Appendix A

Derivation of Rytov’s solution

A.1 First-order approximation

A solution of equation (2.38) is now constructed in the form of the expansion ¥ = W1 +Wo+ ..,
where Wy is of the order \/(n?), Wy of the order (n?) etc. . This derivation considers the 2-D
case. Note that the 3-D case may derived analogously. Equating terms of the same order in
(n?) to zero, the following system of coupled, partial differential equations is obtained:
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This set of equations describe the log-amplitude and phase fluctuations in the half-space
z > 0 if the plane wave (2.35) enters from the half-space z < 0. The boundary conditions
for equations (A.1) are then V;(z,z = 0) = 0. The second equation of the set (A.1) refers
to the so-called second-order Rytov approximation which we are going to solve as soon as an
expression for the first-order approximation is derived. Note that all these partial differential
equations have the same structure. Applying the Green’s function approach, any of these
equations has the solution

L 00
U, (L,x) = /dz’ / do'G(z — 2,2 — ') f (¢, 2), (A.2)
0 —00

where f,(z,z) denotes the terms on the right side of the equations (A.1), respectively. G
denotes the Green’s function of the operator Zik% + 88—;, i.e., it is determined by

G 0%*G

with f,(z,2) = §(2)d(x). To determine G we assume that ¥ and f,, can be represented by a
Fourier integral respective to the transverse coordinate:
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96 APPENDIX A. DERIVATION OF RYTOV’S SOLUTION

The Fourier transformation of equation (A.3) yields
2sz — K2p(z, k) = p(z, K) (A.6)
0z
which has the solution

1 [, e
p(z, k) = %k /dz'e_mQW MENDE (A.7)
0

The inverse Fourier transform yields finally the Green’s function

1 7 i[ﬁ(z—z’)—i'g(mle)}
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Admik \ i(z — 2')
The 3-D analogon can be found in Rytov et al. (1987) equation (2.37).

The calculation of the first Rytov solution is then straightforward:

Uyi(L,z) = /Ldz' /Ood:c’ : 2hm e[ig(éjﬂ (—2k*n(z,x)) (A.9)
R ) 2mik \ i(z — 2') T .

Adopting the notation of Ishimaru (1978), we represent n(z,x) by its spectral expansion

n(z,x) = / e dy(z, k), (A.10)

—0o0

where dv denotes the Fourier-Stieltjes differential. Its properties are thoroughly discussed
in appendix A of Ishimaru’s book. With equation (A.10) we express equation (A.9) after
performing the integral over dz’ (see Prudnikov et al., 1988, pp. 344, No. 13) as

(L2 |

L o0 i K2
Vi(L,z) = ik/dz/ / dv(2', k) ez{m 2 (A.11)
0 —0o0

Note that this is exactly equation (B4) in Shapiro et al. (1996b), where it has been derived
using the approach of Ishimaru (1978). The calculation of the variance of equation (A.11) is
also shown in detail in this reference. The real part is given by (see also equation (B.1) for
the 3-D case)

yi in(k2L/k
o2, = 27rk:2L/dm<c (1 - %) 2D (1) . (A.12)
0

A.2 Second-order approximation

To show that equation (A.12) can be obtained from the second-order Rytov approximation,
we solve now equation (A.1) with exactly the same Green’s function approach. From equation
(A.2) we obtain

foT o 2k [B=E] (0w
Uy(L,z)= [ d d i —|—= . Al
2(L, @) 0/ ‘ / Ak i(z—2') ¢ ( [ Ox ] ) (A.13)
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The term in brackets requires that we differentiate equation (A.11) with respect to z, take
the square and insert this into equation (A.13). Straightforward calculations yield

L 2 )
ik
Vo(L,z) = %/dz’ //dz”d(” // dv(2", k)dv((", )
0 0 —o0
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It remains to determine the mean value of equation (A.14). Noting the identity
(dv(2",k)dv(¢",)) = F(2"—(", k) 6(k+a) dk da, where F denotes the 1-D Fourier transform
of the autocorrelation function of n(z,z), we obtain

L z! %)

'k ‘K)2 1 11 ‘K,2 !

