VIII Experimenteller Teil

1 Instrumentelle Analytik

1.1 NMR-Spektroskopie (¹H und ¹³C)

Die ¹H- und ¹³C-NMR-Spektren wurden mit den Spektrometern AM 270, Advance 300 bzw. AMX 500 der Firma Bruker[®] aufgenommen. Die chemischen Verschiebungen δ sind in ppm angegeben und auf Lösungsmittelresonanzen als interner Standard bezogen. Die Position der Atome entspricht den nebenstehenden Formeln. Sie stimmt nicht mit der korrekten Bezeichnung im Sinne der IUPAC Nomenklatur überein. Die Signale in den Spektren werden durch folgende Abkürzungen beschrieben:

s = Singulett, br s = breites Singulett, d = Dublett, t = Triplett, q = Quartett, dd = Dublett von Dublett, tt = Triplett von Triplett, m = Multiplett, AB = AB-System.

Für die Strukturaufklärung erfolgte die Spektrenzuordnung bei den meisten Porphyrinen, sofern es die Löslichkeit der Verbindungen erlaubt, mit Hilfe von zweidimensionaler NMR-Spektroskopie, das heisst COSY (${}^{3}J_{H,H}$), HMQC (${}^{1}J_{C,H}$) und HMBC (${}^{2}J_{C,H}$ und ${}^{3}J_{C,H}$). Bei höhersubstituierten Porphyrinen wurde weiterhin NOESY-Experimente (dipolare Kern-Kern-Wechselwirkungen) durchgeführt, da mit den oben genannten 2D-Spektren keine Zuordnung möglich war. Unter Zuhilfenahme der Information der räumlichen Nähe der Protonen konnte eine sichere Zuordnung getroffen werden.

1.2 Massenspektrometrie

Die Massenspektren wurden mit dem Massenspektrometer MAT 711 der Firma Varian[®] bzw. mit einem SSQ 710 der Firma Thermo Finnigan[®] aufgenommen. Es erfolgte Elektronenstoßionisation mit 80 eV bzw. 70 eV. Hochaufgelöste Massenspektren wurden nach der "peak-matching" Methode bestimmt. Fast-Atom-Bombardment-Spektren wurden mit einem CH-5 DF der Firma Varian[®] aufgenommen. Electrospray-Ionisation-Spektren wurden mit einem Q-TOF_{micro} der Firma Micromass Waters Inc.[®] aufgenommen.

1.3 UV/Vis-Spektroskopie

Die UV/Vis-Spektren wurden mit dem Diodenarray Spektrometer Specord S10 und S100 der Firma Carl-Zeiss[®] aufgenommen. Als Lösungsmittel wurde CH₂Cl₂, CH₂Cl₂, 1 % NEt₃, (v/v), THF und MeOH verwendet. Zur Bestimmung der Extinktionskoeffizienten wurden Lösungen mit einer Konzentration von 10⁻⁷-10⁻⁵ mol/l verwendet. Handelt es sich bei den Lösungen um Gemische zweier Porphyrine, wurden die Extinktionskoeffizienten als relative Intensitäten angegeben, wobei die Soret-Bande auf 1.00 gesetzt wurde. Die Auswertung erfolgte mit dem Programm Aspect Plus von Carl-Zeiss[®].

1.4 Schmelzpunkte

Die Schmelzpunktbestimmung bis 330 °C erfolgte mit einem Reichert-Thermovar Gerät bzw. einem SMP 10 der Firma Stewart Scientific[®]. Die Schmelzpunkte sind nicht korrigiert.

1.5 Röntgenkristallographische Untersuchungen

Die Strukturdaten wurden freundlicherweise von A. Kelling, U. Schilde und M. O. Senge zur Verfügung gestellt.

1.6 Elementaranalysen

Die elementare Zusammensetzung wurde mit einem Perkin-Elmer 2400 CHN Elementar Analyzer bestimmt. Bei den Porphyrinen konnte trotz intensiven Trocknens im Hochvakuum keine Übereinstimmung mit den berechneten Werten erzielt werden. Über Schwierigkeiten bei der Anfertigung von Elementaranalysen von Porphyrinen wurde in der Literatur vielfach berichtet.^{1,2,3} Es ist bekannt, dass Porphyrine Lösungsmittelmoleküle einschließen bzw. mit Lösungsmitteln in einem festen Verhältnis kristallisieren. Daher wurde auf diese Analysenmethode verzichtet.

2 Chromatographische Verfahren

2.1 Dünnschichtchromatographie

Die Reaktionen wurden auf DC-Platten (Kieselgel Si 60 und Aluminiumoxid 60) mit Fluoreszenzindikator (F_{254}) der Firma Merck[®] verfolgt. Die Chromatogramme wurden im UV-Licht ($\lambda = 254$ nm bzw. 366 nm) detektiert. Im Falle der Pyrrolderivate wurden die DC-Platten durch Anfärben mit Brom entwickelt.

2.2 Säulenchromatographie

Die säulenchromatographische Trennung erfolgte an Kieselgel der Firma Merck[®] (Kieselgel Si 60, 230-400 mesh ASTM) und an basischem sowie neutralem Aluminiumoxid 60 (60 mesh, aktiviert) der Firma Alfa[®]. Aluminiumoxid wurde vor dem Gebrauch mit Wasser deaktiviert (Brockmann Grad III = 7 % Wasser). Substanzen, die sich schwer im Eluent lösten, wurden in ca. 100 ml Dichlormethan aufgenommen. Nach Zugabe von ca. einem Gramm Kieselgel wurde Dichlormethan abdestilliert. Das Kieselgel-Substanz-Adsorbat wurde anschließend auf die Säule aufgetragen und chromatographiert. Die angegebenen Laufmittelgemische beziehen sich auf die Einzelvolumina (v/v).

2.3 HPLC

Zur analytischen HPLC diente eine mit Silicagel [Nucleosil 50 (5 μ)] gefüllte Säule (4 x 250 mm) sowie eine Gynkotek[®] 480 Pumpe. Es wurde im Bereich von $\lambda = 250$ nm bis 600 nm mit einem Gynkotek[®] UVD3405 Detektor detektiert. Als Laufmittel diente CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v. Der Lösungsmitteldurchfluss betrug 1 ml/min.

2.4 GC

Die analytische GC wurde mit einem GC-Gerät Perkin-Elmer Typ 8420 durchgeführt. Es wurde eine chirale Cyclodex B Kapillarsäule (0.32 x 30 m) und ein FID-Detektor verwendet. Als Trägergas diente Helium. Die Injektortemperatur betrug 200 °C.

3 Lösungsmittel, Chemikalien, synthetische Methoden

Alle bezogenen Lösungsmittel wurden vor Gebrauch, falls nötig, durch allgemeine Methoden gereinigt. Dichlormethan, Ethylacetat, Methanol und *n*-Hexan wurden destilliert. Für die Kondensation benötigtes Dichlormethan wurde vor Gebrauch über Phosphorpentoxid getrocknet und anschließend destilliert. Diethylether wurde über Aluminiumoxid (Brockmann Grad I) filtriert. Aceton wurde über CaCl₂ getrocknet und anschließend abdestilliert. THF wurde mit Benzophenon als Indikator über Natrium getrocknet und destilliert. Die absolutierten Lösungsmittel wurden kurz vor dem Gebrauch hergestellt.

Styrrol **217** wurde mit 0.1 M NaOH-Lösung und Wasser extrahiert und über Aluminiumoxid (Brockmann Grad I) filtriert (Eluent: CH₂Cl₂).

Bei literaturbekannten Substanzen werden die Stoff- und analytischen Daten nur bei Abweichungen von der Literatur angegeben.

Die folgenden Substanzen wurden nach Standardvorschriften hergestellt: 2,5-Bis-(hydroxymethyl)pyrrol **43**,^{4,5,6} Tripyrran **44**,^{6,7} 5,10-Diphenylporphyrin **60**,⁶ (5,10-Diphenylporphyrinato)nickel(II) **152**,⁸ 5,10-Di-*p*-tolylporphyrin **154**,⁶ 5,10-Bis-(3-methoxyphenyl)porphyrin **162**,⁶ 5,10-Bis-(3,4,5-trifluorphenyl)porphyrin **173**,⁶ 5,10-Bis-(4bromphenyl)porphyrin **177**,⁶ 3,4-Diethylpyrrol **195**,^{9,10} 3,4-Dimethylpyrrol **206**¹¹ und 4,5,6,7-Tetrahydro-2*H*-isoindol **209**.^{12,13*} 2-Hydroxymethylpyrrol **52**¹⁴ wurde freundlicherweise von Dr. A. Wiehe, 5,10-Di-*iso*-butylporphyrin **157**⁶ von Dr. S. Hatscher zur Verfügung gestellt. Weitere verwendete Ausgangssubstanzen wurden von Merck[®], Acros[®], Fluka[®], Riedel[®], Janssen[®], ABCR[®], Alfa Aesar[®], Lancaster[®] bzw. Aldrich[®] bezogen und ohne Vorbehandlung eingesetzt.

Reaktionen mit empfindlichen Reagenzien wurden mittels der Schlenk-Technik in absolutierten Lösungsmitteln unter Argonatmosphäre durchgeführt.

^{*} Es wurden nicht, wie in der Literatur angegeben, 25 Äquivalente NaOH sondern 3.13 Äquivalente NaOH eingesetzt.

4 Katalyseuntersuchungen

Die Experimente zur Untersuchung der Katalyseeigenschaften der dendritischen Porphyrine wurden nach der folgenden Vorschrift ausgeführt:^{15,16} In einen 10 ml Schlenkkolben wurde Styrrol **217** (1 ml, 8.77 mmol), das jeweilige Mangan(III)porphyrin (0.96 µmol) in Benzol (1 ml) unter Argon gelöst. Es wurde Iodosylbenzol **218** (211 mg, 0.96 mmol) zugefügt und die Lösung eine Stunde bei Raumtemperatur gerührt. Dabei erfolgte ein Farbwechsel von grün nach gelbbraun. Die Lösung wurde in CH₂Cl₂ (20 ml) aufgenommen, über Aluminiumoxid (Brockmann Grad III) filtriert (Eluent: CH₂Cl₂) und unter vermindertem Druck bei einer Badtemperatur von 50 °C eingeengt. Die verbleibende Lösung wurde anschließend GC-analytisch untersucht.

5 Darstellung von mono-*meso*-substituierten Porphyrinen

5.1 Allgemeine Vorschrift

Folgende Vorschrift wurde bei der Synthese von monosubstituierten Porphyrinen **8** angewendet. Modifizierungen der Reaktionsbedingungen und der Mengen der eingesetzten Edukte sind, falls notwendig, bei den Einzelverbindungen aufgeführt. In einen 2 1 Dreihalskolben wurden unter Argon in CH₂Cl₂ (1 1) Dipyrromethan **36** (290 mg, 2.00 mmol), Pyrrol-2-carbaldehyd **51** (380 mg, 4.00 mmol) und der entsprechende Aldehyd (2.00 mmol) gelöst. Unter Lichtausschluß wurde zu dieser Lösung TFA (70 μ l, 0.91 mmol) getropft, und die Lösung wurde über Nacht bei Raumtemperatur gerührt. Anschließend wurde DDQ (1.30 g, 5.73 mmol), suspendiert in CH₂Cl₂ (ca. 50 ml), hinzugefügt und die Lösung 1 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit einer Pipette NEt₃ neutralisiert und am Rotationsverdampfer auf 1/3 des Ausgangsvolumens eingeengt. Die Lösung wurde über Kieselgel filtriert (Eluent: CH₂Cl₂) und das Lösungsmittel unter vermindertem Druck entfernt.

5.1.1 Umsetzung mit 2-Ethylbutyraldehyd

Analog zur Vorschrift 5.1 wurde 2-Ethylbutyraldehyd **131** (0.25 ml, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Die erste Fraktion enthielt das disubstituierte Porphyrin **55** und die zweite Fraktion das monosubstituierte Porphyrin **54** als Hauptprodukt. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden beide Substanzen in Form von violetten Kristallen erhalten.

5-(1-Ethylpropyl)porphyrin 54

Ausbeute: 85 mg (0.22 mmol, 11 % bezogen auf 131)

Fp.: 281 °C

 \mathbf{R}_{f} : 0.45 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.27$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 10.11 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.84, 9.77 (2H, *AB*, ³J_{*H3,H2*} = ³J_{*H7,H8*} = 3.9 Hz, 3,7-C_{β-<u>H</u>}), 9.44 (4H, *AB*, ³J_{*H2,H3*} = ³J_{*H8,H7*} = ³J_{*H12,H13*} = ³J_{*H18,H17*} = 3.9 Hz, 2,8,12,18-C_{β-<u>H</u>}), 9.39 (2H, *AB*, ³J_{*H13,H12*} = ³J_{*H17,H18*} = 3.9 Hz, 13,17-C_{β-<u>H</u>}), 5.14 (1H, *m*, C<u>H</u>(CH₂)₂), 3.00, 2.84 (4H, *m*,

CH(C<u>H</u>₂)₂), 0.95 (6H, t, ³J_{H27,H26} = ³J_{H29,H28} = 7.4 Hz, CH₂C<u>H</u>₃), -3.27, -3.48 ppm (2H, br s, N<u>H</u>)

¹³C-NMR (126 MHz, CDCl₃): δ = 148.72, 146.00 (C4, C6), 146.88 (C14, C16), 145.07, 144.76, 144.40, 142.98 (C1, C9, C11, C19), 131.79 (C12, C18), 131.55, 131.39 (C2, C8), 130.67, 130.40 (C13, C17), 129.04, 128.63 (C3, C7), 123.42 (C5), 104.23, 103.90 (C10, C20), 102.50 (C15), 50.06 (C25), 34.63 (C26, C28), 13.83 ppm (C27, C29)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 399 (5.32), 497 (3.89), 526 (3.35), 569 (3.71), 621 nm (2.58)

MS (EI, 240 °C, 80 eV): $m/z = 380 (79 \%, [M]^{\bullet+}), 352 (27 \%, [M - C_2H_4]^+), 351 (100 \%, [M - C_2H_5]^+), 350 (4 \%, [M - C_2H_6]^{\bullet+}), 336 (10 \%, [M - C_3H_8]^{\bullet+}), 335 (15 \%, [M - C_3H_9]^+), 324 (6 \%, [M - C_4H_8]^+), 190 (9 \%, [M]^{2+})$

HMRS: $C_{25}H_{24}N_4$ ber. 380.20010 gef. 380.20355

5,15-Bis-(1-ethylpropyl)porphyrin 55

Ausbeute: 33 mg (0.07 mmol, 7 % bezogen auf 131)

Fp.: > 330 °C

R_f: 0.60 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): δ = 10.21 (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 9.68 (4H, *m*, 3,7,13,17-C_{β-<u>H</u>}), 9.40 (4H, *m*, 2,8,12,18-C_{β-<u>H</u>}), 5.02 (2H, *m*, C<u>H</u>(CH₂)₂), 2.96, 2.81 (8H, *m*, CH(C<u>H₂)₂), 0.93 (12H, *t*, ³J_{H27,H26} = ³J_{H29,H28} = ³J_{H32,H31} = ³J_{H34,H33} = 7.4 Hz, CH₂C<u>H₃</u>), -2.46 ppm (2H, *br s*, N<u>H</u>)</u>

¹³C-NMR (63 MHz, CDCl₃): δ = 131.9 (C2, C8, C12, C18), 128.6 (C3, C7, C13, C17), 121.8 (C5, C15), 104.3 (C10, C20), 49.8 (C25, C30), 34.6 (C26, C28, C31, C33), 14.1 ppm (C27, C29, C32, C34)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 403 (4.81), 504 (3.98), 535 (3.40), 575 (3.48), 630 nm (2.97)

MS (EI, 250 °C, 80 eV): $m/z = 450 (100 \%, [M]^{\bullet+}), 422 (31 \%, [M - C_2H_4]^+), 421 (99 \%, [M - C_2H_5]^+), 392 (5 \%, [M - 2 C_2H_5]^{\bullet+}), 377 (21 \%, [M - 2 C_2H_5 - CH_3]^+), 225 (6 \%, [M]^{2+})$ **HMRS:** $C_{30}H_{34}N_4$ ber. 450.27835 gef. 450.27466

5.1.2 Umsetzung mit Pivalinaldehyd

Analog zur Vorschrift 5.1 wurde Pivalinaldehyd (0.22 ml, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Das Porphyrin **56** wurde als einziges Produkt isoliert. Anschließende Umkristallisation aus $CH_2Cl_2/MeOH$ ergab das Produkt in Form von violetten Kristallen.

5-*t*-Butylporphyrin 56¹⁷

Ausbeute: 51 mg (0.14 mmol, 7 % bezogen auf Pivalinaldehyd) Fp.: 235 °C (Zers.) R_f: 0.40 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.09$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 10.01 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.90 (2H, *AB*, ³J_{*H*3,*H*2} = ³J_{*H*7,*H*8} = 4.7 Hz, 3,7-C_{β-<u>H</u>}), 9.33 (2H, *AB*, ³J_{*H*12,*H*13} = ³J_{*H*18,*H*17} = 4.4 Hz, 12,18-C_{β-<u>H</u>}), 9.31 (2H, *AB*, ³J_{*H*13,*H*12} = ³J_{*H*17,*H*18} = 4.4 Hz, 13,17-C_{β-<u>H</u>}), 9.23 (2H, *AB*, ³J_{*H*2,*H*3} = ³J_{*H*8,*H*7} = 4.7 Hz, 2,8-C_{β-<u>H</u>}), 2.60 (9H, *s*, C(C<u>H</u>3)₃), -2.69 ppm (2H, *br s*, N<u>H</u>)

¹³C-NMR (126 MHz, CDCl₃): δ = 147.43 (C4, C6), 146.63 (C14, C16), 144.37 (C11, C19), 142.52 (C1, C9), 131.47 (C12, C18), 130.70 (C2, C8), 130.36 (C13, C17), 130.28 (C3, C7), 127.62 (C5), 104.33 (C10, C20), 103.21 (C15), 41.14 (C25), 40.57 ppm (C26, C27, C28)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 401 (5.15), 502 (3.96), 536 (3.51), 577 (3.53), 625 nm (2.78)

MS (EI, 240 °C, 80 eV): $m/z = 366 (100 \%, [M]^{\bullet+}), 351 (94 \%, [M - CH_3]^{+}), 336 (10 \%, [M - C_2H_6]^{\bullet+}), 310 (32 \%, [C_{20}H_{14}N_4]^{\bullet+}), 183 (12 \%, [M]^{2+}), 175 (9 \%, [M - CH_3]^{2+}), 168 (8 \%, [M - C_2H_6]^{2+}), 155 (6 \%, [C_{20}H_{14}N_4]^{2+})$

HMRS: $C_{24}H_{22}N_4$ ber. 366.18445 gef. 366.18634

5.1.3 Umsetzung mit Heptaldehyd

Analog zur Vorschrift 5.1 wurde Heptaldehyd (0.28 ml, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: *n*-Hexan : Ethylacetat = 5 : 1, v/v). Als erste Fraktion wurde das disubstituierte Porphyrin **58** als Hauptprodukt und als zweite Fraktion das monosubstituierte Porphyrin **57** isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden beide Substanzen als violette Kristalle erhalten.

5-*n*-Hexylporphyrin 57

Ausbeute: 15 mg (0.04 mmol, 2 % bez. auf Heptaldehyd) Fp.: 275 °C R_f: 0.39 (*n*-Hexan : Ethylacetat = 5 : 1, v/v, Kieselgel, 6 x 3 cm) ¹H-NMR (500 MHz, CDCl₃): δ = 10.21 (2H, *s*, 10,20-C_{*meso*-<u>H</u>), 10.11 (1H, *s*, 15-C_{*meso*-<u>H</u>), 9.63 (2H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = 4.5 Hz, 3,7-C_{β-<u>H</u>}), 9.44 (2H, *AB*, ³J_{H2,H3} = ³J_{H8,H7} = 4.5}} Hz, 2,8-C_{β-H}), 9.42 (2H, *AB*, ${}^{3}J_{H12,H13} = {}^{3}J_{H18,H17} = 4.5$ Hz, 12,18-C_{β-H}), 9.38 (2H, *AB*, ${}^{3}J_{H13,H12} = {}^{3}J_{H17,H18} = 4.5$ Hz, 13,17-C_{β-H}), 5.06 (2H, *t*, ${}^{3}J_{H25,H26} = 6.2$ Hz, CH₂C₅H₁₁), 2.56 (2H, *m*, CH₂CH₂C₄H₉), 1.82 (2H, *m*, C₂H₄CH₂C₃H₇), 1.52 (2H, *m*, C₃H₆CH₂C₂H₅), 1.40 (2H, *m*, C₄H₈CH₂CH₃), 0.94 (3H, *t*, ${}^{3}J_{H30,H29} = 7.3$ Hz, C₅H₁₀CH₃), -3.56 ppm (2H, *br s*, NH)

¹³C-NMR (126 MHz, CDCl₃): $\delta = \sim 147$ (C4, C6, C14, C16), ~ 145 (C1, C9, C11, C19), 131.77 (C12, C18), 131.56 (C2, C8), 130.77 (C13, C17), 128.24 (C3, C7), 120.18 (C5), 104.15 (C10, C20),

102.73 (C15), 38.91 (C26), 35.16 (C25), 31.92 (C28), 30.30 (C27), 22.74 (C29), 14.14 ppm (C30)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 401 (5.52), 496 (4.18), 525 (3.26), 570 (3.66), 622 nm (2.43)

MS (EI, 70 eV): $m/z = 394 (24 \%, [M]^{\bullet+})$, 365 (< 1 %, $[M - C_2H_5]^+$), 351 (< 1 %, $[M - C_3H_7]^+$), 337 (3 %, $[M - C_4H_9]^+$), 323 (100 %, $[M - C_5H_{11}]^+$), 197 (2 %, $[M]^{2+}$), 162 (7 %, $[M - C_2H_5]^{2+}$)

HRMS $C_{26}H_{26}N_4$ ber. 394.2157 gef. 394.2150

5,15-Di-n-hexylporphyrin 58

Ausbeute: 74 mg (0.16 mmol, 15 % bez. auf Heptaldehyd)

Fp.: 133 °C

R_f: 0.55 (*n*-Hexan : Ethylacetat = 5 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): δ = 10.08 (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 9.49 (4H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = ³J_{H13,H12} = ³J_{H17,H18} = 4.5 Hz, 3,7,13,17-C_{β-<u>H</u>}), 9.33 (4H, *AB*, ³J_{H2,H3} = ³J_{H8,H7} = ³J_{H12,H13} = ³J_{H18,H17} = 4.5 Hz, 2,8,12,18-C_{β-<u>H</u>}), 4.92 (4H, *t*, ³J_{H25,H26} = ³J_{H31,H32} = 8.1 Hz, C<u>H</u>₂C₅H₁₁), 2.53 (4H, *m*, CH₂C<u>H</u>₂C₄H₉), 1.80 (4H, *m*, C₂H₄C<u>H</u>₂C₃H₇), 1.53 (4H, *m*, C₃H₆C<u>H</u>₂C₂H₅), 1.42 (4H, *m*, C₄H₈C<u>H</u>₂CH₃), 0.97 (6H, *t*, ³J_{H30,H29} = ³J_{H36,H35} = 7.3 Hz, C₅H₁₀C<u>H</u>₃), -3.03 ppm (2H, br s, N<u>H</u>)

¹³**C-NMR** (63 MHz, CDCl₃): $\delta = 147.35$ (C4, C6, C14, C16),

147.08 (C1, C9, C11, C19), 131.73 (C2, C8, C12, C18), 127.65 (C3, C7, C13, C17), 118.70 (C5, C15), 104.13 (C10, C20), 38.56 (C26, C32), 34.55 (C25, C31), 31.91 (C28, C34), 30.22 (C27, C33), 22.73 (C29, C35), 14.14 ppm (C30, C36)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 405 (5.42), 504 (4.09), 535 (3.48), 578 (3.57), 633 nm (3.09)

MS (EI, 180 °C, 80 eV): $m/z = 478 (100 \%, [M]^{\bullet+}), 407 (53 \%, [M - C_5H_{11}]^{+}), 336 (9 \%, [M - 2 C_5H_{11}]^{\bullet+}), 239 (5 \% [M]^{2+})$

HRMS $C_{32}H_{38}N_4$ ber. 478.30965 gef. 478.30734

5.1.4 Umsetzung mit Benzaldehyd

Analog zur Vorschrift 5.1 wurde Benzaldehyd (0.10 ml, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Als erste Fraktion wurde das disubstituierte Porphyrin **60** und als zweite Fraktion das monosubstituierte Porphyrin **59** isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden beide Substanzen als violette Kristalle erhalten.

