under examination, we need the matrix E of the observa-
tion error with probability ε

E =

1− ε ε 0
ε 1− 2ε ε
0 ε 1− ε

 , (5.4.24)

as well as the basis change matrix B

B =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


. (5.4.25)

As benchmarks, we will use the non-cooperative best response ALLD and cooperative
best response ALLC strategies throughout this section. Described in the form of reactive
strategies these take the form

M̃ALLD =

0 1 0
0 0 1
0 0 1

 (5.4.26)

and

M̃ALLC =

1 0 0
1 0 0
1 0 0

 . (5.4.27)

TFT

Since TFT is a reactive strategy, the single-player strategy TFT yields the 3×3 matrix

M̃TFT =

1 0 0
0 0 1
0 0 1

 . (5.4.28)
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TFT vs. TFT Without observation errors, we get for the transition matrix of the
matchup TFT vs. TFT

MTFT,TFT = B
(
M̃TFT ⊗ M̃TFT

)
(5.4.29)

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1


. (5.4.30)

There are three closed communicating classes, {(1, 1)}, {(1, 3), (3, 1)} and {(3, 3)}. We
can compute a stationary distribution πi for each closed communicating class:

π1 = (1, 0, 0, 0, 0, 0, 0, 0, 0) = e1 ⊗ e1 (5.4.31)

π2 = 1
2(0, 0, 1, 0, 0, 0, 1, 0, 0) = 1

2 (e1 ⊗ e3 + e3 ⊗ e1) (5.4.32)

π3 = (0, 0, 0, 0, 0, 0, 0, 0, 1) = e3 ⊗ e3 (5.4.33)

Here, π1 belongs to the closed communicating class {(1, 1)}, which is not accessible
from any other state. The measure π2 belongs to {(1, 3), (3, 1)}, which is accessible
from the states {(1, 2), (1, 3), (2, 1), (3, 1)}, and π2 to {(3, 3)}, which is accessible from
{(2, 2), (2, 3), (3, 2), (3, 3)}. Thus, if and only if the initial move is cooperative, as is
usually assumed for TFT, the cooperative measure vector π1 denotes the long-term
outcome of the game. Otherwise, the game can end up either in the single-stage Bertrand
equilibrium of the lowest prices (3, 3) or a mix of (1, 3) and (3, 1), where players alternate
cooperating and defecting.

Building on MTFT,TFT , we can construct the transition matrix with errors

M ε
TFT,TFT =



(1− ε)2 0 (1− ε) ε 0 0 0 (1− ε) ε 0 ε2

(1− ε) ε 0 ε2 0 0 0 (1− ε)2 0 (1− ε) ε
0 0 0 0 0 0 (1− ε) 0 ε

(1− ε) ε 0 (1− ε)2 0 0 0 ε2 0 (1− ε) ε
ε2 0 (1− ε) ε 0 0 0 (1− ε) ε 0 (1− ε)2

0 0 0 0 0 0 ε 0 (1− ε)
0 0 (1− ε) 0 0 0 0 0 ε
0 0 ε 0 0 0 0 0 (1− ε)
0 0 0 0 0 0 0 0 1


. (5.4.34)
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Similarly to MTFT,TFT , displayed in Equation 5.4.29, the states (1, 2), (2, 1), (2, 2), (2, 3)
and (3, 2) are unreachable. However, in contrast to the matrix in Equation 5.4.29, the
only closed communicating class is {(3, 3)}. Since for ε > 0, the state (3, 3) is accessible
from all other states and is absorbing, the unique stationary distribution vector of this
Markov chain π = (0, 0, 0, 0, 0, 0, 0, 0, 1)t = e3 ⊗ e3. Therefore, as we have shown in
Section 5.4.2, any positive error probability will lead to a limiting behavior of both
players always choosing the lowest price.

TFT vs. ALLD Without errors, the transition matrix of the game with σ1 = TFT and
σ2 = ALLD takes the form

MTFT,ALLD =



0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1


. (5.4.35)

The unique stationary measure vector π = (0, 0, 0, 0, 0, 0, 0, 0, 1)t = e3 ⊗ e3 demonstrates
that this matchup will end up with both competitors always choosing the lowest price.

With observation errors, the transition matrix

M ε
TFT,ALLD =



0 (1− ε)2 (1− ε) ε 0 0 0 0 (1− ε) ε ε2

0 (1− ε) ε ε2 0 0 0 0 (1− ε)2 (1− ε) ε
0 0 0 0 0 0 0 (1− ε) ε

0 (1− ε) ε (1− ε)2 0 0 0 0 ε2 (1− ε) ε
0 ε2 (1− ε) ε 0 0 0 0 (1− ε) ε (1− ε)2

0 0 0 0 0 0 0 ε (1− ε)
0 0 (1− ε) 0 0 0 0 0 ε
0 0 ε 0 0 0 0 0 (1− ε)
0 0 0 0 0 0 0 0 1


(5.4.36)

can be analyzed analogously to the symmetric case TFT vs. TFT in Equation 5.4.34.
Since state (3, 3) is absorbing and accessible from all other states, as long as ε > 0, the
unique stationary measure vector is π = (0, 0, 0, 0, 0, 0, 0, 0, 1)t = e3 ⊗ e3. In other words,
observation errors do not influence the stationary measure of TFT vs. ALLD.
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GTFT

For GTFT with generosity parameter γ, the single-player matrix takes the form

M̃GTFT =

1 0 0
γ 0 1− γ
γ 0 1− γ

 , (5.4.37)

when formulated as a reactive strategy.

GTFT vs. GTFT Without errors the transition matrix

MGTFT,GTFT =



1 0 0 0 0 0 0 0 0
γ 0 0 0 0 0 1− γ 0 0
γ 0 0 0 0 0 1− γ 0 0
γ 0 1− γ 0 0 0 0 0 0
γ2 0 (1− γ) γ 0 0 0 (1− γ) γ 0 (1− γ)2

γ2 0 (1− γ) γ 0 0 0 (1− γ) γ 0 (1− γ)2

γ 0 1− γ 0 0 0 0 0 0
γ2 0 (1− γ) γ 0 0 0 (1− γ) γ 0 (1− γ)2

γ2 0 (1− γ) γ 0 0 0 (1− γ) γ 0 (1− γ)2


(5.4.38)

of the symmetric matchup GTFT vs. GTFT allows for a simple calculation of the station-
ary measure analogous to the case TFT vs. TFT with observation errors. Since for γ > 0,
the state (1, 1) is absorbing and accessible from all other states, the unique stationary
measure π = (1, 0, 0, 0, 0, 0, 0, 0, 0)t = e1 ⊗ e1 represents almost surely cooperation.

As in the other examples, MGTFT,GTFT can be used to construct the transition matrix in
the presence of observation errors M ε

GTFT,GTFT . The transition matrix M ε
GTFT,GTFT is

too big to be displayed here. However, all but four columns of M ε
GTFT,GTFT contain only

zeros. We can use this to simplify the matrix by reducing it to reachable states of the
Markov chain, since columns containing only zeros indicate unreachable states. Recall
that the state (i, j) corresponds to the basis element ei⊗ ej of the tensor product V1⊗V2.
Thus, restricting the transition matrix to the space generated by {ei ⊗ ej | i ∈ I1, j ∈ I2}
corresponds to finding the transition matrix of the Markov chain restricted to the
state space {(i, j) | i ∈ I1, j ∈ I2}. Removing the zero-columns corresponding to the
unreachable states {(1, 1), (1, 3), (3, 1), (3, 3)}, we find the reduced transition matrix as

(1− ε+ γε)2 (1− γ) ε (1− ε+ γε) (1− γ) ε (1− ε+ γε) (1− γ)2 ε2

γ (1− ε+ γε) (1− γ) γε (1− γ) (1− ε+ γε) (1− γ)2 ε

γ (1− ε+ γε) (1− γ) (1− ε+ γε) (1− γ) γε (1− γ)2 ε

γ2 (1− γ) γ (1− γ) γ (1− γ)2

 . (5.4.39)
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Since for γ, ε > 0, every element of this matrix is positive, there is only a single
communicating class and the Markov chain is irreducible. Thus, the eigenvector to the
eigenvalue 1 yields the unique stationary measure vector

πred =
(

1
γ + (1− γ)ε

)2 (
γ2, γ(1− γ)ε, γ(1− γ)ε, (1− γ)2ε2

)t
(5.4.40)

=
(

1
γ + (1− γ)ε

)2 (
γ2e1 ⊗ e1 + γ(1− γ)εe1 ⊗ e3 (5.4.41)

+ γ(1− γ)εe3 ⊗ e1 + (1− γ)2ε2e3 ⊗ e3
)

(5.4.42)

=
(

1
γ + (1− γ)ε

)2

(γe1 + (1− γ)εe3)⊗ (γe1 + (1− γ)εe3) (5.4.43)

of the reduced Markov chain. The representation of the reduced stationary distribution
in Equation 5.4.43 as a tensor product provides a simple interpretation of the stationary
measure as a result of both players playing a mixed strategy. In the tensor product
(γe1 + (1− γ)εe3)⊗ (γe1 + (1− γ)εe3), the first term (γe1 + (1− γ)εe3) denotes the first
player’s stationary strategy, while the second term denotes the second player’s stationary
strategy. The first term

(
1

γ+(1−γ)ε

)2
in Equation 5.4.43 is a normalizing factor. Thus, each

player ends up playing a mixture of the highest and lowest price, with the probability
of each action determined by the generosity parameter γ and the observation error
probability ε. In particular, we find that without observation errors, i.e. ε = 0, the
reduced stationary distribution πred = e1 ⊗ e1 is always cooperative.

Since unreachable states cannot influence the stationary distribution, we can use πred to
find the stationary distribution π of the Markov chain on the original state space:

π =
(

1
γ + (1− γ)ε

)2

(γe1 + (1− γ)εe3)⊗ (γe1 + (1− γ)εe3) (5.4.44)

=
(

1
γ + (1− γ)ε

)2 (
γ2, 0, γ(1− γ)ε, 0, 0, 0, γ(1− γ)ε, 0, (1− γ)2ε2

)t
(5.4.45)
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GTFT vs. ALLD Without observation errors, the transition matrix of GTFT against
the aggressive strategy ALLD

MGTFT,ALLD =



0 1 0 0 0 0 0 0 0
0 γ 0 0 0 0 0 1− γ 0
0 γ 0 0 0 0 0 1− γ 0
0 0 1 0 0 0 0 0 0
0 0 γ 0 0 0 0 0 1− γ
0 0 γ 0 0 0 0 0 1− γ
0 0 1 0 0 0 0 0 0
0 0 γ 0 0 0 0 0 1− γ
0 0 γ 0 0 0 0 0 1− γ


(5.4.46)

reveals the unreachable states {(1, 1), (2, 1), (2, 2), (2, 3), (3, 1)}. Restricting the transition
matrix to the space generated by {e1 ⊗ e2, e1 ⊗ e3, e3 ⊗ e2, e3 ⊗ e3} yields the transition
matrix 

γ 0 1− γ 0
γ 0 1− γ 0
0 γ 0 1− γ
0 γ 0 1− γ

 (5.4.47)

of the Markov process restricted to the reachable states {(1, 2), (1, 3), (3, 2), (3, 3)}. This
reduced Markov process is irreducible, and its unique stationary measure vector of the
reduced Markov chain is

πred =
(
γ2, γ(1− γ), γ(1− γ), (1− γ)2

)t
, (5.4.48)

which leads to the unique stationary measure vector of the original Markov chain

π =
(
0, γ2, γ(1− γ), γ(1− γ), 0, 0, 0, 0, (1− γ)2

)t
. (5.4.49)

As expected, the stationary measure for the special case γ = 0 is identical to the stationary
measure of TFT vs. ALLD.

Introducing observation errors produces the matrix M ε
GTFT,ALLD, which has the same

unreachable states as MGTFT,ALLD. Thus, it can be restricted to the reduced state space
{(1, 2), (1, 3), (3, 2), (3, 3)} to yield the reduced transition matrix


(1− ε) (γ + ε− γε) ε (γ + ε− γε) (1− γ) (1− ε)2 (1− γ) (1− ε) ε

γ (1− ε) γε (1− γ) (1− ε) (1− γ) ε
0 (γ + ε− γε) 0 (1− γ) (1− ε)
0 γ 0 (1− γ)

 (5.4.50)
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operating on the space created by {e1 ⊗ e2, e1 ⊗ e3, e3 ⊗ e2, e3 ⊗ e3}. This irreducible
Markov chain yields the reduced stationary measure vector

πred = 1
C


γ2 (1− ε)

γ(1− γ − ε+ 2γε+ ε2 − γε2)
γ (1− ε) (1− γ) (ε2 − ε+ 1)

(1− γ) (ε2 − ε+ 1) (1− γ − ε+ 2γε+ ε2 − γε2)

 , (5.4.51)

where C is some normalizing constant, and finally the stationary measure vector of the
complete Markov process

π = 1
C



0
γ2 (1− ε)

γ(1− γ − ε+ 2γε+ ε2 − γε2)
0
0
0
0

γ (1− ε) (1− γ) (ε2 − ε+ 1)
(1− γ) (ε2 − ε+ 1) (1− γ − ε+ 2γε+ ε2 − γε2)


. (5.4.52)

PAVLOV

Since PAVLOV depends on both players’ last actions, it can not be displayed as a reactive
strategy. Instead, we have to resort to the more extensive general Markov strategy form
to find the single-player strategy matrix

MPAV LOV =



1 0 0
0 0 1
0 0 1
0 1 0
1 0 0
1 0 0
0 1 0
1 0 0
1 0 0


. (5.4.53)

Consequently, any strategy interacting with PAVLOV has to take the general Markov
strategy form as well. The general Markov strategy single-player strategy matrices of
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ALLD and ALLC are

