Chapter 4

Beyond the primary wave field

Summary

Whereas chapter (3) presents a theory for the primary wave field, we turn now the atten-
tion to a wave field description that also includes the early part of the coda. Because the
coda contains mainly the incoherent field, not the wave field itself is the quantity of interest
but the ensemble averaged envelope. The advantage of self-averaging cannot be used in the
following. Therefore, we do not consider this as a part of the extended O’Doherty-Anstey the-
ory. Nevertheless, this characterization of seismogram envelopes is also based on the Rytov
approximation. More precisely, we formulate the two frequency mutual coherence function
based on the wave field approximation which we obtained in the previous chapter. To com-
pare our results with existing theories and 2-D finite-difference simulations we derive also
the two frequency mutual coherence function in the Markov approximation for 2-D random
media. This coherence function can be used in order to describe seismogram envelopes as
shown in Sato and Fehler (1998). A more general introduction to the theory of coherence
functions can be found in Born and Wolf (1999).

In section (4.1) we review the formulation of the two frequency mutual coherence function in
the Markov approximation and present its solution for plane waves in 2-D Gaussian correlated
random media. The formulation of the two-frequency mutual coherence function using the
Rytov- and Bourret-approximation is presented in section (4.2).
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4.1 Evolution of seismogram envelopes

It is well-known that seismic pulses traveling through heterogeneous media experience a
change of their envelopes. Sato and Fehler (1998) described the broadening of seismogram
envelopes due to multiple scattering with help of the Markov approximation. The latter
is, like the Rytov approximation, based on the parabolic wave equation and includes there-
fore multiple forward scattering effects. They obtained the intensity spectral density, whose
Fourier transform corresponds to the temporal evolution of the mean square of a bandpass-
filtered trace recorded at a certain depth inside the random medium. Similar formulations of
the intensity pulse propagation can be found in Ishimaru (1978) and Sheng et al. (1990).

Let us consider the intensity of an initially plane wave field at a certain depth z in a 2-D
random media (the transverse coordinate is z). Using the Fourier transform of the wave field
with respect to time (denoted by U(w, z, 2)), we can write the intensity in the following way:
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The two-frequency coherence function is defined by

Iy = (U, 2 2)U" W z,2)), (4.2)

i. e., the two-frequency mutual coherence function at the same spatial position. Therefore,
equation (4.1) becomes
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where w, and w, are center of mass and difference coordinates, respectively. So the intensity
spectral density [ is given by the Fourier transform of I's:

1 fe© )
I(t,we, z) = %/ dwaTo (W', " @ = 0, z) e walt=2/c0) (4.5)
—o0

The remaining task is to determine I'o. This was done by Sato and Fehler (1998) for the
plane wave case in 3-D and by Fehler et al. (2000) for point-source radiation in 2-D. In the
case of a plane wave in 2-D random media, we show in appendix D that

Ty = o[y e FaA0)2/2 (4.6)

with
oTs = \/sech [2 exp(i37r/4)1/kd/km} , (4.7)
where kg = wgq/co, km = @ with k. = w./co and a; the transversal correlation length.

The corresponding result in 3-D random media reads

ol = sech {2 exp(i3m/4)\/ kq /km} . (4.8)

Note that I is not dependent on w, if we assume Gaussian correlated heterogeneities. In
general this is not the case. In Fig. (4.1) the intensity spectral density is computed for
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several travel distances inside a 2-D Gaussian random medium. As expected, the broadening
of envelopes with increasing travel-distance can be observed.

Note that equation (4.5) describes the output intensity due to a d-pulse as input intensity /;
and can be therefore understood as the corresponding Green’s function. If I is not dependent
on w, (which is the case for Gaussian correlated random media), the output intensity can be
expressed as a convolution integral of the input intensity (Ishimaru, 1978, chapter 15):

T(t,2) — /dt’f(t—t’,z)-]i(t’,zzo)

= I(t,z)* Ii(t,z = 0). (4.9)

Ishimaru calls this case the wide-sense stationary uncorrelated scattering channel.

In seismology, one does not exactly know the input signal (source signal). To model the
temporal evolution of seismogram envelopes, equation (4.5) can be interpreted in the follow-
ing sense: The summation over all frequencies w. corresponds to the measured intensity, i.e,
to the seismogram envelope. Applying a bandpass filter to the seismograms before construct-
ing the envelope reflects a small portion of I; that is approximately given by I. Thus, Iis
the mean square of a band-pass filtered trace (the MS envelope), whose frequency content
is represented by w.. With this recipe Scherbaum and Sato (1991) modeled the broadening
of seismogram envelopes in order to estimate the statistical properties of lithospheric hetero-
geneities in Honshu, Japan.

In Fig. (4.2) we compare the analytical result (4.5) with seismogram envelopes from 2-D
plane wave simulations in Gaussian correlated random media. Here, we know the input in-
tensity and can use equation (4.9). Convolving the intensity spectral density function with
the square of the input-wavelet results in the black curves in Fig. (4.2). The corresponding
numerically determined envelopes are shown by the grey curves. The agreement between
theory and experiment is good for small travel-distances and gets worse with increasing L.
The reason for this behavior is that for large travel-distances the neglect of backscattered
waves is not justified. Moreover, in the given experiment the dominant wavelength is only
slightly smaller than the correlation length. Choosing ka > 1 yields much better agreement
between experiment and theory. This has been demonstrated by Fehler et al. (2000) by
means of similar numerical experiments.