5-Phenylporphyrin 59

Ausbeute: 39 mg (0.10 mmol, 5 % bez. auf Benzaldehyd) Fp.: 291 °C R_f: 0.28 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹H-NMR (300 MHz, CDCl₃): $\delta = 10.31$ (2H, *s*, 10,20-C_{meso-H}), 10.24 (1H, *s*, 15-C_{meso-H}), 9.46 (4H, *AB*, ³J_{H12,H13} = ³J_{H13,H12} = ³J_{H17,H18} = ³J_{H18,H17} = 4.7 Hz, 12,13,17,18-C_{β-H}), 9.39 (2H, *AB*, ³J_{H2,H3} = ³J_{H8,H7} = 4.7 Hz, 2,8-C_{β-H}), 9.09 (2H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = 4.7 Hz, 3,7-C_{β-H}), 8.26 (2H, *m*, Ar_{o-H}), 7.80 (3H, *m*, Ar_{m-H}, Ar_{p-H}), -3.62 ppm (2H, br s, N<u>H</u>)

MS (EI, 350 °C, 80 eV): $m/z = 386 (100 \%, [M]^{\bullet+}), 193 (10 \%, [M]^{2+})$ **HMRS:** C₂₆H₁₈N₄ ber. 386.15315 gef. 386.15564

5,15-Diphenylporphyrin 60^{18,19,20}

Ausbeute: 23 mg (0.05 mmol, 5 % bez. auf Benzaldehyd)

5.1.5 Umsetzung mit 4-Chlorbenzaldehyd

Analog zur Vorschrift 5.1 wurde 4-Chlorbenzaldehyd (0.28 g, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Als erste Fraktion wurde das disubstituierte Porphyrin **62** und als zweite Fraktion das monosubstituierte Porphyrin **61** als Hauptprodukt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden beide Substanzen als violette Kristalle erhalten.

5-(4-Chlorphenyl)porphyrin 61

Ausbeute: 43 mg (0.10 mmol, 5 % bezogen auf 4-Chlorbenzaldehyd)

Fp.: 293 °C

 \mathbf{R}_{f} : 0.67 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.31$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 10.23 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.47 (2H, *AB*, ³J_{*H12,H13*} = ³J_{*H18,H17*} = 4.4 Hz, 12,18-C_{β-<u>H</u>}), 9.44 (2H, *AB*, ³J_{*H13,H12*} = ³J_{*H17,H18*} = 4.4 Hz, 13,17-C_{β-<u>H</u>}), 9.40 (2H, *AB*, ³J_{*H2,H3*} = ³J_{*H8,H7*} = 4.6 Hz, 2,8-C_{β-<u>H</u>}), 9.04 (2H, *AB*, ³J_{*H3,H2*} = ³J_{*H7,H8*} = 4.6 Hz, 3,7-C_{β-<u>H</u>}), 8.17 (2H, *AB*, ³J_{*H26,H27*} = ³J_{*H30,H29*} = 8.1 Hz, Ar_{*o*-<u>H</u>}), 7.77 (2H, *AB*, ³J_{*H27,H26*} = ³J_{*H29,H30*} = 8.1 Hz, Ar_{*m*-<u>H</u>}), -3.67 ppm (2H, *br s*, N<u>H</u>)

¹³**C-NMR** (63 MHz, CDCl₃): δ = 140.25 (C25), 135.71 (C26, C30), 134.31 (C28), 131.81 (C12, C18), 131.46 (C2, C8), 131.23 (C13, C17), 130.94 (C3, C7), 127.09 (C27, C29), 117.78 (C5), 104.77 (C10, C20), 103.76 ppm (C15)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 400 (5.49), 495 (3.91), 526 (3.06), 568 (3.39), 622 nm (2.24)

MS (EI, 270 °C, 80 eV): $m/z = 422 (36 \%, [M]^{\bullet+}), 420 (100 \%, [M]^{\bullet+}), 385 (3 \%, [M - Cl]^{+}), 384 (4 \%, [M - HCl]^{\bullet+}), 211 (2 \%, [M]^{2+}), 210 (6 \%, [M]^{2+})$

HMRS: $C_{26}H_{17}N_4Cl$ ber. 420.11417 gef. 420.11721

5,15-Bis-(4-chlorphenyl)porphyrin 62

Ausbeute: 5 mg (0.01 mmol, 1 % bezogen auf 4-Chlorbenzaldehyd) **Fp.**: > 330 °C $\mathbf{R_{f}}: 0.80 \text{ (CH}_2\text{Cl}_2: n\text{-Hexan} = 1: 1, v/v, \text{Kieselgel, 6 x 3 cm})$ ¹**H-NMR** (250 MHz, CDCl₃): $\delta = 10.32$ (2H, s, 10,20-C_{meso-H}), 9.40 (4H, m, 2,8,12,18-C_{6-H}), 9.04 (4H, AB, ${}^{3}J_{H2,H3} = {}^{3}J_{H8,H7} =$ ${}^{3}J_{H12,H13} = {}^{3}J_{H18,H17} = 4.4$ Hz, 3,7,13,17-C_{β-H}), 8.19 (4H, AB, ${}^{3}J_{H26,H27} = {}^{3}J_{H30,H29} = {}^{3}J_{H32,H33} = {}^{3}J_{H36,H35} = 8.1$ Hz, Ar_{o-H}), 7.79 (4H, AB, ${}^{3}J_{H27,H26} = {}^{3}J_{H29,H30} = {}^{3}J_{H33,H32} = {}^{3}J_{H35,H36} = 8.1$ Hz, Ar_{*m*-H}), -3.18 ppm (2H, *br s*, N<u>H</u>) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 407 (4.87), 502 (3.75), 536 (3.29), 575 (3.24), 629 nm (2.70) CI **MS** (EI, 310 °C, 80 eV): $m/z = 532 (69 \%, [M]^{\bullet+}), 530 (100 \%, [M]^{\bullet+}),$ $495 (3\%, [M - Cl]^{+}), 494 (3\%, [M - HCl]^{+}), 266 (5\%, [M]^{2+}), 265 (6\%, [M]^{2+})$ HMRS: 530.10650 530.10547 $C_{32}H_{20}N_4Cl_2$ ber. gef.

5.1.6 Umsetzung mit 4-Brombenzaldehyd

Analog zur Vorschrift 5.1 wurde 4-Brombenzaldehyd **176** (0.37 g, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Als erste Fraktion wurde das disubstituierte Porphyrin **64** und als zweite Fraktion das monosubstituierte Porphyrin **63** als Hauptprodukt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden beide Substanzen als violette Kristalle erhalten.

5-(4-Bromphenyl)porphyrin 63

Ausbeute: 53 mg (0.11 mmol, 6 % bezogen auf 176)

Fp.: 294 °C

R_f: 0.48 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): δ = 10.32 (2H, *s*, 10,20-C_{meso-H}), 10.25 (1H, *s*, 15-C_{meso-H}), 9.48 (2H, *AB*, ³J_{H12,H13} = ³J_{H18,H17} = 4.1 Hz, 12,18-C_{β-H}), 9.46 (2H, *AB*, ³J_{H13,H12} = ³J_{H17,H18} = 4.1 Hz, 13,17-C_{β-H}), 9.41 (2H, *AB*, ³J_{H2,H3} = ³J_{H8,H7} = 4.4 Hz, 2,8-C_{β-H}), 9.05 (2H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = 4.4 Hz, 3,7-C_{β-H}), 8.12 (2H, *AB*, ³J_{H26,H27} = ³J_{H30,H29} = 8.1 Hz, Ar_{o-H}), 7.94 (2H, *AB*, ³J_{H27,H26} = ³J_{H29,H30} = 8.1 Hz, Ar_{m-H}), -3.66 ppm (2H, br s, N<u>H</u>)

¹³C-NMR (63 MHz, CDCl₃): δ = 140.81 (C25), 136.06 (C26, C30), 131.84 (C12, C18), 131.49 (C2, C8), 131.26 (C13, C17), 130.95 (C3, C7), 130.03 (C27, C29), 122.23 (C28), 117.83 (C5), 104.79 (C10, C20), 103.80 ppm (C15)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 401 (5.64), 496 (4.14), 526 (3.37), 568 (3.65), 622 nm (2.76)

MS (EI, 240 °C, 80 eV): $m/z = 466 (99 \%, [M]^{\bullet+}), 464 (100 \%, [M]^{\bullet+}), 385 (6 \%, [M - Br]^{+}), 384 (7 \%, [M - HBr]^{\bullet+}), 233 (3 \%, [M]^{2+}), 232 (4 \%, [M]^{2+})$

HMRS: $C_{26}H_{17}N_4Br$ ber. 464.06366 gef. 464.06634

5,15-Bis-(4-bromphenyl)porphyrin 64^{21,22,23}

 $539 (3\%, [M-Br]^+), 538 (2\%, [M-HBr]^{\bullet+})$

Ausbeute: 18 mg (0.03 mmol, 3 % bezogen auf **176**) **Fp.**: > 330 °C **R**_f: 0.61 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (250 MHz, CDCl₃): δ = 10.32 (2H, *s*, 10,20-C_{*meso*-<u>H</u>), 9.41 (4H, *br s*, 2,8,12,18-C_{β-<u>H</u>}), 9.05 (4H, *br s*, 3,7,13,17-C_{β-<u>H</u>}), 8.13 (4H, *m*, Ar_{*o*-<u>H</u>}), 7.94 (4H, *m*, Ar_{*m*-<u>H</u>}), -3.18 ppm (2H, *br s*, N<u>H</u>) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 401 (5.58), 494 (4.22), 527 (3.43), 568 (3.71), 621 nm (2.67) **MS** (EI, 300 °C, 80 eV): *m/z* = 620 (94 %, [M]^{•+}), 618 (45 %, [M]^{•+}),}

HMRS: $C_{32}H_{20}N_4Br_2$ ber. 618.00547 gef. 618.00763

5.1.7 Umsetzung mit 2,6-Difluorbenzaldehyd

Analog zur Vorschrift 5.1 wurde 2,6-Difluorbenzaldehyd (0.28 g, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Als erste Fraktion wurde das disubstituierte Porphyrin **66** als Hauptprodukt und als zweite Fraktion das monosubstituierte Porphyrin **65** isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden beide Substanzen als violette Kristalle erhalten.

5-(2,6-Difluorphenyl)porphyrin 65

Ausbeute: 19 mg (0.04 mmol, 2 % bezogen auf 2,6-Difluorbenzaldehyd) **Fp.**: 303 °C (Zers.) **R**_f: 0.51 (CH₂Cl₂: *n*-Hexan = 3 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.32$ (2H, *s*, 10,20-C_{meso-H}), 10.29 (1H, *s*, 15-C_{meso-H}), 9.48 (2H, *m*, 12,18-C_{β-H}), 9.47 (2H, *m*, 13,17-C_{β-H}), 9.43 (2H, *AB*, ³J_{H2,H3} = ³J_{H8,H7} = 4.5 Hz, 2,8-C_{β-H}), 9.04 (2H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = 4.5 Hz, 3,7-C_{β-H}), 7.82 (1H, *m*, Ar_{*p*-H}), 7.41 (2H, *m*, Ar_{*m*-H}), -3.63 ppm (2H, *br s*, N<u>H</u>) ¹³**C-NMR** (63 MHz, CDCl₃): $\delta = 132.14$ (C2, C8), 131.63 (C12, C18), 131.36 (C13, C17), 130.88 (*t*, ³J_{C28,F26} = ³J_{C28,F30} = 10.4 Hz, C28), 130.08 (C3, C7), 111.33 (*d*, ²J_{C27,F26} = ²J_{C29,F30} = 24.4 Hz, C27, C29), 104.87 (C10, C20), 104.60 ppm (C15) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ϵ) = 399 (5.20), 493 (4.11), 524 (3.44), 567 (3.63), 620 nm (3.03) **MS** (EI, 320 °C, 80 eV): *m/z* = 422 (100 %, [M]^{•+}), 211 (17 %, [M]²⁺)

HMRS: $C_{26}H_{16}N_4F_2$ ber. 422.13430 gef. 422.13653

5,15-Bis-(2,6-difluorphenyl)porphyrin 66

Ausbeute: 63 mg (0.15 mmol, 15 % bezogen auf 2,6-Difluorbenzaldehyd) Fp.: > 330 °C

R_f: 0.62 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (250 MHz, CDCl₃): $\delta = 10.31$ (2H, s, 10,20-C_{meso-H}), 9.41 (4H, AB, ${}^{3}J_{H2,H3} = {}^{3}J_{H8,H7} = {}^{3}J_{H12,H13} = {}^{3}J_{H18,H17} = 4.6$ Hz, 2,8,12,18-C_{β-H}), 9.03 (4H, AB, ${}^{3}J_{H3,H2} = {}^{3}J_{H7,H8} = {}^{3}J_{H13,H12} =$ ${}^{3}J_{H17,H18} = 4.6 \text{ Hz}, 3,7,13,17-C_{B-H}, 7.81 (2H, m, Ar_{p-H}), 7.41 (4H, m)$ *m*, Ar_{*m*-H}), -3.19 ppm (2H, *br* s, N<u>H</u>) ¹³**C-NMR** (63 MHz, CDCl₃): $\delta = 162.49 (dd, {}^{1}J_{C26,F26} = {}^{1}J_{C30,F30} =$ ${}^{1}J_{C32,F32} = {}^{1}J_{C36,F36} = 241.8 \text{ Hz}, {}^{3}J_{C26,F30} = {}^{3}J_{C30,F26} = {}^{3}J_{C32,F36} =$ ${}^{3}J_{C36,F32} = 7.2$ Hz, C26, C30, C32, C36), 132.33 (C2, C8, C12, C18), 130.96 (*t*, ${}^{3}J_{C28,F26} = {}^{3}J_{C28,F30} = {}^{3}J_{C34,F32} = {}^{3}J_{C34,F36} = 10.6$ Hz, C28, C34), 130.08 (C3, C7, C13, C17), 118.44 (*t*, ${}^{2}J_{C25,F26} = {}^{2}J_{C25,F30} = {}^{2}J_{C31,F32} = {}^{2}J_{C31,F36} = 21.3$ Hz, C25, C31), 111.40 (*d*, ${}^{2}J_{C27,F26} = {}^{2}J_{C29,F30} = {}^{2}J_{C33,F32} = {}^{2}J_{C35,F36} = 25.9$ Hz, C27, C29, C33, C35), 105.67 ppm (C10, C20) UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 403 (5.41), 498 (4.22), 530 (3.82), 572 (3.76), 626 nm (3.45)**MS** (EI, 270 °C, 80 eV): $m/z = 534 (100 \%, [M]^{+}), 267 (19 \%, [M]^{2+})$ HMRS: $C_{32}H_{18}N_4F_4$ ber. 534.14676 gef. 534.14532

5.1.8 Umsetzung mit 3,5-Difluorbenzaldehyd

Analog zur Vorschrift 5.1 wurde 3,5-Difluorbenzaldehyd (0.28 g, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 3 : 1, v/v). Als erste Fraktion wurde das disubstituierte Porphyrin **68** und als zweite Fraktion das monosubstituierte Porphyrin **67** als Hauptprodukt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden beide Substanzen als violette Kristalle erhalten.

5-(3,5-Difluorphenyl)porphyrin 67

Ausbeute: 30 mg (0.07 mmol, 4 % bezogen auf 3,5-Difluorbenzaldehyd)

Fp.: 324-326 °C (Zers.)

R_f: 0.22 (CH₂Cl₂ : *n*-Hexan = 3 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): δ = 10.33 (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 10.27 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.49 (2H, *AB*, ³J_{*H12,H13*} = ³J_{*H18,H17*} = 4.4 Hz, 12,18-C_{β-<u>H</u>}), 9.47 (2H, *AB*, ³J_{*H13,H12*} = ³J_{*H17,H18*} = 4.4 Hz, 13,17-C_{β-<u>H</u>}), 9.42 (2H, *AB*, ³J_{*H2,H3*} = ³J_{*H8,H7*} = 4.5 Hz, 2,8-C_{β-<u>H</u>}), 9.07 (2H, *AB*, ³J_{*H3,H2*} = ³J_{*H7,H8*} = 4.5 Hz, 3,7-C_{β-<u>H</u>}), 7.80 (2H, *m*, Ar_{*o*-H}), 7.30 (1H, *m*, Ar_{*p*-H}), -3.69 ppm (2H, *br s*, N<u>H</u>)

¹³**C-NMR** (63 MHz, CDCl₃): $\delta = 161.45$ (*tt*, ${}^{1}J_{C27,F27} = {}^{1}J_{C29,F29} = 237$ Hz, ${}^{3}J_{C27,F29} = {}^{3}J_{C29,F27} = 13$ Hz, C27, C29), 132.26 (C12, C18), 131.91 (C2, C8), 131.40 (C13, C17), 130.59 (C3, C7), 118.05 (*d*, ${}^{2}J_{C26,F27} = {}^{2}J_{C30,F29} = 24$ Hz, C26, C30), 104.97 (C10, C20), 104.19 (C15), 103.49 ppm (*t*, ${}^{2}J_{C28,F27} = {}^{2}J_{C28,F29} = 25$ Hz, C28)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 399 (4.96), 494 (4.12), 526 (3.44), 567 (3.67), 622 nm (3.07)

MS (EI, 250 °C, 80 eV): $m/z = 422 (100 \%, [M]^{\bullet+}), 211 (8 \%, [M]^{2+})$ **HMRS:** C₂₆H₁₆N₄F₂ ber. 422.13430 gef. 422.13644

5,15-Bis-(3,5-difluorphenyl)porphyrin 68

Ausbeute: 12 mg (0.02 mmol, 2 % bezogen auf 3,5-Difluorbenzaldehyd) **Fp.**: > 330 °C $\mathbf{R_{f}}: 0.34 (CH_2Cl_2: n-Hexan = 3: 1, v/v, Kieselgel, 6 x 3 cm)$ ¹**H-NMR** (250 MHz, CDCl₃): $\delta = 10.35$ (2H, s, 10,20-C_{meso-H}), 9.43 (4H, AB, ${}^{3}J_{H3,H2} = {}^{3}J_{H7,H8} = {}^{3}J_{H13,H12} = {}^{3}J_{H17,H18} = 4.6$ Hz, 2,8,12,18-C_{β-H}), 9.07 (4H, AB, ${}^{3}J_{H2,H3} = {}^{3}J_{H8,H7} = {}^{3}J_{H12,H13} =$ ${}^{3}J_{H18,H17} = 4.6$ Hz, 3,7,13,17-C_{β-H}), 7.80 (2H, m, Ar_{p-H}), 6.82 (4H, *m*, Ar_{*o*-H}), -3.24 ppm (2H, *br* s, N<u>H</u>) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 405 (5.03), 500 (3.82), 534 (3.30), 574 (3.32), 627 nm (2.82) **MS** (EI, 270 °C, 80 eV): $m/z = 534 (100 \%, [M]^{\bullet+}), 267 (20 \%, [M]^{2+})$ HMRS: $C_{32}H_{18}N_4F_4$ 534.1468 ber. gef. 534.1447

5.1.9 Umsetzung mit Anisaldehyd

Analog zur Vorschrift 5.1 wurde Anisaldehyd 120 (0.24 ml, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: CH_2Cl_2 : *n*-Hexan = 2 : 1, v/v). Das Porphyrin **69** wurde als einziges Produkt isoliert. Anschließende Umkristallisation aus CH2Cl2/MeOH ergab das Produkt in Form von violetten Kristallen.

5-(4-Methoxyphenyl)porphyrin 69

Ausbeute: 99 mg (0.24 mmol, 12 % bezogen auf 120)

Fp.: 286 °C

R_f: 0.24 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.29$ (2H, s, 10,20-C_{meso-H}), 10.21 (1H, s, 15-C_{meso-H}), 9.46 (2H, AB, ${}^{3}J_{H12,H13} = {}^{3}J_{H18,H17} = 4.4$ Hz, 12,18-C_{BH}), 9.44 (2H, AB, ${}^{3}J_{H13,H12} = {}^{3}J_{H17,H18} = 4.4$ Hz, 13,17-C_{B-H}), 9.39 (2H, *AB*, ${}^{3}J_{H2,H3} = {}^{3}J_{H8,H7} = 4.5$ Hz, 2,8-C_{B-H}), 9.11 (2H, *AB*, ${}^{3}J_{H3,H2} = {}^{3}J_{H7,H8} = 4.5$ Hz, 3,7-C_{β-H}), 8.16 (2H, *AB*, ${}^{3}J_{H26,H27} = {}^{3}J_{H30,H29} = 8.6$ Hz, Ar_{o-H}), 7.32 (2H, AB, ${}^{3}J_{H27,H26} =$ ${}^{3}J_{H29 H30} = 8.6 \text{ Hz}, \text{Ar}_{m-H}$, 4.11 (3H, s, OCH₃), -3.60 ppm (2H, br s, NH)

¹³C-NMR (126 MHz, CDCl₃): $\delta = 159.49$ (C28), 135.79 (C26, C30), 134.05 (C25), ~131 (C2, C3, C7, C8, C12, C13, C17, C18), 119.42 (C5), 112.39 (C27, C29), 104.59 (C10, C20), 103.36 (C15), 55.61 ppm (C31)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 405 (5.13), 499 (4.11), 539 (3.60), 575 (3.64), 628 nm (3.12)

MS (EI, 310 °C, 80 eV): $m/z = 416 (100 \%, [M]^{\bullet+}), 401 (4 \%, [M - CH_3]^{+}), 385 (1 \%, [M - CH_3]^{\bullet+}), 38$ OCH_3^+ , 208 (13 %, $[M]^{2+}$)

HMRS: $C_{27}H_{20}N_4O$ 416.16371 416.16522 ber. gef.

5.1.10 Umsetzung mit 4-Nitrobenzaldehyd

Analog zur Vorschrift 5.1 wurde 4-Nitrobenzaldehyd (0.30 g, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Das Porphyrin **70** wurde als einziges Produkt isoliert. Anschließende Umkristallisation aus $CH_2Cl_2/MeOH$ ergab das Produkt in Form von violetten Kristallen.

5-(4-Nitrophenyl)porphyrin 70

Ausbeute: 17 mg (0.04 mmol, 2 % bezogen auf 4-Nitrobenzaldehyd) Fp.: > 330 °C Rf: 0.36 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 401 (4.95), 496 (4.14), 530 (3.54), 568 (3.67), 624 nm (3.06) MS (EI, 280 °C, 80 eV): *m/z* = 431 (100 %, [M]^{•+}), 385 (19 %, [M-NO₂]^{•+}), 215 (3 %, [M]²⁺), 192 (3 %, [M-NO₂]²⁺) HMRS: C₂₆H₁₇N₅O₂ ber. 431.13822 gef. 431.13644

5.1.11 Umsetzung mit 3-Nitrobenzaldehyd

Analog zur Vorschrift 5.1 wurde 3-Nitrobenzaldehyd (0.30 g, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Als erste Fraktion wurde das disubstituierte Porphyrin **72** als Hauptprodukt und als zweite Fraktion das monosubstituierte Porphyrin **71** in Form von violetten Feststoffen isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden beide Substanzen als violette Kristalle erhalten.

5-(3-Nitrophenyl)porphyrin 71

Ausbeute: 27 mg (0.06 mmol, 3 % bezogen auf 3-Nitrobenzaldehyd)

Fp.: > 330 °C

 \mathbf{R}_{f} : 0.23 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.35$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 10.29 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.50 (2H, *AB*, ³J_{*H12,H13*} = ³J_{*H18,H17*} = 4.4 Hz, 12,18-C_{β-<u>H</u>}), 9.48 (2H, *AB*, ³J_{*H13,H12*} = ³J_{*H17,H18*} = 4.4 Hz, 13,17-C_{β-<u>H</u>}), 9.43 (2H, *AB*, ³J_{*H2,H3*} = ³J_{*H8,H7*} = 4.5 Hz, 2,8-C_{β-<u>H</u>}), 9.12 (1H, *m*, 26-Ar_{*o*-<u>H</u>}), 8.95 (2H, *AB*, ³J_{*H3,H2*} = ³J_{*H7,H8*} = 4.5 Hz, 3,7-C_{β-<u>H</u>}), 8.70 (1H, *m*, Ar_{*p*-<u>H</u>}), 8.56 (1H, *m*, 30-Ar_{*o*-<u>H</u>}), 7.97 (1H, *m*, Ar_{*m*-H}) -3.67 ppm (2H, *br s*, N<u>H</u>) $O_2 N_{27} Z_{26} Z_{29} Z_{20} Z_{$

¹³C-NMR (63 MHz, CDCl₃): δ = 139.98 (C26, C30), 131.96 (C2, C8, C12, C18), 131.52 (C13, C17), 130.43 (C3, C7), 128.49 (C26), 127.77 (C29), 122.88 (C28), 105.08 (C10, C20), 104.31 ppm (C15)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 401 (5.15), 495 (3.99), 526 (3.23), 567 (3.50), 622 nm (2.72)

MS (EI, 260 °C, 80 eV): $m/z = 431 (100 \%, [M]^{\bullet+})$, 385 (23 %, $[M - NO_2]^{\bullet+})$, 215 (3 %, $[M]^{2+}$) **HMRS:** C₂₆H₁₇N₅O₂ ber. 431.13822 gef. 431.13577

5,15-Bis-(3-nitrophenyl)porphyrin 72^{24,25}

Ausbeute: 33 mg (0.06 mmol, 6 % bezogen auf 3-Nitrobenzaldehyd) Fp.: > 330 °C R_f: 0.33 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹H-NMR (250 MHz, CDCl₃): δ = 10.39 (2H, *s*, 10,20-C_{*meso*-H}), 9.45 (4H, *AB*, ³J = 4.4 Hz, 2,8,12,18-C_{β-H}), 9.13 (2H, *m*, 26,32-Ar_{o-H}), 8.98 (4H, *AB*, ³J = 4.4 Hz, 3,7,13,17-C_{β-H}), 8.70 (2H, *m*, Ar_{*p*-H}), 8.59 (2H, *m*, 30,36-Ar_{o-H}), 8.00 (2H, *m*, Ar_{*m*-H}) -3.19 ppm (2H, *br s*, N<u>H</u>) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 408 (4.40), 501 (3.21), 535 (2.75), 574 (2.80), 628 nm (2.45)

MS (EI, 280 °C, 80 eV): $m/z = 552 (16 \%, [M]^{\bullet+}), 431 (5 \%, [M - C_6H_4NO_2 + H]^{\bullet+})$ **HMRS:** $C_{32}H_{20}N_6O_4$ ber. 552.15460 gef. 552.15655

5.1.12 Umsetzung mit 2-Formyl-1,3-dithian

Analog zur Vorschrift 5.1 wurde 2-Formyl-1,3-dithian (0.30 g, 2.00 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 3 : 1, v/v). Als erste Fraktion wurde eine violette Substanz erhalten, bei der es sich wahrscheinlich um Porphin **1** handelt. Aufgrund der geringen Menge wurde von einer Charakterisierung abgesehen. Als zweite Fraktion wurde das monosubstituierte Porphyrin **73** und eine dritte Fraktion als Hauptprodukt in Form von violetten Feststoffen erhalten. Ein Vergleich der gemessenen ¹H-NMR-Daten²⁶ ergab, dass es sich bei der letzten Fraktion um das 5,15-disubstituierte Porphyrin **74** handelt.