MALLD = 13 ⊗ M̃ALLD =



0 1 0
0 0 1
0 0 1
0 1 0
0 0 1
0 0 1
0 1 0
0 0 1
0 0 1


(5.4.54)

and

MALLC = 13 ⊗ M̃ALLC =



1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0


. (5.4.55)

PAVLOV vs. PAVLOV In the symmetric matchup without observation errors, the
transition matrix

MPAV LOV,PAV LOV =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


(5.4.56)

shows that the only accessible states are {(1, 1), (2, 3), (3, 2)}, since the columns referring
to all other states are populated by zeros. The reduced Markov chain is irreducible and
possesses the unique stationary measure vector πred = e1 ⊗ e1, leading to the unique
stationary measure vector π = e1 ⊗ e1 = (1, 0, 0, 0, 0, 0, 0, 0, 0)t of the original Markov
chain. Thus, similarly to GTFT, the mechanism of the PAVLOV strategy leads to almost
sure cooperation in the symmetric matchup without observation errors independent of
the initial distribution. Recall that TFT vs. TFT did not possess this property.
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As before, we want to examine robustness of PAVLOV with respect to observation errors.
The transition matrix

M ε
PAV LOV,PAV LOV =



1− 2ε+ 2ε2 0 0 0 0 (1− ε) ε 0 (1− ε) ε 0
2 (1− ε) ε 0 0 0 0 ε2 0 (1− ε)2 0

ε 0 0 0 0 0 0 (1− ε) 0
2 (1− ε) ε 0 0 0 0 (1− ε)2 0 ε2 0

1− 2ε+ 2ε2 0 0 0 0 (1− ε) ε 0 (1− ε) ε 0
(1− ε) 0 0 0 0 0 0 ε 0
ε 0 0 0 0 (1− ε) 0 0 0

(1− ε) 0 0 0 0 ε 0 0 0
1 0 0 0 0 0 0 0 0


(5.4.57)

shows that the addition of observation errors does not change the set of reachable states.
The exclusion of unreachable states renders the reduced Markov chain characterized by
the transition matrix 1− 2ε+ 2ε2 (1− ε) ε (1− ε) ε

(1− ε) 0 ε
(1− ε) ε 0

 (5.4.58)

irreducible. This leads to the unique stationary measure vector

π = 1
1 + 2ε(1, 0, 0, 0, 0, ε, 0, ε, 0)t (5.4.59)

= 1
1 + 2ε (e1 ⊗ e1 + εe2 ⊗ e3 + εe3 ⊗ e2) . (5.4.60)

Therefore, observation errors lead to a disturbance of the almost sure cooperation.
However, in contrast to TFT vs. TFT, the change in behavior is rather small.

PAVLOV vs. ALLD Without errors, the game of a PAVLOV player against a ALLD-
playing competitor produces the transition matrix

MPAV LOV,ALLD =



0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


. (5.4.61)
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This Markov chain possesses the stationary measure vector

π = 1
2 (0, 0, 1, 0, 0, 0, 0, 1, 0)t (5.4.62)

= 1
2(e1 ⊗ e3 + e3 ⊗ e2). (5.4.63)

Thus, the game will end up with a mix of the states (1, 3) and (3, 2), as PAVLOV
alternates between cooperating and defecting.

With observation errors, the transition matrix

M ε
PAV LOV,ALLD =



0 (1− ε)2 ε2 0 0 (1− ε) ε 0 (1− ε) ε 0
0 (1− ε) ε (1− ε) ε 0 0 ε2 0 (1− ε)2 0
0 0 ε 0 0 0 0 (1− ε) 0
0 (1− ε) ε (1− ε) ε 0 0 (1− ε)2 0 ε2 0
0 ε2 (1− ε)2 0 0 (1− ε) ε 0 (1− ε) ε 0
0 0 (1− ε) 0 0 0 0 ε 0
0 0 ε 0 0 (1− ε) 0 0 0
0 0 (1− ε) 0 0 ε 0 0 0
0 0 1 0 0 0 0 0 0


(5.4.64)

leads to the unique stationary measure vector

π = 1
2

(
0, 0, 1, 0, 0, ε

ε+ 1 , 0,
1

ε+ 1 , 0
)t

(5.4.65)

= 1
2

(
e1 ⊗ e3 + ε

ε+ 1e2 ⊗ e3 + 1
ε+ 1e3 ⊗ e2

)
. (5.4.66)

PAVLOV vs. ALLC Without observation errors,

MPAV LOV,ALLC =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


(5.4.67)

is the transition matrix of the game with σ1 = PAVLOV and σ2 = ALLC. The only
accessible states of this Markov chain are {(1, 1), (2, 1), (3, 1)}, with two of them being
absorbing states. Thus, we have two closed communicating classes generated by the
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absorbing states (1, 1) and (2, 1). Consequently, there exist two stationary measure
vectors:

π1 = (1, 0, 0, 0, 0, 0, 0, 0, 0)t (5.4.68)
= e1 ⊗ e1 (5.4.69)

π2 = (0, 0, 0, 1, 0, 0, 0, 0, 0)t (5.4.70)
= e2 ⊗ e1 (5.4.71)

Which stationary measure the process ends up in depends on the starting distribution. If
the process starts in {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}, it will converge to π1, if it starts in
{(1, 2), (1, 3), (2, 1), (3, 1)}, it will converge to π2. Thus, a PAVLOV player may end up
cooperating with or exploiting a cooperative competitor. At least without observation
errors, the starting move is solely responsible for which of these paths the game will
take.

With observation errors, the transition matrix

M ε
PAV LOV,ALLC =



2ε2 − 2ε+ 1 0 0 (1− ε) ε 0 0 (1− ε) ε 0 0
2 (1− ε) ε 0 0 ε2 0 0 (1− ε)2 0 0

ε 0 0 0 0 0 (1− ε) 0 0
2 (1− ε) ε 0 0 (1− ε)2 0 0 ε2 0 0

2ε2 − 2ε+ 1 0 0 (1− ε) ε 0 0 (1− ε) ε 0 0
(1− ε) 0 0 0 0 0 ε 0 0
ε 0 0 (1− ε) 0 0 0 0 0

(1− ε) 0 0 ε 0 0 0 0 0
1 0 0 0 0 0 0 0 0


(5.4.72)

indicates no change to the reachable states. However, for any ε > 0, the reduced transition
matrix 2ε2 − 2ε+ 1 (1− ε) ε (1− ε) ε

2 (1− ε) ε (1− ε)2 ε2

ε (1− ε) 0

 (5.4.73)

contains only a single closed communicating class and is thus irreducible. Consequently
this Markov chain possesses a unique stationary measure vector

π = 1
C

(
1, 0, 0, ε

2 − 3ε+ 2
ε2 − 2ε+ 2 , 0, 0,

2ε− 2ε2

ε2 − 2ε+ 2 , 0, 0
)t

(5.4.74)

= 1
C

(
e1 ⊗ e1 + ε2 − 3ε+ 2

ε2 − 2ε+ 2e2 ⊗ e1 + 2ε− 2ε2

ε2 − 2ε+ 2e3 ⊗ e1

)
, (5.4.75)

where C is a normalizing constant. Note that for PAVLOV vsALLC, observation errors
lead to the existence of a unique stationary measure with a positive probability for all
reachable states. The level of cooperation that a PAVLOV player will show towards a
cooperating competitor depends on the probability of observation errors.
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5 The Repeated RM Game as a Markov Process

5.5 Evolution of Markov Strategies

In this section, we introduce dynamics over time into the Markov version of the repeated
RM game. Instead of always choosing the same repeated-game strategy to determine the
move at each stage, we allow players to switch to more (or—although improbable—less)
successful strategies. This reflects the nature of competition between service providers,
in which businesses may adapt their behavior to stay competitive.

This kind of experiment is also useful to analyze interactions of each strategy with all
the others, not only one specific opponent. Since m single-player strategies amount
to
(
m
2

)
+ m different combinations, a separate analysis of each combination becomes

infeasible or at least impractical quickly.

For this purpose, we devise a round robin tournament between a fixed amount of players.
Similarly to the ecological simulation in the IPD by Axelrod (1984) and Wu and Axelrod
(1995) discussed in the literature review in Section 2.2.2, we let each player choose a
strategy from a fixed pool of possible repeated-game strategies. After each round, a
randomly designated sample of players may reevaluate their strategy. The probability to
change to a strategy σ is proportional to the average payoff of σ in the previous round.

As mentioned in Section 2.2.2, in recent publications on the IPD, the ecological approach
of Axelrod (1984) has been replaced by the method of Nowak and Sigmund (1992),
in which the strategy set is not finite anymore. Instead, each strategy defined by any
transition matrix is possible. Nowak and Sigmund argue that this approach matches the
random nature of evolution in biological contexts, where mutations can happen aimlessly
in every possible direction. However, we feel that this is less true in a business context,
since decision makers can be assumed to act rational. Therefore, a business is less likely
to risk its revenue by choosing a strategy at random. It is more plausible that decision
makers rely on a smaller set of promising strategies, which are well understood and have
been tested successfully.

From a technical point of view, the biological approach of Nowak and Sigmund (1992)
encounters the problem that “the search space is far too big to perform reliable statistics”
(Hauert & Schuster, 1997), in the N -player m-memory IPD. Since in our case, the number
of prices n may be arbitrarily high instead of n = 2 in the IPD, this is a problem we
would encounter as well. This is not only a technical obstacle, but also reinforces our
view that this kind of simulation is not appropriate in the business context: We expect
businesses to be reluctant to test every possible strategy if it takes that many tries to
find a successful combination of transition probabilities.

This is why we prefer Axelrod’s finite strategy approach. However, in contrast to the
tournaments of Axelrod (1984) and Wu and Axelrod (1995), we do not play out each
round of the game. Instead, we use the stationary distributions of the Markov strategies
to determine the average payoff.
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5.5.1 Experimental Setup

We want to fully exploit the range of payoff configurations that are allowed according
to Inequalities 5.3.3 – 5.3.7. To this end, we use the fixed valuation demand model
presented in Section 5.3.3, which allows us the best control over the payoffs for the game.
The prices chosen in this model have to satisfy

2f(j + 1) > f(j) > f(j + 1) (5.5.1)

in order to fulfill the assumptions 5.3.3 – 5.3.7. We will simulate both extremes allowed
by the set of Inequalities 5.5.1:

f(j) =

f(j + 1) + 1 (high temptation)
2f(j + 1)− 1 (low temptation)

(5.5.2)

The high temptation case allows for narrow underpricing, which is very profitable. In
the low temptation case, underpricing is more hurtful for the aggressor and barely more
profitable than keeping the same price level as the competitor. Note that, covering the
same price range, more prices lead to a higher temptation.

On a similar note, Boerlijst et al. (1997b) analyzed the effect of the level of temptation
in the IPD and found significant differences in the behavior depending on the level of
temptation. In particular, they found different sets of Evolutionary Stable Strategies
(ESSs) for differing levels of temptation, e.g. PAVLOV is an ESS in the low temptation
case, but not in the high temptation case.

We use n = 10 different prices, with the cooperative price being set at c = 1 as stated
in the beginning of this chapter. Choosing the same amount of prices for high and
for low temptation leads to a different price range for different levels of temptation,
and consequently to different payoffs for the respective games. However, since in this
evolutionary setting we measure the success of a strategy at any stage by its proportion
of the population, the value of the payoffs of the different game does not need to be the
same.

We use all of the strategies mentioned in 5.4.1, i.e. ALLD, ALLC, TFT, GTFT, CTFT,
PAVLOV and MATCH. Since in this chapter, the strategy UNDER is identical to ALLD,
we do not need to include UNDER explicitly in our analysis. Finding a reasonable
starting distribution for these strategies is no easy task. In fact, Nowak and Sigmund
(1992) argue that “the main problem here is to find plausible values from which to
start” for the finite strategy approach employed in this section. However, the same
problem occurs for infinite strategy approach, where the question for a sensible starting
distribution is transferred to a larger strategy space. In our simulations, we start with
a balanced distribution of aggressive and cooperative strategies. Since ALLD is purely
aggressive and the other strategies at least partially cooperative, half of the players start
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with ALLD and the other half is assigned one of the cooperative strategies in a uniform
way. We keep the total population size fixed at 1200, so that 100 players start with each
cooperative strategy. This high population size ia motivated by the law of large numbers
in order to reduce the weight of singular events and come closer to the expected result.

The dynamics in the evolution are introduced by mutation events similarly to the
ecological simulation by Axelrod (1984). After each generation, each player’s strategy
in the next generation is determined randomly, with the choice probabilities for each
strategy proportional to its payoff in the previous generation. Thus, more successful
strategies are more likely to be adopted, although a player may also choose to use a less
successful strategy or not to change his strategy at all. In order to reduce the influence of
outliers, the payoff in each generation should reflect a long-term average of interactions.
Fortunately, we do not have to carry out repeated interactions of each combination
of players to find the average payoff for each possible matchup in a given generation.
Instead, in each round—corresponding to a generation—we can save a lot of computation
and rely on the stationary measure for each possible combination of strategies. For a
fixed set of parameters, we carry out 100 independent simulations, where each simulation
is run for 1000 generations.

5.5.2 Simulation Results

Finding the optimal generosity for a given environment is a difficulty inherent to the
strategy GTFT, whereas none of the other considered strategies depends on external
parameters. As an additional difficulty, the optimal generosity γ for GTFT depends on
the mix of competitor strategies, which is changing over time. In order to find the best
generosity for the environment described in Section 5.5.1, we have conducted experiments
for different γ in an otherwise unchanged environment as described in the previous section.
Figure 5.1 displays the proportion of the total population using GTFT over the level of
generosity γ. This is done both for a high and for a low level of temptation as described
in Equation 5.5.2.

