Chapter 6

Conclusions and perspectives

The evolution of seismic pulses in random media is studied. For this purpose, we construct
the complex, ensemble averaged wave number of an initially plane wave propagating in 2-
D and 3-D weakly heterogeneous random media. The validity range of this complex wave
number has practically no restrictions in the frequency domain. Its real part is related to the
phase velocity dispersion, whereas its imaginary part denotes scattering attenuation. These
logarithmic wave field attributes, obtained by combination of the Rytov approximation and
the causality principle, are self-averaged quantities and allow to describe any typical, single
realization of the wave field. Typical wave field realizations or seismograms are those that are
nearly identical to the most probable realization. This approach describes the wave field in
the vicinity of the primary arrivals and is an extension of the generalized O’Doherty-Anstey
theory of Shapiro and Hubral, (1999). A schematic overview of this approach is provided in
Figure (6.1).

In order to calculate the Green’s function in 2-D and 3-D random media, we apply a similar
strategy as Shapiro and Hubral (1999) for the transmissivities in randomly layered media.
Nevertheless, there are some principal differences. In 1-D media the Rytov approximation
includes back- and forward-scattering effects. This is not so in 2-D and 3-D random media,
where the assumption of forward scattering is necessary in order to simplify the computations.
By means of the causality principle we combine the Rytov and Bourret approximations and
obtain in this way a wave field description that takes into account at least a part of the
back scattering. Moreover, in 1-D media the self-averaging phenomenon leads to a pulse
stabilization for larger travel-distances. However, already in 2-D media we can not observe
this effect. We explain this by the fact that in contrast to the 1-D case, wave propagation
in 2-D/3-D media is characterized by only a partial self-averaging taking place in the weak
fluctuation range mainly.

We apply this theory of scattering attenuation to model measured Q-values at the KT'B-site
using well-log statistics. We find that scattering attenuation plays an important role in the
upper crust in this region. Estimates of scattering attenuation as derived from our formulas
can be important for further petrophysical interpretations of seismic data from crystalline
and reservoir rocks. The Green’s function of the primary wave field can be used in order
to compensate for transmission losses in the overburden of large-scale reflectors. This is
demonstrated with help of numerical tests.
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Maybe this work poses more questions rather than giving answers. Nevertheless, I hope
that the approach and the results may stimulate further research in the following directions:

e Currently this approach is restricted to isotropic correlation functions. An extension
to anisotropic correlation functions should be possible. This is an important issue
since real geological structures often show non-isotropic heterogeneities. Other relevant
structures for hydrocarbon exploration are cracked and porous media. An extension of
our approach based on the poroelastic Biot equations is of great interest.

e The use of the derived Green’s function in conjunction with migration techniques is not
yet fully exploited. We neglected the phase of the time-harmonic transmissivity and
corrected only the amplitude decrease of the primary. However, the phase shift and the
corresponding pulse broadening influence the migration result because the summation
along the diffraction curves is obviously affected by the wave form. In particular, it
is not yet clear in which way our wave field attributes correspond to this summation
operation inherent to all migration schemes. For sure, intensive numerical tests are
required.

e The new scattering attenuation model can be used in order to interpret measured
Q-values from other regions of the lithosphere in the same manner like it is shown
for the KTB region. For example, within the collaborative research project SFB 267
Q-estimates extracted from tomography and Multiple Lapse Time Window (MLTW)
studies have been obtained and show spatial regions with strong attenuation (see the
SFB report 1999-2001 and the references therein). The interpretation of strong attenu-
ation is associated with partial melting due to upgoing fluids released by the subducting
ocean plate. It is not yet clear what amount of scattering attenuation can be expected.
Using the here presented scattering attenuation model may put some constraints on
the magnitude of scattering Q. More precisely, the minimum @ p-estimates (Qp =~ 80)
obtained in the frequency band 0.5 — 8 Hz can be explained in terms of scattering at-
tenuation using a = 3km and o,, = 3% for travel-distances L = 100km assuming an
exponentially correlated random medium (plug these medium parameters and travel-
distance into formula (3.50)). We do not claim to explain all the attenuation in terms
of scattering. However, even these hypothetical medium parameters, which are quite
usual for stochastic lithospheric models, show that there is a considerable amount of
scattering attenuation which should be taken into account.

e There is a possibility to identify signatures of wave localization in 2-D random media
in the weak wave field fluctuation regime using the extended ODA approach. More
precisely, the so-called wave-correction terms used by Samelsohn et al. (1999) in order
to interpret the behavior of wave localization in 2-D random media can be also found
with the extended ODA approach.

e The characterization of the coda or at least the early part of it in single realizations
of random media remains an open problem. To apply the analytical description of
seismogram envelopes to real wave field registrations requires an ensemble of wave field
realizations. To overcome this problem is of interest since in many practical situations
only a few seismograms are available.
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Figure 6.1: The O’Doherty-Anstey approach and its extension to 2-D and 3-D random media

at a glance.
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