5-(1,3-Dithian-2-yl)porphyrin 73

R_f: 0.53 (CH₂Cl₂ : *n*-Hexan = 3 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CD₂Cl₂): δ = 9.68 (2H, br s, 3,7-C_{β-H}), 10.19 (2H, s, 10,20-C_{meso-H}), 10.10 (1H, s, 15-C_{meso-H}), 9.34 (6H, m, 2,8,12,13,17,18-C_{β-H}), 7.90 (1H, s, CHS), 3.61 (2H, m, SCH_{2ax}), 3.24 (2H, m, SCH_{2eq}), 2.48 (2H, m, SCH₂CH₂), -3.73 ppm (2H, br s, N<u>H</u>) **UV/Vis** (CH₂Cl₂): λ (rel_Intens): 402 (1.00), 499 (0.07), 531

UV/Vis (CH₂Cl₂): λ_{max} (rel. Intens.): 402 (1.00), 499 (0.07), 531 (0.03), 571 (0.04), 579 (sh), 625 (0.02), 635 (sh) **MS** (TOF, MS, ES+, 70 eV): $m/z = 429 (100 \%, [M + H]^{+}), 339 (5 \%, [M - C_4H_7S_2 + CHO + H]^{+}), 120 (3 \%, [C_4H_7S_2]^{\bullet+})$ **HMRS:** $C_{24}H_{21}N_4S_2$ ber. 429.1208 gef. 429.1199

5,15-Bis-(1,3-dithian-2-yl)porphyrin 74²⁷

R_f: 0.47 (CH₂Cl₂ : *n*-Hexan = 3 : 1, v/v, Kieselgel, 6 x 3 cm) **HMRS:** $C_{28}H_{27}N_4S_4$ ber. 547.1119 gef. 547.1172

5.1.13 Variation der Menge des eingesetzten Aldehyds

In Anlehnung an die Vorschrift 5.1 wurden Anisaldehyd **120** bzw. 2-Ethylbutyraldehyd **131** im Unterschuss eingesetzt (1.00 mmol). Die Ausbeuten der Porphyrine **54**, **55** und **69**, bezogen auf den jeweiligen Aldehyd (**120** bzw. **131**), sind in der Tabelle 7.1 angegeben. Zum Vergleich wurden die Ausbeuten der stöchiometrischen Umsetzung angegeben Die analytischen Daten der Produkte sind analog zu 5.1.1 und 5.1.9.

Tabelle 7.1:Ausbeuten der Porphyrine 54, 55 und 69.

Aldehyd	Äquiv. Aldehyd	Mono	substitution	Disub	stitution	
131	2.00	54	11 %	55	7 %	
131	1.00	54	17 %	55	4 %	
120	2.00	69	12 %			
120	1.00	69	8 %			

5.1.14 Variation des Pyrrolderivats

In Anlehnung an die Vorschrift 5.1 wurde 2-(Hydroxymethyl)pyrrol **52** anstelle von Pyrrol-2-carbaldehyd **51** eingesetzt (4.00 mmol). Des Weiteren wurde die Menge des eingesetzten Aldehyds **120** bzw. **131** variiert. Bei dieser Umsetzung entsteht als drittes Produkt in geringen Mengen Porphin **1**, welches bei der chromatographischen Aufarbeitung von 5-(1-Ethylpropyl)porphyrin **54** als dritte Fraktion und bei der chromatographischen Aufarbeitung von 5-(4-Methoxyphenyl)porphyrin **69** als erste Fraktion isoliert wurde. Die Ausbeuten der Porphyrine **54**, **55** und **69**, bezogen auf den jeweiligen Aldehyd (**120** bzw. **131**), sind in der Tabelle 7.2 angegeben. Die analytischen Daten der Produkte sind analog zu 5.1.1 und 5.1.9.

Aldehyd	Äquiv. Aldehyd	Mono	substitution	Disub	stitution
131	2.00	54	9 %	55	6 %
131	1.00	54	11 %	55	5 %
120	2.00	69	14 %		
120	1.00	69	23 %		

Tabelle 7.2:Ausbeuten der Porphyrine 54, 55 und 69.

6 Darstellung von AB-Porphyrinen mit Lithiumorganylen

6.1 Allgemeine Vorschrift für die Umsetzung mit Lithiumorganylen²⁸

In einem 250 ml Schlenkkolben wurde das jeweilige Porphyrin (1 Äquiv.) unter Argon in THF (50 ml) gelöst und auf -70 °C für Alkyllithiumreagenzien oder 0 °C für Aryllithiumreagenzien abgekühlt. Die entsprechende Menge der lithiumorganischen Verbindung wurde innerhalb von 15 min tropfenweise hinzugegeben. Dabei änderte sich die Farbe der Lösung von rot nach grünbraun. Das Kältebad wurde entfernt und die Lösung 30 min bei Raumtemperatur gerührt. Es wurde Wasser (1 ml) in THF (5 ml) zu der Reaktionslösung gegeben, wobei die Farbe nach grün umschlug. Die Lösung wurde 15 min gerührt, falls nicht anders vermerkt mit DDQ (5.5 Äquiv.) oxidiert und die Lösung 30 min gerührt. Dabei erfolgte ein Farbumschlag nach rot. Die Lösung wurde über Kieselgel filtriert (Eluent: CH_2Cl_2) und das Lösungsmittel unter vermindertem Druck entfernt.

6.1.1 Umsetzung von 5-(1-Ethylpropyl)porphyrin mit *n*-Hexyllithium

Analog zur Vorschrift 6.1 wurde 5-(1-Ethylpropyl)porphyrin **54** (1 Äquiv.) mit der entsprechenden Menge einer 2.5 M *n*-Hexyllithiumlösung in Hexan umgesetzt. Die eingesetzten Mengen und resultierenden Ausbeuten, bezogen auf **54**, sind in der Tabelle 7.3 angegeben. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Die erste Fraktion enthielt ein Gemisch aus di- und höheralkylierten Porphyrinen. Als zweite Fraktion wurde das Produkt **89** eluiert. Nach Umkristallisation aus $CH_2Cl_2/MeOH/H_2O$ wurden violette Kristalle erhalten.

5-(1-Ethylpropyl)-10-n-hexylporphyrin 89

54	Äquiv. <i>n</i> -HexLi	89
46.8 mg, 0.12 mmol	1.5	23.8 mg, 0.05 mmol, 42 %
55.1 mg, 0.14 mmol	2.5	34.9 mg, 0.08 mmol, 52 %
51.3 mg, 0.14 mmol	3.5	37.1 mg, 0.08 mmol, 59 %
50.7 mg, 0.13 mmol	4.5	17.9 mg, 0.04 mmol, 29 %
33.8 mg, 0.09 mmol	5.5	18.1 mg, 0.04 mmol, 44 %

Tabelle 7.3:Ausbeuten von 89.

Fp.: 135 °C

R_f: 0.46 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.06$ (1H, s, 15-C_{meso-H}), 10.01 (1H, s, 20-C_{meso-H}), 9.79 (1H, m, 7-C_{β-H}), 9.73 (1H, m, 3-C_{β-H}), 9.65 (1H, m, 8-C_{β-H}), 9.62 (1H, AB, ³J_{H12,H13} = 4.7 Hz, 12-C_{β-H}), 9.33 (4H, m, 2,13,17,18-C_{β-H}), 5.14 (1H, m, C<u>H</u>(CH₂)₂), 5.09 (2H, t, ³J_{H30,H31} = 8.2 Hz, C<u>H</u>₂C₅H₁₁), 3.00, 2.84 (4H,

m, CH(C<u>H</u>₂)₂), 2.60 (2H, *m*, CH₂C<u>H</u>₂C₄H₉), 1.87 (2H, *m*, C₂H₄C<u>H</u>₂C₃H₇), 1.55 (2H, *m*, C₃H₆C<u>H</u>₂C₂H₅), 1.43 (2H, *m*, C₄H₈C<u>H</u>₂CH₃), 0.97 (3H, *t*, ${}^{3}J_{H35,H34} = 7.4$ Hz, C₅H₁₀C<u>H</u>₃), 0.96 (6H, *t*, ${}^{3}J_{H27,H26} = {}^{3}J_{H29,H28} = 7.3$ Hz, CH₂C<u>H</u>₃), -3.22 ppm (2H, *br s*, N<u>H</u>)

¹³C-NMR (126 MHz, CDCl₃): $\delta = ~130$ (C2, C3, C7, C8, C12, C13, C17, C18), 123.21 (C5), 120.14 (C10), 103.11 (C15), 102.84 (C20), 50.53 (C25), 39.06 (C31), 36.10 (C30), 34.83 (C26, C28), 31.94 (C33), 30.40 (C32), 22.78 (C34), 14.13 ppm (C27, C29, C35) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 406 (5.58), 504 (4.14), 534 (3.37), 579 (3.60), 634 nm (3.08)

MS (EI, 80 eV): $m/z = 464 (100 \%, [M]^{\bullet+}), 435 (93 \%, [M - C_2H_5]^{+}), 393 (20 \%, [M - C_5H_{11}]^{+}), 364 (11 \%, [M - C_5H_{11} - C_2H_5]^{\bullet+}), 335 (10 \%, [M - C_5H_{11} - 2 C_2H_5]^{+}), 232 (11 \%, [M]^{2+})$ **HMRS:** $C_{31}H_{37}N_4$ ber. 465.3018 gef. 465.3035

6.1.2 Umsetzung von 5-*t*-Butylporphyrin mit *n*-Hexyllithium

Analog zur Vorschrift 6.1 wurde 5-*t*-Butylporphyrin **56** (50 mg, 0.14 mmol) mit einer 2.5 M *n*-Hexyllithiumlösung in Hexan (0.19 ml, 0.48 mmol, 3.5 Äquiv.) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Die erste Fraktion enthielt ein Gemisch aus höheralkylierten Porphyrinen. Die zweite Fraktion enthielt 5-*t*-Butyl-15-*n*-hexylporphyrin **91**. Anschließende Umkristallisation aus $CH_2Cl_2/MeOH$ ergab das Produkt in Form von violetten Kristallen.

5-t-Butyl-15-n-hexylporphyrin 91

Ausbeute: 9 mg (0.02 mmol, 14 % bez. auf 56)

Fp.: > 330 °C

 \mathbf{R}_{f} : 0.48 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.00$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 9.82 (2H, *AB*, ³J_{*H*3,*H*2} = ³J_{*H*7,*H*8} = 4.8 Hz, 3,7-C_{β-<u>H</u>}), 9.45 (2H, *AB*, ³J_{*H*13,*H*12} = ³J_{*H*17,*H*18} = 4.5 Hz, 13,17-C_{β-<u>H</u>}), 9.29

(2H, *AB*, ${}^{3}J_{H12,H13} = {}^{3}J_{H18,H17} = 4.5$ Hz, 12,18-C_{β-H}), 9.20 (2H, *AB*, ${}^{3}J_{H2,H3} = {}^{3}J_{H8,H7} = 4.8$ Hz, 2,8-C_{β-H}), 4.88 (2H, *t*, ${}^{3}J_{H29,H30} = 8.0$ Hz, C<u>H</u>₂C₅H₁₁), 2.58 (9H, *s*, C(C<u>H</u>₃)₃), 2.50 (2H, *m*, CH₂C<u>H</u>₂C₄H₉), 1.76 (2H, *m*, C₂H₄C<u>H</u>₂C₃H₇), 1.50 (2H, *m*, C₃H₆C<u>H</u>₂C₂H₅), 1.38 (2H, *m*, C₄H₈C<u>H</u>₂CH₃), 0.93 (3H, *t*, ${}^{3}J_{H34,H33} = 7.3$ Hz, C₅H₁₀C<u>H</u>₃), -1.95 ppm (2H, *br s*, N<u>H</u>)

¹³C-NMR (126 MHz, CDCl₃): δ = 148.19 (C4, C6), 147.09 (C14, C16), 143.50 (C11, C19), 141.91 (C1, C9), 131.41 (C12, C18), 131.13 (C2, C8), 130.11 (C3, C7), 127.50 (C13, C17), 126.39 (C5), 119.62 (C15), 104.34 (C10, C20), 40.80 (C25), 40.31 (C26, C26), 104.34 (C10, C20), 40.80 (C25), 40.31 (C26), 104.34 (C10, C20), 104.34 (C10, C20), 104.34 (C10, C20), 104.34 (C26), 104.34 (C26), 104.34 (C10, C20), 10

C27, C28), 38.31 (C30), 34.10 (C29), 31.89 (C32), 30.16 (C31), 22.71 (C33), 14.13 ppm (C34)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε): 407 (5.55), 504 (4.37), 537 (3.73), 578 (3.83), 633 nm (3.31) MS (EI, 250 °C, 80 eV): m/z = 450 (100 %, [M]^{•+}), 435 (72 %, [M - CH₃]⁺), 394 (10 %, [M - C₄H₉ + H]^{•+}), 379 (7 %, [M - C₅H₁₁]⁺), 323 (17 %, [M - C₄H₉ + H - C₅H₁₁]⁺), 225 (3 %, [M]²⁺) **HMRS:** $C_{30}H_{34}N_4$ ber. 450.27835 gef. 450.27572

6.1.3 Umsetzung von 5-(4-Methoxyphenyl)porphyrin mit *n*-Hexyllithium

Analog zur Vorschrift 6.1 wurde 5-(4-Methoxyphenyl)porphyrin **69** (34 mg, 0.08 mmol) mit einer 2.5 M *n*-Hexyllithiumlösung in Hexan (0.11 ml, 0.28 mmol, 3.5 Äquiv.) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Die erste Fraktion enthielt ein Gemisch aus höheralkylierten Porphyrinen. Die zweite Fraktion enthielt ein Gemisch aus 5-*n*-Hexyl-10-(4-methoxyphenyl)porphyrin **92** und 5-*n*-Hexyl-15-(4-methoxyphenyl)porphyrin **93** im Verhältnis 2.89 : 1.00 (bestimmt durch analytische HPLC-Trennung, Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 3, v/v) konnten die Porphyrine getrennt werden. Die erste Fraktion enthielt 5-*n*-Hexyl-15-(4-methoxyphenyl)porphyrin **93**, die zweite Fraktion 5-*n*-Hexyl-10-(4-methoxyphenyl)porphyrin **92**. Anschließende Umkristallisation aus $CH_2Cl_2/MeOH$ ergab die Produkte in Form von violetten Kristallen.

5-n-Hexyl-10-(4-methoxyphenyl)porphyrin 92

Ausbeute: 14 mg (0.03 mmol, 32 % bez. auf 69)

Fp.: 163 °C

 $\mathbf{R_{f}:}$ 0.16 (CH₂Cl₂ : *n*-Hexan = 2 : 3, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): δ = 10.051 (1H, *s*, 20-C_{*meso*-<u>H</u>}), 10.046 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.56 (1H, *AB*, ³J_{H3,H2} = 4.7 Hz, 3-C_{β-H}), 9.51 (1H, *AB*, ³J_{H7,H8} = 4.8 Hz, 7-C_{β-H}), 9.31 (3H, *m*,

2,17,18-C_{β-H}), 9.25 (1H, *AB*,
$${}^{3}J_{H13,H12} = 4.5$$
 Hz, 13-
C_{β-H}), 9.03 (1H, *AB*, ${}^{3}J_{H8,H7} = 4.8$ Hz, 8-C_{β-H}), 9.01
(1H, *AB*, ${}^{3}J_{H12,H13} = 4.5$ Hz, 12-C_{β-H}), 8.13 (2H, *AB*,
 ${}^{3}J_{H32,H33} = {}^{3}J_{H36,H35} = 8.5$ Hz, Ar_{o-H}), 7.30 (2H, *AB*,
 ${}^{3}J_{H33,H32} = {}^{3}J_{H35,H36} = 8.5$ Hz, Ar_{m-H}), 4.99 (2H, *t*,
 ${}^{3}J_{H25,H26} = 8.1$ Hz, CH₂C₅H₁₁), 4.09 (3H, *s*, OCH₃),
2.56 (2H, *m*, CH₂CH₂C₄H₉), 1.82 (2H, *m*,
C₂H₄CH₂C₃H₇), 1.53 (2H, *m*, C₃H₆CH₂C₂H₅), 1.42

(2H, *m*, C₄H₈C<u>H</u>₂CH₃), 0.98 (3H, *t*, ${}^{3}J_{H30,H29} = 7.3$ Hz, C₅H₁₀C<u>H</u>₃), -3.31 ppm (2H, *br s*, N<u>H</u>)

¹³**C-NMR** (126 MHz, CDCl₃): δ = 159.55 (C34), ~146 (C1, C4, C6, C9, C11, C14, C16, C19), 135.71 (C32, C36), 134.95 (C31), ~132 (C8, C12), ~131 (C2, C13, C17, C18), ~129 (C3), ~128 (C7), 120.72 (C5), 119.44 (C10), 112.26 (C33, C35), 103.64 (C15), 103.44 (C20), 55.70 (C37), 39.07 (C26), 35.64 (C25), 32.05 (C28), 30.41 (C27), 22.88 (C29), 14.31 ppm (C30)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε): 407 (5.03), 503 (3.96), 536 (3.47), 578 (3.47) 633 nm (3.19) **MS** (TOF, MS, ES+, 70 eV): $m/z = 500 (100 \%, [M]^{\bullet+})$

HMRS: $C_{33}H_{32}N_4O$ ber. 500.2576 gef. 500.2571

5-n-Hexyl-15-(4-methoxyphenyl)porphyrin 93

Ausbeute: 5 mg (< 0.01 mmol, 11 % bez. auf 69)

Fp.: 238 °C

 $\mathbf{R_{f}:} 0.14 (CH_2Cl_2 : n-Hexan = 2 : 3, v/v, Kieselgel, 6 x 3 cm)$

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.16$ (2H, s, 10,20-C_{meso-H}), 9.53 (2H, AB, ³J_{H13,H12} =

 ${}^{3}J_{H17,H18} = 4.5 \text{ Hz}, 3,7-C_{\beta-\underline{H}}), 9.35 (2H, AB, {}^{3}J_{H2,H3} = {}^{3}J_{H8,H7} = 4.5 \text{ Hz}, 2,8-C_{\beta-\underline{H}}), 9.33 (2H, m, 12,18-C_{\beta-\underline{H}}), 9.07 (2H, AB, {}^{3}J_{H13,H12} = {}^{3}J_{H17,H18} = 4.5 \text{ Hz}, 13,17-C_{\beta-\underline{H}}), 8.15 (2H, AB, {}^{3}J_{H32,H33} = {}^{3}J_{H36,H35} = 8.5 \text{ Hz}, \text{ Ar}_{o-\underline{H}}), 7.32 (2H, m, \text{ Ar}_{m-\underline{H}}), 4.94 (2H, t, {}^{3}J_{H25,H26} = 8.1 \text{ Hz}, C\underline{H}_2C_5H_{11}), 4.08 (3H, s, OC\underline{H}_3), 2.56 (2H, m, CH_2C\underline{H}_2C_4H_9), 1.82 (2H, m, C_2H_4C\underline{H}_2C_3H_7), 1.53 (2H, m, C_3H_6C\underline{H}_2C_2H_5), 1.43 (2H, m, C_4H_8C\underline{H}_2CH_3), 0.99 (3H, t, {}^{3}J_{H30,H29} = 7.4 \text{ Hz}, C_5H_{10}C\underline{H}_3), -2.99, -3.06 \text{ ppm} (2H, br s, N\underline{H})$

¹³C-NMR (126 MHz, CDCl₃): $\delta = 159.55$ (C37), 147.78 (C14, C16), 147.36 (C4, C6), 144.85 (C11, C19), 144.59 (C1, C9), 135.95 (C32, C36), 133.88 (C31), 131.89 (C2, C8), 131.66 (C12, C18), 130.83 (C13, C17), 128.02 (C3, C7), 119.60 (C5), 118.28

(C15), 112.69 (C33, C35), 104.80 (C10, C20), 55.70 (C37), 38.85 (C26), 34.87 (C25), 32.05 (C28), 30.41 (C27), 22.88 (C29), 14.31 ppm (C30)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε): 407 (5.33), 504 (4.22), 538 (3.78), 578 (3.75) 633 nm (3.39) **MS** (TOF, MS, ES+, 70 eV): $m/z = 500 (100 \%, [M]^{\bullet+})$ **HMRS:** $C_{33}H_{32}N_4O$ ber. 500.2576 gef. 500.2555

6.1.4 Umsetzung von 5-(1-Ethylpropyl)porphyrin mit Phenyllithium

Analog zur Vorschrift 6.1 wurde 5-(1-Ethylpropyl)porphyrin **54** (63 mg, 0.17 mmol) mit einer 1.8 M Phenyllithiumlösung in Dibutylether (0.60 ml, 1.08 mmol, 6.5 Äquiv.) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Die erste Fraktion enthielt ein Gemisch aus höheralkylierten Porphyrinen. Die zweite Fraktion enthielt 5-(1-Ethylpropyl)-10-phenylporphyrin **90**. Nach Umkristallisation aus $CH_2Cl_2/MeOH/H_2O$ wurden violette Kristalle erhalten.