We find that the level of temptation—and thus the pricing structure—strongly affects the
success of GTFT. In the low-temptation case, GTFT always becomes extinct except for
generosity levels close to 1, which effectively lead to employing the cooperative strategy
ALLC. In contrast to this, given a high temptation, we find that with the right choice of
γ, GTFT can be very successful. However, since it is hard to find the correct level of
generosity, we will consider the generosity levels of γ ∈ {0.2, 0.4, 0.6} separately in the
following. This corresponds to choosing too low, ideal and too high levels of generosity
in the high-temptation case.

In Figures 5.2 – 5.4, we display the proportion of the total population belonging to each
strategy over the elapsed generations. We employ a logarithmic scale for the x-axis to
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Figure 5.1: Evolutionary success of GTFT for different γ and ε = 0.1

highlight short-term as well as long-term behavior.

Figure 5.2 depicts the mean of all 100 runs in the low-temptation case. We find that
although early generations show considerable growth of GTFT, in the end only two
strategies, PAVLOV and ALLC, survive. However, we observe that in each run, actually
only one of these strategies persists: Either PAVLOV or pure cooperation in the form of
ALLC dominates in the long run. In Figure 5.3, we have presented the averaged results
of the game conditioned on the final outcome for γ = 0.2. For different generosities γ,
the development of the game given a fixed outcome was similar, although the probability
of the outcomes changed (see Figure 5.4). In this scenario, the low temptation makes
cooperation attractive, which leads to a rapid decline of ALLD. Of the remaining strategies,
ALLC is the most robust against observation errors, since it is in fact independent of its
competitor’s prices. Thus, along with the decline of ALLD, ALLC becomes the most
successful strategy and starts displacing the other strategies. However, if PAVLOV is not
extinct or sufficiently decimated, it can build from a considerably outnumbered position
to complete a turnaround that sees the strategy ending up in a dominant position.
After the environment has grown almost exclusively cooperative, PAVLOV is far more
profitable than any other strategy thanks to its error-induced exploitation of ALLC
and cooperation in symmetric case. Note however, that over large parts of the time
scale PAVLOV is not successful and only starts growing—although rapidly—after the
aggressors have vanished after many generations. This is similar to observations of the
behavior of PAVLOV in the IPD by Nowak and Sigmund (1993).

In the high-temptation case, displayed in Figure 5.4, we find a larger set of possible
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Figure 5.2: Average evolution with low temptation and ε = 0.1
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Figure 5.3: Average evolution per outcome with low temptation and γ = 0.2, ε = 0.1
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surviving strategies, {CTFT ,GTFT , PAV LOV ,MATCH}. These can be attributed
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Figure 5.4: Average evolution with high temptation and ε = 0.1

to a higher number of final outcomes as well, which we have documented for the case
γ = 0.2 in Figure 5.5. In this setting, either CTFT or GTFT dominate in the long-term,
or the market is shared between PAVLOV and MATCH. Due to the high temptation,
cooperation is not as attractive as in the low-temptation case. Therefore, robustness
against exploitation from aggressors is more important, leading to the quick extinction
of ALLC. As we found in Section 5.4.2, the Tit for Tat variations excel in this regard,
whereas PAVLOV tends to cooperate too much with aggressors. Of course, TFT is
not robust against errors, but we find CTFT and GTFT to be frequently successful.
In rare cases, we find PAVLOV profit from an improbable development, leading to a
cooperative environment. As discussed in the low-temptation case, this is where PAVLOV
succeeds. However, due to PAVLOV’s weakness against MATCH (see Section 5.4.2),
the distribution of PAVLOV and MATCH keeps oscillating, although around a stable
level.

5.6 Zero-Determinant Strategies

The analysis of the RM game in Chapter 5 has been built on the similarities between the
RM game and the IPD. A central feature of the IPD is the non-existence of a single best
strategy. No strategy dominates against every possible competition, so that no strategy
is successful in every possible scenario. In particular, given any strategy σ1 presented in
Section 5.4.1, it is impossible to predict S1’s or S2’s payoff without knowing the strategy
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Figure 5.5: Average evolution per outcome with high temptation and γ = 0.2, ε = 0.1

σ2 of S2. Neither is it possible to establish a relationship for the payoff between a given
strategy σ and a competitor strategy, until the choice of competitor strategy is known.
Consequently, each player settles for a strategy in the hope that it will perform well
in the given competitive environment. The question for the best strategy is tackled by
introducing a time dynamics into players’ strategies in Section 5.5, where players are
allowed to learn from previous encounters and change their strategy appropriately. This
way, strategies have to perform in changing environments and a strategy’s success in
an evolutionary sense is defined by its ability to outperform other strategies within this
changing mixture of competitor strategies. Our results in Sections 5.4.2 and 5.5 indicate
that the RM game exhibits the same dependence on competitor strategies that prevents
predictions about the payoffs without prior knowledge of both players’ strategies.

However, as discussed in the literature review in Section 2.2.2, it has been shown that
the IPD allows for the existence of so-called Zero-Determinant Strategies that are able
to control the relationship of payoffs. First, Boerlijst et al. (1997a) demonstrated the
existence of Equalizing Strategies that ensure that both players face the same expected
payoff. Independently of Boerlijst et al.’s work, Press and Dyson (2012) proved a vast
generalization of this, using an elegant mathematical representation of the payoff in the
IPD. Additionally to the existence of Equalizing Strategies, Press and Dyson found that
there are strategies in the IPD that demand and get an unfair share of the total payoff.
The authors called these strategies Extortionate Strategies. Although Extortionate
Strategies work in any setting, they are particularly effective against evolutionary players.
If a player using an Extortionate Strategy demands a fixed share of the payoff, the
evolution of the competitor will automatically lead to a maximization of profits for the
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extorting player.

In this section, we will generalize Press and Dyson’s analysis of Extortionate Strategies
from the IPD case n = 2, c = 1 to the case n ≥ 2, c = 1, where n is the number of
products and c denotes the jointly optimal product. In Section 5.6.1, we will introduce
the concept of a Zero-Determinant Strategy into the RM game. We will rely on our
analysis of the structure of the RM game gained in Section 5.2 to generalize the approach
used by Press and Dyson in their analysis of the IPD. In Section 5.6.2, we will show that
the generalization of the IPD’s payoffs introduced in Section 5.3 guarantees the existence
of Extortionate Strategies in the RM game for arbitrary n. Furthermore, we will examine
the influence of observation errors on the existence of Extortionate Strategies. We will
show that an arbitrarily small error probability leads to the invalidation of Press and
Dyson’s result even in the simple IPD case with classic payoffs. In Section 5.6.3, we will
provide the reader with an example, where we present the steps of our analysis in an
explicit way for the case n = 3 and c = 1.

5.6.1 Prerequisites

In this section, we introduce Zero-Determinant Strategies into the RM game. We focus on
general Makov strategies on the state space J1 × J2 and ignore the concept of reputation.
We start our analysis with ε = 0, i.e. without the possibility of observation errors.

As outlined in Section 5.2.2, we can construct any possible transition matrix Mσ1,σ2 of
the Markov RM game from the single-player strategies Mσ1 and Mσ2 . If a stationary
distribution π exists for the Markov process defined by the transition matrix Mσ1,σ2 , it
satisfies

πtMσ1,σ2 = πt. (5.6.1)

Introducing

M ′
σ1,σ2 = Mσ1,σ2 − In2 (5.6.2)

to save some notation, we note that Equation 5.6.1 is equivalent to

πtM ′
σ1,σ2 = 0. (5.6.3)

The key to Press and Dyson’s result in the IPD case was an observation about the
relation of the stationary distribution of Mσ1,σ2 and the adjugate matrix of M ′

σ1,σ2 , which
we want to use in our more general case as well. The adjugate or classical adjoint of a
quadratic matrix A is denoted by adj(A). Its entries are the signed minors of A:

adj(A)i,j = (−1)i+j det(m(A, j, i)), (5.6.4)
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where m(A, i, j) is the matrix produced by removing the i-th row and the j-th column of
A.

Applying the property 5.1.23 of the adjugate matrix to M ′
σ1,σ2 yields

adj(M ′
σ1,σ2)M ′

σ1,σ2 = det(M ′
σ1,σ2)In2 = 0, (5.6.5)

which implies that every row of adj(M ′
σ1,σ2) is proportional to the stationary distribution

π. Thus, for any vector v ∈ V1 ⊗ V2 and any row i ∈ {1, . . . , n2}

πt · v =

n2∑
j=1

adj(M ′
σ1,σ2)i,j · vj

n2∑
j=1

adj(M ′
σ1,σ2)i,j

(5.6.6)

=

n2∑
j=1

(−1)j det(m(M ′
σ1,σ2 , j, i)) · vj

n2∑
j=1

(−1)j det(m(M ′
σ1,σ2 , j, i))

(5.6.7)

=
det(W (M ′

σ1,σ2 , v, i))
det(W (M ′

σ1,σ2 , 1, i))
, (5.6.8)

where W (M ′
σ1,σ2 , v, i) is equal to M ′

σ1,σ2 with the i-th column replaced by v. Without
loss of generality, we choose the last column i = n2 for the rest of this section. To save
some notation, we will write W (M ′

σ1,σ2 , v) = W (M ′
σ1,σ2 , v, n).

The fact that entries of adj(M ′
σ1,σ2) are determinants of submatrices of M ′

σ1,σ2 enables
us to simplify M ′

σ1,σ2 without changing the n2-th row of adj(M ′
σ1,σ2). More specifically,

this means that adding any of the {1, . . . , n2 − 1}-th columns of M ′
σ1,σ2 to another does

not change the value of the entries in the n2-th row of adj(M ′
σ1,σ2), which is the only

important row for our calculations in Equation 5.6.6.

Recall that the probability of state (i, j) is represented by the entry corresponding to the
basis vector ei ⊗ ej, which is the (n(i− 1) + j)-th basis vector with our choice of basis
5.2.3. We can use this observation to establish the following relationships between the
columns of the transition matrix Mσ1,σ2 and the single-player strategy matrices Mσ1 and
Mσ2 : For the first player, we have

n∑
t=1

(Mσ1,σ2)n(i−1)+j,n(r−1)+t =
n∑
t=1

P(Xs+1 = (r, t) | Xs = (i, j)) (5.6.9)

= P(Xs+1

∣∣∣
V1

= r | Xs = (i, j)) (5.6.10)

= (Mσ1)n(i−1)+j,r (5.6.11)
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and analogously for the second player
n∑
r=1

(Mσ1,σ2)n(i−1)+j,n(r−1)+t =
n∑
r=1

P(Xs+1 = (r, t) | Xs = (i, j)) (5.6.12)

= P(Xs+1

∣∣∣
V2

= t | Xs = (i, j)) (5.6.13)

= (Mσ2)n(i−1)+j,t. (5.6.14)

In other words, there are n columns in Mσ1,σ2 that sum to the r-th column in Mσ1 as
well as n columns that sum to the t-th column in Mσ2 .

We want to exploit this for all r, t = 1, . . . , n to transform the matrix M ′
σ1,σ2 . Formally,

we can add the i-th to the j-th column of a matrix M by multiplying the matrix from
the right with

Ei,j =
(
In2 + (δk,iδl,j)k,l=1,...,n

)
, (5.6.15)

where (δk,iδl,j)k,l=1,...,n is the n×n matrix, for which each element is a product of Kronecker
deltas δi,j defined as

δi,j =

1 if i = j

0 if i 6= j.
. (5.6.16)

Consequently, (δk,iδl,j)k,l=1,...,n denotes the matrix with only zeros and a single one in the
i-th row and j-th column. Using this notation, we can modify M ′

σ1,σ2 to get

M ′′
σ1,σ2 = M ′

σ1,σ2 ·
n∏
i=1

n−1∏
j=1

(
En(i−1)+j,n(i−1)+n

)
·
n∏
i=1

n−1∏
j=1

(
En(j−1)+i,n(n−1)+i

)
. (5.6.17)

The matrix M ′′
σ1,σ2 takes a convenient form for the analysis of the existence of Zero-

Determinant Strategies. The columns {n(r−1)+n | r ∈ {1, . . . , n}} of the matrixM ′′
σ1,σ2

are independent of the strategy of the second player, while the columns {n(n− 1) + t |
t ∈ {1, . . . , n}} are independent of the strategy of the first player. Since the last column
fulfills both conditions, it is constant. More precisely, due to Equations 5.6.9 – 5.6.11,
the (n(r − 1) + n)-th column of M ′′

σ1,σ2 corresponds to the r-th column of Mσ1 minus a
Kronecker delta inherited from subtracting the identity matrix in Equation 5.6.2.

(M ′′
σ1,σ2)n(i−1)+j,n(r−1)+n =

n∑
t=1

(M ′
σ1,σ2)n(i−1)+j,n(r−1)+t (5.6.18)

=
n∑
t=1

(Mσ1,σ2 − In2)n(i−1)+j,n(r−1)+t (5.6.19)

= (Mσ1)n(i−1)+j,r − δi,r. (5.6.20)
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Similarly, Equations 5.6.12 – 5.6.14 imply that the (n(n− 1) + t)-th column corresponds
to the t-th column of Mσ2 except for a Kronecker delta from the identity matrix in
Equation 5.6.2.

(M ′′
σ1,σ2)n(n−1)+j,n(n−1)+t =

n∑
r=1

(M ′
σ1,σ2)n(i−1)+j,n(r−1)+t (5.6.21)

=
n∑
r=1

(Mσ1,σ2 − In2)n(i−1)+j,n(r−1)+t (5.6.22)

= (Mσ2)n(i−1)+j,t − δj,t. (5.6.23)

Recall that this does not change the n2-th row of its adjugate matrix:(
adj(M ′′

σ1,σ2)
)
n2,r

=
(
adj(M ′

σ1,σ2)
)
n2,r

∀r = 1, . . . , n2 (5.6.24)

Consequently, Equation 5.6.6 yields

πt · v =
det(W (M ′′

σ1,σ2 , v))
det(W (M ′′

σ1,σ2 , 1)) . (5.6.25)

As mentioned in Equation 5.3.8, this can be used to calculate the stationary payoff for
each player:

sk = πt · yk =
det(W (M ′′

σ1,σ2 , yk))
det(W (M ′′

σ1,σ2 , 1)) (5.6.26)

As the determinant is linear in every column, we get for an affine transformation of
payoffs

ζs1 + ηs2 + θ = πt · (ζy1 + ηy2 + θ1n2) (5.6.27)

=
det(W (M ′′

σ1,σ2 , ζy1 + ηy2 + θ1n2))
det(W (M ′′

σ1,σ2 , 1)) , (5.6.28)

where 1n2 =
n∑
i=1

n∑
j=1

ei ⊗ ej is the vector with all entries equal to 1.

