Max-Delbrück-Center for Molecular Medicine, Berlin

Research Group Neurodegeneration Supervisor: Dr. Christiane Alexander

Generation and analysis of OPA1 (optic atrophy 1)-deficient mice

Dissertation

zur Erlangung des akademischen Grades **Doctor rerum naturalium (Dr. rer. nat.)** vorgelegt beim Fachbereich Biologie/Chemie/Pharmazie der Freien Universität Berlin

von

Maja Fiket

aus Belgrad

Februar 2007

 Gutachter: Prof. Dr. Fritz G. Rathjen, Max-Delbrück-Center for Molecular Medicine, Freie Universität, Berlin
Gutachter: Prof. Dr. Markus Schülke, Charité University Medical Center, Berlin

Tag der Disputation: 13.07.2007

ACKNOWLEDGEMENTS

First of all, I would like to thank to my mother, who made my education possible. I want to thank her for her support and patience.

Then, I would like to thank to my supervisor, Dr. Christiane Alexander, in whose group I was "working out" the way to become a "Doctor of philosophy". She let me work on this interesting project, and read my thesis very carefully. She thought me a lot about mitochondria and was always very critical, so that I could move forward.

I would also like to thank to my lab colleagues, Anita and Vasu for standing me and being good friends, and Jana, Christin and Rene for a fantastic technical and moral support.

Of course, I am very grateful to the people who helped me scientifically during all these years, especially, in order of appearance: Dr. Alistair Garratt, for a great help with ES cells; Dr. Glen Jeffrey for teaching me what a retina is; Dr. Bettina Erdmann for EM pictures of embryos and optic nerves, Prof. Dr. David C. Chan and Dr. Hsiuchen Chen for establishing MEFs, Dr. Nicola Strenzke for analysis of the mouse visual and hearing system, PD Dr. Mathias W. Seeliger for ERG and SLO analysis, Dr. Ansgar Santel for help with confocal microscopy, Dr. Ulrike Ziebold for useful tips in mouse embryology, Prof. Dr. Markus Schülke for helpful tips concerning mitochondrial respiration and Prof. Dr. Fritz G. Rathjen for being my "Dr. Vater".

I am very happy to have two wonderful sisters and many very good friends who were always there for me.

Lastly, I would like to thank to Boris, because he was and is the best support I could possibly have. And he also took a lot of time to very critically read this thesis.

Hvala!

CONTENTS

1. INTRODUCTION	1
1.1. Mitochondrion	1
1.1.1. The structure of mitochondria	1
1.1.2. The role of mitochondria in cells	3
1.1.3. Shape and dynamics of mitochondria	6
1.1.3.4. Mitochondrial dynamics and dynamins	8
1.1.3.4.1. Mitochondrial fission proteins	8
1.1.3.4.2. Mitochondrial fusion proteins	9
1.2. OPA1	11
1.2.1. Structure, processing and localisation of OPA1	11
1.2.3. Function of OPA1	12
1.3. Mutations in OPA1 cause autosomal dominant optic atrophy	13
1.4. Critical dependence of neurons on functional mitochondria	14
1.5. The aim and purpose of this project	16
2. MATERIALS AND METHODS	17
2.1. Materials	17
	17
2.1.1. Chemicals and enzymes 2.1.2. Bacterial strains	
	17
2.1.3. Vectors/plasmids	17
2.1.4. Cell lines	17
2.1.5. Mouse strains	18
2.1.6. Bacterial and cell culture media	18
2.1.7. Antibodies	19
2.2. Methods	19
2.2.1. Bioinformatics	20
2.2.2. Molecular Biology	20
2.2.2.1. Plasmid DNA isolation	20
2.2.2.2. Isolation of genomic DNA from embryonic stem (ES) cells	20
2.2.2.3. Isolation of genomic DNA from mouse tissue	21
2.2.2.4. Isolation of genomic DNA from the embryos	21
2.2.2.5. Isolation of total RNA from mouse tissues	21
2.2.2.6. Measuring of Nucleic Acid Concentration by UV-Spectrophotometry	22

22
27
28
28
28
ots29
29
29
30
30
30
31
31
32
32
32
33
33
34
34
34
35
35
36
36
37
37
37
38
39
~~~
39
39
39
ted
41

3.2. Generation of OPA1-deficient mice	45
3.2.1. Intron-Exon structure of the mouse OPA1 gene	45
3.2.2. Generation of the targeting vector	48
3.2.3. Generation of mice lacking one OPA1 allele	48
3.2.4. Confirmation of the knockout event	49
3.3. Phenotypic analysis of heterozygous OPA1 knockout mice	49
3.3.1. OPA1 ^{+/-} mice contain reduced levels of mitochondrial DNA	51
3.3.2. Histological examination of the retina and the optic nerve	52
3.4. Phenotypic analysis of homozygous OPA1 knockout mice	52
3.4.1. Loss of OPA1 causes early embryonic lethality	54
3.4.2. OPA ^{-/-} embryos have fragmented mitochondria	54
3.4.3. OPA1 ^{-/-} embryos contain reduced level of mitochondrial DNA	56
3.4.4. OPA1 ^{-/-} embryos show massive cell death at embryonic day 7.5	56
3.4.5. Fragmented mitochondria in OPA1 ^{-/-} cells	57
3.4.6. Ultrastructural changes of mitochondria in OPA1 ^{-/-} cells	59
3.4.7. OPA ^{-/-} cells are respiration deficient	60
3.4.8. Cells deprived of OPA1 are less sensitive to staurosporine-induced apoptosis	63
3.4.9. OPA1 isoform 1 rescued the severe mitochondrial phenotype seen in OPA1	
knockout cells	66
4. DISCUSSION	68
4.1. Human and mouse OPA1 transcripts differ mainly in their 3'untranslated region	
	68

4.2. Reduced levels of OPA1 protein do not lead to retinal ganglion cell death in mice

	70
4.3. Speculations on how OPA1 mutations may lead to adOA	73
4.4. Why do OPA1 heterozygous knockout mice not show the same phenotype as	
human carriers of OPA1 mutations?	74
4.5. Loss of OPA1 leads to early mammalian embryonic death	75
4.6. Decrease of mtDNA levels in OPA1 ^{-/-} embryos	76
4.7. Cells devoid of OPA1 have lost the ability to fuse their mitochondria	76
4.8. Connection between fragmented mitochondrial phenotype of OPA1 knockout	
embryos and their apoptosis	79

4.9. OPA1 is required for cristae maintenance, oxidative phosphorylation and	d
mitochondrial membrane potential	82
4.10. OPA1 is needed for the activation of apoptosis via mitochondria	83
4.11. OPA1 isoform 1 was able to rescue respiration and fusion but not apop	otosis
phenotype in OPA1 ^{-/-} cells	85
4.12. Importance and future prospects	87
5. SUMMARY	88
6. ZUSAMMENFASSUNG	90
7. BIBLIOGRAPHY	92
8. LIST OF PUBLICATIONS	111
9. CURRICULUM VITAE	112
10. APPENDIX	115
10.1. List of figures	115
10.2. List of tables	116
10.3. Abbreviations	116