5-(1-Ethylpropyl)-10-phenylporphyrin 90

Ausbeute: 56 mg (0.12 mmol, 69 % bez. auf 54)

Fp.: 166 °C

R_f: 0.67 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.18$ (1H, *s*, 20-C_{*meso*-<u>H</u>}), 10.11 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.74 (2H, *m*, 3,7-C_{β-<u>H</u>}), 9.39 (3H, *m*, 2,17,18-C_{β-<u>H</u>}), 9.28 (1H, *AB*, ³J_{*H13,H12*} = 4.7 Hz, 13-C_{β-<u>H</u>}), 8.99 (2H, *m*, 8,12-C_{β-<u>H</u>}), 8.27 (2H, *m*, Ar_{*o*-<u>H</u>}), 7.80 (3H, *m*, Ar_{*m*-<u>H</u>}, Ar_{*p*-<u>H</u>}), 5.17 (1H, *m*,

C<u>H</u>(CH₂)₂), 3.01, 2.84 (4H, *m*, CH(C<u>H₂)₂), 0.98 (6H, *t*, ³J_{H27,H26} = ³J_{H29,H28} = 7.4 Hz, CH₂C<u>H₃</u>), -3.17 ppm (2H, *br s*, N<u>H</u>)</u>

¹³C-NMR (75 MHz, CDCl₃): $\delta = 142.86$ (C30), 134.49 (C31, C35), ~132 (C8, C12), ~131 (C2, C13, C17, C18), ~129 (C3, C7), 127.67 (C33), 126.50 (C32, C34), 123.98 (C5), ~119 (C10), 103.93, 103.32 (C15, C20), 50.49 (C25), 34.84 (C26, C28), 14.18 ppm (C27, C29)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 406 (5.48), 503 (4.13), 535 (3.31), 577 (3.57), 631 nm (2.94)

MS (EI, 70 eV): $m/z = 456 (52 \%, [M]^{\bullet+}), 427 (63 \%, [M - C_2H_5]^{+}), 228 (12 \%, [M]^{2+}), 214 (17 \%, [M - C_2H_5]^{2+})$

HMRS: $C_{31}H_{28}N_4$ ber. 456.2314 gef. 456.2286

6.1.5 Umsetzung von 5-(4-Methoxyphenyl)porphyrin mit Phenyllithium

Analog zur Vorschrift 6.1 wurde 5-(4-Methoxyphenyl)porphyrin **69** (51 mg, 0.12 mmol) mit einer 1.8 M Phenyllithiumlösung in Dibutylether (0.43 ml, 0.78 mmol, 6.5 Äquiv.) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: *n*-Hexan : Ethylacetat = 5 : 1, v/v). Die erste Fraktion enthielt ein Gemisch aus höheralkylierten Porphyrinen. Die zweite Fraktion enthielt ein Gemisch aus 5-(4-Methoxyphenyl)-10-phenylporphyrin **96** und 5-(4-Methoxyphenyl)-15-phenylporphyrin **97** im Verhältnis 7.0 : 1.0 (bestimmt anhand der Signale für die NH-Protonen im ¹H-NMR; vorausgesetzt, beide Porphyrine lösen sich gleich gut in CDCl₃). Die Porphyrine ließen sich auch mit anderen Laufmittelgemischen nicht weiter trennen. Die Porphyrine wurde als violetter Feststoff erhalten. Für das Gemisch konnten folgende Daten ermittelt werden:

R_f: 0.56 (*n*-Hexan : Ethylacetat = 5 : 1, v/v, Kieselgel, 6 x 3 cm) **UV/Vis** (CH₂Cl₂): λ_{max} (rel. Intens.): 408 (1.00), 503 (0.06), 537 (0.02), 576 (0.03) 631 nm (0.01) **MS** (EI, 70 eV): m/z = 492 (97 %, [M]^{•+}), 477 (6 %, [M - CH₃]⁺), 246 (36 %, [M]²⁺) **HMRS:** C₃₃H₂₄N₄O ber. 492.1950 gef. 492.1936

5-(4-Methoxyphenyl)-10-phenylporphyrin 96

Ausbeute: 23 mg (0.05 mmol, 38 % bez. auf 69)

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.19$, 10.18 (2H, s, 15,20-C_{meso-H}), 9.40 (2H, br s,

17,18- $C_{\beta-\underline{H}}$), 9.324 (1H, *m*, 2- $C_{\beta-\underline{H}}$), 9.315 (1H, *m*, 13- $C_{\beta-\underline{H}}$), 9.05 (1H, *AB*, ³J_{*H3,H2*} = 4.5 Hz, 3- $C_{\beta-\underline{H}}$), 9.02 (1H, *AB*, ³J_{*H12,H13*} = 4.7 Hz, 12- $C_{\beta-\underline{H}}$), 8.96 (1H, *AB*, ³J_{*H7,H8*} = 4.7 Hz, 7- $C_{\beta-\underline{H}}$), 8.92 (1H, *AB*, ³J_{*H8,H7*} = 4.7 Hz, 8- $C_{\beta-\underline{H}}$), 8.24 (2H, *m*, Ph_{o-\underline{H}}), 8.14 (2H, *AB*, ³J_{*H26,H27*} = ³J_{*H30,H29*} = 8.5 Hz, Ar_{o-\underline{H}}), 7.78 (3H, *m*, Ph_{*m*-\underline{H}}, Ph_{*p*-\underline{H}}), 7.29 (2H, *AB*, ³J_{*H27,H26*} = ³J_{*H29,H30*} = 8.5 Hz, Ar_{*m*-\underline{H}}), 4.09 (3H, *s*, OC<u>H</u>₃), -3.34 ppm (2H, *br s*, N<u>H</u>)

ppm (C31)

¹³**C-NMR** (126 MHz, CDCl₃): δ = 159.44 (C28), 142.18 (C32), 135.65 (C26, C30), 134.62 (C33, C37), 134.49 (C25), ~131 (C2, C3, C7, C8, C12, C13, C17, C18), 127.69 (C35), 126.66 (C34, C36), 119.98 (C5), 119.95 (C10), 112.21 (C27, C29), 104.12, 104.00 (C15, C20), 55.57 ppm (C31)

5-(4-Methoxyphenyl)-15-phenylporphyrin 97

Ausbeute: 3 mg (< 0.01 mmol, 5 % bez. auf **69**) ¹H-NMR (500 MHz, CDCl₃): $\delta = 10.19$, 10.18 (2H, *s*, 15,20-C_{meso-H}), 9.40 (2H, *br s*, 17,18-C_{β-H}), 9.324 (1H, *m*, 2-C_{β-H}), 9.315 (1H, *m*, 13-C_{β-H}), 9.05 (1H, *AB*, ³J_{H3,H2} = 4.5 Hz, 3-C_{β-H}), 9.02 (1H, *AB*, ³J_{H12,H13} = 4.7 Hz, 12-C_{β-H}), 8.96 (1H, *AB*, ³J_{H7,H8} = 4.7 Hz, 7-C_{β-H}), 8.92 (1H, *AB*, ³J_{H8,H7} = 4.7 Hz, 8-C_{β-H}), 8.24 (2H, *m*, Ph_{o-H}), 8.14 (2H, *AA'BB'*, ³J_{H33,H34} = ³J_{H37,H38} = 8.5 Hz, Ar_{o-H}), 7.78 (3H, *m*, Ph_{m-H}, Ph_{p-H}), 7.29 (2H, *AA'BB'*, ³J_{H34,H33} = ³J_{H38,H37} = 8.5 Hz, Ar_{m-H}), 4.09 (3H, *s*, OCH₃), - 3.34 (2H, *br s*, NH) ppm ¹³C-NMR (126 MHz, CDCl₃): $\delta = 159.44$ (C28), 142.18 (C32), 135.65 (C26, C30), 134.62 (C33, C37), 134.49 (C25), ~131 (C2, C3, C7, C8, C12, C13, C17, C18), 127.69 (C35), 126.66 (C34, C36), 119.98 (C5), 119.95 (C10), 112.21 (C27, C29), 104.12, 104.00 (C15, C20), 55.57

6.2 Allgemeine Vorschrift für die Umsetzung mit *in situ* hergestellten Lithiumorganylen³

In einem 100 ml Schlenkkolben wurde das jeweilige Porphyrin (1 Äquiv.) unter Argon in THF (50 ml) gelöst. und auf -70 °C und zu den *in situ* hergestellten, auf -40 bis -70 °C gekühlten lithiumorganischen Verbindung gegeben. Dabei änderte sich die Farbe der Lösung von rot nach grünbraun. Das Kältebad wurde entfernt und die Lösung zwei Stunden bei Raumtemperatur gerührt. Es wurde Wasser (5 ml) in THF (5 ml) zu der Reaktionslösung gegeben, wobei die Farbe nach grün umschlug. Die Lösung wurde 30 min gerührt, DDQ (10 Äquiv.) hinzugegeben und die Lösung 30 min gerührt. Dabei erfolgte

ein Farbumschlag nach rot. Die Lösung wurde über Kieselgel und neutrales Aluminiumoxid filtriert (Eluent: CH₂Cl₂) und das Lösungsmittel unter vermindertem Druck entfernt..

6.2.1 Darstellung von 4-(*N*,*N*-Dimethylamino)phenyllithium

In einen 250 ml Schlenkkolben wurde zu 4-Bromo-*N*,*N*-dimethylanilin **98** (1 Äquiv.) in Diethylether (20 ml) eine 2.5 M *n*-Butyllithiumlösung in Hexan (1 Äquiv.) innerhalb von 45 min unter Argon bei -78 °C zugetropft. Das Kältebad wurde entfernt und die Lösung zwei Stunden bei Raumtemperatur gerührt. Die weitere Verarbeitung folgte der Vorschrift 6.2.

6.2.2 Darstellung von 4-Hydroxyphenyllithium

In einen 250 ml Schlenkkolben wurde zu 4-Hydroxyphenylbromid (1 Äquiv.) in Diethylether (20 ml) eine 2.5 M *n*-Butyllithiumlösung in Hexan (2 Äquiv.) innerhalb von 45 min unter Argon bei -78 °C zugetropft. Das Kältebad wurde entfernt und die Lösung zwei Stunden bei Raumtemperatur gerührt. Die weitere Verarbeitung folgte der Vorschrift 6.2.

6.2.3 Umsetzung von 5-(1-Ethylpropyl)porphyrin mit 4-(*N*,*N*-Dimethylamino)phenyllithium

Analog zur Vorschrift 6.2 wurde 5-(1-Ethylpropyl)porphyrin **54** (168 mg, 0.43 mmol, 1 Äquiv.) mit 4-(*N*,*N*-Dimethylamino)phenyllithium **99** (11 Äquiv.) umgesetzt. Die Reinigung des Rohproduktes erfolgte zunächst säulenchromatographisch an Kieselgel (Eluent: Ethylacetat : *n*-Hexan = 1 : 3, v/v). Als erste Fraktion wurde ein Gemisch aus 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **101** und 5-[4-(*N*,*N*-Dimethylamino)phenyl]-15-(1-ethylpropyl)porphyrin **102** eluiert. Die zweite Fraktion enthielt 5,10-Bis-[4-(*N*,*N*-dimethylamino)phenyl]-15-(1-ethylpropyl)porphyrin **103**. Das Gemisch wurde ein weiteres mal an Kieselgel (Eluent: CH₂Cl₂ : *n*-Hexan = 4 : 1, v/v) chromatographiert. Dabei wurde als erste Fraktion 5-[4-(*N*,*N*-Dimethylamino)phenyl]-15-(1-ethylpropyl)porphyrin **102** und als zweite Fraktion 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **104** und als zweite Fraktion 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **105** und als zweite Fraktion 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **106** und als zweite Fraktion 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **107** und als zweite Fraktion 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **108** und als zweite Fraktion 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **109** und als zweite Fraktion 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)-

porphyrin **101** eluiert. Nach Umkristallisation aus CH₂Cl₂/MeOH wurden violette Kristalle erhalten.

5,10-Di-*n*-butyl-15-(1-ethylpropyl)porphyrin 100^{*}

Ausbeute: 5 mg (0.01 mmol, < 1 % bez. auf 54)

Fp.: 160 °C

 $\mathbf{R}_{\mathbf{f}}$: 0.55 (Ethylacetat : *n*-Hexan = 1 : 3, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 9.95$ (1H, *s*, 20-C_{*meso*-<u>H</u>}), 9.65 (2H, *m*, 3,7-C_{β-<u>H</u>}), 9.60, (2H, *AB*, ³J= 4.9 Hz, C_{β-H}), 9.51 (1H, *AB*, ³JC_{β-H}), 9.49 (1H, *AB*, ³J = 4.7 Hz, C_{β-H}), 9.27 (2H,

AB, ${}^{3}J = 4.7$ Hz, $C_{\beta-\underline{H}}$), 5.08, 4.95 (4H, *m*, $C\underline{H}_{2}C_{3}H_{7}$), 5.02 (1H, *m*, $C\underline{H}(CH_{2})_{2}$), 2.87, 2.60 (4H, *m*, $CH(C\underline{H}_{2})_{2}$), 2.50 (4H, *m*, $CH_{2}C\underline{H}_{2}C_{2}H_{5}$), 1.85 (4H, *m*, $C_{2}H_{4}C\underline{H}_{2}CH_{3}$), 1.19, 1.13 (6H, *t*, ${}^{3}J_{H28,H27} = {}^{3}J_{H32,H31} = 7.3$ Hz, $C_{3}H_{6}C\underline{H}_{3}$), 0.96 (6H, *t*, ${}^{3}J_{H35,H34} = {}^{3}J_{H37,H36} = 7.3$ Hz, $CH_{2}C\underline{H}_{3}$), -2.67, -2.75 ppm (2H, *br s*, N<u>H</u>)

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = \sim 149$ (C1, C4, C6, C9, C11, C14, C16, C19), 131.34, ~ 129 (C2, C3, C7, C8, C12, C13, C17, C18), 118.57 (C5, C10, C15), 102.94

(C20), 50.05 (C33), 41.22, 40.60 (C26, C30), 36.26, 34.54 (C25, C29, C34, C36), 23.79, 23.61 (C27, C31), 14.20 ppm (C28, C32, C35, C37)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 412 (5.12), 512 (3.96), 545 (3.57), 589 (3.47), 644 nm (3.38)

MS (EI, 80 eV): m/z = 492 (85 %, $[M]^{\bullet+}$), 463 (100 %, $[M - C_2H_5]^+$), 449 (40 %, $[M - C_3H_7]^+$), 377 (20 %, $[M - 2C_3H_7 - C_2H_5]^+$), 246 (5 %, $[M]^{2+}$), 232 (4 %, $[M - C_2H_5]^{2+}$) **HMRS:** $C_{33}H_{40}N_4$ ber. 492.3253 gef. 492.3245

^{*} Verbindung **100** wurde bei Umsetzung mit **99**, welches noch Spuren von *n*-BuLi enthielt, als erste Fraktion isoliert (s. Kapitel 2.2.1, S. 33).

5-[4-(N,N-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin 101

Ausbeute: 94 mg (0.19 mmol, 44 % bez. auf 54)

Fp.: 268 °C

 $\mathbf{R}_{\mathbf{f}}$: 0.35 (Ethylacetat : *n*-Hexan = 1 : 3, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.14$ (1H, *s*, 15-C_{*meso*-<u>H</u>), 10.09 (1H, *s*, 20-C_{*meso*-<u>H</u>), 9.73 (2H, *m*, 8,12-C_{β-<u>H</u>), 9.37 (3H, *m*, 13,17,18-C_{β-<u>H</u>), 9.27 (1H, *m* 2-C_{β-<u>H</u>), 9.08 (2H, *m* 3,7-C_{β-<u>H</u>), 8.11 (2H, *AB*, ³J_{*H*26,*H*27} = ³J_{*H*30,*H*29} = 8.6 Hz, Ar_{*o*-<u>H</u>), 7.15 (2H, *AB*, ³J_{*H*27,*H*26} = ³J_{*H*29,*H*30} = 8.6 Hz, Ar_{*m*-<u>H</u>}), 5.16 (1H, *m*, C<u>H</u>(CH₂)₂), 3.24 (6H, *s*, N(C<u>H</u>₃)₂), 2.93 (4H, *m*, CH(C<u>H₂)₂), 0.97 (6H, *t*, ³J_{*H*35,*H*34} = ³J_{*H*37,*H*36} = 7.4 Hz, CH₂C<u>H₃</u>), -3.14 ppm (2H, *br s*, N<u>H</u>)}}}}}}}}</u>

¹³C-NMR (75 MHz, CDCl₃): δ = 150.03 (C28), 135.58 (C26, C30), ~131 (C3, C7), 130.86 (C25), ~130 (C2, C13, C17, C18), ~129 (C8, C12), 123.68 (C10), 122.28 (C5), 110.59 (C27, C29), 103.15 (C15, C20), 50.46 (C33), 40.74 (C31, C32), 34.99 (C34, C36), 14.18 ppm (C35, C37)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 409 (4.33), 507 (3.62), 545 (3.53), 581 (3.54), 637 nm (3.17)

MS (EI, 80 eV): $m/z = 499 (66 \%, [M]^{\bullet+}), 470 (100 \%, [M - C_2H_5]^{+}), 454 (16 \%, [M - C_2H_7N]^{\bullet+}), 250 (16 \%, [M]^{2+}), 235 (75 \%, [M - C_2H_5]^{2+})$

HMRS: C₃₃H₃₃N₅ ber. 499.2736 gef. 499.2713

5-[4-(N,N-Dimethylamino)phenyl]-15-(1-ethylpropyl)porphyrin 102

Ausbeute: 34 mg (0.07 mmol, 16 % bez. auf 54)

Fp.: 290 °C

 $\mathbf{R_{f}:}$ 0.35 (Ethylacetat : *n*-Hexan = 1 : 3, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.24$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 9.73 (2H, *m*, 13,17-C_{β-<u>H</u>}), 9.42 (2H, *brs*, 12,18-C_{β-<u>H</u>}), 9.36 (2H, *AB*, ³J_{*H2,H3*} = ³J_{*H8,H7*} = 4.5 Hz, 2,8-C_{β-<u>H</u>}), 9.16 (2H, *AB*, ³J_{*H3,H2*} = ³J_{*H7,H3*} = 4.5 Hz, 3,7-C_{β-<u>H</u>}), 8.14 (2H, *AB*, ³J_{*H26,H27*} = ³J_{*H30,H29*} = 8.5 Hz, Ar_{*o*-<u>H</u>}), 7.16 (2H, *AB*, ³J_{*H27,H26*} = ³J_{*H29,H30*} = 8.5 Hz, Ar_{*m*-<u>H</u>}), 5.07 (1H, *m*, C<u>H</u>(CH₂)₂), 3.23 (6H, *s*, N(C<u>H</u>₃)₂), 2.91 (4H, *m*, CH(C<u>H</u>₂)₂), 0.97 (6H, *t*, ³J_{*H35,H34*} = ³J_{*H37,H36*} = 7.3 Hz, CH₂C<u>H</u>₃), -2.63 ppm (2H, *br s*, N<u>H</u>) ¹³C-NMR (75 MHz, CDCl₃): δ = 148.06 (C33), 135.98 (C31, C35), ~131 (C2, C8), 131.44 (C30), ~130 (C12, C13, C17, C18), ~129 (C3, C7), 119.42 (C5, C10), 111.33 (C32, C34), 104.43 (C15, C20), 49.95 (C25), 40.80 (C36, C37), 34.63 (C26, C28), 14.13 ppm (C27, C29)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 406 (4.69), 508 (3.94), 549 (3.76), 580 (3.57), 638 nm (3.39) **MS** (EI, 80 eV): m/z = 499 (66 %, [M]^{•+}), 470 (100 %, [M - C₂H₅]⁺),

454 (16 %, $[M - C_2H_7N]^{\bullet+}$), 250 (16 %, $[M]^{2+}$), 235 (75 %, $[M - C_2H_5]^{2+}$) **HMRS:** $C_{33}H_{33}N_5$ ber. 499.2736 gef. 499.2722

5,10-Bis-[4-(N,N-dimethylamino)phenyl]-15-(1-ethylpropyl)porphyrin 103

Ausbeute: 9 mg (0.01 mmol, 2 % bez. auf 54)

Fp.: 178 °C (Zers.)

 $\mathbf{R_{f}:}$ 0.27 (Ethylacetat : *n*-Hexan = 1 : 3, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.08$ (1H, s, 20-C_{meso-H}), 9.69 (1H, m, 17-C_{β-H}),

9.57 (1H, *m*, 13-C_{β-H}), 9.34 (1H, *AB*, ³J_{*H18,H17*} = 4.7 Hz, 18-C_{β-H}), 9.27 (1H, *AB*, ³J_{*H2,H3*} = 4.6 Hz, 2-C_{β-H}), 9.07 (1H, *AB*, ³J_{*H3,H2*} = 4.6 Hz, 3-C_{β-H}), 8.99 (1H, *m*, 12-C_{β-H}), 8.93, 8.88 (2H, *AB*, ³J_{*H7,H8*} = ³J_{*H8,H7*} = 4.9 Hz, 7,8-C_{β-H}), 8.07 (2H, *m*, Ar_{o-H}), 7.10 (2H, *m*, Ar_{*m*-H}), 5.06 (1H, *m*, C<u>H</u>(CH₂)₂), 3.23, 3.22 (12H, *s*, N(C<u>H₃)₂), 2.89 (4H, *m*, CH(C<u>H₂)₂), 0.96 (6H, *t*, ³J_{*H43,H42*} = ³J_{*H45,H44*} = 7.3 Hz, CH₂C<u>H₃</u>), -2.68 ppm (2H, *br s*, N<u>H</u>)</u></u>

¹³C-NMR (75 MHz, CDCl₃): δ = 149.93 (C28,

C36), 135.85, 135.46 (C26, C30, C34, C38), 131.85, 131.53, 130.83 (C2, C3, C7, C8, C12, C18), 129.69 (C25, C33), ~129 (C13, C17), 119.74 (C5, C10, C15), 111.01, 110.40 (C27, C29, C35, C37), ~103 (C20), 50.13 (C41), 40.76 (C31, C32, C39, C40), 34.62 (C42, C44), 14.18 ppm (C43, C45)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 419 (4.82), 517 (4.18) 557 (4.09), 587 (3.83), 649 nm (3.80)

MS (EI, 80 eV): $m/z = 618 (52 \%, [M]^{\bullet+}), 589 (100 \%, [M - C_2H_5]^{+}), 295 (24 \%, [M - C_2H_5]^{2+})$ **HMRS:** gef. $C_{41}H_{42}N_6$ ber. 618.3471 618.3477

6.2.4 Umsetzung von 5-t-Butylporphyrin mit 4-(N,N-Dimethylamino)phenyllithium

Analog zur Vorschrift 6.2 wurde 5-t-Butylporphyrin 56 (53 mg, 0.14 mmol, 1 Äquiv.) mit 4-(*N*,*N*-Dimethylamino)phenyllithium **99** (11 Äquiv.) umgesetzt. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: CH_2Cl_2 : *n*-Hexan = 1 : 3, v/v und Eluent: CH_2Cl_2 : *n*-Hexan = 1 : 7, v/v). Als erste Fraktion wurde 5-*n*-Butyl-15-*t*butylporphyrin 104 isoliert. Als zweite Fraktion wurde das gewünschte Porphyrin als Hauptprodukt 105 eluiert. Nach Umkristallisation aus CH₂Cl₂/MeOH wurden violette Kristalle erhalten.

5-*n*-Butyl-15-*t*-butylporphyrin 104^{*}

Ausbeute: 2 mg (< 0.01 mmol, 5 % bezogen auf 56) **Fp.**: 215 °C **R**_f: 0.61 (CH₂Cl₂ : *n*-Hexan = 3 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.02$ (2H, s, 10,20-C_{meso-H}), 9.82 (2H, AB, ${}^{3}J_{H3,H2} = {}^{3}J_{H7,H8} = 4.7$ Hz, 3,7-C_{8-H}), 9.47 (2H, AB, ${}^{3}J_{H13,H12} = {}^{3}J_{H17,H18} = 4.7 \text{ Hz}, 13,17-C_{B-H}, 9.30 (2H, AB, {}^{3}J_{H12,H13} =$ ${}^{3}J_{H18,H17} = 4.7$ Hz, 12,18-C_{β-H}), 9.21 (2H, AB, ${}^{3}J_{H2,H3} = {}^{3}J_{H8,H7} =$ 4.7 Hz, 2,8-C_{B-H}), 4.90 (2H, t, ${}^{3}J_{H29,H30} = 7.8$ Hz, CH₂C₃H₇), 2.57 (9H, s, C(CH₃)₃), 2.52 (2H, m, CH₂C₁C₂H₅), 1.78 (2H, m, $C_2H_4CH_2CH_3$), 1.11 (3H, t, ${}^{3}J_{H32,H31} = 7.3$ Hz, $C_3H_6CH_3$), -1.95 ppm (2H, *br s*, N<u>H</u>) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 405 (4.61), 508 (3.94), 542 (3.65),

583 (3.57), 634 nm (3.26)

Verbindung 104 wurde bei Umsetzung mit 99, welches noch Spuren von n-BuLi enthielt, als erste Fraktion isoliert (s. Kapitel 2.2.1, S. 33).