This determinant vanishes if the last column is linearly dependent on the other columns.
In this case, the payoffs of the players are related via

ζs1 + ηs2 + θ = 0. (5.6.29)

If one player chooses a strategy, so that the determinant vanishes independently of the
other player’s strategy, thus enforcing the linear relationship 5.6.29, this strategy is called
a Zero-Determinant Strategy (ZD).
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The existence of ZDs depends on the linear relation as well as on the payoffs of the
game. For example, already in the case n = 2, Press and Dyson (2012) have shown that
there exists no ZD for the first player’s choice η = 0. This means that no player can
unilaterally set his own score. In the RM game the payoffs take the form

y1 =
n∑
i=1

n∑
j=1

Y1(i, j)ei ⊗ ej (5.6.30)

y2 = B · y1 =
n∑
i=1

n∑
j=1

Y1(j, i)ei ⊗ ej, (5.6.31)

where B is the permutation matrix that reverses the roles of the players:

B : V1 × V2 → V1 × V2 (5.6.32)
ei ⊗ ej 7→ ej ⊗ ei (5.6.33)

Depending on the values chosen in 5.6.29, there are different kinds of ZDs. Prior to the
work of Press and Dyson, Boerlijst et al. (1997a) analyzed the case ζ = 0 =⇒ s2 = θ

η
,

calling this an Equalizing Strategy, before the term ZD was established. An Equalizing
Strategy enables a player to unilaterally set the other player’s payoff.

Press and Dyson (2012) included the equalizing case in their research, embedded in their
more general approach. Another interesting choice of parameters leads to

ζ = 1
η = −χ
θ = (χ− 1)Y1(n, n)

 =⇒ (s1 − Y1(n, n)) = χ (s2 − Y1(n, n)) , (5.6.34)

which we call an Extortionate Strategy. An Extortionate Strategy enables one player to
collect a fixed multiple of the other player’s payoff margin, where the payoff margin is
the difference between the player’s payoff and the payoff for the mutual choice of the
lowest product.

Extortionate Strategies are particularly effective against players that try to adapt their
strategy over time in order to maximize their payoff, e.g. by implementing the evolutionary
learning approach presented in Section 5.5. In an environment where the other players
follow such a learning scheme, a player using an Extortionate Strategy will be dragged
towards its maximum payoff, all the while receiving an unfair share of the total payoff.

5.6.2 Existence of Extortionate Strategies

In the following, we will only consider the case χ ≥ 1, since playing an Extortionate
Strategy with χ < 1 means that a player is enforcing a worse outcome for himself than
for the competitor. In this case, Press and Dyson proved the following existence result in
their work on ZDs:
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Proposition 1 (Press and Dyson (2012)). In the IPD without observation errors, there
exists a unique Extortionate Strategy for every χ ≥ 1.

As we will show in Proposition 2, we can prove a similar result for the RM game. Since
choosing a product j < c with a higher price than the jointly optimal product c is
irrational, we will ignore this possibility and focus on the case c = 1 as discussed in this
chapter’s introduction.

Proposition 2. In the Markov RM game with n ≥ 3, c = 1 and ε = 0, there exist
infinitely many Extortionate Strategies for every χ ≥ 1.

Proof. Without loss of generality, we take the perspective of player S1. Our goal is
to construct a single-player strategy Mσ1 , so that the determinant of W (M ′′

σ1,σ2 , v) in
Equation 5.6.25 vanishes for the vector v = y1 − χy2 + (χ − 1)Y1(n, n)1n2 , since this
enforces the extortionate relationship of both players’ payoff in Equation 5.6.34.

For this purpose, we reexamine the construction of W (M ′′
σ1,σ2 , v). As Equation 5.6.20

shows, the construction ofM ′′
σ1,σ2 yields n columns that are independent of the competitor

S2’s strategy, including the last column. Since in W (M ′′
σ1,σ2 , v), the last column of M ′′

σ1,σ2

is replaced by the vector v, there remain n− 1 columns in W (M ′′
σ1,σ2 , v) under the sole

control of player S1. Thus, in order to enforce the linear relationship 5.6.29, it is sufficient
for player S1 to find a strategy Mσ1 , for which parameters φr ∈ R, r = 1, . . . , n− 1, exist,
so that

n−1∑
r=1

φr

((
Mσ1

)
n(i−1)+j,r

− δr,i
)

= vn(i−1)+j (5.6.35)

for i, j = 1, . . . , n.

We will show that if we choose(
Mσ1

)
n(i−1)+j,r

= 1
2 if (r = i) ∧ r /∈ {1, n} (5.6.36)(

Mσ1

)
n(i−1)+j,r

= 0 if r /∈ {1, i, n} (5.6.37)

φn−1 > 6χmax{Y1(i, j) | 1 ≤ i, j ≤ n} (5.6.38)
φr = 2φr+1 if r < n, (5.6.39)

then, for each φn−1 satisfying Inequality 5.6.38, Equation 5.6.35 yields a strategy Mσ1

that satisfies the linear relationship 5.6.29. For fixed φn−1, this strategy is unique. Since
there are infinitely many possible choices for φn−1, this results in an infinite number of
Extortionate Strategies.
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Due to Equation 5.6.37, each row of Mσ1 contains at most three non-zero entries. Since
Mσ1 is a stochastic matrix, so that the entries of each row sum to one, the elements in
the last column of Mσ1 can be computed from the other non-zero elements in that row:(

Mσ1

)
n(i−1)+j,n

= 1−
((
Mσ1

)
n(i−1)+j,1

+
(
Mσ1

)
n(i−1)+j,i

)
, i /∈ {1, n} (5.6.40)(

Mσ1

)
n(i−1)+j,n

= 1−
(
Mσ1

)
n(i−1)+j,1

, i ∈ {1, n} (5.6.41)

Since
(
Mσ1

)
n(i−1)+j,i

is given by Equation 5.6.36 for i /∈ {1, n}, Equations 5.6.40 –

5.6.41 show that we only need to find appropriate values for
(
Mσ1

)
n(i−1)+j,1

in order to
unambiguously define a general Markov strategy matrix Mσ1 for player S1. The entries
for the first column of Mσ1 need to satisfy Equation 5.6.35 as well as

0 ≤
(
Mσ1

)
n(i−1)+j,1

≤ 1 if i ∈ {1, n} (5.6.42)

0 ≤
(
Mσ1

)
n(i−1)+j,1

≤ 1
2 if i /∈ {1, n}. (5.6.43)

We will prove the existence of such a strategy using the payoff structure of the RM game.
In the RM game, the payoff is described by Equations 5.3.3 – 5.3.7, reproduced here for
the convenience of the reader:

Y1(i+ 1, i) > Y1(i, i) (5.6.44)
Y1(i+m, i) > Y1(i+m, i+m) (5.6.45)

Y1(i, i) > Y1(i+m, i+m) ∀i,m ≥ 1 (5.6.46)
Y1(i, i+m) < Y1(n, n) (5.6.47)

2Y1(i, i) > Y1(i, i+m) + Y1(i+m, i) ∀i,m ≥ 1 (5.6.48)

As a consequence of these inequalities, we find

Y1(i, i+m) < Y1(n, n) < Y1(i+m, i+m) < Y1(i+m, i) ∀m ≥ 1, i ≥ c (5.6.49)

and therefore

Y1(i, j) < Y1(j, i) ⇐⇒ i < j. (5.6.50)

Using the payoffs for player S1 in Equation 5.6.30, we can write

vn(i−1)+j = Y1(i, j)− χY1(j, i) + (χ− 1)Y1(n, n) (5.6.51)

for the elements of the extortion vector v and use Inequality 5.6.50 to find

vn(i−1)+j < (χ− 1)(Y1(n, n)− Y1(j, i)) , i < j, (5.6.52)
vn(i−1)+j = (χ− 1)(Y1(n, n)− Y1(i, i)) , i = j, (5.6.53)
vn(i−1)+j > (χ− 1)(Y1(n, n)− Y1(j, i)) , i > j. (5.6.54)
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Thus, we can characterize the sign of the elements of v depending on both players’ actions

vn(i−1)+j


< 0 if (i = j < n) ∨ (i < j)
= 0 if i = j = n

> 0 if i > j

. (5.6.55)

Note that Equations 5.6.38 and 5.6.51 imply

φn−1 > 2 max |vn(i−1)+j|, (5.6.56)

which will be useful to ensure that the entries of the first column of Mσ1 stay in the
desired boundaries.

In the following, we will execute a case-by-case analysis, taking advantage of Equa-
tion 5.6.55 to determine the appropriate sign of the elements of the extortion vector v
for each case.

• i = 1

φ1

((
Mσ1

)
j,1
− 1

)
+

n−1∑
r=2

φr
(
Mσ1

)
j,r

= vj (5.6.57)

=⇒
(
Mσ1

)
j,1

= 1 + vj
φ1

(5.6.58)

Because of Equation 5.6.55, we know that vj < 0. With Equations 5.6.56 and
5.6.39, it follows that

(
Mσ1

)
j,1
∈ (0, 1).

• i = n

n−1∑
r=1

φr
(
Mσ1

)
n(n−1)+j,r

= vn(n−1)+j (5.6.59)

=⇒
(
Mσ1

)
n(n−1)+j,1

= vn(n−1)+j

φ1
(5.6.60)

1. i > j
Equation 5.6.55 shows that vn(n−1)+j > 0. Combining this with Equations
5.6.56 and 5.6.39, we know that

(
Mσ1

)
n(n−1)+j,1

∈ (0, 1).

2. i = j
Because of Equation 5.6.55, we have vn2 = 0 =⇒

(
Mσ1

)
n2,1

= 0.
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• 1 < i < n

φi

((
Mσ1

)
n(i−1)+j,i

− 1
)

+
n−1∑
r=1
r 6=i

φr
(
Mσ1

)
n(i−1)+j,r

= vn(i−1)+j (5.6.61)

=⇒ φi

(
−1

2

)
+ φ1

(
Mσ1

)
n(i−1)+j,1

= vn(i−1)+j (5.6.62)

=⇒
(
Mσ1

)
n(i−1)+j,1

= vn(i−1)+j

φ1
+ φi

2φ1
(5.6.63)

1. i ≤ j
Because of Equation 5.6.55, we know that vn(i−1)+j < 0. Then, Equation 5.6.39
yields

(
Mσ1

)
n(n−1)+j,1

< 1
2 , while Equations 5.6.56 and 5.6.39 show that(

Mσ1

)
n(n−1)+j,1

> 0. Consequently, we have
(
Mσ1

)
n(n−1)+j,1

∈ (0, 1
2).

2. i > j
Equation 5.6.56 implies φi > 2vn(i−1)+j, Equation 5.6.39 implies φ1 ≥ 2φi,
therefore

(
Mσ1

)
n(n−1)+j,1

< 1
2 . Since Equation 5.6.55 implies that all the terms

on the right hand side are positive, we get the desired result
(
Mσ1

)
n(n−1)+j,1

∈
(0, 1

2).

Corollary 1. In the Markov RM game with c = 1 and ε = 0, there exists at least one
Extortionate Strategy for every n ≥ 2 and χ ≥ 1.

Proof. As outlined in Section 5.3, for n = 2, c = 1 the RM game reduces to the IPD.
Since this case has been covered by Press and Dyson (2012), we only need Proposition 2
to prove this corollary.

With the introduction of observation errors, the result of Proposition 2 is no longer
valid, i.e. we can no longer guarantee the existence of extortionate strategies. This is
no coincidence, since in the special case of the IPD with so-called conventional payoff
values (see e.g. Axelrod & Hamilton, 1981), we can even show that there cannot exist
any extortionate strategies.

Proposition 3. For any observation error probability ε ∈ (0, 1
2), there cannot exist any

Extortionate Strategy for χ ≥ 1 in the IPD with conventional payoff values T = 5, R =
3, P = 1, S = 0.
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Proof. Without loss of generality, we take the perspective of the first player. First, we
have to construct the transition matrix M ε

σ1,σ2 of the game with observation errors as
described in Section 5.2.2. The general Markov strategies in the IPD take the form

Mσ1 =


p1 1− p1
p2 1− p2
p3 1− p3
p4 1− p4

 ,Mσ2 =


q1 1− q1
q2 1− q2
q3 1− q3
q4 1− q4

 . (5.6.64)

Observation errors are introduced for each player via the error matrix

E =
(

1− ε ε
ε 1− ε

)
, (5.6.65)

and the matrix Q provides both players with the input

Q =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 . (5.6.66)

The basis permutation matrix

B =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (5.6.67)

reverses the role of the two players, so that the second player can work with a standard
general Markov strategy matrix.

This allows us to produce the transition matrix

M ε
σ1,σ2 = (E ⊗ E)Q

(
Mσ1 ⊗

(
BMσ2

))
. (5.6.68)

Similarly to the explanation in the case without observation errors in the beginning of
this section, we can use the transition matrix as the starting point of the analysis of
zero-determinant strategies. The matrix M ε′′

σ1,σ2 is created by adding the first column to
the second and third columns of M ε′

σ1,σ2 = M ε
σ1,σ2 − I4.