(Ta(L) = 5 / dz! / / dz"dc" / Ak F(2" — (" k) (=2) 55+ %2 (A15)
0 0 —o0

Note that at this stage there is no more dependency on the transverse coordinate x involved.
Introducing the difference and center of mass coordinates n = 2" —(”, 6 = # and adopting
the approximation with respect to the area of integration as in chapter 17 of Ishimaru (1978),
we can perform the integration of the space variable 6. Using the relationship

P (k) = % / dn F(n, k) (A.16)
0

for the case of isotropic random functions, it is also possible to integrate with respect to n

0 —o0

iK2

—1IK

— k2 / dr &P (k) {L - ( ’.“2 (e*m“/’f - 1))} . (A.17)

Finally, separating real and imaginary part and noting that the integrand is an even function
of k yields

R(Wy(L)) = —27rk/dm 2P (k) [L - gsin (%)1 (A.18)
0
S(Wy(L)) = fQWk/dﬁ 2P (x) [% - % cos (%)] . (A.19)
0

Comparing equations (A.18) and (A.12), we find the following relation between the mean
value of R(Ws) = (x) obtained in the second-order Rytov approximation and its variance

(x) =—02,. (A.20)



Appendix B

Explicit expressions for the wave
field attributes

B.1 Log-amplitude and phase variances

Simple expressions for the quantities U>2<x’ ai " and ¢, are known ( Ishimaru, 1978 and Rytov
et al., 1987) . The results corresponding to plane wave propagation in 3-D media are

o2 = 27r2k2L/ dm< M>¢3D(/{) (B.1)

XX 2Lk
12
o2, :4#@/)d (ml Lﬂm)@%@ (B.2)
2 _ 2,27 [~ sin(k’L/k) \ +3p
Osy = 21k L/O dk K <1 + 2Lk o7 (k) . (B.3)

In these equations ®3P (k) denote the fluctuation spectra which are the 3-D Fourier trans-
forms of media correlation functions. The terms in brackets are the so-called spectral filter
functions or Fresnel filters (since they act on the fluctuation spectra like filters; their behavior
for the different wave field ranges is thoroughly discussed in Ishimaru,1978). For the 2-D case
the results can be obtained by skipping x in the integral over dk, dividing by 7 and using
the 2-D fluctuation spectra.

For spherical waves the quantities U>2<x’ 092@ are (Ishimaru, 1978, chapter 18, and Ishimaru,
1972): '

L o)
2 2.2 o (n(L—m) 2\ 3D
Oy = 4%k /0 dn/0 drk K sin (ZTK )(IJ (k) (B.4)

L o0
2 _ 27.2 _(n(L—mn) 5\ 43D
oy = 41k /0 dn/o dk Kk sin (ZT/@ ) 7 (k) (B.5)

with the same notations as above. Changing the order of integration and integrate over n we
find

o2, = 2rm%k’L /Ooo dr k @3 (k) [1 - cos(m/24%) C(A) Z sin(m/24%) S(A>] (B.6)

o2, — 2L /Ooo dr e 7D () [sin(w/ZAQ)C(A)—cos(w/2A2)S(A)

T 1 . (B
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B.2. EXPONENTIAL AND GAUSSIAN MEDIA 99

where A = gjr—’;; and C, S denote the Fresnel integrals

C(z) = /0 * dt cos (gt2> S(z) = /O " dt sin (g#) , (B.8)

respectively. Again, the corresponding expressions for 2-D media are obtained by skipping x
in the integral over dk, dividing by 7 and using the 2-D fluctuation spectra.

Explicit expressions for the coherent phase are obtained with help of the Bourret approxi-
mation. The result in 3-D media is

00 9 2
¢c—¢0:wk2L/0 dr k In <2Z+:> O30 (k) (B.9)
whereas in 2-D media one obtains
00 (I)2D
b — po = Ark3L [ dr (v) (B.10)
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Like in equations (B.1)-(B.2), ®(k) are the fluctuation spectra.

B.2 Exponential and Gaussian media

Here the explicit results for exponential and Gaussian random media are presented. Equations
(3.17) and (3.18) can be further simplified if we choose a special type of of correlation function.
Namely, for exponentially correlated fluctuations, i.e. the correlation function and its 2-D
Fourier transform are given by

o2a?