MS (EI, 80 eV): $m/z = 422 (13 \%, [M]^{\bullet+}), 407 (16 \%, [M - CH_3]^{+}), 379 (3 \%, [M - C_3H_7]^{+}), 211 (6 \%, [M]^{2+})$

HMRS: $C_{28}H_{30}N_4$ ber. 422.2470 gef. 422.2456

5-t-Butyl-15-[4-(N,N-dimethylamino)phenyl]porphyrin 105

Ausbeute: 19 mg (0.04 mmol, 36 % bez. auf **56**) **Fp.**: 270 °C (Zers.) **R**_f: 0.40 (CH₂Cl₂: *n*-Hexan = 9 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.07$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>), 9.85 (2H, *AB*, ³J_{*H3,H2*} = ³J_{*H7,H8*} = 4.8 Hz, 3,7-C_{β-H}), 9.26 (2H, *AB*, ³J_{*H12,H13*} = ³J_{*H18,H17*} = 4.7 Hz, 12,18-C_{β-H}), 9.23 (2H, *AB*, ³J_{*H2,H3*} = ³J_{*H8,H7*} = 4.8 Hz, 2,8-C_{β-H}), 9.10 (2H, *AB*, ³J_{*H13,H12*} = ³J_{*H17,H18*} = 4.7 Hz, 13,17-C_{β-H}), 8.12 (2H, *AB*, ³J_{*H30,H31*} = ³J_{*H34,H33*} = 8.2 Hz, Ar_{o-H}), 7.15 (2H, *AB*, ³J_{*H31,H30*} = ³J_{*H33,H34*} = 8.2 Hz, Ar_{m-H}), 3.23 (6H, *s*, N(CH₃)₂), 2.60 (9H, *s*, C(CH₃)₃), -1.93 ppm (2H, *br s*, NH) ¹³C-NMR (75 MHz, CDCl₃): $\delta = 150.04$ (C32), 148.10, 147.61, 143.90, 142.10 (C1, C4, C6, C9, C11, C14, C16, C19), 135.96 (C30, C34), 131.09 (C12, C18), 131.06 (C2, C8), 130.62 (C13, C17), 130.13 (C3, C7), 128.78 (C29), 126.66 (C5), 120.14 (C15), 111.38 (C31, C33), 104.69 (C10, C20), 40.90 (C25), 40.73 (C35, C36), 40.41 ppm (C26, C27, C28) **WWi**_{*i*} (CH Cl): λ (*i* c₁) : λ (*i* c₂) = 412 (*A* 78), 513 (*A* 07), 554 (*A* 07)}

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 413 (4.78), 513 (4.07), 554 (4.07), 581 (3.89), 641 nm (3.70)

MS (EI, 80 eV): $m/z = 485 (92 \%, [M]^{+}), 470 (100 \%, [M - CH_3]^{+}), 429 (25 \%, [M - CH_3 - C_2H_3N]^{+}), 243 (23 \%, [M]^{2+}), 295 (30 \%, [M - CH_3]^{2+})$

HMRS: $C_{32}H_{31}N_5$ ber. 485.2579 gef. 485.2562

7 Darstellung von ABC-Porphyrinen mit Lithiumorganylen

7.1 Umsetzung von 5-[4-(*N*,*N*-Dimethylamino)phenyl]-15-(1-ethylpropyl)porphyrin mit *n*-Hexyllithium

Analog zur Vorschrift 6.1 wurde 5-[4-(*N*,*N*-Dimethylamino)phenyl]-15-(1-ethylpropyl)porphyrin **102** (51 mg, 0.10 mmol) mit einer 2.5 M *n*-Hexyllithiumlösung in Hexan (0.10 ml, 0.25 mmol) umgesetzt. Die Oxidation erfolgte über Nacht an der Luft. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: CH_2Cl_2 : *n*-Hexan = 2 : 1, v/v). Das gewünschte Porphyrin **106** wurde als einziges Produkt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH/H_2O$ wurden violette Kristalle erhalten.

5-[4-(N,N-Dimethylamino)phenyl]-15-(1-ethylpropyl)-10-n-hexylporphyrin 106

Ausbeute: 31 mg (0.05 mmol, 52 % bez. 102)

Fp.: 138 °C

R_f: 0.44 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.01$ (1H, s, 20-C_{*meso*-<u>H</u>}), 9.70 (2H, *m*, 13,17-C_{β-<u>H</u>}), 9.63 (1H, *m*, 12-C_{β-<u>H</u>}) 9.52 (1H, *AB*, ³J_{*H8,H7*} = 4.6 Hz, 8-C_{β-<u>H</u>}), 9.30 (1H, *AB*, ³J_{*H18,H17*} = 4.6 Hz, 18-C_{β-<u>H</u>}), 9.23 (1H, *AB*, ³J_{*H2,H3*} = 4.6 Hz, 2-C_{β-<u>H</u>}), 9.05 (1H, *AB*, ³J_{*H7,H8*} = 4.6 Hz, 7-C_{β-<u>H</u>}), 9.04 (1H, *AB*, ³J_{*H3,H2*} = 4.6 Hz, 3-C_{β-<u>H</u>}), 8.09 (2H, *AB*, ³J_{*H26,H27*} = ³J_{*H30,H29*} = 8.7 Hz, Ar_{*o*-<u>H</u>}), 7.13 (2H, *AB*, ³J_{*H27,H26*} = ³J_{*H29,H30*} = 8.7 Hz, Ar_{*m*-<u>H</u>}), 5.08 (3H, *m*, C<u>H</u>(CH₂)₂, C<u>H₂C₅H₁₁), 3.23 (6H, *s*, N(C<u>H₃)₂), 2.90 (4H, *m*, CH(C<u>H₂)₂), 2.61 (2H, *m*,</u></u></u>

CH₂C<u>H</u>₂C₄H₉), 1.87 (2H, *m*, C₂H₄C<u>H</u>₂C₃H₇), 1.56 (2H, *m*, C₃H₆C<u>H</u>₂C₂H₅), 1.45 (2H, *m*, C₄H₈C<u>H</u>₂CH₃), 0.98 (6H, *t*, ${}^{3}J_{H38,H37} = {}^{3}J_{H40,H39} = 7.4$ Hz, CH₂C<u>H</u>₃), 0.97 (3H, *t*, ${}^{3}J_{H35,H34} = 7.3$ Hz, C₅H₁₀C<u>H</u>₃), -2.72 ppm (2H, *br s*, N<u>H</u>)

¹³**C-NMR** (63 MHz, CDCl₃): δ = 149.96 (C28), ~145 (C1, C4, C6, C9, C11, C14, C16, C19), 135.72 (C26, C30), 131.30 (C18), 130.66 (C3, C7), 129.79 (C2), 128.27 (C8, C12, C13, C17), 122.03 (C5), 119.31 (C10, C15), 110.97 (C27, C29), 103.31 (C20), 50.18
(C36), 40.76 (C31, C32), 39.09 (C31), 36.50 (C30), 34.65 (C37, C39), 31.94 (C33), 30.40 (C32), 22.78 (C34), 14.18 ppm (C35, C38, C40) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ϵ) = 415 (4.19), 515 (3.96), 554 (3.80), 591 (3.54), 649 nm (3.54) **MS** (EI, 70 eV): m/z = 583 (4 %, [M]^{•+}), 554 (8 %, [M - C₂H₅]⁺), 512 (8 %, [M - C₅H₁₁]⁺), 483 (4 %, [M - C₅H₁₁ - C₂H₅]^{•+}), 292 (33 %, [M]²⁺), 242 (59 %, [M - C₅H₁₁ - C₂H₅]²⁺) **HMRS:** C₃₉H₄₅N₅ ber. 583.3675 gef. 583.3665

7.2 Umsetzung von 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin mit *n*-Hexyllithium

Analog zur Vorschrift 6.1 wurde 5-[4-(N,N-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **101** (48 mg, 0.10 mmol) mit einer 2.5 M n-Hexyllithiumlösung in Hexan (0.10 ml, 0.24 mmol) umgesetzt. Die Oxidation erfolgte über Nacht an der Luft. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: CH₂Cl₂ : n-Hexan = 2 : 1, v/v). Die erste Fraktion enthielt das gewünschte Produkt **107**. Die zweite Fraktion enthielt wahrscheinlich 5-[4-(N,N-Dimethylamino)phenyl]-10-(1ethylpropyl)-15-n-hexylporphyrin **108**. Nach Umkristallisation aus CH₂Cl₂/MeOH/H₂O wurden violette Kristalle erhalten.

5-[4-(N,N-Dimethylamino)phenyl]-10-(1-ethylpropyl)-20-n-hexylporphyrin 107

Ausbeute: 25 mg (0.04 mmol, 46 % bez. auf 101)

Fp.: 92 °C

 \mathbf{R}_{f} : 0.36 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.04$ (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.66 (1H, *m*, 12-C_{β-<u>H</u>}), 9.54 (1H, *m*, 8-C_{β-<u>H</u>}) 9.52 (1H, *AB*, ³J_{*H18,H17*} = 4.7 Hz, 18-C_{β-<u>H</u>}), 9.40 (1H, *AB*, ³J_{*H2,H3*} = 4.9 Hz, 2-C_{β-<u>H</u>}), 9.33 (2H, *AB*, ³J_{*H13,H12*} = ³J_{*H17,H18*} = 4.7 Hz, 13,17-C_{β-<u>H</u>}), 8.97 (2H, *AB*, ³J_{*H3,H2*} = ³J_{*H7,H8*} = 4.9 Hz, 3,7-C_{β-<u>H</u>}), 8.06 (2H, *AB*, ³J_{*H26,H27*} = ³J_{*H30,H29*} = 8.6 Hz, Ar_{*o*-<u>H</u>}), 7.10 (2H, *AB*, ³J_{*H27,H26*} = ³J_{*H29,H30*} = 8.6 Hz, Ar_{*m*-<u>H</u>}), 5.03 (1H, *m*, C<u>H</u>(CH₂)₂), 4.95 (2H, *t*, ³J_{*H38,H39*} = 7.8 Hz, C<u>H</u>₂C₅H₁₁), 3.24 (6H, *s*, N(C<u>H</u>₃)₂), 2.87 (4H, *m*, CH(C<u>H</u>₂)₂), 2.51 (2H, *m*, CH₂C<u>H</u>₂C₄H₉), 1.78 (2H, *m*, C₂H₄C<u>H</u>₂C₃H₇), 1.49 (2H, *m*, C₃H₆C<u>H</u>₂C₂H₅), 1.38 (2H, *m*,

C₄H₈C<u>H</u>₂CH₃), 0.95 (6H, *t*, ³J_{*H*35,*H*34} = ³J_{*H*37,*H*36} = 7.4 Hz, CH₂C<u>H</u>₃), 0.92 (3H, *t*, ³J_{*H*43,*H*42} = 7.3 Hz, C₅H₁₀C<u>H</u>₃), -2.65 ppm (2H, *br s*, N<u>H</u>) ¹³C-NMR (63 MHz, CDCl₃): δ = 149.95 (C28), 135.38 (C26, C30), 132.37 (C3, C7), 131.44 (C13, C17), ~129 (C8, C18), ~127 (C2), ~120 (C5), ~119 (C10, C20), 110.46 (C27, C29), ~103 (C15), 50.03 (C33), 40.85 (C31, C32), 38.47 (C39), 34.74 (C38), 34.54

(C34, C36), 31.92 (C41), 30.19 (C40), 22.71 (C42), 14.12 ppm (C35, C37, C43) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 413 (4.73), 513 (3.92), 549 (3.59), 588 (3.46), 645 nm (3.41)

MS (EI, 70 eV): $m/z = 583 (38 \%, [M]^{\bullet+}), 554 (69 \%, [M - C_2H_5]^{+}), 512 (27 \%, [M - C_5H_{11}]^{+}), 483 (13 \%, [M - C_5H_{11} - C_2H_5]^{\bullet+}), 292 (52 \%, [M]^{2+})$

HMRS: $C_{39}H_{45}N_5$ ber. 583.3675 gef. 583.3652

7.3 Umsetzung von 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin mit *sec*-Butyllithium

Analog zur Vorschrift 6.1 wurde 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)porphyrin **101** (56 mg, 0.11 mmol) mit einer 1.3 M *sec*-Butyllithiumlösung in Cyclohexan/ *n*-Hexan (0.30 ml, 0.39 mmol) umgesetzt. Die Oxidation erfolgte über Nacht an der Luft. Als einziges Produkt wurde das gewünschte Porphyrin isoliert. Nach Umkristallisation aus CH₂Cl₂/MeOH/ wurden violette Kristalle erhalten.

5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)-20-(1-methylpropyl)porphyrin 109 Ausbeute: 19 mg (0.03 mmol, 31 % bez. auf 101) Fp.: 140 °C $\mathbf{R_{f}: 0.53 (CH_2Cl_2 : n-Hexan = 3 : 1, v/v, Kieselgel, 6 x 3 cm)$ ¹H-NMR (300 MHz, CDCl₃): $\delta = 10.04 (1H, s, 15-C_{meso-H}), 9.64 (2H, m, 8,12-C_{\beta-H}), 9.51 (2H, m, 2,18-C_{\beta-H}), 9.32 (2H, m, 13,17-C_{\beta-H}), 8.92 (2H, m, 3,7-C_{\beta-H}), 8.02 (2H, AB, ³J_{H26,H27} = ³J_{H30,H29} = 8.7 Hz, Ar_{o-H}), 7.08 (2H, AB, ³J_{H27,H26} = ³J_{H29,H30} = 8.7 Hz, Ar_{m-H}),$ 5.31 (1H, m, CH(CH₃)CH₂), 4.98 (1H, m, CH(CH₂)₂), 3.24 (6H, s, N(CH₃)₂), 2.85 (6H, m, $CH(CH_2)_2$, $CH(CH_3)CH_2$), 2.38 (3H, d, ${}^{3}J_{H39,H38} =$ 7.4 Hz, CH(CH₂)₂(C<u>H</u>)₃), 1.01 (3H, t, ³J_{H41,H40} = 7.3 Hz, CH(C<u>H</u>₃)CH₂CH₃), 0.93 (6H, t, ³J_{H35,H34} = ${}^{3}J_{H37,H36} = 7.4$ Hz, CH(CH₂)₂(CH)₃), -2.49 ppm (2H, br s, NH)UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 413 (4.49), 513 (3.69), 548 (3.39), 587 (3.26), 646 nm (3.23) **MS** (EI, 70 eV): $m/z = 555 (33 \%, [M]^{\bullet+}), 526 (25 \%, [M-C_2H_5]^{+})$ HMRS: 556.3440 $C_{37}H_{42}N_5$ ber. gef. 556.3444

8 Darstellung von ABCD-Porphyrinen mit Lithiumorganylen

8.1 Umsetzung von 5-[4-(*N*,*N*-Dimethylamino)phenyl]-10-(1-ethylpropyl)-20*n*-hexylporphyrin mit *n*-Butyllithium

Analog zur Vorschrift 6.1 wurde 5-[4-(N,N-Dimethylamino)phenyl]-10-(1-ethylpropyl)-20-n-hexylporphyrin **107** (42 mg, 0.07 mmol) mit einer 2.5 M n-Butyllithiumlösung in Hexan (0.03 ml, 0.09 mmol, 1.2 Äquiv.) umgesetzt. Die Oxidation erfolgte über Nacht an der Luft. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: CH₂Cl₂, 1 % NEt₃, v/v). Das gewünschte Porphyrin **110** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH₂Cl₂/MeOH wurden violette Kristalle erhalten.

5-*n***-Butyl-15-[4-(***N***,***N***-dimethylamino)phenyl]-10-(1-ethylpropyl)-20-***n***-hexylporphyrin 110 Ausbeute: 8.3 mg (0.01 mmol, 18 % bez. auf 107) Fp.**: 212 °C **R_f:** 0.40 (CH₂Cl₂ : *n*-Hexan = 2 : 1, 1 % NEt₃, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CD₂Cl₂): δ = 9.67 (1H, *m*, 8-C_{β-H}), 9.57 (2H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = 4.8 Hz, 3,7-C_{β-H}), 9.53 (4H, *AB*, ³J_{H2,H3} = ³J_{H12,H13} = 4.8 Hz, 2,12-C_{β-H}), 9.40 (1H, *AB*, ${}^{3}J_{H18,H17} = 4.7 \text{ Hz}, 18-C_{\beta-\underline{H}}), 8.89 (2H, m, 13,17-C_{\beta-\underline{H}}), 8.01 (2H, AB, {}^{3}J_{H35,H36} = {}^{3}J_{H39,H38}$ = 8.6 Hz, Ar_{o-<u>H</u>}), 7.11 (2H, AB, {}^{3}J_{H36,H35} = {}^{3}J_{H38,H39} = 8.6 \text{ Hz}, Ar_{m-\underline{H}}), 5.02 (3H, m, C\underline{H}(CH_2)_2, C\underline{H}_2C_3H_7), 4.93 (2H, t, {}^{3}J_{H42,H43} = 8.0 \text{ Hz}, C\underline{H}_2C_5H_{11}), 3.23 (6H, s, N(C\underline{H}_3)_2), 2.86 (4H, m, CH(C\underline{H}_2)_2), 2.58 (2H, m, CH_2C\underline{H}_2C_2H_5), 2.52 (2H, m, CH_2C\underline{H}_2C_4H_9), 1.90 (2H, m, C_2H_4C\underline{H}_2CH_3), 1.82 (2H, m, C_2H_4C\underline{H}_2C_3H_7), 1.52 (2H, m, C_3H_6C\underline{H}_2C_2H_5), 1.41 (2H, m, C_4H_8C\underline{H}_2CH_3), 1.19 (3H, t, t)

 ${}^{3}J_{H28,H27} = 7.4 \text{ Hz}, C_{3}H_{6}C\underline{H}_{3}), 0.95 (6H, t, {}^{3}J_{H31,H30} = {}^{3}J_{H33,H32} = 7.4 \text{ Hz}, CH_{2}C\underline{H}_{3}), 0.94 (3H, t, {}^{3}J_{H47,H46} = 7.2 \text{ Hz}, C_{5}H_{10}C\underline{H}_{3}), -2.64 \text{ ppm} (2H, br s, N\underline{H})$

¹³**C-NMR** (126 MHz, CD₂Cl₂): δ = 150.22 (C37), ~145 (C1, C4, C6, C9, C11, C14, C16, C19), 135.39 (C35, C39), ~131.9 (C13, C17), 130.66 (C34), ~129.1 (C8), ~128.8 (C3, C7), ~128.4 (C2, C12), ~127.8 (C18), 122.10 (C10), 119.08 (C5, C15, C20), 110.62 (C36, C38), 50.26 (C29), 41.20 (C26), 40.63 (C40, C41), 38.77 (C43), 35.80 (C25), 34.54 (C30, C32), 32.02 (C45), 30.31 (C44), 23.83 (C27), 22.83 (C46), 13.96 ppm (C28, C31, C33, C47)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 420 (4.81), 522 (3.98), 559 (3.88), 600 (3.60), 658 nm (3.72)

MS (TOF, MS, ES+, 70 eV): $m/z = 640 (10\%, [M]^{\bullet+}), 320 (100\%, [M]^{2+})$ **HMRS:** C₄₃H₅₄N₅ ber. 640.7379 gef. 640.4355

9 Metallierung ausgewählter A- und A₂-Porphyrine

9.1 Nickel- und Kupfereinbau nach der Acetat–Methode in DMF²⁹

Die freie Porphyrinbase (1 Äquiv.) wurde in DMF (50 ml) gelöst und mit dem entsprechenden Acetat (ca. 10 Äquiv.) zum Sieden erhitzt. Der Umsatz wurde mit DC-Kontrolle verfolgt. Das Lösungsmittel wurde unter vermindertem Druck entfernt und der

Rest in CH₂Cl₂ gelöst. Die Lösung wurde über Kieselgel filtriert (Eluent: CH₂Cl₂) und das Lösungsmittel unter vermindertem Druck entfernt.

Die Struktursicherung der Kupferkomplexe konnte nicht mit NMR-Spektren erfolgen, da die Elektronenkonfiguration am Kupfer(II) (d⁹) zu Verschiebungswerten führt, die unter normalen Messbedingungen keine Messung erlauben. Daher wurden die jeweiligen Massenspektren zur Sicherung der Struktur und Reinheit verwandt.

9.2 Zinkeinbau nach der Oxid-Methode³⁰

Die freie Porphyrinbase (1 Äquiv.) und Zinkoxid (2 – 3 Äquiv.) wurden in CH_2Cl_2 (50 ml) gelöst und mit 3 – 5 Tropfen TFA versetzt. Nach 10 min Rühren wechselt die Farbe der Reaktionslösung von grün auf rot-violett. Der Umsatz wurde mit DC-Kontrolle verfolgt. Die Lösung wurde über Kieselgel filtriert (Eluent: CH_2Cl_2) und das Lösungsmittel unter vermindertem Druck entfernt.

9.3 Metallierung von 5-*t*-Butylporphyrin

Analog zur Vorschrift 9.1 wurde 5-*t*-Butylporphyrin **56** (50 mg, 0.14 mmol) mit Nickelacetat umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Das Porphyrin **132** wurde als einziges Produkt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden violette Kristalle erhalten.

(5-t-Butylporphyrinato)nickel(II) 132

Ausbeute: 57 mg (0.13 mmol, 98 % bez. auf **56**) **Fp.**: > 300 °C **R**_f: 0.75 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (270 MHz, CDCl₃): δ = 9.64 (2H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = 5.1 Hz, 3,7-C_{β-H}), 9.59 (1H, *s*, 15-C_{*meso*-H}), 9.47 (2H, *s*, 10,20-C_{*meso*-H}), 9.10 (2H, *AB*, ³J_{H13,H12} = ³J_{H17,H18} = 4.4 Hz, 13,17-C_{β-H}), 9.04 (2H, *AB*, ³J_{H12,H13} = ³J_{H18,H17} = 4.4 Hz, 12,18-C_{β-H}), 8.97 (2H, *AB*, ³J_{H2,H3} = ³J_{H8,H7} = 5.1 Hz, 2,8-C_{β-H}), 2.14 ppm (9H, *s*, C(C<u>H</u>₃)₃)

¹³C-NMR (126 MHz, CDCl₃): δ = 141.64 (C14, C16), 141.35 (C11, C19), 141.17 (C4, C6), 138.86 (C1, C9), 133.04 (C3, C7), 132.42 (C13, C17), 131.83 (C2, C8), 131.60 (C12, C18), 122.91 (C5), 103.11 (C15), 102.98 (C10, C20), 39.12 (C25), 38.76 ppm (C26, C27, C28) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 404 (5.20), 530 (3.96), 567 nm (3.77) MS (EI, 220 °C, 80 eV): m/z = 422 (100 %, [M]^{•+}), 407 (95 %, [M – CH₃]⁺), 392 (18

%, $[M - C_2H_6]^{\bullet+}$), 366 (41 %, $[C_{24}H_{22}N_4]^{\bullet+}$), 183 (5 %, $[C_{24}H_{22}N_4]^{2+}$) **HMRS:** $C_{24}H_{20}N_4N_1$ ber. 422.10414 gef. 422.10754

Analog zur Vorschrift 9.1 wurde 5-*t*-Butylporphyrin **56** (58 mg, 0.16 mmol) mit Kupferacetat umgesetzt. Nach Umkristallisation aus CH_2Cl_2/n -Hexan wurde das Porphyrin **133** als einziges Produkt in Form von violetten Kristallen erhalten.

(5-t-Butylporphyrinato)kupfer(II) 133

Ausbeute: 49 mg (0.11 mmol, 72 % bez. auf **56**) Fp.: 274 °C R_f: 0.73 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 404 (5.44), 534 (4.00), 575 nm (3.65) MS (EI, 70 eV): m/z = 427 (89 %, [M]^{•+}), 412 (100 %, [M - CH₃]⁺), 397 (18 %, [M - C₂H₆]^{•+}), 371 (69 %, [C₂₀H₁₂N₄Cu]^{•+}), 214 (6 %, [M]²⁺) HMRS: C₂₄H₂₀N₄Cu ber. 427.0984 gef. 427.0977

Analog zur Vorschrift 9.2 wurde 5-*t*-Butylporphyrin **56** (55 mg, 0.15 mmol) mit Zinkoxid umgesetzt. Nach Umkristallisation aus CH_2Cl_2/n -Hexan wurde das Porphyrin **134** als einziges Produkt in Form von violetten Kristallen erhalten.

(5-t-Butylporphyrinato)zink(II) 134

Ausbeute: 31 mg (0.07 mmol, 47 % bez. auf **56**) Fp.: 279 °C R_f: 0.41 (CH₂Cl₂ : *n*-Hexan = 2 :1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 9.77$ (2H, *AB*, ³J_{*H*3,*H*2} = ³J_{*H*7,*H*8} = 4.7 Hz, 3,7-C_{β-H}), 9.58 (1H, *s*, 15-C_{*meso*-H}), 9.55 (2H, *s*, 10,20-C_{*meso*-H}), 9.01 (2H, *AB*, ³J_{*H*13,*H*12} = ³J_{*H*17,*H*18} = 4.4 Hz, 13,17-C_{β-H}), 8.97 (2H, *AB*, ³J_{*H*12,*H*13} = ³J_{*H*18,*H*17} = 4.4 Hz, 12,18-C_β. <u>H</u>), 8.87 (2H, *AB*, ³J_{*H*2,*H*3} = ³J_{*H*8,*H*7} = 4.7 Hz, 2,8-C_{β-H}), 2.51 ppm (9H, *s*, C(CH₃)₃)

¹³C-NMR (75 MHz, CDCl₃): δ = 149.62, 148.69, 148.33, 146.49 (C1, C4, C6, C9, C11, C14, C16, C19), 131.46, 131.23, 130.86 (C3, C7, C12, C13, C17, C18), 129.68 (C2, C8), 127.93 (C5), 104.75 (C15), 104.09 (C10, C20), 41.42 (C25), 41.05 ppm (C26, C27, C28) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 405 (5.20), 495 (3.88), 540 (4.02), 583 nm (3.59) MS (EI, 70 eV): m/z = 428 (69 %, [M]^{•+}), 413 (75 %, [M – CH₃]⁺), 388 (100 %, [M – C₃H₄]⁺), 372 (96 %, [C₂₀H₁₂N₄Zn]^{•+})

HMRS: $C_{24}H_{20}N_4Zn$ ber. 428.0979 gef. 428.0983

9.4 Metallierung von 5-(1-Ethylpropyl)porphyrin

Analog zur Vorschrift 9.1 wurde 5-(1-Ethylpropyl)porphyrin **54** (16 mg, 0.04 mmol) mit Nickelacetat umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Das Porphyrin **135** wurde als einziges Produkt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden violette Kristalle erhalten.