In the IPD with conventional payoffs, the payoff vectors are

y1 = (R, S, T, P )t = (3, 0, 5, 1)t (5.6.69)
y2 = (R, T, S, P )t = (3, 5, 0, 1)t, (5.6.70)
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where xt denotes the transpose of the vector x. In order to find an extortionate strategy,
the first player S1 needs to find a strategy with values pi, i = 1, . . . , 4, so that the extortion
vector

v = y1 − χy2 + P (χ− 1)14 (5.6.71)

=


2 (1− χ)
−4χ− 1
χ+ 4

0

 (5.6.72)

is linearly dependent on the columns of M ε′′
σ1,σ2 . In this case, the determinant of the

matrix W (M ε′′
σ1,σ2 , v) vanishes and the extortionate linear dependence between the payoffs

of both players is enforced. However, due to the observation errors, W (M ε′′
σ1,σ2 , v) is too

big to be displayed. Fortunately, we need only the second column of M ε′′
σ1,σ2 , since in the

case n = 2, this is the only column independent of the second player’s strategy. Thus,
the first player needs to solve the system of linear equations given by

φ1


p4ε

2 − p3ε
2 − p2ε

2 + p1ε
2 + p3ε+ p2ε− 2p1ε+ p1 − 1

− (p4ε
2 − p3ε

2 − p2ε
2 + p1ε

2 − p4ε+ 2p2ε− p1ε− p2 + 1)
− (p4ε

2 − p3ε
2 − p2ε

2 + p1ε
2 − p4ε+ 2p3ε− p1ε− p3)

p4ε
2 − p3ε

2 − p2ε
2 + p1ε

2 − 2p4ε+ p3ε+ p2ε+ p4

 =


2 (1− χ)
−4χ− 1
χ+ 4

0


(5.6.73)

for a φ1 6= 0. Note that the left side is just a multiple of the second column of M ε′′
σ1,σ2 .

The solution of this system of linear equations is given by
p1
p2
p3
p4

 = 1
(1− 2ε)2φ1


(1− ε)(φ1(1− 2ε) + (χ− 1)(5ε− 2))

φ1(1− ε)(1− 2ε)− (χ− 1)5ε2 + 10χε− 4χ− 1
εφ1(2ε− 1)− (χ− 1)5ε2 − 10ε+ χ+ 4

ε(φ1(2ε− 1) + (χ− 1)(3− 5ε))

 . (5.6.74)

In order to represent a strategy of the game, all entries in the solution vector need to be
probabilities. Therefore, we have to check that pi ∈ [0, 1] for i = 1, . . . , 4.

Starting the analysis with p4, we find the necessary and sufficient conditions for φ1

φ1 ≥
ε(χ− 1)(3− 5ε)
(1− ε)(1− 2ε) (5.6.75)

and φ1 ≤
(χ− 1)(3− 5ε)

1− 2ε . (5.6.76)

Since Equation 5.6.75 implies φ1 ≥ 0 and we know that φ1 6= 0, the denominator 1
(1−2ε)2φ1

is positive. Consequently, the numerator of any pi must be non-negative. Using the fact
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that χ ≥ 1 and ε < 1
2 , we find for the numerator of p2 that

φ1 ≥
(χ− 1)5ε2 − 10χε+ 4χ+ 1

(1− 2ε)(1− ε) (5.6.77)

>
(χ− 1)(5ε2 − 10ε+ 4)

(1− 2ε)(1− ε) (5.6.78)

>
(χ− 1)(3− 5ε)

1− 2ε . (5.6.79)

Equations 5.6.76 and 5.6.79 form a contradiction.

5.6.3 Example

In their work on the IPD, Press and Dyson (2012) covered the case n = 2, c = 1. Our
results in Section 5.6.2 demonstrate that the structure of the Extortionate Strategies
changes with the amount of actions of each player n. While for any χ > 1, there is
a unique Extortionate Strategy in the IPD case of n = 2, there are infinitely many
Extortionate Strategies for n ≥ 3.

Similarly to the example in Section 5.4.4, we provide the reader with an example for
n = 3 and c = 1, since this is the smallest choice of parameters, for which any χ > 1
allows for more than one Extortionate Strategies. For n = 2, we refer the reader to the
work of Press and Dyson, while for n > 3, the depiction of the strategy matrices becomes
infeasible without adding to the insight for the reader.

For n = 3, any general Markov strategy for the first player S1 can be written as

Mσ1 =



p1 p2 1− p1 − p2
p3 p4 1− p3 − p4
p5 p6 1− p5 − p6
p7 p8 1− p7 − p8
p9 p10 1− p9 − p10
p11 p12 1− p11 − p12
p13 p14 1− p13 − p14
p15 p16 1− p15 − p16
p17 p18 1− p17 − p18


, (5.6.80)

where the entries of each row are non-negative and sum to one. Analogously, a general
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Markov strategy for player S2 takes the form

Mσ2 =



q1 q2 1− q1 − q2
q3 q4 1− q3 − q4
q5 q6 1− q5 − q6
q7 q8 1− q7 − q8
q9 q10 1− q9 − q10
q11 q12 1− q11 − q12
q13 q14 1− q13 − q14
q15 q16 1− q15 − q16
q17 q18 1− q17 − q18


, (5.6.81)

where the entries of each row are non-negative and sum to one.

The basis change matrix B is

B =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


, (5.6.82)

while the matrix representation of the forking map

Q : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V1 ⊗ V2 (5.6.83)
ei ⊗ ej 7→ ei ⊗ ej ⊗ ei ⊗ ej (5.6.84)

is a 9 × 81 matrix, which cannot be displayed here. Although the dimensions of the
matrix

M ′
σ1,σ2 = Mσ1,σ2 − I9 (5.6.85)

= Q ·
(
Mσ1 ⊗

(
B ·Mσ2

))
− I9 (5.6.86)

are only 9× 9, the complexity of its entries render it too big to be displayed here as well.
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However, the simplified matrix M ′′
σ1,σ2 takes the simple form

M ′′
σ1,σ2 = M ′

σ1,σ2 ·
n∏
i=1

n−1∏
j=1

(
En(i−1)+j,n(i−1)+n

)
·
n∏
i=1

n−1∏
j=1

(
En(j−1)+i,n(n−1)+i

)
= (5.6.87)



p1q1 − 1 p1q2 p1 − 1 q1p2 p2q2 p2 q1 − 1 q2 0
p3q7 p3q8 − 1 p3 − 1 p4q7 p4q8 p4 q7 q8 − 1 0
p5q13 p5q14 p5 − 1 p6q13 p6q14 p6 q13 q14 0
q3p7 q4p7 p7 q3p8 − 1 q4p8 p8 − 1 q3 − 1 q4 0
p9q9 p9q10 p9 q9p10 p10q10 − 1 p10 − 1 q9 q10 − 1 0
p11q15 p11q16 p11 p12q15 p12q16 p12 − 1 q15 q16 0
q5p13 q6p13 p13 q5p14 q6p14 p14 q5 − 1 q6 0
q11p15 q12p15 p15 q11p16 q12p16 p16 q11 q12 − 1 0
p17q17 p17q18 p17 q17p18 p18q18 p18 q17 q18 0


.

(5.6.88)

Note that there are only pi values in the third and sixth columns, and only qi values in
the seventh and eighth columns, so that each of these columns is entirely dependent on a
single player. Replacing the last column of M ′′

σ1,σ2 with a vector v leads to the matrix

W (M ′′
σ1,σ2 , v) = (5.6.89)

p1q1 − 1 p1q2 p1 − 1 q1p2 p2q2 p2 q1 − 1 q2 v1
p3q7 p3q8 − 1 p3 − 1 p4q7 p4q8 p4 q7 q8 − 1 v2
p5q13 p5q14 p5 − 1 p6q13 p6q14 p6 q13 q14 v3
q3p7 q4p7 p7 q3p8 − 1 q4p8 p8 − 1 q3 − 1 q4 v4
p9q9 p9q10 p9 q9p10 p10q10 − 1 p10 − 1 q9 q10 − 1 v5
p11q15 p11q16 p11 p12q15 p12q16 p12 − 1 q15 q16 v6
q5p13 q6p13 p13 q5p14 q6p14 p14 q5 − 1 q6 v7
q11p15 q12p15 p15 q11p16 q12p16 p16 q11 q12 − 1 v8
p17q17 p17q18 p17 q17p18 p18q18 p18 q17 q18 v9


.

(5.6.90)

As noted in Equation 5.6.25, the expected payoff of the game can be calculated with the
help of the determinant of W (M ′′

σ1,σ2 , v) for appropriately chosen v. In order to enforce
the linear relationship in Equation 5.6.34 that guarantees the player S1 an unfair share
of the payoff, we need to define the extortion vector v corresponding to the extortionate
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linear relationship of payoffs.

v = y1 − χy2 + (χ− 1)Y1(n, n)1n2 (5.6.91)

=



Y1(1, 1)
Y1(1, 2)
Y1(1, 3)
Y1(2, 1)
Y1(2, 2)
Y1(2, 3)
Y1(3, 1)
Y1(3, 2)

0


− χ



Y1(1, 1)
Y1(2, 1)
Y1(3, 1)
Y1(1, 2)
Y1(2, 2)
Y1(3, 2)
Y1(1, 3)
Y1(2, 3)

0


+ (χ− 1)



Y1(n, n)
Y1(n, n)
Y1(n, n)
Y1(n, n)
Y1(n, n)
Y1(n, n)
Y1(n, n)
Y1(n, n)

0


(5.6.92)

Then, we need to find a strategy matrixMσ1 that makes the determinant det(W (M ′′
σ1,σ2 , v))

vanish. Following the construction in Section 5.6.2, we obtain the Extortionate Strategy
of player S1

Mσ1 = 1
4φ2



4φ2 + 2v1 0 −2v1
4φ2 + 2v2 0 −2v2
4φ2 + 2v3 0 −2v3
φ2 + 2v4 2φ2 3φ2 − 2v4
φ2 + 2v5 2φ2 3φ2 − 2v5
φ2 + 2v6 2φ2 3φ2 − 2v6

2v7 0 4φ2 − 2v7
2v8 0 4φ2 − 2v8
0 0 4φ2


(5.6.93)

with φ2 > 6χmax{Y1(i, j) | 1 ≤ i, j ≤ n}.

5.7 Dynamic Pricing

In the preceding sections of Chapter 5, we have described the RM game between two
service providers selling a resource at n price points as a Markov process. In this section,
we will show that a similar analysis is possible for continuous prices, which transfers the
problem to Dynamic Pricing. We will derive the transition kernels in a similar way as
we did in Section 5.2 for the discrete-price case. Then, we will show how the strategies
described in Section 5.4.1 can be formulated in this framework.

For this purpose, let each service provider Sk offer a single resource at a price fk ∈ Fk = R+

at every stage s ∈ N0. Let fc denote the jointly optimal price in this game and thus the
equivalent of the price of the cooperative threshold product in the case with discrete
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products. At each stage, each player may base his pricing decision on the actions of both
players in the previous stage.

The resulting stochastic process is a Markov process with a continuous state space. In
such a state space, it is no longer possible to describe the transition probabilities of
the process with the help of transition matrices as in the discrete case. As discussed in
Section 5.1, a Markov process on a general measurable space (Ω,F) is described by a
transition kernel K, i.e. a map on (Ω,F), for which

• K(x, ·) is a probability measure for all x ∈ Ω and

• K(·, A) is F -measurable for all A ∈ F .

In words, K(x,A) denotes the probability that the state of the Markov process X at
stage s + 1 is included in the set A ∈ F given that the state at stage s was Xs = x.
The transition kernel can be used to find the probability measure µs+1 of the next stage
given the current probability measure µs as µs+1(A) =

∫
Ω
K(x,A)µs(dx) for A ∈ F . This

describes the evolution of the process.

5.7.1 Construction of the Markov Process

The state space of the process is F1 × F2 equipped with the σ-Algebra F1 ⊗F2, where
Fk = B(Fk) = B(R+) denotes the Borel-σ-Algebra of Fk.

At any stage s, the measure µs yields the joint probability distribution of both players’
prices, while the marginal measure νks , l 6= k, yields the marginal distribution of player
Sk’s prices. The marginal measure can be found by integrating over the competitor’s
prices:

ν1
s =

∫
F2

µs(·, df2) (5.7.1)

ν2
s =

∫
F1

µs(df1, ·) (5.7.2)

Similarly to the previous sections, we differentiate between general and reactive Markov
strategies. A reactive strategy depends only on the competitor’s previous action, whereas
a general Markov strategy can depend on both player’s previous actions.
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General Markov Strategies Any Markov strategy σk of player Sk can be represented
by a general Markov kernel Kσk

, which can depend on both players’ previous actions.
Since Sk can only set his own prices, we can only deduct the probability measure of Sk’s
prices at stage s+ 1 given both players’ prices at stage s as

µs+1(A× F2) =
∫

F1×F2

Kσk
((f1, f2), A× F2)µs(df1df2) if k = 1 (5.7.3)

µs+1(F1 × A) =
∫

F1×F2

Kσk
((f1, f2), F1 × A)µs(df1df2) if k = 2 (5.7.4)

for any A ∈ Fk.

In order to describe the evolution of the game’s Markov process, we need to account for
the interaction of both players’ strategies. We find that the restriction of each player’s
transition kernel to the Cartesian products A×F2 and F1×A is sufficient for the creation
of a combined transition kernel.

Lemma 1. The product K̃ of both players’ general Markov strategy transition kernels
on the sets A× F2 and B × F1 with A ∈ F1, B ∈ F2

Kσ1((f1, f2), A× F2)Kσ2((f1, f2), F1 ×B) =: K̃((f1, f2), A×B) (5.7.5)

generates another transition kernel describing the effect of both players’ strategies.

Proof. We have to check the properties of a transition kernel described in Section 5.1.1
and recapped in the beginning of this section.