From the above given derivation it becomes clear that I; describes the temporal evolution
of the intensity for the ensemble of all random medium realizations. It is not appropriate to
describe single realizations of seismogram envelopes. The factorization of I'y in (4.6) and the
fact that exp(—k3A4(0)z/2) accounts for the effect of ensemble averaging lead Sato and Fehler
(1998) to the conclusion that ¢I'y reflects the properties of a single realization. This argument
is however not convincing because I's is by definition an ensemble averaged quantity. Indeed,
the term exp(—k2A(0)z/2) accounts for the effects of phase fluctuations (wandering effect
in the terminology of Lee and Jokipii, 1975), but these effects cannot be treated separately
when evaluating the integral (4.5).
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Intensity spectral density
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Figure 4.1: The intensity spectral density for several travel-distances inside a 2-D Gaussian

random medium (cop = 3000m/s,o = 0.1,a = 40m) according to equation (4.5). The black
curves are obtained when I’y is used as in equation (4.6). Skipping the exponential term in
equation (4.6) and then computing [ yields the grey curves.

Envelope broadening in Markovian approximation
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Figure 4.2: The envelope broadening in the Markovian approximation. The grey curves
correspond to numerically determined averaged seismogram envelopes in a 2-D Gaus-
sian random medium (cy = 3000m/s,c = 0.15,a = 45m) for the travel-distances L =
56, 176,296,416, 536m. In the uppermost envelope the deterministic form of the input inten-
sity is observable. That is why for small travel-distances the wave field is not yet 'randomized’.

The black curves are computed using equation (4.9).
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4.2 Envelope broadening in the Rytov approximation

In this section it is shown that the two-frequency coherence function can be formulated using
the wave field attributes derived in chapter (3). This results in an alternative, new description
of ensemble averaged seismogram envelopes.

Let’s start with the definition of the two-frequency coherence function:
o(w, ") = (U, z,2)U* (", z,2))
and recall the Rytov transformation in equation (3.8)
U = Upe"
where the incident wave field is given by
Uy = Age'?o

with a constant amplitude Ag = 1 and phase ¢g = kz for propagation in z-direction. Inserting
equation (4.10) into the definition of T'y yields

To(w',w") = (Uy, €' U, e"2). (4.10)

To keep the equations short, we introduce the subscripts 1,2 on the righthand side of this
and the following equations referring to the dependency on the frequencies w’,w”. Since the
incident wave field is a non-random quantity the latter equation becomes

To(w',w") = el(901=902) (W1 4V (4.11)
If U1 + U3 is Gaussian distributed then we can write
* * 2
Ta(e, ") = ei00—000) ((1)+(73) e%<[%”2*<““”2>] ) , (4.12)

To see this, note that for a Gaussian random variable x with its probability density function
p(z) the following identity holds
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Since ¥ = y+i¢, the assumption of a Gaussian distribution is justified (see also the discussion
in section 2.3). Moreover, the PDF of the sum of ¥; and V% is given by the convolution
their PDF’s which results in a Gaussian distribution provided that ¥; and V3 are Gaussian
distributed. If we substitute the approximations for the logarithmic wave field attributes
presented in equations (3.17) and (3.18), i.e
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and recall the definition of the (cross-) variance
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one obtains from equation (4.12)

Py, w") = e¥ = e+ (4.14)
with
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Equation (4.14) is lengthy but of a simple structure. All quantities are of the order O(e?).
The quantities U>2<x’ 03) & O'>2< " and the coherent phase ¢. we know already from chapter 3 and
are listed in appendix B.1. New terms are the two-frequency variances U>2<1x2’042>1 ¢2’0>2<1 bo
They can be calculated from the two-frequency correlation functions which have been ob-
tained by Ishimaru (1978, chapter 19) and are discussed in appendix D.2. The resulting
expressions for ¥ and ¢ show the same structure than the logarithmic wave field attributes
presented in appendix B (see equations (B1)-(B3)). Moreover, for Gaussian correlated ran-
dom media explicit results can be obtained. The intensity spectral density obtained in this

approximation is shown in Figure (4.3) for the case of a Gaussian correlated random medium.

To verify the approximation (4.14) we use the same numerical experiment as in the previous
section. The results are displayed in Figure (4.4), where a slight improvement regarding the
agreement between theory and experiment can be observed (compare with Figure (4.2)).

There are several advantages in computing the seismogram envelopes based on the approx-
imation (4.14). First of all, arbitrary fluctuation spectra may be inserted in equation (4.14).
The formulation presented in this section uses plane waves. Note that the wave field approx-
imations (3.17) and (3.18) are also valid for spherical waves. Thus, using the corresponding
expressions for spherical waves, one can also apply formula (4.14). Finally, note that in the
same way the two-frequency coherence function based on the causal wave field attributes
(3.29) and (3.30) can be obtained which accounts for backscattering and is therefore superior
to the presented approaches. This is, however, a topic for future research.
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Figure 4.3: The intensity spectral density for several travel-distances inside a 3-D Gaussian
random medium (¢ = 3000m/s,o = 0.15,a = 40m) according to equation (4.5) however

using the two-frequency coherence function (4.14).

Envelope broadening in Rytov approximation
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Figure 4.4: The envelope broadening in the Rytov approximation using the approximation
(4.14) is denoted by the black curves. The grey curves correspond the same numerical ex-
periment as in Figure (4.2). The dominant frequency of the input-wavelet is 70Hz and
accordingly we choose k. = 0.12. Compared with Figure (4.2), the agreement between theory

and experiment is slightly improved.
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