[5-(1-Ethylpropyl)porphyrinato]nickel(II) 135

Ausbeute: 16 mg (0.04 mmol, 93 % bez. auf **54**) Fp.: 279 °C R_f: 0.69 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹H-NMR (500 MHz, CDCl₃): δ = 9.79 (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 9.78 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.64 (2H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = 4.8 Hz, 3,7-C_{β-<u>H</u>}), 9.21 (2H, *AB*, ³J_{H2,H3} = ³J_{H8,H7} = 4.8 Hz, 2,8-C_{β-<u>H</u>}), 9.19 (4H, *br s*, 12,13,17,18-C_{β-<u>H</u>}), 4.69 (1H, *m*, C<u>H</u>(CH₂)₂), 2.81, 2.70 (4H, *m*, CH(C<u>H₂)₂), 0.89 ppm (6H, *t*, ³J_{H27,H26} = ³J_{H29,H28} = 7.4 Hz, CH₂C<u>H₃</u>)</u>

¹³**C-NMR** (126 MHz, CDCl₃): δ = 142.72 (C4, C6, C14, C16), 141.78 (C1, C9, C11, C19), 132.36 (C13, C17), 132.22 (C12, C18), 132.06 (C2, C8), 130.58, 130.40 (C3, C7), 121.25 (C5), 103.82 (C10, C20), 102.95 (C15), 49.71 (C25), 33.89 (C26, C28), 14.01 ppm (C27, C29)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 396 (5.36), 512 (4.14), 544 nm (3.73) MS (EI, 290 °C, 80 eV): m/z = 436 (78 %, [M]^{•+}), 407 (100 %, [M - C₂H₅]⁺), 392 (38 %, [M - C₃H₈]^{•+}), 366 (31 %, [M - C₅H₁₀]⁺), 218 (9 %, [M]²⁺), 203 (6 %, [M - C₂H₅]²⁺) HMRS: C₂₅H₂₂N₄Ni ber. 436.11979 gef. 436.11755

Analog zur Vorschrift 9.1 wurde 5-(1-Ethylpropyl)porphyrin **54** (50 mg, 0.13 mmol) mit Kupferacetat umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Das Porphyrin **136** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH_2Cl_2/n -Hexan wurden violette Kristalle erhalten.

[5-(1-Ethylpropyl)porphyrinato]kupfer(II) 136

Ausbeute: 51 mg (0.11 mmol, 88 % bez. auf **54**) **Fp.**: 312 °C **R**_f: 0.85 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 397 (5.68), 522 (4.10), 557 nm (3.65) **MS** (EI, 70 eV): m/z = 441 (100 %, [M]^{•+}), 412 (94 %, [M - C₂H₃]⁺), 397 (26 %, [M - C₃H₈]^{•+}), 371 (21 %, [M - C₅H₁₀]⁺), 221 (7 %, [M]²⁺), 206 (16 %, [M - C₂H₅]²⁺) **HMRS:** C₂₅H₂₂N₄Cu ber. 441.1140 gef. 441.1149

Analog zur Vorschrift 9.2 wurde 5-(1-Ethylpropyl)porphyrin **54** (59 mg, 0.15 mmol) mit Zinkoxid umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1 , v/v). Das Porphyrin **137** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH_2Cl_2/n -Hexan wurden violette Kristalle erhalten.

[5-(1-Ethylpropyl)porphyrinato]zink(II) 137

Ausbeute: 46 mg (0.10 mmol, 68 % bez. auf 54)

Fp.: 325 °C

R_f: 0.64 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.18$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 10.02 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.95 (2H, *AB*, ³J_{*H3,H2*} = ³J_{*H7,H8*} = 4.4 Hz, 3,7-C_{β-<u>H</u>}), 9.49 (2H, *AB*, ³J_{*H2,H3*} = ³J_{*H8,H7*} = 4.4 Hz, 2,8-C_{β-<u>H</u>}), 9.37, 9.34 (4H, *m*, 12,13,17,18-C_{β-<u>H</u>}), 5.28 (1H, *m*, C<u>H</u>(CH₂)₂), 2.81, 2.70 (4H, *m*, CH(C<u>H₂)₂), 0.89 ppm (6H, *t*, ³J_{*H27,H26*} = ³J_{*H29,H28*} = 7.4 Hz, CH₂C<u>H₃</u>)</u>

¹³**C-NMR** (126 MHz, CDCl₃): $\delta = \sim 149$ (C1, C4, C6, C9, C11, C14, C16, C19), ~ 131 (C2, C3, C7, C8, C12, C13, C17, C18), 124.42 (C5), 105.19, 104.89 (C10, C20), 103.89 (C15), 50.72 (C25), 35.07 (C26, C28), 14.38 ppm (C27, C29)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 401 (5.43), 532 (4.16), 563 nm (3.37)

MS (EI, 70 eV): m/z = 442 (60 %, $[M]^{\bullet+}$), 413 (100 %, $[M - C_2H_5]^+$), 398 (46 %, $[M - C_3H_8]^{\bullet+}$), 372 (28 %, $[M - C_5H_{10} + H]^{\bullet+}$), 207 (5 %, $[M - C_2H_5]^{2+}$), 199 (9 %, $[M - C_3H_8]^{2+}$), 186 (2 %, $[M - C_5H_{10} + H]^{2+}$)

HMRS: $C_{25}H_{22}N_4Zn$ ber. 442.1136 gef. 442.1118

9.5 Metallierung von 5-*n*-Hexylporphyrin

Analog zur Vorschrift 9.1 wurde 5-*n*-Hexylporphyrin **57** (42 mg, 0.11 mmol) mit Nickelacetat umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Das Porphyrin **138** wurde als einziges Produkt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden violette Kristalle erhalten.

(5-*n*-Hexylporphyrinato)nickel(II) 138 Ausbeute: 42 mg (0.09 mmol, 87 % bez. auf 57) Fp.: > 300 °C Rf: 0.68 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 9.82$ (2H, s, 10,20-C_{meso-H}), 9.81 (1H, s, 15-C_{meso-H}), 9.49 (2H, AB, ${}^{3}J_{H3,H2} = {}^{3}J_{H7,H8} = 4.7$ Hz, 3,7-C_{β-H}), 9.20 (6H, m, 2,8,12,13,17,18-C_{β-H}), 4.72 (2H, t, ${}^{3}J_{H25 H26} = 8.1$ Hz, CH₂C₅H₁₁), 2.41 (2H, m, CH₂CH₂C₄H₉), 1.70 (2H, m, C₂H₄CH₂C₃H₇), 1.38 (4H, m, C₃H₆(CH₂)₂CH₃), 0.92 ppm (3H, t, ${}^{3}J_{H30 H29} = {}^{3}J_{H36 H35} =$ 7.2 Hz, C₅H₁₀CH₃) ¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 143.00, 142.16, 142.10, 142.06$ 22 N (C1, C4, C6, C9, C11, C14, C16, C19), 132.25, 132.15 (C2, C8, C12, C13, C17, C18), 129.37 (C3, C7), 118.57 (C5), 104.14 (C10, C20), 103.21 (C15), 37.92 (C26), 34.63 (C25), 31.84 (C28), 30.23 (C27), 22.71 (C29), 14.12 ppm (C30) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 394 (5.05), 511 (4.18), 543 nm (4.03) **MS** (EI, 70 eV): m/z = 450 (89 %, $[M]^{\bullet+}$), 379 (100 %, $[M - C_5H_{11}]^+$), 225 (2 %, $[M]^{2+}$), 190 $(4\%, [M-C_5H_{11}]^{2+})$ HMRS: $C_{26}H_{24}N_4N_i$ ber. 450.1354 gef. 450.1340

Analog zur Vorschrift 9.1 wurde 5-*n*-Hexylporphyrin **57** (42 mg, 0.11 mmol) mit Kupferacetat umgesetzt. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurde das Porphyrin **139** als einziges Produkt in Form von violetten Kristallen erhalten.

(5-n-Hexylporphyrinato)kupfer(II) 139

Ausbeute: 40 mg (0.09 mmol, 82 % bez. auf 57) Fp.: 269 °C R_f: 0.70 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 398 (6.22), 522 (4.10), 557 nm (3.62) MS (EI, 70 eV): m/z = 455 (51 %, [M]^{•+}) , 384 (100 %, [M – C₃H₁₁]⁺), 192 (12 %, [M – C₃H₁₁]²⁺) HMRS: C₂₆H₂₄N₄Cu ber. 455.1297 gef. 455.1303

Analog zur Vorschrift 9.2 wurde 5-*n*-Hexylporphyrin **57** (39 mg, 0.10 mmol) mit Zinkoxid umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Das Porphyrin **140** wurde als einziges Produkt isoliert. Nach Umkristallisation aus MeOH/*n*-Hexan wurden violette Kristalle erhalten.

(5-n-Hexylporphyrinato)zink(II) 140

Ausbeute: 25 mg (0.05 mmol, 55 % bez. auf 57)

Fp.: 259 °C (Zers.)

 $\mathbf{R_{f}:}$ 0.47 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.02$ (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 9.99 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.58 (2H, *AB*, ³J_{*H*3,*H*2} = ³J_{*H*7,*H*8} = 4.7 Hz, 3,7-C_{β-<u>H</u>}), 9.33 (6H, *m*, 2,8,12,13,17,18-C_{β-<u>H</u>}), 4.97 (2H, *t*, ³J_{*H*25,*H*26} = 8.1 Hz, C<u>H</u>₂C₅H₁₁), 2.54 (2H, *m*, CH₂C<u>H</u>₂C₄H₉), 1.85 (2H, *m*, C₂H₄C<u>H</u>₂C₃H₇), 1.47 (4H, *m*, C₃H₆(C<u>H</u>₂)₂CH₃), 0.95 ppm (3H, *t*, ³J_{*H*30,*H*29} = 7.3 Hz, C₅H₁₀C<u>H</u>₃)

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.42 (C4, C6, C14, C16),

148.61 (C1, C9, C11, C19), 131.95 (C12, C18), 131.77 (C2, C8), 131.66 (C13, C17), 129.20 (C3, C7), 120.81 (C5), 104.93 (C10, C20), 38.44 (C26), 35.64 (C25), 31.96 (C28), 30.42 (C27), 22.79 (C29), 14.17 ppm (C30)

UV/Vis (THF): λ_{max} (lg ε) = 405 (5.10), 538 nm (4.16)

MS (EI, 70 eV): $m/z = 456 (45 \%, [M]^{\bullet+})$, 385 (100 %, $[M - C_5H_{11}]^+$), 192 (5 %, $[M - C_5H_{11}]^{2+}$) **HMRS:** $C_{26}H_{24}N_4Zn$ ber. 456.1292 gef. 456.1279

9.6 Metallierung von 5,15-Di-*n*-hexylporphyrin

Analog zur Vorschrift 9.1 wurde 5,15-Di-*n*-hexylporphyrin **58** (35 mg, 0.07 mmol) mit Nickelacetat umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: Ethylacetat : *n*-Hexan = 1 : 4, v/v). Das Porphyrin **141** wurde als einziges Produkt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden violette Kristalle erhalten.

(5,15-Di-*n*-hexylporphyrinato)nickel(II) 141

Ausbeute: 23 mg (0.04 mmol, 59 % bez. auf 58)

Fp.: 215 °C

R_f: 0.93 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): δ = 9.60 (2H, *s*, 10,20-C_{*meso*-<u>H</u>), 9.35 (4H, *AB*, ³J_{*H*3,*H*2} = ³J_{*H*7,*H*8} = ³J_{*H*13,*H*12} = ³J_{*H*17,*H*18} = 4.7 Hz, 3,7,13,17-C_{β-<u>H</u>}), 9.07 (4H, *AB*, ³J_{*H*2,*H*3} = ³J_{*H*8,*H*7} = ³J_{*H*12,*H*13} = ³J_{*H*18,*H*17} = 4.7 Hz,}

2,8,12,18-C_{β -<u>H</u>}), 4.57 (4H, t, ${}^{3}J_{H25,H26} = {}^{3}J_{H31,H32} = 8.1$ Hz, C<u>H</u>₂C₅H₁₁), 2.34 (4H, m, CH₂C<u>H</u>₂C₄H₉), 1.65 (4H, m, C₂H₄C<u>H</u>₂C₃H₇), 1.38 (8H, m, C₃H₆(C<u>H</u>₂)₂CH₃), 0.92 ppm (6H, t, ${}^{3}J_{H30,H29} = {}^{3}J_{H36,H35} = 7.2$ Hz, C₅H₁₀C<u>H</u>₃)

¹³**C-NMR** (75 MHz, CDCl₃): δ = 142.53 (C4, C6, C14, C16), 141.38 (C1, C9, C11, C19), 132.06 (C2, C8, C12, C18), 129.31

(C3, C7, C13, C17), 117.26 (C5, C15), 103.83 (C10, C20), 37.06 (C26, C32), 34.21 (C25, C31), 31.81 (C28, C34), 30.14 (C27, C33), 22.70 (C29, C35), 14.12 ppm (C30, C36) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 402 (5.37), 518 (4.12), 549 nm (3.63) **MS** (EI, 70 eV): m/z = 534 (100 %, [M]^{•+}), 463 (92 %, [M - C₅H₁₁]⁺), 392 (87 %, [M - 2

 C_5H_{11}]^{•+}), 267 (2 %, [M]²⁺)

HMRS: C₃₂H₃₆N₄Ni ber. 534.2293 gef. 534.2271

Analog zur Vorschrift 9.1 wurde 5,15-Di-*n*-hexylporphyrin **58** (44 mg, 0.09 mmol) mit Kupferacetat umgesetzt. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurde das Porphyrin **142** als einziges Produkt in Form von violetten Kristallen erhalten.

(5,15-Di-*n*-hexylporphyrinato)kupfer(II) 142

Ausbeute: 47 mg (0.09 mmol, 95 % bez. auf **58**) **Fp.**: 161 °C **R**_f: 0.96 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 404 (5.56), 530 nm (4.13) **MS** (EI, 70 eV): m/z = 539 (100 %, [M]^{•+}), 468 (86 %, [M –

 $C_{5}H_{11}]^{+}$), 397 (50 %, $[M - 2 C_{5}H_{11}]^{\bullet+}$), 270 (5 %, $[M]^{2+}$), 234 (9 %, $[M - C_{5}H_{11}]^{2+}$), 199 (13 %, $[M - 2 C_{5}H_{11}]^{2+}$) **HMRS:** $C_{32}H_{36}N_{4}Cu$ ber. 539.2236 gef. 539.2209

Analog zur Vorschrift 9.2 wurde 5,15-Di-*n*-hexylporphyrin **58** (40 mg, 0.08 mmol) mit Zinkoxid umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: Ethylacetat : n-Hexan = 1 : 4, v/v). Das Porphyrin **143** wurde als einziges Produkt isoliert. Nach Umkristallisation aus Ethylacetat/n-Hexan wurden violette Kristalle erhalten.

(5,15-Di-n-hexylporphyrinato)zink(II) 143

9.7 Metallierung von 5-Phenylporphyrin

Analog zur Vorschrift 9.1 wurde 5-Phenylporphyrin **59** (50 mg, 0.11 mmol) mit Nickelacetat umgesetzt. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurde das Porphyrin **144** als einziges Produkt in Form von violetten Kristallen erhalten.

(5-Phenylporphyrinato)nickel(II) 144

Ausbeute: 21 mg (0.05 mmol, 37 % bez. auf **59**) **Fp.**: > 310 °C **R**_f: 0.65 (CH₂Cl₂: *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.00$ (2H, *s*, 10,20-C_{*meso*-H}), 9.99 (1H, *s*, 15-C_{*meso*-H}), 9.30 (4H, *br s*, 12,13,17,18-C_{β-H}), 9.21 (2H, *AB*, ³J_{*H*2,*H*3} = ³J_{*H*8,*H*7} = 4.7 Hz, 2,8-C_{β-H}), 8.95 (2H, *AB*, ³J_{*H*3,*H*2} = ³J_{*H*7,*H*8} = 4.7 Hz, 3,7-C_{β-H}), 8.06 (2H, *m*, Ar_{*o*-H}), 7.72 ppm (3H, *m*, Ar_{*m*-H}, ¹³C-NMR (75 MHz, CDCl₃): $\delta = 142.64$ (C25), 133.89 (C26, C30), 132.41 (C12, C13, C17, C18), 132.37 (C2, C8), 131.94 (C3, C7), 127.75 (C28), 126.81 (C27, C29), 104.75 (C10, C20), 103.94 ppm (C15)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 392 (5.29), 509 (4.17), 541 nm (4.09) **MS** (EI, 70 eV): m/z = 442 (100 %, [M]^{•+}), 221 (8 %, [M]²⁺) **HMRS:** C₂₆H₁₆N₄Ni ber. 442.0728 gef. 442.0725

Analog zur Vorschrift 9.1 wurde 5-Phenylporphyrin **59** (50 mg, 0.11 mmol) mit Kupferacetat umgesetzt. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurde das Porphyrin **145** als einziges Produkt in Form von violetten Kristallen erhalten.

(5-Phenylporphyrinato)kupfer(II) 145 Ausbeute: 37 mg (0.08 mmol, 64 % bez. auf 59) Fp.: > 310 °C R_f: 0.68 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 397 (5.50), 521 (4.11), 555 nm (3.79) MS (EI, 70 eV): m/z = 447 (100 %, [M]^{•+}), 224 (8 %, [M]²⁺) HMRS: C₂₆H₁₆N₄Cu ber. 447.0671 gef. 447.0637

Analog zur Vorschrift 9.2 wurde 5-Phenylporphyrin **59** (48 mg, 0.12 mmol) mit Zinkoxid umgesetzt. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurde das Porphyrin **146** als einziges Produkt in Form von violetten Kristallen erhalten.

(5-Phenylporphyrinato)zink(II) 146 Ausbeute: 22 mg (0.05 mmol, 39 % bez. auf 59) **Fp.**: > 310 °C **R_f:** 0.51 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.35$ (2H, *m*, 10,20-C_{meso-H}), $(1H, m, 15-C_{meso-H}), 9.55, 9.46, 9.16$ (8H, m, 10.31 2,3,7,8,12,13,17,18-С_{β-Н}), 8.25 (2Н, *m*, Ar_{o-H}), 7.79 ppm (3Н, *m*, $\operatorname{Ar}_{m-\underline{\mathrm{H}}}, \operatorname{Ar}_{p-\underline{\mathrm{H}}})$ **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 402 (5.42), 531 (4.05), 563 nm (3.35)**MS** (EI, 70 eV): $m/z = 448 (100\%, [M]^{\bullet+}), 224 (35\%, [M]^{2+})$ HMRS: $C_{26}H_{16}N_4Zn$ ber. 448.0666 gef. 448.0660

9.8 Metallierung von 5,15-Diphenylporphyrin

Analog zur Vorschrift 9.1 wurde 5,15-Diphenylporphyrin **60** (33 mg, 0.07 mmol) mit Nickelacetat umgesetzt. Nach Umkristallisation aus CH₂Cl₂/MeOH wurde das Porphyrin **83** als einziges Produkt in Form von violetten Kristallen erhalten.

(5,15-Diphenylporphyrinato)nickel(II) 83³¹ Ausbeute: 16 mg (0.03 mmol, 45 % bez. auf 60) R_f: 0.72 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 400 (4.73), 515 (4.08), 547 nm (3.79) MS (EI, 70 eV): *m*/*z* = 518 (100 %, [M]^{•+}), 440 (20 %, [M-C₆H₆]^{•+}), 259 (3 %, [M]²⁺)

Analog zur Vorschrift 9.1 wurde 5,15-Diphenylporphyrin **60** (100 mg, 0.19 mmol) mit Kupferacetat umgesetzt. Nach Umkristallisation aus CH₂Cl₂/MeOH wurde das Porphyrin **147** als einziges Produkt in Form von violetten Kristallen erhalten.

(5,15-Diphenylporphyrinato)kupfer(II) 147³²

Ausbeute: 78 mg (0.15 mmol, 69 % bez. auf 5 60) **R**_f: 0.68 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 403 (3.99), 526 (3.69), 591 nm (3.41) **MS** (EI, 70 eV): m/z = 523 (100 %, [M]^{•+}), 445 (22 %, [M - C₆H₆]^{•+}), 260 (48 %, [M]²⁺), 223 (16 %, [M - C₆H₆]²⁺)

Analog zur Vorschrift 9.2 wurde 5,15-Diphenylporphyrin **60** (31 mg, 0.07 mmol) mit Zinkoxid umgesetzt. Nach Umkristallisation aus CH_2Cl_2/n -Hexan wurde das Porphyrin **148** als einziges Produkt in Form von violetten Kristallen erhalten.

(5,15-Diphenylporphyrinato)zink(II) 148³²

Ausbeute: 17 mg (0.03 mmol, 50 %) bez. auf **60 R**_f: 0.39 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 407 (4.84), 536 (3.66), 571 nm (2.97) **MS** (EI, 70 eV): m/z = 524 (100 %, [M]^{•+}), 446 (19 %, [M - C₆H₆]^{•+}), 262 (21 %, [M]²⁺)

9.9 Metallierung von 5-(4-Methoxyphenyl)porphyrin

Analog zur Vorschrift 9.1 wurde 5-(4-Methoxyphenyl)porphyrin **69** (105 mg, 0.25 mmol) mit Nickelacetat umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 2 : 1, v/v). Das Porphyrin **149** wurde als einziges Produkt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden violette Kristalle erhalten.

[5-(4-Methoxyphenyl)porphyrinato]nickel(II) 149

Ausbeute: 98 mg (0.21 mmol, 82 % bez. auf **69**) **Fp.**: 321 °C **R**_f: 0.61 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): δ = 9.98 (2H, *s*, 10,20-C_{*meso*-<u>H</u>}), 9.96 (1H, *s*, 15-C_{*meso*-<u>H</u>}), 9.29 (4H, *m*, 12,13,17,18-C_{β-H}), 9.20 (2H, *AB*, ³J_{*H*2,*H*3} = ³J_{*H*8,*H*7} = 4.8 Hz, 2,8-C_{β-H}), 8.98 (2H, AB, ${}^{3}J_{H3,H2} = {}^{3}J_{H7,H8} = 4.8$ Hz, 3,7-C_{β-H}), 7.97 (2H, m, Ar_{e-H}), 7.25 (2H, *m*, Ar_{*m*-H}), 4.07 ppm (3H, *s*, OCH₃) ¹³C-NMR (126 MHz, CDCl₃): $\delta = 159.43$ (C28), 143.01, 142.69, 142.55 (C1, C4, C6, C9, C11, C14, C16, C19), 134.88 (C26, C30), 133.54 (C25), 132.39 (C12, C13, C17, C18), 132.37 (C3, C7), 132.36 (C2, C8), 118.58 (C5), 112.35 (C27, C29), 104.69 (C10, C20), 103.83 (C15), 55.58 ppm (C31) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 394 (5.35), 510 (4.15), 542 nm (4.00)**MS** (EI, 290 °C, 80 eV): $m/z = 472 (100 \%, [M]^{\bullet+}), 457 (10 \%, [M - CH_3]^{+}), 441 (2 \%, [M - CH_3]^{+})$ $OCH_3]^+$, 236 (10 %, $[M]^{2+}$), 228 (2 %, $[M - CH_3]^{2+}$) C27H18N4ONi HMRS: ber. 472.08341 472.08566 gef.

Analog zur Vorschrift 9.1 wurde 5-(4-Methoxyphenyl)porphyrin **69** (47 mg, 0.11 mmol) mit Kupferacetat umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1 , v/v). Das Porphyrin **150** wurde als einziges Produkt isoliert. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden violette Kristalle erhalten.

[5-(4-Methoxyphenyl)porphyrinato]kupfer(II) 150 Ausbeute: 44 mg (0.09 mmol, 82 % bez. auf 69) Fp.: > 330°C R_f: 0.91 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 398 (5.35), 522 (4.11), 555 nm (3.66) MS (EI, 70 eV): $m/z = 477 (100 \%, [M]^{\bullet+}), 239 (14 \%, [M]^{2+})$ HMRS: C₂₇H₁₉N₄OCu ber. 478.0855 gef. 478.0885

Analog zur Vorschrift 9.2 wurde 5-(4-Methoxyphenyl)porphyrin **69** (44 mg, 0.11 mmol) mit Zinkoxid umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: Ethylacetat : n-Hexan = 1 : 4 , v/v). Das Porphyrin **151** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH₂Cl₂/MeOH wurden violette Kristalle erhalten.