• The marginalizations Kσ1|F1(·) = Kσ1(· × F2) and Kσ2 |F2(·) = Kσ2(F1 × ·) of Kσk

to (Fk,Fk) are marginal probability measures on (Fk,Fk). Consequently, K̃ is a
probability measure on (F1 × F2,F1 ⊗F2) for every (f1, f2), since it is the product
measure of Kσ1|F1 and Kσ2|F2 .

• K̃ is F1 ⊗ F2-measurable for every A × B, since it is a product of two F1 ⊗ F2-
measurable functions.

It is thus only necessary for our purposes to define each player’s transition kernel Kσk
on

all sets A× F2 and B × F1 with A ∈ F1, B ∈ F2. Therefore, the evolution of the game’s
Markov process is described by

µs+1(A×B) =
∫

F1×F2

K̃((f1, f2), A×B)µs(df1df2) (5.7.6)

=
∫

F1×F2

Kσ1((f1, f2), A)Kσ2((f1, f2), B)µs(df1df2) (5.7.7)
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for A ∈ F1, B ∈ F2. Here, we have used the shorthand notation Kσk
((f1, f2), A) meaning

Kσ1((f1, f2), A× F2) if k = 1 or Kσ2((f1, f2), F1 ×A) if k = 2. For brevity’s sake we will
continue to use this notation throughout this section.

Reactive Strategies As in the previous sections, reactive strategies take a simpler
form, since each player can only react to his competitor’s price. Thus, reactive strategies
use the marginal measures νks (dfk) =

∫
Fl

µs(df1df2), k 6= l, which describe the probability

measure of Sk’s prices only. In this case, the transition kernel K(fl, A) with A ∈ Fk is a
probability measure on Fk and measurable for fl. For player Sk, the probability measure
of his prices in stage s+ 1 can be calculated using the competitor price fl ∈ Fl at stage s
as

νks+1(A) =
∫
Fl

Kσk
(fl, A)νls(dfl) (5.7.8)

for A ∈ Fk and k 6= l. If both players use reactive strategies, the Markov process of the
game evolves via

µs+1(A×B) =
∫

F1×F2

Kσ1(f2, A)Kσ2(f1, B)ν1
s (df1)ν2

s (df2) (5.7.9)

for A ∈ F1, B ∈ F2.

Observation Errors Since observation errors occur independently of the other player’s
actions, errors can be defined via a transition kernel E on (Fk,Fk), so that for A ∈ Fk,
we find for the probability measure of erroneous observations of Sk’s prices:

νk,εs (A) =
∫
Fk

E(fk, A)νks (dfk) (5.7.10)

With A ∈ F1, B ∈ F2, it follows that the occurrence of observation errors on the space
of both players’ prices F1 × F2 is described by

µεs(A×B) =
∫

F1×F2

E(f1, A)E(f2, B)µs(df1df2). (5.7.11)

Similarly to the discrete case, observation errors occur, before both players then apply
their strategy simultaneously. Thus, the transition kernel of the Dynamic Pricing process
is generated by the composition of error and strategy transition kernels

Kσ1 ((f ′1, f ′2), A)Kσ2 ((f ′1, f ′2), B)E (f1, df
′
1)E (f2, df

′
2) , (5.7.12)
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so that the evolution of the game can be described by

µs+1(A×B) =
∫

F1×F2

Kσ1 ((f ′1, f ′2), A)Kσ2 ((f ′1, f ′2), B)E (f1, df
′
1)E (f2, df

′
2)µs(df1df2)

(5.7.13)

for A ∈ F1, B ∈ F2.

Reputation As described in Section 4.2.1, the reputation rk of service provider Sk
takes values in {g, b}, where rk = g denotes a good and rk = b a bad reputation. The
reputation evolves according to the transition kernel R on the space (F1 × F2 × P1 ×
P2,F1 ⊗F2 ⊗ P1 ⊗ P2), where Pk is the power set of Pk.

By abuse of notation, we keep the same notation for the strategies, although the state
space has changed. We can use a composition of transition kernels to describe the
evolution of the probability measure induced by the process without errors:

µs+1(A×B × {(r′1, r′2)}) =
∫

F1×F2

Kσ1 ((f1, f2, r
′
1, r
′
2), A)Kσ2 ((f1, f2, r

′
1, r
′
2), B)

·R((f1, f2, r1, r2), (f1, f2, r
′
1, r
′
2))

· µs(df1df2dr1dr2)

(5.7.14)

To incorporate observation errors, we only have to modify the input prices for the
reputation and for the strategies using the error transition kernels E:

µs+1(A×B × {(r′1, r′2)}) =
∫

F1×F2

Kσ1 ((f ′1, f ′2, r′1, r′2), A)Kσ2 ((f ′1, f ′2, r′1, r′2), B)

·R((f ′1, f ′2, r1, r2), (f ′1, f ′2, r′1, r′2))
· E(f1, df

′
1)E(f2, df

′
2)µs(df1df2dr1dr2)

(5.7.15)

5.7.2 Strategies

In order to formulate the equivalent strategies to the discrete case, we rely on classification
of actions and observations as cooperating or defecting as in Section 4.2.1, so that the
strategies can be transferred from the IPD. Similarly to the discrete case, we say that
a provider Sk plays DEFECT, if he chooses the single-stage best response f ?(fl) to his
competitor’s price fl. We say that Sk plays COOP, if he chooses the jointly optimal
price fc. In order to implement the mechanism of IPD strategies, it is also necessary that
the observations of players’ prices are classified as either cooperative or non-cooperative
behavior. Thankfully, we can use the same logic as in the discrete case. A competitor
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Sl is observed to play DEFECT, if his—possibly erroneous—price is lower than fc ,
otherwise he is interpreted as playing COOP.

With this classification, the strategies from Section 5.4.1 can be written as linear combi-
nations of δfc(A) and δf?(fl)(A), where

δx(A) =

1 if x ∈ A
0 else

(5.7.16)

is the Dirac measure, fc is the jointly optimal price and f ?(fl) is the single-stage revenue-
maximizing price given a competitor price fl. The value of f ?(fl) depends on the demand
model and can be hard to find. However, we stress that our treatment of the problem
focuses on the repeated-game aspect of the Dynamic Pricing problem. In fact, our
model may be used in combination with other approaches providing the solution to the
single-stage problem, for which we refer the reader to our literature review in Chapter 2.

In the following, we will provide the transition kernels for player Sk for the set of strategies
presented in Section 5.4.1.

ALLD For A ∈ Fk, player Sk follows the reactive strategy ALLD by choosing the
single-stage non-cooperative best response

KALLD(fl, A) = δf?(fl)(A) ∀A ∈ Fk. (5.7.17)

ALLC

KALLC(fl, A) = δfc(A) ∀A ∈ Fk (5.7.18)

Note that the strategy of pure cooperation ALLC is independent of the competitor’s last
action. Nevertheless, we choose to model ALLC as a reactive strategy, since this is the
simplest representation of a strategy in our framework.

TFT

KTFT (fl, A) = δfc(A)δfl
((0, fc]) + δf?(fl)(A)δfl

((fc,∞)) ∀A ∈ Fk (5.7.19)

In this reactive strategy, the first summand denotes playing COOP as reaction to a
cooperating competitor, while the second summand means playing DEFECT against a
defecting competitor.
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GTFT For A ∈ Fk, player Sk follows the general strategy GTFT by implementing the
transition kernel

KGTFT (fl, A) = δfc(A)δfl
((0, fc]) +

(
γδfc(A) + (1− γ)δf?(fl)(A)

)
δfl

((fc,∞)). (5.7.20)

Here, the first summand amounts to playing COOP as reaction to competitor doing
likewise. The second summand describes the reaction to the competitor playing DEFECT.
With generosity probability γ, player Sk will react to the opponent’s DEFECT with
cooperation.

CTFT This general Markov strategy relies on players’ reputation. For A ∈ Fk, player
Sk follows CTFT by choosing the transition kernel

KCTFT ((f1, f2, r1, r2), A) =δfc(A) (1− δrk
({b})δrl

({g})) (5.7.21)
+ δf?(fl)(A)δrk

({b})δrl
({g}). (5.7.22)

The first summand stands for cooperation, whereas the second summand denotes playing
DEFECT if the player has a bad and his competitor a good reputation.

PAVLOV The transition kernel for the PAVLOV strategy of Sk is

KPAV LOV ((f1, f2), A) = δfc(A)θ(f1, f2) + δf?(fl)(A) (1− θ(f1, f2)) ∀A ∈ Fk, (5.7.23)

where we have introduced

θ(f1, f2) = δf1((0, fc])δf2((0, fc]) + δf1((fc,∞))δf2((fc,∞)) (5.7.24)

as shorthand notation for the case that the players have either both cooperated or both
defected at the previous stage. The strategy then reduces to playing COOP if both
have acted similarly at the previous stage, as denoted by the first summand, or playing
DEFECT otherwise, as denoted by the second summand.

MATCH Player Sk follows the reactive strategy MATCH by using the transition
kernel

KMATCH(fl, A) = δfl
(A) ∀A ∈ Fk. (5.7.25)
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5.8 Summary

In this chapter, we have studied a simplification of the iterated RM game described
in Chapter 4. The main difference to the previous chapter consisted in dropping the
capacity constraint, which helped simplify each player’s single-stage best response. As
shown in the previous chapter, where we investigated competitive effects depending on
the capacity constraints, this is equivalent to a focus on the point of maximal competitive
effects. Furthermore, we limited each player’s memory to a single-stage, so that the
game can be described as a Markov process. These modifications enabled us to provide a
mathematical analysis of the iterated game.

As outlined in Section 3, we started the analysis of this game in order to find answers to
research questions 2 and 5 – 7. Thus, we were interested in the competitive behavior of
strategies in the repeated RM game, using different measures for success and highlighting
the effect of observation errors. Additionally, we wanted to investigate the existence of
Extortionate Strategies.

In the remainder of this section, we will recapitulate our procedure and summarize our
findings in the search for answers of this chapter’s research questions.

After providing a motivation for the simplified game and outlining the underlying
assumptions, we used Section 5.1 to introduce the mathematical background needed for
the investigations in this chapter.

In Section 5.2, we examined the interactions of the game’s main components such as
each player’s strategy, observation errors and the evolution of players’ reputation. As a
result, we found that the transition matrices of the game can be derived using simpler
lower-dimensional matrices. Since, in this section, the payoff structure is not yet defined,
this result is applicable to any 2-player Markov game with an n-dimensional strategy
space.

The connection to the IPD was established in Section 5.3, where we described the payoff
structure of the RM game by generalizing the IPD’s defining payoff inequalities to the
context of an n-dimensional strategy space. In particular, we showed that the IPD is a
special case of the Markov RM game, arising if each player is restricted to two products,
of which the more expensive one leads to the joint optimum. We showed that the RM
game’s desired payoff structure occurs as a natural consequence of myopic pricing for a
host of demand models.

In Section 5.4, we applied the insights into the structure of the game gained in Section 5.2
to discuss the success of strategies in the iterated RM game in order to answer our
research question 1.

Similarly to our procedure in the previous Chapter 4, we first adapted strategies from
the IPD to the RM framework in Section 5.4.1. The strategies under consideration
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varied in their complexity: from repetitions of single-stage strategies as discussed in the
literature (Isler & Imhof, 2008, 2010) via requiring only knowledge of the competitor’s
previous actions through depending on both players’ actions to using not only players’
previous actions, but also their reputations.

Then, in Section 5.4.2 we presented analytical results about the long-term behavior
of selected strategy pairs. In particular, we were interested in the change in behavior
induced by observation errors. Without observation errors, we found precise results for
the stationary behavior of all considered strategy pairs. However, with observation errors,
we have only been able to find the support of the stationary measure on the strategy
space for some strategy pairs. For many of the considered strategies, we discovered stark
shifts in behavior induced by the possibility of observation errors, that could go as far
as change the stationary outcome from fully cooperative to fully non-cooperative for
TFT.

In Section 5.4.3, we challenged the assumption that players know the price level for tacit
collusion that helps achieve the jointly optimal payoff. We concentrated on the strategies
TFT and PAVLOV, since—due to their success (Nowak & Sigmund, 1992, 1993) and
prevalence among human players (Wedekind & Milinski, 1996) in the IPD—they served
as archetypes for the mechanisms of the other strategies presented in Section 5.4.1. We
found that the changes in the stationary measures depended significantly on the type of
error associated with the cooperative threshold product. If both players used a wrong, but
equal, price level, the effect was by far not as dangerous as if players used differing price
levels. In real life, service providers trying to implement a strategy from Section 5.4.1
need to figure out the product level to use as the cooperate threshold product. Our
results indicate that players should not try to estimate the correct price level, since
this can easily lead to differing cooperative threshold products among the players and
consequently, to deteriorating revenues. Instead, players should agree with each other on
a common price level, even if this means settling for an imperfect cooperative threshold
product. Players can feel safe in this communication, since the ruinous consequences of
differing price levels imply that neither player has an incentive to be dishonest.

Section 5.4.4 was used to provide examples to illustrate the structure of the game laid out
in Sections 5.2 and 5.4.2. We presented all the necessary ingredients for a study of the
game’s stationary behavior, including matrix representations of the game’s constituent
components like the single-player strategies, errors and reputation, as well as the resulting
transition matrices. In the following, we performed an analysis of the stationary measures,
where we not only reproduced results from Section 5.4.2, but also were able to specify
stationary measures with observation errors that had evaded us in Section 5.4.2.