Bn(r) = 0-7%6—7"/@ = (I)ZD(FL) = 27r<1 +nl{2a2)3/2 , (Bll)

where a is called the correlation length and o2 is the variance of the velocity fluctuations, we
obtain

(0 = ~50(@h)D |1+ 5 (i(D/4) cos(D/4) + Yi(D/9sin(D/)| (B.12)

s

(¢) = o2(ak)'D [g <F<3,9>E<—,g>)

2 /oc 4 sin?(k2Da?/4)
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Dka? Jo K2(1 +K2a2)%
J1,Y1 are the Bessel functions of first and second kind, their argument D is the wave param-

eter. F,E are the elliptic integrals of the first and second kind with the second argument
_ 1
9= Viraaiz

5 5 ] . (B.13)

For Gaussian correlated fluctuations and its corresponding 2-D Fourier transform

2 2
B(r)=o2e ™/ o P(g) = DL owtatd (B.14)
4dr
we obtain:
1 1
(x) = —\/TEaﬁ(ak)?’D (1 — 5(1 + 4D2)i sin {5 arctan(ZD)}) (B.15)
L g,y k%a? k%a? 1 [2r
(@) = —7onlak) DleXp(— B () -
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where K is the modified Bessel function of the second kind (MacDonald function).

For an exponential correlation function with its 3-D Fourier transform

3D ona’
P =" B.17
(’%) 7_[_2(1 —}—/@2a2)2 3 ( )
we can find explicit expressions for the mean log amplitude and phase fluctuations:
1, 3 9.9 m 1, —D?
<X> - _g(a’k) o, D [DA% + 5 15 <17 [27 E]a 16
T . D T D D

(¢) = o2(ak)®D {ak:g2 ~ 3D sm(;) + 1 cos(;) + ZAO} . (B.18)

In equations (B.18) we use

0 1 D? D2\ I+1/24i
A= | (s +1+i) =W+ T+i) +In [ = B.19
l Zg (Griti—wiEs “Hn(m)] (1624[) rGratz

with the Gamma function I' and the Psi or di-Gamma function ¥(z) = di InI'(z) (Gradstheyn

i

(1983), chapter 8.36); 1 F5 is the generalized hypergeometric function, which can be simplified
in the region D < 1:
1 D?
Fh~—(1—-— i B.20
R ( 16 ) (B-20)

Furthermore, we present the explicit results of (x) and (¢) for a Gaussian correlation
function with its 3-D Fourier transform

3P (k) = iaje_“ZQQM . (B.21)
&2
We find
) = g(ak)gai [2D — arctan(2D)] (B.22)
(¢) = ‘{—g(ak)%g [sﬁD daw(ka) — In(4D* + 1)} : (B.23)

In equation (B.23) we use the Dawson-Integral daw(z) = e " Jo dt e’”. Note that equation
(B.22) coincides with equation (IV,2.80) of Rytov et al. (1989).



Appendix C

Dispersion relations with n
subtractions

The derivation of the Kramers-Kronig relations for a transfer function of a passive and linear
medium is presented in this section. More comprehensive derivations can be found in Weaver
and Pao (1981), Mobley et al. (2000) and Nussenzveig (1972). Aki and Richards (1980) and
Ben-Menhahem and Singh (1981) give also a brief outline of the causality principle. Discus-
sions of the use of the causality principle in the framework of multiple scattering theories can
be found in Weaver (1986) and Beltzer (1989).

Let H(w) = A(w) + iB(w) denote the Fourier transform of the impulse response h(t) of a
linear system. Then by means of Titchmarsh’s theorem the real and imaginary part of H(w)
are related by a pair of Hilbert transforms:

Alw) = %P/%dw’
B(w) = %P/j(f/ldw’, (C.1)

where P denotes the principle value of the integral. The latter equations express the causality
principle, i.e., the impulse response is zero for negative times (h(t < 0) = 0) for finite energy
signals (/% |h(t)[?dt < o). Note that equations (C.1) only hold provided that the function
H(w + iy) is analytic for y > 0, i.e., in the upper half plane and has no poles on the real
axis. Equations (C.1) are known as Kramers-Kronig dispersion relations. In general, these
relations involve the constants A(co) and B(co). Here, these constants disappear because of
the finite energy condition.