[5-(4-Methoxyphenyl)porphyrinato]zink(II) 151

Ausbeute: 48 mg (0.10 mmol, 95 % bez. auf **69**) **Fp.**: > 330°C **R**_f: 0.36 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.29$ (2H, *s*, 10,20-C_{meso-H}), 10.22 (1H, *s*, 15-C_{meso-H}), 9.49 (4H, *m*, 12,13,17,18-C_{β-H}), 9.44 (2H, *AB*, ³J_{H2,H3} = ³J_{H8,H7} = 4.5 Hz, 2,8-C_{β-H}), 9.19 (2H, *AB*, ³J_{H3,H2} = ³J_{H7,H8} = 4.5 Hz, 3,7-C_{β-H}), 8.17 (2H, *AB*, ³J_{H26,H27} = ³J_{H30,H29} = 8.7 Hz, Ar_{o-H}), 7.33 (2H, *AB*, ³J_{H27,H26} = ³J_{H29,H30} = 8.7 Hz, Ar_{m-H}), 4.12 ppm (3H, *s*, OCH₃) ¹³C-NMB (75 MHz, CDCl₃): $\delta = 155.90$ (C28), 135.61 (C26, C30), ≈ 132 (C2, C3 d)

¹³**C-NMR** (75 MHz, CDCl₃): δ = 155.90 (C28), 135.61 (C26, C30), ~132 (C2, C3, C7, C8, C12, C13, C17, C18), 112.19 (C27, C29), 105.60 (C10, C20), 105.47 (C15), 55.65 ppm (C31)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 404 (5.50), 532 (4.14), 563 nm (3.41) **MS** (EI, 70 eV) = m/z = 478 (100 %, [M]⁺⁺), 463 (9 %, [M – CH₃]⁺) **HMRS:** C₂₇H₁₈N₄OZn ber. 478.0772 gef. 478.0761

10 Darstellung von A₂B₂-Porphyrinen

10.1 Vorstufen

10.1.1 Umsetzung mit 3,4,5-Trifluorbenzaldehyd⁶

Analog zur Literaturvorschrift wurde 3,4,5-Trifluorbenzaldehyd **172** (0.64 g, 4 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: CH_2Cl_2 : *n*-Hexan = 1 : 1 , v/v). Bei der ersten Fraktion handelt es sich um 5,10,15-Tris-(3,4,5-trifluorphenyl)porphyrin **174**. Als zweite Fraktion wurde das gewünschte 5,10-Bis-(3,4,5-trifluorphenyl)porphyrin **173** eluiert, die dritte Fraktion enthält

Spuren von 5-(3,4,5-Trifluorphenyl)porphyrin **175**. Nach Umkristallisation aus CH₂Cl₂/MeOH wurden violette Kristalle erhalten.

5,10-Bis-(3,4,5-trifluorphenyl)porphyrin 173

Ausbeute: 10 mg (0.02 mmol, 1 % bez. auf 172)

Fp.: 285 °C

 $\mathbf{R_{f}:}$ 0.47 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.27$ (2H, *s*, 15,20-C_{*meso*-<u>H</u>}), 9.45 (2H, *s*, 17,18-C_{β-<u>H</u>}),

9.39 (2H, *AB*, ${}^{3}J_{H7,H8} = {}^{3}J_{H8,H7} = 4.6$ Hz, 7,8-C_{β-H}), 8.98

(2H, *AB*, ${}^{3}J_{H3,H2} = {}^{3}J_{H12,H13} = 4.4$ Hz, 3,12-C_{β-H}), 8.92 (2H, *s*, 2,13-C_{β-H}), 7.85 (4H, *m*, Ar_{*o*-H}), -3.52 ppm (2H, *br s*, N<u>H</u>)

¹³**C-NMR** (75 MHz, CDCl₃): δ = 151.67 (*m*, C27, C29, C33, C35), 148.31 (*m*, C28, C34), 138.26 (*m*, C25, C31), 132.32 (C17, C18), 131.41 (C7, C8), 130.96 (C2, C3, C12, C13), 119.16 (*m*, C26, C30, C32, C36), 105. 27 ppm (C10, C20)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 405 (5.03), 500 (4.09), 532 (3.47), 573 (3.73), 627 nm (3.06)

MS (EI, 70 eV): $m/z = 570 (100 \%, [M]^{\bullet+}), 439 (11 \%, [M - C_6H_2F_3]^+), 285 (50 \%, M]^{2+}), 251 (6 \%, [M - C_6H_2F_3]^{2+})$

HMRS: $C_{32}H_{16}F_6N_4$ ber. 570.1279 gef. 570.1259

5,10,15-Tris-(3,4,5-trifluorphenyl)porphyrin 174

Ausbeute: 5 mg (7 µmol, < 1 % bez. auf **172**)

Fp.: 290 °C

 \mathbf{R}_{f} : 0.60 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.30 (1\text{H}, s, 20\text{-}C_{meso-\underline{\text{H}}})$, 9.40 (2H, *AB*, ³J_{H2,H3} = ³J_{H18,H17} = 4.6 Hz, 2,18-C_{β-<u>H</u>}), 8.99 (2H, *AB*, ³J_{H3,H2} = ³J_{H17,H18} = 4.6 Hz, 3,17-C_{β-<u>H</u>}), 8.91, 8.87 (4H, *AB*, ³J_{H7,H8} = ³J_{H8,H7} = ³J_{H12,H13} = ³J_{H13,H12} = 4.9 Hz, 7,8,12,13-C_{β-<u>H</u>}), 7.85 (6H, *m*, Ar_{o-<u>H}</sub>), -3.21 ppm (2H, *br* s, N<u>H</u>)</sub></u>

¹³C-NMR (75 MHz, CDCl₃): $\delta = 151.83$ (*m*, C27, C29, C33, C35, C39, C41), 148.50 (*m*, C28, C34, C40), 137.62 (*m*, C25, C31, C37), 132.86 (C2, C18), ~131 (C3, C7, C8, C12, C13, C17), 119.19 (*m*, C26, C30, C32, C36, C38, C42), 106. 70 ppm (C20) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 410 (4.98), 506 (4.02), 538 (3.46), 581 (3.58), 634 nm (3.20) MS (EI, 70 eV): *m/z* = 700 (16 %, [M]^{•+}), 570 (14 %, [M - C₆H₂F₃ + H]^{•+}), 350 (100 %, M]²⁺), 285 (20 %, [M $-C_6H_2F_3 + H]^{2+}$

HMRS: $C_{38}H_{17}F_9N_4$ ber. 700.1310 gef. 700.1280

10.1.2 Umsetzung mit 4-Brombenzaldehyd⁶

Analog zur Literaturvorschrift wurde 4-Brombenzaldehyd **176** (0.74 g, 4 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 4 , v/v). Bei der ersten Fraktion handelt es sich um 5,10,15-Tris-(4-bromphenyl)porphyrin **178**. Als zweite Fraktion wurde das gewünschte Produkt **177** isoliert, die dritte Fraktion enthält 5-(4-Bromphenyl)porphyrin **63**. Die analytischen Daten des Porphyrins **63** sind analog zu 5.1.6. Nach Umkristallisation aus $CH_2Cl_2/MeOH$ wurden violette Kristalle erhalten.

5,10-Bis-(4-bromphenyl)porphyrin 177

Ausbeute: 46 mg (0.07 mmol, 4 % bezogen auf **176**) **Fp.**: > 300 °C **R**_f: 0.38 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): δ = 10.17 (2H, *s*, 15,20-C_{*meso*-<u>H</u>}), 9.38 (2H, *s*, 17,18-C_{β-<u>H</u>}), 9.30 (2H, *AB*, ³J_{*H*3,*H*2} = ³J_{*H*12,*H*13} = 4.7 Hz, 3,12-C_{β-<u>H</u>}), 8.96 (2H, *AB*, ³J_{*H*2,*H*3} = ³J_{*H*13,*H*17} = 4.7 Hz, 2,13-C_{β-<u>H</u>}), 8.89 (2H, *s*, 7,8-C_{β-<u>H</u>}), 8.05 (4H, *AB*, ³J_{*H*26,*H*27} = ³J_{*H*30,*H*29} = ³J_{*H*32,*H*33} = ³J_{*H*36,*H*35} = 8.1 Hz, Ar_{o-<u>H</u>}), 7.89 (4H, *AB*, ³J_{*H*27,*H*26} = ³J_{*H*29,*H*30} = ³J_{*H*33,*H*32} = ³J_{*H*35,*H*36} = 8.1 Hz, Ar_{*m*-<u>H}</sub>), -3.45 ppm (2H, *br s*, N<u>H</u>)</sub></u> ¹³C-NMR (63 MHz, CDCl₃): $\delta = 140.98$ (C25, C31), 135.89 (C26, C30, C32, C36), ~131 (C2, C3, C7, C8, C12, C13, C17 C18), 129.90 (C27, C29, C33, C35), 122.52 (C28, C34), 118.41 (C5, C10), 104.53 ppm (C15, C20) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 407 (5.36), 502 (4.33), 534 (3.67), 575 (3.87), 629 nm (3.38) **MS** (EI, 70 eV): m/z = 620 (9 %, [M]^{•+}), 540 (4 %, $[M - Br]^+$, 464 (3 %, $[M - C_6H_4Br + Br]^{\bullet+}$), 310 (14 %, $[M]^{2+}$)

HMRS: 618.0055 618.0061 $C_{32}H_{20}N_4Br_2$ ber. gef.

5,10,15-Tris-(4-bromphenyl)porphyrin 178

Ausbeute: 12 mg (0.02 mmol, < 1 % bezogen auf **176**) **Fp.**: > 300 °C **R**_f: 0.48 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 10.20$ (1H, s, 20-C_{meso-H}), 9.32 (2H, AB, ${}^{3}J_{H2H3} = {}^{3}J_{H18H17} = 4.7$ Hz, 2,18-C_{β-H}), 8.97 (2H, AB, ${}^{3}J_{H3,H2} = {}^{3}J_{H17,H18} = 4.7$ Hz, 3,17-С_{в-н}), 8.85 (4Н, *m*, 7,8,12,13-С_{в-н}), 8.06 (6Н, *AB*, ${}^{3}J_{H26,H27} = {}^{3}J_{H30,H29} = {}^{3}J_{H32,H33} = {}^{3}J_{H36,H35} = {}^{3}J_{H38,H39} =$ ${}^{3}J_{H42,H41} = 8.1$ Hz, Ar_{o-H}), 7.88 (6H, AB, ${}^{3}J_{H27,H26} =$ ${}^{3}J_{H29,H30} = {}^{3}J_{H33,H32} = {}^{3}J_{H35,H36} = {}^{3}J_{H39,H38} = {}^{3}J_{H41,H42} =$ 8.1 Hz, Ar_{*m*-H}), -3.09 ppm (2H, *br* s, N<u>H</u>) ¹³C-NMR (63 MHz, CDCl₃): $\delta = 140.54$ (C25, C31, C37), 135.95 (C26, C30, C38, C42), 135.81 (C32, C36), ~131 (C2, C3, C7, C8, C12, C13, C17 C18),

N 21

130.08 (C33, C35), 129.98 (C27, C29, C39, C41), 122.62 (C28, C34, C40), 118.99 (C10), 118.30 (C5, C15), 105.33 ppm (C20)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 413 (5.09), 508 (4.32), 542 (3.95), 583 (3.90), 637 nm (3.68)

MS (TOF, MS, ES+, 70 eV): $m/z = 772 (32\%, [M]^{\bullet+})$

HMRS: $C_{38}H_{23}N_4Br_3$ ber. 771.9473 771.9454 gef.

10.2 Reaktion von A₂-Porphyrinen mit Lithiumorganylen

10.2.1Umsetzung von (5,10-Diphenyl)porphyrinatonickel(II) mit *n*-Hexyl-
lithium

Analog zur Vorschrift 6.1 wurde (5,10-Diphenyl)porphyrinatonickel(II) **152** (37 mg, 0.07 mmol) mit 2.5 M *n*-Hexyllithiumlösung in Hexan (0.17 ml, 0.43 mmol, 6 Äquiv.) umgesetzt. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: CH_2Cl_2 : *n*-Hexan = 1 : 1, v/v). Anschließende Umkristallisation aus $CH_2Cl_2/MeOH$ ergab das Produkt **153** in Form von violetten Kristallen.

(5,10-Di-n-hexyl-15,20-diphenylporphyrinato)nickel(II) 153

Ausbeute: 28 mg (0.04 mmol, 58 % bezogen auf 152)

Fp.: 167 °C

 \mathbf{R}_{f} : 0.69 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 9.34$ (2H, *br s*, 17,18-C_{β-H}), 9.24 (2H, *AB*, ³J_{H3,H2} = ³J_{H12,H13} = 5.1 Hz, 3,12-C_{β-H}), 8.73 (2H, *AB*, ³J_{H2,H3} = ³J_{H13,H17} = ³J_{H12,H13} = ³J_{H18,H17} = 5.1 Hz, 2,13-C_{β-H}), 8.63 (2H, *br s*, 7,8-C_{β-H}), 7.97 (4H, *m*, Ar_{*o*-H}), 7.66 (6H, *m*, Ar_{*m*-H}, Ar_{*p*-H}), 4.54 (4H, *t*, ³J_{H25,H26} = ³J_{H31,H32} = 7.8 Hz,

C<u>H</u>₂C₅H₁₁), 2.29 (4H, *m*, CH₂C<u>H</u>₂C₄H₉), 1.59 (4H, *m*, C₂H₄C<u>H</u>₂C₃H₇), 1.35 (8H, *m*, C₃H₆(C<u>H</u>₂)₂CH₃), 0.90 ppm (6H, *t*, ³J_{H30,H29} =³J_{H36,H35} = 7.3 Hz, C₅H₁₀C<u>H</u>₃)

¹³**C-NMR** (75 MHz, CDCl₃): δ = 142.03 (C37, C43), 141.97, 141.74, 141.66, 140.92 (C1, C4, C6, C9, C11, C14, C16, C19) 133.62 (C38, C42, C44, C48), 132.22 (C2, C13), 131.94 (C7, C8), 129.81 (C17, C18), 129.51 (C3, C12), 127.57 (C40, C46),

126.83 (C39, C41, C45, C47), 118.20 (C5, C10), 117.58 (C15, C20), 37.41 (C26, C32), 34.20 (C25, C31), 31.77 (C27, C33), 30.05 (C28, C34), 22.65 (C29, C35), 14.10 ppm (C30, C36)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 416 (5.21), 532 nm (4.06)

MS (EI, 70 eV): $m/z = 686 (100 \%, [M]^{\bullet+}), 615 (89 \%, [M - C_5H_{11}]^{+}), 544 (50 \%, [M - 2 C_5H_{11}]^{\bullet+})$

HMRS: $C_{44}H_{44}N_4N_1$ ber. 687.2919 gef. 687.2936

10.2.2 Umsetzung von 5,10-Di-*p*-tolylporphyrin mit *n*-Hexyllithium

Analog zur Vorschrift 6.1 wurde 5,10-Di-*p*-tolylporphyrin **154** (32 mg, 0.07 mmol) mit 2.5 M *n*-Hexyllithiumlösung in Hexan (0.22 ml, 0.39 mmol, 6 Äquiv.) umgesetzt. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Anschließende Umkristallisation aus $CH_2Cl_2/MeOH$ ergab das Produkt **155** in Form von violetten Kristallen.

5-n-Hexyl-10,15-di-p-tolylporphyrin 155

Ausbeute: 12 mg (0.02 mmol, 18 % bezogen auf **154**) **Fp.**: 168 °C **R**_f: 0.49 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): δ = 10.10 (1H, s, 20-C_{meso-H}), 9.58 (1H, AB, ³J_{H3,H2} = 4.7 Hz, 3-C_{β-H}), 9.47 (1H, AB, ³J_{H7,H8} = 4.9 Hz, 7-C_{β-H}), 9.37 (1H, AB, ³J_{H2,H3} = 4.7 Hz, 2-C_{β-H}), 9.27 (1H, AB, ³J_{H18,H17} = 4.7 Hz, 18-C_{β-H}), 8.97 (1H, AB, ³J_{H17,H18} = 4.7 Hz, 17-C_{β-H}), 8.93 (1H, AB, ³J_{H8,H7} = 4.9 Hz, 8-C_{β-H}), 8.85, 8.81 (2H, AB, ³J_{H12,H13} = ³J_{H13,H12} = 4.7 Hz, 12,13-C_{β-H}), 8.07 (4H, m, Ar_{o-H}), 7.54 (4H, m, Ar_{m-H}), 5.01 (2H, t, ³J_{H25,H26} = 8.2 Hz, C<u>H</u>₂C₅H₁₁), 2.70, 2.69 (6H, s, Ar-C<u>H</u>₃), 2.55 (2H, m, CH₂C<u>5</u>H₁₁), 2.70, 2.69 (6H, s, Ar-C<u>H</u>₃), 2.55 (2H, m, CH₂C<u>5</u>H₁₀), 1.81 (2H, m, C₂H₄C<u>H</u>₂C₃H₇), 1.52 (4H, m, C₃H₆(C<u>H</u>₂)₂CH₃), 0.92 (3H, t, ³J_{H30,H29} = 7.2 Hz, C₅H₁₀C<u>H</u>₃), -2.93 ppm (2H, br s, N<u>H</u>)

¹³**C-NMR** (75 MHz, CDCl₃): δ = 138.81 (C31, C38), 137.26 (C34, C41), 134.60, 134.38 (C32, C36, C39, C43), ~131 (C2, C3, C7, C8, C12, C13, C17, C18), 127.58, 127.19 (C33, C35, C40, C42), 120.11, 120.02 (C10, C15), 118.95 (C5), 104.11 (C20), 38.78 (C26), 31.93 (C25), 30.28 (C28), 29.70 (C27), 22.73 (C37, C44), 21.53 (C29), 14.12 ppm (C30)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 413 (4.99), 510 (4.19), 545 (3.79), 585 (3.71), 641 nm (3.56) **MS** (EI, 70 eV): m/z = 574 (100 %, $[M]^{\bullet+}$), 503 (63 %, $[M - C_5H_{11}]^+$), 413 (89 %, $[M - C_5H_{11} - C_5H_{11}]^+$)

 $C_{7}H_{7}+H_{1}^{+}, 287 (4\%, [M]^{2+}), 252 (2\%, [M-C_{5}H_{11}]^{2+})$

HMRS: $C_{40}H_{38}N_4$ ber. 574.3096 gef. 574.3094

Analog zur Vorschrift 6.1 wurde 5,10-Di-*p*-tolylporphyrin **154** (79 mg, 0.16 mmol) mit 2.5 M *n*-Hexyllithiumlösung in Hexan (0.65 ml, 1.61 mmol, 10 Äquiv.) umgesetzt. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: $CH_2Cl_2 : n$ -Hexan = 1 : 1, v/v). Anschließende Umkristallisation aus $CH_2Cl_2/MeOH$ ergab das Produkt **156** in Form von violetten Kristallen.

5,10-Di-n-hexyl-10,15-di-p-tolylporphyrin 156

Ausbeute: 23 mg (0.03 mmol, 22 % bezogen auf **154**) **Fp.**: 172 °C **R**_f: 0.55 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 9.53$ (2H, *s*, 7,8-C_{β-H}), 9.44 (2H, *AB*, ³J_{H3,H2} = ³J_{H12,H13} = 4.9 Hz, 3,12-C_{β-H}), 8.92 (2H, *AB*, ³J_{H2,H3} = 4.9 Hz, 2,13-C_{β-H}), 8.81 (2H, *s*, 17,18-C_{β-H}), 8.10 (4H, *AB*, ³J_{H38,H39} = ³J_{H42,H41} = ³J_{H45,H46} = ³J_{H49,H48} = 7.9 Hz, Ar_{o-H}), 7.56 (4H, *AB*, ³J_{H39,H38} = ³J_{H41,H42} = ³J_{H46,H45} = ³J_{H48,H49} = 7.9 Hz, Ar_{m-H}), 4.97 (4H, *t*, ³J_{H25,H26} = ³J_{H31,H36} = 7.9 Hz, C<u>H</u>₂C₅H₁₁), 2.73 (6H, *s*, Ar-C<u>H</u>₃), 2.56 (4H, *m*, CH₂C<u>H</u>₂C₄H₉), 1.83 (4H, *m*,

 $C_2H_4C\underline{H}_2C_3H_7$), 1.54 (4H, *m*, $C_3H_6C\underline{H}_2C_2H_5$), 1.44 (4H, *m*, $C_4H_8C\underline{H}_2CH_3$), 0.99 (6H, *t*, ³J_{H30,H29} = ³J_{H36,H35} = 7.2 Hz, $C_5H_{10}C\underline{H}_3$), -2.64 ppm (2H, *br s*, N<u>H</u>)

¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.47 (C37, C44), 137.15 (C40, C47), 134.42 (C38, C42, C45, C49), ~131 (C2, C13, C17, C18), ~128 (C3, C7, C8, C12), 127.38 (C39, C31, C46, C48), 119.81 (C15, C20), 118.81 (C5, C10), 38.81 (C26, C32), 35.65 (C25, C31),

31.93 (C28, C34) 30.28 (C27, C33), 22.75 (C29, C35), 21.50 (C43, C50), 14.16 ppm (C30, C36)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 419 (4.92), 517 (3.82), 554 (3.61), 595 (3.34), 651 nm (3.45)

MS (EI, 70 eV): $m/z = 658 (16\%, [M]^{\bullet+}), 587 (67\%, [M - C_5H_{11}]^{+}), 516 (27\%, [M - 2 C_5H_{11}]^{\bullet+}),$ 425 (4 %, $[M - 2C_5H_{11} - C_7H_7]^+$), 334 (4 %, $[M - 2C_5H_{11} - 2C_7H_7]^{\bullet+}$), 329 (37 %, $[M]^{2+}$), 294 $(18\%, [M-C_5H_{11}]^{2+}), 259 (43\%, [M-2C_5H_{11}]^{2+})$

 $C_{46}H_{50}N_4$ 658.4035 HMRS: ber. gef. 658.4014

10.2.3 Umsetzung von 5,10-Di-iso-butylporphyrin mit n-Hexyllithium

Analog zur Vorschrift 6.1 wurde 5,10-Di-iso-butylporphyrin 157 (30 mg, 0.07 mmol) mit 2.5 M n-Hexyllithiumlösung in Hexan (0.29 ml, 0.71 mmol, 10 Äquiv.) umgesetzt. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: *n*-Hexan : Ethylacetat = 5 : 1, v/v). Anschließende Umkristallisation aus $CH_2Cl_2/MeOH$ ergab das Produkt 158 in Form von violetten Kristallen.

5,10-Di-iso-butyl-15,20-di-n-hexylporphyrin 158

Ausbeute: 11 mg (0.02 mmol, 26 % bezogen auf 157) **Fp.**: 97 °C $\mathbf{R_{f}}: 0.67 \text{ (CH}_2\text{Cl}_2: n\text{-Hexan} = 2: 3, v/v, \text{Kieselgel}, 6 \times 3 \text{ cm})$ ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 9.46$ (8H, *m*, 2,3,7,8,12,13,17,18- $C_{\beta-H}$), 4.93 (4H, *t*, ${}^{3}J_{H33,H34} = {}^{3}J_{H39,H40} = 8.0$ Hz, CH₂C₅H₁₁), 4.82 $(4H, d, {}^{3}J_{H25,H26} = {}^{3}J_{H29,H30} = 7.3$ Hz, CH₂CH(CH₃)₂), 2.75, (2H, *m*, CH₂CH(CH₃)₂), 2.52 (4H, m, CH₂CH₂C₄H₉), 1.82 (4H, m, $C_2H_4CH_2C_3H_7$), 1.47 (8H, *m*, $C_3H_6(CH_2)_2CH_3$), 1.19 (12H, d, ${}^{3}J_{H27,H26} = {}^{3}J_{H28,H26} = {}^{3}J_{H31,H30} =$ ${}^{3}J_{H32 H30} = 6.7$ Hz, CH₂CH(CH₃)₂), 0.95 (6H, $t_{1,3}^{3}J_{H38,H37} = {}^{3}J_{H44,H43} = 7.2 \text{ Hz}, C_{5}H_{10}CH_{3}),$ -2.65 ppm (2H, br s, NH)

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = \sim 129$ (C2, C3, C7, C8, C12, C13, C17, C18), 118.51 (C15, C20), 117.17 (C5, C10), 43.76 (C25, C29), 38.66 (C34, C40), 36.68 (C26, C30), 35.58 (C33, C39), 31.94 (C36, C42), 30.29 (C25, C41), 23.33 (C37, C43), 22.77 (C27, C28, C31, C32), 14.16 ppm (C38, C44)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 418 (4.97), 520 (4.12), 554 (3.99), 599 (3.74), 659 nm (3.83)

MS (EI, 70 eV): $m/z = 590 (100 \%, [M]^{\bullet+}), 547 (69 \%, [M - C_3H_7]^{+}), 519 (11 \%, [M - C_5H_{11}]^{+}), 295 (4 \%, [M]^{2+})$

HMRS: $C_{40}H_{54}N_4$ ber. 590.4348 gef. 590.4346

10.2.4Umsetzung von 5,10-Di-*p*-tolylporphyrin mit 4-(N,N-Dimethylamino)-
phenyllithium

Analog zur Vorschrift 6.2 wurde 5,10-Di-*p*-tolylporphyrin **154** (63 mg, 0.13 mmol) mit 4-(*N*,*N*-Dimethylamino)phenyllithium **99** umgesetzt. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: CH_2Cl_2). Anschließende Umkristallisation aus CH_2Cl_2 /MeOH ergab das Produkt **159** in Form von violetten Kristallen.