The following Section 5.5 was dedicated to an evolutionary approach to the game. In this
section, players could change their strategies over time to adopt more successful strategies.
In this section, we evaluated strategies’ success in a round-robin tournament, so that each
strategy interacts with all other strategies at some point in time, whereas in the previous
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Sections 5.4.2 and 5.4.4 we could only examine a small subset of possible matchups. In
order to carry out this tournament, we created a simulator that used our results from the
previous sections to determine the stationary behavior of interacting strategies. Thus, for
a fixed starting distribution and simulation parameters, this approach yielded an optimal
strategy among all strategies presented in Section 5.4.1 and consequently, an answer to
research question 6. Depending on the parameters chosen as well as the pricing structure,
we found different strategies prevailing. If the pricing structure rendered cooperation
relatively attractive, the latter stages of the evolutionary game were dominated either
by the purely cooperative ALLC or by PAVLOV, which was able to exploit such a
cooperative stance. On the other hand, a pricing structure favoring aggressive behavior
led to resounding success of the robust Tit for Tat variations GTFT and CTFT, although
in rare cases a mixture of PAVLOV and MATCH could prevail.

While the evolutionary approach provided us with optimal strategies in any given
environment, Section 5.6 presented us with a class of strategies that are able to exploit
evolutionary learning. Building on the work of Press and Dyson (2012), we described
Zero-Determinant Strategies, and as a special case Extortionate Strategies, in the context
of the RM game. Zero-Determinant Strategies are the class of strategies that allows a
player to enforce a linear relationship between both players’ payoffs, while Extortionate
Strategies specify this to receive an unfair share of the payoffs. As an answer to research
question 7, we generalized Press and Dyson’s existence result for Extortionate Strategies
from the IPD to the Markov RM game. We found that there exists not a unique, but an
infinite amount of Extortionate Strategies, as long as each service provider offers more
than two products. However, investigating research question 5, we could demonstrate
that such a result does not hold anymore, as soon as observation errors are introduced
into the framework. We showed that in this case, even the special case of the IPD with
conventional payoffs does not allow for the existence of any Extortionate Strategies.
Consequently, in a realistic setting with the possibility of observation errors, evolutionary
learning as in Section 5.5 can be implemented without having to fear being systematically
exploited. This stresses the importance of the strategies introduced in Section 5.4.1, since
strategies that are able to beat the system in the sense of Zero-Determinant Strategies
do not exist in general.

Finally, in Section 5.7, we concentrated on applying our methods to Dynamic Pricing.
We demonstrated that a similar analysis as the one we have carried out in this chapter for
the RM case with finite products can be executed with continuous prices. In particular,
we provided a derivation of transition kernels similar to Section 5.2 and adapted the
strategies from Section 5.4.1.
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In this chapter, we will complete this thesis by reviewing our contributions and discussing
their implications for the future in practice and research. First, in Section 6.1, we will
give a summary of this thesis’s motivation, targets, solution approaches and results.
Then, we will discuss the practical implications of our results in Section 6.2. Finally, we
will focus on the limitations of our work and discuss opportunities for future research in
Section 6.3.

6.1 Summary

In Chapter 1, we demonstrated the importance of iterated competitive interactions of
Revenue Management (RM)-using service providers and outlined the difficulties treating
this problem as well as the shortcomings of current approaches. Subsequently, we reviewed
the literature on RM, game theory and simulations in Chapter 2. We found that hardly
any research had been conducted that treated the problem of RM under competition from
a multi-stage perspective. Consequently, we detailed this research gap in Chapter 3 and
formulated research questions, which guided our investigations in the following chapters.
In the remainder of this section, we will recapitulate the research questions posed in
Chapter 3 and discuss our corresponding results.

Research Question 1. How can strategies of the Iterated Prisoner’s Dilemma (IPD)
be adapted to the repeated RM game?

In Chapter 4, we formulated a mathematical model of the repeated interaction of two
service providers using RM based on an forecasting engine and an optimizer. We could
demonstrate that this repeated game resembled the far simpler, but well-studied IPD.
Addressing the research question 1, we developed a heuristic to transfer strategies from
the IPD to the repeated RM game based on the work of Isler and Imhof (2008, 2010).

This heuristic allowed us to introduce a host of strategies into the repeated RM game:

• a natural consequence of using a standard RM system: the purely non-cooperative
strategy ALLD

• the cooperative strategy: ALLC

• the most successful strategies from the IPD:
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– Tit for Tat (TFT)

– Generous Tit for Tat (GTFT)

– Contrite Tit for Tat (CTFT)

– PAVLOV

• irrational strategies based on widely-used practice of price matching:

– MATCH

– UNDER

Research Question 2. Which strategy leads to a jointly optimal Nash equilibrium in
the repeated RM game?

Simulations using the revenue management simulator REvenue Management Training
for Experts (REMATE) using an idealized forecasting method showed that the heuristic
yielded several candidates for a strategy forming a jointly optimal Nash equilibrium.
Note that we could not prove that a strategy undoubtedly leads to a Nash equilibrium in
this chapter, since simulating a strategy against the infinite amount of possible strategies
was infeasible. Instead, we relied on testing a set of necessary conditions that rendered
a strategy a plausible candidate for a jointly optimal Nash equilibrium. However, we
found that the introduction of observation errors had a great effect on the performance of
some strategies such as TFT, while others such as GTFT, CTFT and PAVLOV appeared
robust against erroneous observations. The PAVLOV strategy could even profit from
observation errors, as they helped in exploiting blind cooperation. Nevertheless, even in
the presence of observation errors, we found a candidate strategy in CTFT fulfilling all
our necessary conditions to lead to a jointly optimal Nash equilibrium.

In this chapter, we could replicate Isler and Imhof’s (2008) observation that the effect
of competition depends heavily on the severity of the capacity constraints. For severe
capacity constraints, the cooperative and non-cooperative solutions are very similar and
resemble the monopoly outcome. On the other hand, for vanishing capacity restrictions,
the competitive effects completely dominate any classic RM decisions.

Research Question 3. How closely do standard RM methods approximate the game-
theoretic solutions?

Since Cooper et al. (2009) showed that realistic forecasting methods do not necessarily
lead to optimal competitive solutions, we examined whether our results obtained by an
idealized forecast could be approximated using a standard forecasting method. For this
purpose we described a variety of forecasting techniques, from simple methods, that are
widely-used in the industry, to sophisticated approaches, that are not yet used in practice.
Similarly to Cooper et al., we found that not all forecasts exhibit a similar behavior to
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the idealized forecast suggested by Isler and Imhof (2008). However, we found that a
forecast using an appropriately complex demand model approximated the results of the
idealized forecast reasonably well. Thus, our results stressed the well-known dependence
of RM on the forecast quality.

Research Question 4. Which strategies are best suited to react to simple irrational
strategies like price-matching or underpricing?

Both for idealized and realistic forecasts, we found that the key to success against
the irrational strategies MATCH and UNDER was a mixture of cooperation and non-
cooperation as well as robustness against observation errors.

Investigating research questions 6 and 7 turned out infeasible by means of simulation
using the formulation of the RM game developed in Chapter 4. Thus, in Chapter 5, we
studied a simplification of the repeated RM game that was based on the observation
that the capacity restriction inhibits the effects of competition in the game. Dropping
the capacity constraint and restricting strategies to a one-stage memory enabled the
description of the game’s progress as a Markov process. The resulting game was a strict
generalization of the IPD with one-stage memory strategies, which involves no loss of
generality compared to the IPD with arbitrary strategies (Press & Dyson, 2012).

Research Question 5. What is the effect of observation errors on strategies in the
repeated RM game?

In Chapter 5, we developed a framework to describe general symmetric 2-player Markov
games, which we used to analyze the stationary behavior of the simplified RM game.
Within this framework, we could investigate the effect of errors on the game via math-
ematical analysis, which gave us a better understanding of the effect of the game’s
parameters. In particular, we could show that non-robust strategies collapse even for
the lowest probabilities of an observation error. Furthermore, we extended the analysis
to demonstrate that errors in the calculation of the optimal cooperative price level only
have a low impact on the long-term behavior as long as both players employ the same
price level.

Research Question 6. Which repeated-game strategy is competitively robust in the
sense that it fares best against a diverse set of competing strategies?

Using our findings about the stationary behavior of the strategies in question, we devised
an evolutionary simulation similar to e.g. Wu and Axelrod (1995) and Nowak and Sigmund
(1993), that helped answer research question 6. Our results showed that the optimal
strategy against a diverse set of competitor strategies depends heavily on the demand
model and on the players’ pricing structure.
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Research Question 7. Do Extortionate Strategies exist in the repeated RM game?

Continuing our research on this topic, we generalized the results of Press and Dyson (2012),
who found that the IPD allows for strategies that can unilaterally exploit evolutionary
players. We proved that these strategies exist in the simplified RM game as well. However,
we detected the importance of observation errors for the existence of Extortionate
Strategies, as we could show that in the presence of errors, such a result does not even
hold in the IPD.

6.2 Practical Implications

Currently, state of the art RM systems do not explicitly incorporate competitive effects
in their models and thus cannot react adequately to competitors’ behavior (Martínez-de
Albéniz & Talluri, 2011). Instead, service providers rely on the input of human analysts
to deal with the effects of competition (Zeni, 2003). As Isler and Imhof (2008) pointed
out, automating these competitive decisions in RM can lead to the Competitive Spiral
Down, so that Isler and Imhof concluded:

Pricing, and specifically the necessary long-term components of the pricing
strategy, cannot be automated entirely. When using automated systems along
the lines described above, it is important to observe competitor behavior and
use overrides of the system according to a defined long-term strategy.

This is based on the lack of research on repeated interactions between RM service
providers, as pointed out in Chapter 2. However, we can challenge this statement, since
we explored this research gap and presented a range of strategies for the repeated RM
game that avoid the negative effects which Isler and Imhof warned about. Thus, creating
an automated system using a successful strategy of the repeated game seems possible. On
the other hand, our results can also be used as guidance to define a long-term strategy
for the human analysts. Due to the simplicity of our solutions, these strategies can help
human analysts deal with complex competitive interactions.

As a consequence of our analysis of repeated game strategies using realistic forecasting
systems, we stress once more the importance of the forecast for the performance of a
RM system. In order to profit from a repeated game strategy, it is necessary to use an
appropriate forecast, which produces high-quality estimates for a sufficiently complex
demand model. Otherwise, even the most successful repeated game strategy will suffer
from the ruinous Competitive Spiral Down or the even worse Spiral Down.

When investigating the interaction with irrational strategies like price matching and
underpricing, we found that irrational strategies do not call for different repeated
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game strategies. Thus, service providers need not to worry specifically about irrational
competitors when implementing a repeated game strategy.

Most of the strategies under considerations relied on a heuristic that classified competitor
behavior as cooperating if the lowest competitor price did not undercut a fixed threshold
price. We found that the effects of an erroneous threshold price can differ greatly: While
both firms making the same mistake determining the price level only slightly affects
revenues, using different cooperative price levels can lead to the Competitive Spiral
Down even for successful strategies of the repeated game. Thus, when determining this
cooperative price level, firms should rely on signaling rather than estimating.

Furthermore, we examined the recently discovered class of Extortionate Strategies, which
can unilaterally enforce unfair relationships between players in a two-player game (Press
& Dyson, 2012). Although we generalized the existence result of Press and Dyson to
a RM context, we found that the mere possibility of observation errors renders this
result invalid. Since in a realistic environment, observation errors cannot be completely
prevented, we conclude that practitioners do not have to worry about Extortionate
Strategies.

6.3 Limitations and Future Research

In this thesis, we focused on a limited set of strategies in our analysis of the repeated
RM game. Based on the premise that the repeated RM game resembles the IPD, we
adapted successful strategies from the IPD and combined this with well-known simple
competitive RM strategies like price matching. Although we tried to cover a broad range
of strategies and include the most promising approaches, the inclusion of further strategies
might bring new results. For example, the Prudent Pavlov strategy by Boerlijst et al.
(1997b) mentioned in the literature review in Section 2.2.2 is robust against perception
errors, which we have not included in our work. Similarly, the fault-tolerant non-Markov
strategies developed by Pelc (2010) possess an interesting robustness against errors.
Furthermore, researchers may want to use a different heuristic, which would change the
structure of the transferred strategies.

Similarly, we concentrated on a limited set of forecasting techniques when investigating
the ability of real-world forecasting techniques to be used in repeated game strategies.
While these forecasts were chosen as to represent a large variety of methods popular
in practice and research, enlarging the scope of methods could help produce better
results. Since our investigations have shown the need for a sufficiently complex demand
model, the most promising approaches rely on discrete choice models as discussed in the
literature review in Section 2.1.1.
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6 Conclusion

Furthermore, the RM system described in this thesis employed models for forecasting
and optimization that relied on a nesting of products by price. However, Gayle (2004)
showed that focusing only on price as characteristic might not describe customer behavior
accurately.

In order to enhance the clarity of our insights, our model of repeated interaction between
service providers was condensed to a symmetric two-player game between two firms
selling a single resource. As for every model, this was a simplification that allows for
various extensions.

As shown in the IPD, the extension to more than two players can change the dynamics
of the game profoundly (Berkemer, 2006).

Furthermore, if firms sell multiple resources, there are more opportunities to enforce
cooperative behavior by retaliating on a different resource. As Evans and Kessides
(1994) showed, such a behavior is already used in the industry for the practice of pricing,
although we do not know of a similar account for the practice of RM.

Challenging the symmetric setup can lead to different results as well. For the single-stage
RM game, Martínez-de Albéniz and Talluri (2011) showed that capacity inequalities
between the firms induce a specific behavior in the Nash equilibrium, that could not be
observed in a symmetric game.

In our model of competition, we have ignored the possibility of entry or exit in a market.
However, such effects can be caused or at least influenced by the competitors’ RM
strategy (Harris, 2007). On the other hand, the entry or exit of competitors has been
shown to affect competitive behavior (Eliashberg & Jeuland, 1986; Gorin & Belobaba,
2008).
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Symbols

x+ max(0,x).
1n n-dimensional vector, where every element equals one.
A Matrix describing the change of basis of players’ rep-

utation in the revenue management game Markov
chain.

adj(A) Adjugate of matrix A.
α Exponential smoothing parameter.
A \B The complement of set B in set A.
B Matrix for permutation of both players’ probability

vectors in the revenue management game Markov
chain.