The transfer function H in our notation is given by
H(w,L) = exp(iK(w, L)L) (C.2)

where K is the complex wavenumber as introduced in (3.2): K = ¢ + ia. Therefore, we can

write
In H(w, L)

L

If H is analytic in the upper half plane, then v = In(H)/L is also analytic except for the zeroes
of H. For finite travel-distances L there are no zeroes of H in the upper half plane. This

=iK(w,L) =~v(w,L). (C.3)
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102 APPENDIX C. DISPERSION RELATIONS WITH N SUBTRACTIONS

can be verified by inspection of equations (B.9)-(B.10). However, noting Paresvals theorem,
the finite energy condition [°°_|h(t)[2dt = [ |H(w)|*dw < oo means that H(w + iy) = 0
for |w + iy| — oo. This apphes also for our wave field attributes as shown in the Figures
(3.12) and (3.13). Then ~ is divergent and not square integrable. To circumvent this fact,
Nussenzveig introduced the method of subtractions. First, a new complex function A is
formed. If v diverges as w”, then the function A, can be obtained in terms of ~

_ (@) = v(wo) = (d/dw)y(@)lwmwy = - = (d"7H/dw" )y (W) lvmwy (w = w0)" /(0 — 1)!
An(wv‘UO) (w - wO)n
= m [ Zo dcf:ﬂ )w= wow (C.4)

Real and imaginary parts of A form a Hilbert transform pair and constitute the dispersion
relations with n subtractions, where wg denotes the subtraction frequency. A is analytic
everywhere,where + is, but is also convergent as |z| — oo and thus square integrable.

Noting that

P/ d’ _ (C.5)

dw'

1
SAp(w,wp) = ——
T

1

+= ; dw’ (C6>
T w4+ w

and
1 OOOAn / _ C\An
RA, (w,wo) = _/ e ’WO)/ = (w,w())dw,

T w —w
0

L PO ) = O cn
T / W +w

C.1 Twice-subtracted dispersion relations

For n = 2 which in our case is used for 3-D random media equation (C.7) leads to an
expression for the attenuation coefficient

— __/ { —w'd/dw' p(W')|w—o B p(w) — wd/dwgp(w)‘wzo} o
w2 (W — w) w2 (W — w)
w? —w'd/dw' o(W)|w=0 (W) — wd/dwp(w)|w=o ,
?0/ { w? (W' +w) a w? (W + w) } o (C.8)

where we set a(wp) = 0 for wy = 0. Some algebraic manipulations yield

2?2 T du

ow) = o ) w22 {
0

W) w(w)} _ (C.9)

w' w

This corresponds to equation (3.20).
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C.2 Triple-subtracted dispersion relations

For 2-D random media it turns out that the twice-subtracted dispersion relation results in a
non-convergent integral. This is because the w dependency of the Bourret part of p(w) is of
the order O(w?) (see equation (B.10)). Therefore, a triple-subtracted dispersion relation has
to be applied. To do so, we use equation (C.7) with n = 3 and note that equation (B.10)
corresponds to

4 ooH(/—ﬁ —2w/c)®(k)dk

El VK2 —4w?/c?

0

A3 = (C.10)

Inserting this into equation (C.7) with n = 3 we come up with the following equation

%Ag /dli (I)

[H(mzw/c) d,( 11 >+ (c.11)

VK2 —dw?/c? Wwtw w-—w
/d’ /@72w'/c) (k) /d’ H*QW’/C) (k)ds 1

4u/2/c2 W' — VK2 —4w?/cz W 4w

The integration of the terms in the second line yields

H(k —2w/c)
VK2 —dw?/c?’

The first integral in the third line can be evaluated by integration by parts. We obtain

(C.12)

—T

cm arctanh(ke/VK?c? — 4w?) N im/2H(k — 2w/c) + im/2

_4(HC/2 —w) * VK22 — 4w? VK22 — 4w?