Bk Matrix mapping Sl’s probability vector to Sk’s proba-
bility vector space in the revenue management game
Markov chain.

b(jk,jmink ,jminl ) Bookings in class j of firm Sk, given that the lowest
available product of Sk is jmink and the lowest available
product of Sl is jminl .

B(J) Borel-σ-Algebra over the set J .
A×B Cartesian product of sets A and B.
celasticity Price elasticity of dependent part of hybrid demand.
A ◦B Composition of maps A and B.
c Cooperative threshold product used for tacit collusion.
cp Parameter used in calculation of distance-dependent

part of process covariation during Kalman filtering.
∆Ut(x) Bid price Ut(x)− Ut(x− 1).
∆ Distance matrix used in Kalman filtering.
δi,j Kronecker delta. The Kronecker delta is 1, if i = j,

otherwise it is 0.
δx Dirac measure concentrated on x.
dD Dependent demand forecast.
dP Psychic forecast that takes competitor availability

into account.
dH Hybrid demand forecast.
dbase Dependent part of hybrid demand for cheapest prod-

uct.
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Symbols

dI Independent demand forecast.
d̃(j) Marginal demand of product j.
d̂ Point estimate of demand.
d Reference value of demand.
D True demand depending on both service provider’s

offer set.
det(A) Determinant of matrix A.
dK Dependent demand estimated using a Kalman filter.
E Matrix describing observation errors for a single player

in the revenue management game Markov chain.
E(f,A) Transition kernel of a single player’s observation errors

in the revenue management game Markov process with
continuous prices.

ei The i-th canonical basis vector of Rn.
Ei,j Matrix with values of 1 in the diagonal and a single 1

in the i-th row and j-th column, otherwise 0.
ε Probability of an observation error.
η Linear dependence parameter in linear relationship

of players’ payoff enforced by a Zero-Determinant
Strategy.

f(j) Price of product j.
fc Jointly optimal fare in the revenue management game

with continuous prices.
f̃(j) Marginal fare of product j.
Fk Price range of Sk in the revenue management game

with continuous prices.
Fk σ-Algebra of Sk’s price range in the revenue manage-

ment game with continuous prices.
f ?(f) Single-stage revenue-maximizing price given a com-

petitor price f in the revenue management game
Markov process with continuous prices.

γ Probability of generosity of GTFT.
H Reconstraining matrix used in Kalman filtering.
In n-dimensional identity matrix.
jmink Lowest available product of service provider Sk.
ĵmink Observation of service provider Sk’s lowest available

product including observation errors.
j Product.
J Product set offered by a service provider.
K Kalman gain.
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Symbols

Kσk
(f,A) Transition kernel of general Markov strategy in the

revenue management game Markov process with con-
tinuous prices.

Mσk
General form of a single-player strategy for strategy
σk in the revenue management game Markov chain.

m(A,i,j) Matrix constructed by omitting the i-th row and j-th
column of matrix A.

Mσk
Single-player strategy matrix for reactive strategy σk
in the revenue management game Markov chain.

M̃σk
Building block of player Sk’s reactive strategy matrix
in the revenue management game Markov chain.

M ε
σ1,σ2 Transition matrix of two strategies σ1 and σ2 in the

presence of observation errors in the revenue manage-
ment game Markov chain.

M ε,r
σ1,σ2 Transition matrix of two strategies σ1 and σ2 account-

ing for reputation in the presence of observation errors
in the revenue management game Markov chain.

M r
σ1,σ2 Transition matrix of two strategies σ1 and σ2 account-

ing for reputation without observation errors in the
revenue management game Markov chain.

Mσ1,σ2 Transition matrix of the revenue management game
Markov chain for the strategy pair σ1 and σ2 without
observation errors.

µs Measure on the product of both players’ price spaces
induced by the revenue management game Markov
process with continuous fares at stage s.

N+ Natural numbers without zero {1,2,. . . }.
N0 Natural numbers with zero {0,1,. . . }.
x ∼ N (µ,Σ) Random variable x distributed following a normal

distribution with mean µ and covariance matrix Σ.
νks Marginal measure on player Sk’s price space induced

by the revenue management game Markov process
with continuous fares at stage s.

n Number of Products.
∅ The empty set.
φi Linear dependence parameter.
π Stationary distribution.
P(J) Power Set of the set J .
Pk Space of probabilities of Sk’s reputation, i.e. Pk =

{(ρ1
k, ρ

2
k) ∈ [0, 1]2 : ρ1

k + ρ2
k = 1}.

P Probability.
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Symbols

Q Matrix that duplicates input to both players of the
revenue management game Markov chain.

R+ Non-negative real numbers.
R Real numbers.
rk Reputation of Sk, where rk = 0 represents a good and

rk = 1 a bad reputation.
ρk Vector of probability distribution of Sk’s reputation,

where P(rk = i) = ρik.
Rk Space of possible reputations for Sk in the revenue

management game Markov chain.
R((·,r1,r2),(·,r′1,r′2)) Transition kernel of both players’ reputations in the

revenue management game Markov process with con-
tinuous prices.

R Matrix describing the evolution of reputation of both
players in the revenue management game Markov
chain.

Sk Service provider participating in the revenue manage-
ment game.

Σb Booking covariance matrix used in Kalman filtering.
Σd Reference covariance matrix used in Kalman filtering.
Σp Process covariance matrix used in Kalman filtering.
σk Strategy of Sk.
s Stage of the dynamic revenue management game.

Each stage covers a single sales period.
sk Expected payoff of player Sk given the stationary

distribution of the revenue management game Markov
chain.

A⊗B Tensor product of vector spaces, σ-Algebras or linear
maps A and B.

θ Linear dependence parameter in linear relationship
of players’ payoff enforced by a Zero-Determinant
Strategy.

T End of booking horizon.
t Element of the discretization of the booking horizon,

called time step.
xt Transpose of x.
Ut(x) Value of remaining capacity x at time step t.
Uk
t (xk,xl) Value of service provider Sk’s remaining capacity xk

given competitor Sl’s remaining capacity xl at time
step t.
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Symbols

Vk Space of probability vectors of Sk’s lowest available
product {(v1

k, . . . , v
n
k ) ∈ [0, 1]n : ∑i v

i
k = 1} in the

revenue management game Markov chain.
vjk Probability that Sk’s lowest available product is j in

the revenue management game Markov chain.
χ Extortion parameter of Extortionate Strategies.
Xs State of the revenue management game Markov pro-

cess at stage s.
yk Payoff vector of player Sk for all combinations of low-

est available products of both players in the revenue
management game Markov chain.

Yk(i,j) Revenue of player Sk given that the lowest available
product of S1 is i and the lowest available product
of S2 is j in the revenue management game Markov
chain.

ζ Linear dependence parameter in linear relationship
of players’ payoff enforced by a Zero-Determinant
Strategy.
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Acronyms

APD Alternating Prisoner’s Dilemma. 21

CTFT Contrite Tit for Tat. 20, 48–50, 62, 63, 65–67, 71, 77,
78, 103, 106, 110, 123, 127, 149, 152, 154

DAVN Displacement Adjusted Virtual Nesting. 11

EMSR Expected Marginal Seat Revenue. 10
EMSRa Expected Marginal Seat Revenue—Version a. 10
EMSRb Expected Marginal Seat Revenue—Version b. 10
ESS Evolutionary Stable Strategy. 16, 18, 20, 123

FCFS First Come, First Serve. 55, 58

GTFT Generous Tit for Tat. 19, 48–50, 61–63, 65–67, 71, 77,
78, 102, 105, 106, 110, 114, 116, 118, 123–125, 127,
149, 152, 154, 175

IPD Iterated Prisoner’s Dilemma. 3, 4, 17–21, 29, 31–35,
46–50, 61, 63, 71, 76, 77, 80, 81, 90, 92, 96, 98, 101–
103, 105–108, 110, 122, 123, 125, 127–129, 134, 137,
138, 140, 147, 150–153, 155–158

O&D Origin and Destination. 7, 10

PODS Passenger Origin-Destination Simulator. 22, 28–30,
34, 52

REMATE REvenue Management Training for Experts. 28, 29,
34, 36, 51–56, 58, 68, 77, 154

RM Revenue Management. 1–14, 16, 21–36, 38, 40, 42,
43, 46–54, 58, 59, 63, 67–69, 71, 76, 77, 79–83, 90, 91,
94, 96–98, 101, 102, 104, 105, 108, 110, 122, 127–129,
133–135, 137, 143, 150, 152–158
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Acronyms

TF2T Tit for 2 Tats. 19
TFT Tit for Tat. 17–21, 48–50, 59, 61, 63, 65–67, 71, 77,

78, 102, 103, 105, 108–114, 116, 118, 119, 123, 127,
148, 151, 154

ZD Zero-Determinant Strategy. 132, 133
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Glossary

ALLC Strategy for repeated game that plays single-stage
cooperative Nash equilibrium strategy every stage.
48, 51, 58, 59, 63, 65, 69–72, 102, 104, 111, 118, 120,
121, 123–125, 127, 148, 152, 153

ALLD Strategy for repeated game that plays single-stage non-
cooperative Nash equilibrium strategy every stage. 48,
51, 58, 59, 61, 62, 65, 66, 69–72, 75, 80, 102, 104, 109,
111, 113, 116, 118, 119, 123–125, 148, 153

Competitive Spiral Down Systematic deterioration of forecasts and profits due
to competitive effects. 26, 27, 31, 34, 35, 48, 51, 58,
59, 61, 62, 65, 66, 68–71, 76–79, 96, 104, 105, 109,
110, 156, 157

Contrite Tit for Tat Strategy for repeated game executing similar logic to
Tit for Tat to players’ reputation. 20, 48–50, 62, 63,
65–67, 71, 77, 78, 103, 106, 110, 123, 127, 149, 152,
154, 179

COOP Strategy for single-stage game that plays cooperative
Nash equilibrium strategy. 47–49, 101–103, 108, 147–
149

DEFECT Strategy for single-stage game that plays non-
cooperative Nash equilibrium strategy. 47–49, 101–
103, 107, 108, 147–149

Dynamic Pricing Revenue Management using price as control variable.
9, 13, 24, 26, 143, 146, 148, 152

Equalizing Strategy A Zero-Determinant Strategy, which sets the com-
petitor’s payoff to a fixed amount. 20, 128, 133

Expected Marginal Seat Revenue Heuristic revenue management optimization tech-
nique, which generalizes Littlewood’s rule to more
than two classes. 10, 179
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Glossary

Extortionate Strategy A Zero-Determinant Strategy, which fixes a linear
relationship of both players’ profit. 21, 33, 81, 82,
128, 129, 133, 134, 137, 140, 143, 150, 152, 156, 157,
178

General Markov Strategy Strategy in the revenue management game taking into
account both players’ previous actions. 91, 103, 110,
117, 129, 135, 138, 140, 144, 145, 149

Generous Tit for Tat Strategy for repeated game adding a bias to coopera-
tion to the logic of Tit for Tat. 19, 20, 48–50, 61–63,
65–67, 71, 77, 78, 102, 105, 106, 110, 114, 116, 118,
123–125, 127, 149, 152, 154, 175, 179

Iterated Prisoner’s Dilemma Repeated version of a symmetric 2-player game, in
which mutual cooperation maximizes the players’ com-
bined payoffs, but mutual non-cooperation is the only
Nash equilibrium. 3, 4, 17–21, 29, 31–35, 46–50, 61,
63, 71, 76, 77, 80, 81, 90, 92, 96, 98, 101–103, 105–108,
110, 122, 123, 125, 127–129, 134, 137, 138, 140, 147,
150–153, 155–158, 179

JOI Jointly optimal strategy in the repeated game. 58

LOW Strategy for repeated game that always makes the
lowest price available. 58, 66

MATCH Strategy for repeated game that copies competitor’s
last action. 49, 50, 65–67, 75, 78, 103, 107, 108, 123,
127, 149, 152, 154, 155

PAVLOV Strategy for repeated game relying on a Win-Stay,
Lose-Shift logic. 20, 49, 50, 62, 63, 65–67, 71, 72, 77,
78, 103, 104, 107–109, 117–121, 123, 125, 127, 149,
151, 152, 154

PODS Revenue management simulator developed by Boeing
and the MIT. 22, 28–30, 34, 52, 179

Q-Forecasting Forecasting method using a customer model, in which
customers always buy the cheapest available prod-
uct and the customers’ willingness to pay follows an
exponential distribution. 8, 38
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Glossary

Reactive Strategy Strategy in the revenue management game taking into
account only competitor’s previous actions. 92, 102,
103, 110, 111, 114, 117, 144, 146, 148, 149

REMATE Revenue management simulator developed by
Lufthansa. 28, 29, 34, 36, 51–56, 58, 68, 77, 154,
179

REMIGIUS Revenue management simulator developed by the
university of Clausthal. 28

Spiral Down Systematic deterioration of forecasts and profits due
to incorrect models of customer behavior. 8, 69, 72,
78, 156

Tit for 2 Tats Strategy for repeated game based on Tit for Tat. 19,
180

Tit for Tat Strategy for repeated game based on the concept of
equivalent retaliation. 17–21, 48–50, 59, 61–63, 65–67,
71, 77, 78, 102, 103, 105, 107–114, 116, 118, 119, 123,
127, 151, 152, 154, 180–183

Unconstraining Process of reconstructing the true demand process
from censored observations. 7

UNDER Strategy for repeated game that underbids competi-
tor’s last action. 50, 65–67, 75, 76, 78, 103, 104, 123,
154, 155

Zero-Determinant Strategy A strategy in a two-player game allowing for a linear
dependence of payoffs. 21, 128, 129, 131–133, 152,
175, 177, 178, 180–182
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