Note that the function arctanh(z) is defined by

arctanh(z) = In ( 1 + Z) (C.14)
-z

(C.13)

and can be used for complex arguments provided that the complex square root and logarithm
functions are defined properly. Analogously, we can evaluate the second integral in the third
line of equation (C.12). A chain of manipulations yields finally the real function

RA3(w /d/{(l) [ ket /4 (2w/c— r) arctan(k/+/|k2 — 4w? /2|

—H
(ke/2)? — w? |k2 — dw?/c?|

ke/Vk2e2—4w?+1 )

|ke/ VK22 —dw?2—1]
|k2 — dw? /2|

In
+H(k—2w/c) < (C.15)

Equation (C.15) can be expressed in terms of the attenuation coefficient
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7 tan(k/ /T2 — 4K2))
a3 ® TR g o BIC
(k) 8k O/dm (%) l2(52_4k2) 2k — K) T
In ( Kk/VK2—4k%+1 )é
o/ R2 —Ak2 —
H (e — 2k) — A 1 (C.16)

VK2 — 4k?

Considering only the leading terms in equation (C.16) we can write

ak) = —2rk? dr @ (k). (C.17)
2k



Appendix D

Two-frequency mutual coherence
function

D.1 The Markovian approach

The calculation of the two-frequency mutual coherence function in the 3-D case can be found
in Sato and Fehler (1998). Here we present briefly the 2-D analogon. The differential equation
for the two-frequency mutual coherence function I's(K', k", 2/, 2", 2) in 2-D reads (see for the
3-D equation e.g., Sato and Fehler (1998) and Ishimaru (1978), equation (20-92)):

21

I 9% 1 9% 1
0z + ozr2 k! Oz k!

] Ty +i (K2 + K2)A0) — 2'K" A(z' —2")| Ty =0 . (D.1)

This so-called master equation for I's is obtained from the parabolic wave equation in the
Markov approximation. The function A(xz) is the integral along the mean propagation di-
rection z of the correlation function of the heterogeneities B(x, z) and is also related to the
fluctuation spectrum:

Alz) = / dz B(z, z) = (27)? / dr Jo(k2)(k)k (D.2)
—00 0

where Jj is the Bessel function. For quasi-monochromatic waves with frequencies around w,,
it is expedient to introduce center-of-mass and difference coordinates for the wave numbers
(ke = (K'+k")/2, kq =k — k") which transform equation (D.1) into

'y kg 0°Ty 3 B
W + 12—1{:(2: 922 + kc (A(O) - A(l‘d))rg + 7A(0)F2 =0 5 (D3)

where z4 = ' — 2”. The dependence on the spatial difference coordinate z,; follows from
the assumption that the random medium under consideration is statistically homogeneous.
According to Sato and Fehler the wave package experiences additional to the broadening due
to scattering the so-called wandering, which is caused by statistical averaging of the phase
fluctuations. A factorization of I'y into

Ty = (Toe kaA(0)z/2 (D.4)

separates these effects. Replacing I's by ¢I'2 in equation (D.3) is therefore equivalent to
a description of the envelope broadening due to multiple scattering in a single realization.
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Note that (—k2A(0)z/2 equals the mean field attenuation coefficient obtained in the Markov
approximation. The master equation for gI's is then

Oola kg 0%¢l2 4

with the initial condition
o2 (we,wg,z =0,2=0) =1 (D.6)

which corresponds to I(t,z = 0) = §(t). For Gaussian correlated fluctuations the function
A(x) is

A(zy) = Vrola (1 - z—§> ) (D.7)
Substituting this into equation (D.5) and introducing the following non-dimensional variables

T=2z/L y==za/ar , (D-8)
where a| means the correlation length in the transverse direction, we obtain

doly kg 0%l

2
— I's =0 D.9
or 'k, oy 002 ! (D-9)

2.2
where k,, = 2hea | Equation (D.9) can be solved by choosing the ansatz
2
o2 = oxp(v(1)7) : (D.10)
w(T)

Substituting (D.10) into equation (D.9) we obtain

dv k k 1 dw

2 . vd . g

— +4di— 1 2ip— — ——| = ; D.11
ar Zk:m”+}+[“’km w dr ’ (D-11)
this equation can only be satisfied if each term in brackets is identical to zero. With the
initial conditions v(0) = 0 and w(0) = 1 we find

v(t) = —vpexp(—3mi/4) tanh(ylo)
w(r) = Jcosh— (D.12)
20

with vy = %. Substituting (D.12) into (D.10) and considering oI'2(7 = 1,7 = 0) we

obtain finally the solution

oy = \/ sech [2 exp(i3m/4),/ kd/km] (D.13)

noting that sech(z) = 1/ cosh(z).
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D.2 I in Rytov and Bourret approximation

From the two-frequency correlation functions at lag 7 = 0 (Ishimaru, 1978, equations (19.49))
we recover the two-frequency variances in 3-D for the plane wave case:

0 L
Uilm(kl,kg,z =L)= 27T2k1k2/ dl@I{(I)(K)/ dn gy (K, n) (D.14)
0 0
with

gy(k,m) = R{h1h3 — hiho}

_jL=m .2

h’l = [ 2k
L—m 2
h2 = e_l 2kg K

Integration with respect to n yields

5 [Slﬂ(LK2/2 % k%)) 31n<L,i2/2 % ,3—2»
T T

=27 klkg/dlﬂlﬂ?(b )

1 1
X1X2 12 . SR
(D.15)
In the same way we compute

: 2 1 1 : 2 1 1

o |sin(Lk*/2(+ — sin (Lk*/2 (= + =
J¢>1¢>2 — o klkg/d/mffb ) . ( . (kll kz)) + ( - (k11 k2>) (D.16)

& R TR

T 0k kk 1
092(2% — ai1¢2 = —167° /d/@ ﬁ I ! 21 i (Lﬁ2/4 (— — —)> .(D.17)
0 a k1 ko kl k2

With the above equations and the approximation for the logarithmic wave field attributes
given by equations (B1)-(B9) we can express the real and imaginary part of the exponent of
I'y as

1

X = *5[0

T o(k) kK2 11
_ 9.2 27 (1.2 1 1.2 172 2 _
= —or /dﬂ - [;@ L(k1+k2)+4k1—k2 sin (Ln /2(k1 k2>)
0

Ok ky SID (L/<;2/2 (k_ll — k—é))
Rk De2f2 (k- L)

2 2 2 2 2 2
xixi T 9xaxz T 0gigy + U¢2¢>2} T 0xe T 96160

- —2ﬂ%k%+k€ﬂi/dmmd%m)[1— ] (D.18)

SN
Il

by = bz + U>2<2¢1 - U>2<1¢2
7 2k1 + K 2 2ko + K 2
= WL/dliﬁq)(K,) [k%ln(m{l_m) k%ln(%&_f{) -
0

167 klk‘g ) 1
s sin @m/4(——9>]. (D.19)
Lk (k_11 _ kl_g) kl /{2
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Introducing center-of-mass and difference coordinates k. = (k1 + k2)/2 and kg = k1 — ko
one obtains

Rk ko L) = =2m%(2K2 4 K/2)L [ (o)
2k2 k:?l/Z sin (Lm /2k2 k2/4>
D.20
T 2k + K ? 2k3 + K ?
oy 2 1 2 2
d(key kg, L) = WL/dKK(I)(FL) [kQIH (2%_%) —k31n (2%_5) —
0
2
16 S0 ( Lk /4k2 4, 4>
” "y (D.21)

Lk2
kZ— k2 274

where we used k1 = k. + kg/2 and ko = k. — kq/2. Inserting for example the fluctuation
spectrum of the Gaussian correlation function, explicit results for ¥ and ¢ are obtained.



Appendix E

Elastic Rytov and Bourret
approximation

E.1 Elastic Rytov approximation

We follow Gold (1997) in order to derive the elastic Rytov approximation. The following
calculations are done for the case of an incident P-wave in 3-D. The calculations for an
incident S-wave and the 2-D case are analogous. We start with the elastodynamic wave
equation (2.44), where the perturbations are introduced in the following way:

p(r) = po+dp(r)
A(r) = Ao+ 0A(r)
p(r) = po+du(r) . (E.1)

That means the Lamé parameters and density fluctuate around their mean values (pg, Ao, £o)-
Further we assume small fluctuations: dp(r) < pg, 0A(r) < Ag, du(r) < po. The elastody-
namic differential operator corresponding to a homogeneous isotropic medium is

Xix = w?podir + (Mo + 120)0i0k + 11000 O (E.2)

such that
Xikaj = 5(1‘ — I‘/)(Sij y (E3)

where G}; is the Green’s function of an infinite elastic volume:

1 (iBR gioR iR
Gij(R) = — l%ﬂQ— — O0; <— - >] : (E.4)

R R

Here o and (3 are the wave numbers of P- and S-waves, respectively; R is defined as |r —r'|.

In the following we consider the propagation in z-direction of an initially plane P-wave. In
analogy to the acoustic case, we choose the following ansatz for the displacement vector:

u = (ug(r),uy(r), 1) exp(ik2) exp (V) (E.5)

which corresponds to a time-harmonic plane wave and ¥ defined in section 2.1 (the time de-
pendence exp(—iwt) is omitted). Assuming that ¥, u, and u, are small quantities compared
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with unity, we insert equations (2.45), (E.1) and the ansatz (E.5) into the wave equation
(2.44) and obtain:

()‘O + 2#0)(2“{\1’,2 + ‘I’,zz) + ,UO(‘IJ,Q:Q: + \Ij,yy) + CUQ(SP + Zk(AO + NO)
(U + Uy ) + (N0 + 10) (Ua oz + Uy yz) — K2(ON + 201) + ik(X + 26p) . = O,

where terms of second and higher order of the small quantities are neglected. Like Ishimaru
(1978), we want to obtain an equation for W. To do so, we define

L = (1t (1), g (1), W(x))T exp(ik2) (E.6)
and apply the operator Xj; to this quantity what yields the result for j = 2:

e_ikzszLk' = ()\0 + MO)(uaz,azz + Uy, yz + Zk(u:r,:r + uy,y)) +
(R0 + 2p0) (20kV 2 + W 22) + po(Vaw + W) (E.7)

Now we subtract (E.6) from this equation and obtain for L, = ¥
e"REX W = w26p — k20N + 20u) + ik (6N + 20p) . . (E.8)

This corresponds to an inhomogeneous wave equation for the complex exponent W, which
can be now determined by a Green’s function approach. We obtain

U = ik / B [w26p — K2(5) + 260)]€™ Gy (E.9)

If we assume forward scattering and neglect the near field terms of G3s, the following ap-
proximation can be made:

k2 ikR k2 i
c SG*P(R) | (E.10)

Gss(R) = =
3(R) pow? 4TR  pow

with the acoustic Green’s function G3P. Inserting this into equation (E.9) and noting that
in the elastic case the velocity fluctuations n, are in a first order approximation

2ny =0p/p — (0N +20p) /(X + 2p) , (E.11)

we finally obtain the result (3.63).
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E.2 Elastic Bourret approximation

The detailed derivation of the coherent phase for elastic random media can be found in Gold
et al. (2000). See their equations (A-19) and (A-20) for the effective wave numbers in 3-D
random media. Its real part multiplied by the travel-distance defines the searched for coherent
phase. In 2-D random media the results are (Gold, 1997);

1 r —ioz
¢ = alL §R{ (1 T / d*re " [ W*B,,Ga3 — a® BaGjiji — 40° B, Gz 33

diw*aB,,G 2ipowaBy,G —4a2By,G 12 E.12
+iw aB,, G333 + 2ipow aB),Gmam —4a”By,G3m 3m (E.12)

1 T —13z
¢ = BL %{ (1 s d*re P [ w'B,,G11 — ?B,, (Gaz 11 +2G13.13

+G11,33 — 4G33 33) + 2iw? BB, (G113 + G131 — 2G33.3) )~/ } . (E.13)

Gi; means the 2-D Green’s function (Hudson, 1980) and B, denotes the (cross-) correlation
function of the quantities x, y.
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