5,10-Bis-[4-(N,N-dimethylamino)phenyl]-15,20-di-p-tolylporphyrin 159

Ausbeute: 67 mg (0.09 mmol, 71 % bezogen auf **154**) **Fp.**: > 300 °C **R**_f: 0.67 (CH₂Cl₂ : MeOH = 95 : 5, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): δ = 8.91, 8.81 (8H, m, 2,3,7,8,12,13,17,18-C_{β-H}), 8.09 (4H, AB, ³J_{H42,H43} = ³J_{H46,H45} = ³J_{H49,H50} = ³J_{H53,H52} = 7.7 Hz, 15,20-Ar_{o-H}), 8.07 (4H, AB, ³J_{H26,H27} = ³J_{H30,H29} = ³J_{H34,H35} = ³J_{H38,H37} = 8.8 Hz, 5,10-Ar_{o-H}), 7.53 (4H, AB, ³J_{H43,H42} = ³J_{H45,H46} = ³J_{H50,H49} = ³J_{H52,H53} = 7.7 Hz, 15,20-Ar_{o-H}), 7.09 (4H, AB, ³J_{H27,H26} = ³J_{H29,H30} = ³J_{H35,H34} = ³J_{H37,H38} = 8.8 Hz, 5,10-Ar_{o-H}), 3.22 (12H, s, N(CH₃)₂), 2.69 (6H, s, Ar-CH₃), -2.68 ppm (2H, br s, NH) ¹³C-NMR (75 MHz, CDCl₃): $\delta = 149.90$ (C28, C36), 139.49 (C25, C33), 137.15 (C44, C51), 135.74 (C26, C30, C34, C38), 134.51 (C42, C46, C49, C53), 130.46 (C41, C48), 127.35 (C43, C45, C50, C52), 120.89 (C15, C20), 119.46 (C5, C10), 110.67 (C27, C29, C35, C37), 40.74 (C31, C32, C39, C40), 21.52 ppm (C47, C54) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 425 (4.86), 522 (4.13), 565 (4.15), 598 (sh), 656 nm (3.90)**MS** (TOF, MS, ES+, 70 eV): $m/z = 728 (100 \%, [M]^{\bullet+})$ HMRS: $C_{50}H_4N_4$ 728.3627 728.3624 ber. gef.

10.2.5 Umsetzung von 5,10-Di-*p*-tolylporphyrin mit 4-Hydroxyphenyllithium

Analog zur Vorschrift wurde 5,10-Di-*p*-tolylporphyrin **154** (52 mg, 0.11 mmol) mit 4-Hydroxyphenyllithium **160** umgesetzt. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: CH₂Cl₂).

5,10-Bis-(*p*-hydroxyphenyl)-15,20-di-*p*-tolylporphyrin 161

Ausbeute: 41 mg (0.06 mmol, 57 % bezogen auf 154) Fp.: 102 °C R_{f} : 0.36 (CH₂Cl₂, Kieselgel, 6 x 3 cm) ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.84$ (8H, m, 2,3,7,8,12,13,17,18-C_{β-H}), 8.07 (4H, AB, ³J_{H38,H39} = ³J_{H42,H41} = ³J_{H45,H46} = ³J_{H49,H48} = 7.6 Hz, 15,20-Ar_{o-H}), 7.98 (4H, AB, ³J_{H26,H27} = ³J_{H30,H29} = ³J_{H32,H33} = ³J_{H36,H35} = 8.2 Hz, 5,10-Ar_{o-H}), 7.52 (4H, AB, ³J_{H39,H38} = ³J_{H41,H42} = ${}^{3}J_{H46,H45} = {}^{3}J_{H48,H49} = 7.6 \text{ Hz}, 15,20\text{-Ar}_{m-\underline{H}}), 7.01 (4H, AB, {}^{3}J_{H27,H26} = {}^{3}J_{H29,H30} = {}^{3}J_{H33,H32} = {}^{3}J_{H35,H36} = 8.2 \text{ Hz}, 5,10\text{-Ar}_{m-\underline{H}}), 2.67 (6H, s, \text{Ar-C}\underline{H}_{3})$ **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 420 (4.88), 517 (3.83), 553 (3.64), 592 (3.42), 648 nm (3.43) **MS** (TOF, MS, ES+, 70 eV): $m/z = 674 (27 \%, [M]^{\bullet+}), 337(2 \%, [M]^{2+})$ **HMRS:** C₄₆H₃₄N₄O₂ ber. 674.2682 gef. 674.2645

10.2.6 Umsetzung von 5,10-Bis-(3-methoxyphenyl)porphyrin mit 4-(*N*,*N*-Dimethylamino)phenyllithium

Analog zur Vorschrift wurde 5,10-Bis-(3-methoxyphenyl)porphyrin **162** (79 mg, 0.16 mmol) mit 4-(*N*,*N*-Dimethylamino)phenyllithium **99** umgesetzt. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (Eluent: CH_2Cl_2 : MeOH = 98 : 2, v/v). Die erste Fraktion enthielt das monoarylierte **164**, die zweite Fraktion das diarylierte Porphyrin **163** als Hauptprodukt. Anschließende Umkristallisation aus CH_2Cl_2/n -Hexan ergab die Porphyrine in Form von violetten Kristallen.

5,10-Bis-[4-(*N*,*N***-dimethylamino)phenyl]-15,20-bis-(3-methoxyphenyl)porphyrin 163** Ausbeute: 28 mg (0.04 mmol, 32 % bezogen auf 162)

Fp.: 236 °C

 $\mathbf{R_{f}:}$ 0.67 (CH₂Cl₂ : MeOH = 95 : 5, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 8.97$ (4H, m, 3,12,17,18-C_{β-H}), 8.88 (4H, m, 2,7,8,13-C_{β-H}), 8.11 (4H, AB, ³J_{H26,H30} = ³J_{H34,H38} = ³J_{H48,H49} = ³J_{H52,H51} = 8.6 Hz, 5,10-Ar_{o-H}), 7.84 (4H, m, 15,20-Ar_{o-H}), 7.64 (2H, m, 15,20-Ar_{m-H}), 7.33 (2H, m, 15,20-Ar_{p-H}), 7.10 (4H, AB, ³J_{H27,H26} = ³J_{H29,H30} = ³J_{H35,H34} = ³J_{H37,H38} = 8.6 Hz, 5,10-Ar_{m-H}), 3.99 (6H, s, OC<u>H</u>₃), 3.22 (12H, s, N(C<u>H₃)₂), -2.62 ppm (2H, br s, NH</u>)

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.95 (C43, C50), 149.95 (C28, C36), 143.77 (C41, C48), 135.73 (C26, C30, C34, C38), 130.38 (C25, C33), 127.69 (C46, C53), 127.42 (C45, C52), 120.45 (C42, C49), 119.02 (C5, C10, C15, C20), 113.48 (C44, C51), 110.68 (C17, C29, C35, C3), 55.47 (C47, C54), 40.69 ppm (C31, C32, C39, C40)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 425 (5.00), 522 (4.17), 565 (4.16), 596 (sh), 656 nm (3.90) **MS** (EI, 70 eV): m/z = 760 (7 %, [M]^{•+}), 380 (100 %, [M]²⁺)

 HMRS:
 C₅₀H₄₄N₆O₂
 ber.
 760.3526
 gef.
 760.3500

 5-[4-(NMe2Ph)-10,15-Bis-(3-OMePh)]-porphyrin

5-[4-(N,N-Dimethylamino)phenyl]-10,15-bis-(3-methoxyphenyl)porphyrin 164

Ausbeute: 5 mg (0.01 mmol, 5 % bezogen auf 162)

Fp.: 98 °C

 $\mathbf{R_{f}:} 0.40 (CH_2Cl_2 : MeOH = 95 : 5, v/v, Kieselgel, 6 x 3 cm)$

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 10.15$ (1H, s, 20-C_{meso-H}), 9.29 (2H, *AB*, ³J_{H2,H3} = ³J_{H18,H17} = 4.7 Hz, 2,18-C_{β-H}), 9.03 (2H, *AB*, ³J_{H3,H2} = ³J_{H17,H18} = 4.7 Hz, 3,17-C_{β-H}), 8.97, 8.91 (4H, *AB*, ³J_{H7,H8} = ³J_{H8,H7} = ³J_{H12,H13} = ³J_{H13,H12} = 4.7 Hz, 7,8,12,13-C_{β-H}), 8.06 (2H, *AB*, ³J_{H26,H27} = ³J_{H30,H29} = 8.8 Hz, 5-Ar_{o-H}), 7.82 (4H, *m*, 10,15-Ar_{o-H}), 7.65 (2H, *m*, 10,15-Ar_{m-H}), 7.33 (2H, *m*, 10,15-Ar_{p-H}), 7.09 (2H, *AB*, ³J_{H27,H26} = ³J_{H29,H30} = 8.8 Hz, 5-Ar_{m-H}), 3.99 (6H, *s*, OC<u>H</u>₃), 3.23 (6H, *s*, N(C<u>H</u>₃)₂), -2.97 ppm (2H, *br s*, N<u>H</u>)

¹³C-NMR (75 MHz, CDCl₃): δ = 158.08 (C35, C42),

149.27 (C28), 143.28 (C33, C40), 135.68 (C26, C30), 127.79 (C38, C45), 127.56 (C37, C44), 120.59 (C34, C41), 119.14 (C5, C10, C15), 113.52 (C36, C43), 110.60 (C37, C29), 104.27 (C20), 55.52 (C39, C46), 40.73 ppm (C31, C32)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 413 (4.66), 512 (4.27), 550 (4.06), 585 (3.99), 642 nm (3.90)

MS (EI, 70 eV): $m/z = 641 (48 \%, [M]^{\bullet+}), 321 (100 \%, [M]^{2+})$

HMRS: $C_{42}H_{35}N_5O_2$ ber. 641.2791 gef. 641.2771

10.3 Darstellung von *push-pull*-A₂B₂-Porphyrinen

10.3.1 Bromierung

10.3.1.1 Allgemeine Vorschrift³³

In einen 100 ml Rundkolben wurde das entsprechende Porphyrin (1 Äquiv.) in Chloroform (50 ml) und Pyridin (0.2 ml) auf 0 °C abgekühlt und *N*-Bromsuccinimid (2.5 Äquiv.) hinzugefügt. Die Lösung wurde 10 min gerührt, dabei erfolgte ein Farbwechsel von rot nach rotbraun. Der Umsatz wurde mit DC-Kontrolle verfolgt. Anschließend wurde mit Aceton (4 ml) gequencht. Das Lösungsmittel wurde unter vermindertem Druck entfernt, der Rückstand in CH_2Cl_2 gelöst, über Kieselgel filtriert (Eluent: CH_2Cl_2) und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wurde mit MeOH gewaschen und getrocknet.

10.3.1.2 Umsetzung von 5,10-Di-*p*-tolylporphyrin

Analog zur Vorschrift 10.3.1.1 wurde 5,10-Di-*p*-tolylporphyrin **154** (93 mg, 0.19 mmol) mit NBS (84 mg, 0.47 mmol) umgesetzt. Das Produkt **179** wurde in Form von roten Kristallen erhalten.

5,10-Dibrom-15,20-di-p-tolylporphyrin 179

Ausbeute: 102 mg (0.16 mmol, 83 % bezogen auf **154**) **Fp.**: 285°C (Zers.) **R**_f: 0.59 (CH₂Cl₂ : *n*-Hexan = 1 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (300 MHz, CDCl₃): δ =9.54 (2H, *s*, 7,8-C_{β-H}), 9.52 (2H, *AB*, ³J_{H3,H2} = ³J_{H12,H13} = 4.8 Hz, 3,12-C_{β-H}), 8.82 (2H, *AB*, ³J_{H2,H3} = ³J_{H13,H12} = 4.8 Hz, 2,13-C_{β-H}), 8.74 (2H, *s*, 17,18-C_{β-H}), 8.01 (4H, *AB*, ³J_{H26,H27} = ³J_{H30,H29} = ³J_{H33,H34} = ³J_{H37,H36} = 7.9 Hz, Ar_{o-H}), 7.54 (4H, *AB*, ³J_{H27,H26} = ³J_{H29,H30} = ³J_{H34,H33} = ³J_{H37,H36} = 7.9 Hz, Ar_{m-H}), 2.69 (6H, *s*, Ar-C<u>H</u>₃), -2.91 ppm

(2H, *br s*, N<u>H</u>)

¹³C-NMR (75 MHz, CDCl₃): δ = 138.57 (C25, C32), 137.73 (C28, C35), 134.40 (C26, C30, C33, C37), ~131 (C2, C3, C7, C8, C12, C13, C17, C18), 127.55 (C27, C29, C34, C36), 121.75 (C15, C20), 103.15 (C5, C10), 21.53 ppm (C31, C38)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 423 (5.03), 523 (4.21), 558 (4.07), 602 (3.77), 659 nm (3.81)

MS (TOF, MS, ES+, 70 eV): $m/z = 646 (49\%, [M]^{\bullet+})$

HMRS: $C_{34}H_{24}N_4Br_2$ ber. 646.0368 gef. 646.0347

10.3.1.3 Umsetzung von 5,10-Bis-(3-methoxyphenyl)porphyrin

Analog zur Vorschrift 10.3.1.1 wurde 5,10-Bis-(3-methoxyphenyl)porphyrin **162** (77 mg, 0.15 mmol) mit NBS (66 mg, 0.37 mmol) umgesetzt. Das Produkt **181** wurde in Form von roten Kristallen erhalten.

5,10-Dibrom-15,20-bis-(3-methoxyphenyl)porphyrin 181

Ausbeute: 74 mg (0.11 mmol, 74 % bezogen auf **162**)

Fp.: 198°C

 \mathbf{R}_{f} : 0.43 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 9.63$ (2H, *s*, 7,8-C_{β-H}), 9.56 (2H, *AB*, ³J_{H3,H2} = ³J_{H12,H13} = 4.8 Hz, 3,12-C_{β-H}), 8.87 (2H, *AB*, ³J_{H2,H3} = ³J_{H13,H12} = 4.8 Hz, 2,13-C_{β-H}), 8.77 (2H, *s*, 17,18-C_{β-H}), 7.72 (4H, *m*, Ar_{o-H}), 7.63 (2H, *m*, Ar_{*m*-H}), 7.33 (2H, *m*, Ar_{*p*-H}), 3.97 (6H, *s*, Ar-OCH₃), -2.82 ppm (2H, *br s*, NH) ¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 158.03$ (C27, C34), 142.76 (C25, C32), ~131 (C2, C3, C7, C8, C12, C13,

C17, C18), 127.65 (C30, C37), 127.52 (C29, C36), 121.19 (C15, C20), 120.50 (C26, C33), 113.71 (C28, C35), 103.44 (C5, C10), 55.51 ppm (C31, C38)

UV/Vis (CH₂Cl₂): λ_{max} (lg ϵ) = 423 (5.01), 521 (3.44), 556 (3.82), 600 (3.56), 658 nm (3.55)

MS (TOF, MS, ES+, 70 eV): $m/z = 678 (52 \%, [M]^{\bullet+})$

HMRS: $C_{34}H_{24}N_4Br_2O_2$ ber. 678.0266 gef. 678.0243

10.3.2 Metallierung

10.3.2.1 Metallierung von 5,10-Dibrom-15,20-di-*p*-tolylporphyrin

Analog zur Vorschrift 9.2 wurde 5,10-Dibrom-15,20-di-*p*-tolylporphyrin **179** (83 mg, 0.13 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: CH₂Cl₂). Das Porphyrin **180** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH₂Cl₂/MeOH/H₂O wurden violette Kristalle erhalten.

(5,10-Dibrom-15,20-di-p-tolylporphyrinato)zink(II) 180

Ausbeute: 66 mg (0.09 mmol, 72 % bezogen auf 179)

Fp.: > 310 °C

 $\mathbf{R_{f}:}$ 0.42 (CH₂Cl₂ : *n*-Hexan = 2 : 1, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CD₂Cl₂): $\delta = 9.29$ (2H, AB,

 ${}^{3}J_{H3,H2} = {}^{3}J_{H12,H13} = 4.7 \text{ Hz}, 3,12-C_{\beta-\underline{H}}), 8.86 (2H, s, 17,18-C_{\beta-\underline{H}}), 8.77 (2H, AB, {}^{3}J_{H2,H3} = {}^{3}J_{H13,H12} = 4.7 \text{ Hz}, 2,13-C_{\beta-\underline{H}}), 8.76 (2H, s, 7,8-C_{\beta-\underline{H}}), 8.06 (4H, AB, {}^{3}J_{H26,H27} = {}^{3}J_{H30,H29} = {}^{3}J_{H33,H34} = {}^{3}J_{H37,H36} = 7.7 \text{ Hz}, Ar_{o-\underline{H}}), 7.61 (4H, AB, {}^{3}J_{H27,H26} = {}^{3}J_{H29,H30} = {}^{3}J_{H34,H33} = {}^{3}J_{H37,H36} = 7.7 \text{ Hz}, Ar_{m-\underline{H}}), 2.75 \text{ ppm (6H, s, Ar-C\underline{H}_3)}$

¹³**C-NMR** (75 MHz, CD_2Cl_2): $\delta = 151.08$ (C16,

C19), 150.92 (C1, C14), 149.07 (C4, C11), 148.43 (C6, C9), 139.29 (C25, C32), 137.60 (C28, C35), 134.52 (C26, C30, C33, C37), 133.20 (C7, C8), 132.65 (C2, C13), 132.50 (C17, C18), 132.29 (C3, C12), 127.44 (C27, C29, C34, C36), 122.44 (C15, C20), 103.73 (C5, C10), 21.32 ppm (C31, C38)

UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 424 (5.09), 557 (4.21), 597 nm (3.83)

MS (TOF, MS, ES+, 70 eV): $m/z = 708 (39\%, [M]^{\bullet+})$

HMRS: $C_{34}H_{22}N_4Br_2Zn$ ber. 707.9503 gef. 707.9469

10.3.2.2 Metallierung von 5,10-Dibrom-15,20-bis-(3-methoxyphenyl)porphyrin

Analog zur Vorschrift 9.2 wurde 5,10-Dibrom-15,20-bis-(3-methoxyphenyl)porphyrin **181** (50 mg, 0.07 mmol) umgesetzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an Kieselgel (Eluent: CH₂Cl₂). Das Porphyrin **182** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH₂Cl₂/MeOH/H₂O wurden violette Kristalle erhalten.

[5,10-Dibrom-15,20-bis-(3-methoxyphenyl)porphyrinato]zink(II) 182

Ausbeute: 49 mg (0.07 mmol, 90 % bezogen auf 181) **Fp.**: 187°C **R**_f: 0.27 (CH₂Cl₂ : *n*-Hexan = 3 : 1, v/v, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CD₂Cl₂): $\delta = 9.21$ (2H, AB, Br ${}^{3}J_{H3,H2} = {}^{3}J_{H12,H13} = 4.6$ Hz, 3,12-C_{β-H}), 8.89 (2H, s, 17,18-C_{β-H}), 8.76 (2H, AB, ${}^{3}J_{H2,H3} = {}^{3}J_{H13,H12} = 4.6$ Br Hz, 2,13-C_{β -H}), 8.43 (2H, s, 7,8-C_{β -H}), 7.79 (2H, m, 30,37-Аг_{*o*-H}), 7.68 (4H, *m*, 26,33-Аг_{*o*-H}, Аг_{*m*-H}), 7.29 (2H, *m*, Ar_{*p*-H}), 3.92, 3.91 ppm (6H, *s*, Ar-OC<u>H</u>₃) ¹³C-NMR (126 MHz, CD₂Cl₂): $\delta = 158.03$ (C27, C34), 150.94 (C16, C19), 150.79 (C1, C14), 149.13 (C4, C11), 148.41 (C6, C9), 143.57 (C25, C32), 133.18 (C2, C13), 132.70 (C17, C18), 132.67 (C3, C12), 132.30 (C7, C8), 127.63 (C30, C37), 127.50 (C29, C36), 121.90 (C15, C20), 120.70 (C26, C33), 113.35 (C28, C35), 103.95 (C5, C10), 55.55 ppm (C31, C38) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 424 (5.26), 556 (4.26), 595 nm (3.83) **MS** (TOF, MS, ES+, 70 eV): $m/z = 740 (39 \%, [M]^{\bullet+})$ HMRS: $C_{34}H_{22}N_4Br_2O_2Zn$ ber. 739.9401 739.9391 gef.

10.3.3 Heck-Reaktion

10.3.3.1 Allgemeine Vorschrift³⁴

In einen 50 ml Dreihalkolben mit Rückflusskühler wurde unter Argon (5,10-Dibrom-15,20-di-*p*-tolylporphyrinato)zink(II) **180** (10 Äquiv.), Natriumacetat (56 Äquiv.), Palladiumacetat (1 Äquiv.) und Triphenylphosphin (4 Äquiv.) in trockenem DMF (15 ml) suspendiert. Anschließend wurde zu der Lösung das entsprechende Olefin gegeben und die Lösung für 24 h auf 120 °C erwärmt. Die Reaktion wurde mit DC-Kontrolle verfolgt. Nach vollständigem Umsatz wurde die abgekühlte Lösung mit CH₂Cl₂ extrahiert, mit H₂O (50 ml) gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde unter vermindertem Druck entfernt und der Rest in CH₂Cl₂ gelöst. Die Lösung wurde über Aluminiumoxid (Brockmann Grad III) filtriert (Eluent: CH₂Cl₂, 1 % NEt₃) und das Lösungsmittel unter vermindertem Druck entfernt. Nach Umkristallisation aus CH₂Cl₂/*n*-Hexan wurde das Porphyrin als einziges Produkt in Form von violetten Kristallen erhalten.

10.3.3.2 Umsetzung von (5,10-Dibrom-15,20-di-*p*-tolylporphyrinato)zink(II)

Analog zur Vorschrift 10.3.3.1 wurde (5,10-Dibrom-15,20-di-*p*-tolylporphyrinato)zink(II) **180** (77.7 mg, 0.11 mmol) mit Butylacrylat **191** (1.00 ml, 7.01 mmol) umgesetzt.

{(*all*-E)-5,10-Bis-(4-(2-butoxycarbonylethenyl)-15,20-di-*p*-tolylporphyrinato}zink(II) 192 Ausbeute: 60 mg (0.07 mmol, 64 % bez. auf 180)

Fp.: 176 °C

R_f: 0.34 (CH₂Cl₂ 1 % NEt₃, v/v, Aluminiumoxid, 6 x 3 cm)

¹**H-NMR** (500 MHz, CD₂Cl₂): $\delta = 10.23$ (2H, d, ³J_{H25,H26} = ³J_{H32,H33} = 15.7 Hz, C<u>H</u>=CH-

CO), 9.52 (2H, *s*, 7,8-C_{meso-H}), 9.39 (2H, *AB*, ${}^{3}J_{H3,H2} = {}^{3}J_{H12,H13} = 4.7$ Hz, 3,12-C_{β-H}), 8.84 (2H, *AB*, ${}^{3}J_{H2,H3} =$ ${}^{3}J_{H13,H12} = 4.7$ Hz, 2,13-C_{β-H}), 8.70 (2H, *s*, 17,18-C_{β-H}), 7.99 (4H, *d*, ${}^{3}J_{H40,H41} = {}^{3}J_{H44,H43} = {}^{3}J_{H47,H48} =$ ${}^{3}J_{H51,H50} = 7.5$ Hz, Ar_{o-H}), 7.54 (4H, *d*, ${}^{3}J_{H41,H40} = {}^{3}J_{H43,H44} = {}^{3}J_{H48,H47} =$ ${}^{3}J_{H50,H51} = 7.5$ Hz, Ar_{m-H}), 6.73 (2H, *d*, ${}^{3}J_{H26,H25} = {}^{3}J_{H33,H32} = 15.7$ Hz, CH=C<u>H</u>-CO), 4.43 (4H, *t*, ${}^{3}J_{H28,H29} =$ ${}^{3}J_{H35,H36} = 6.8$ Hz, C<u>H</u>₂C₃H₇), 2.70

(6H, *s*, Ar-C<u>H</u>₃), 1.88 (4H, *m*, CH₂C<u>H</u>₂C₂H₅), 1.60 (4H, *m*, C₂H₄C<u>H</u>₂CH₃), 1.08 ppm (6H, *t*, ${}^{3}J_{H31,H30} = {}^{3}J_{H38,H37} = 7.4$ Hz, C₃H₆C<u>H</u>₃)

¹³C-NMR (126 MHz, CD₂Cl₂): δ = 166.38 (C27, C34), 150.31 (C16, C19), 149.67 (C1, C14), 149.41 (C4, C11), 148.97 (C6, C9), 146.86 (C25, C32), 140.03 (C39, C46), 137.21 (C42, C49), 134.44 (C40, C44, C47, C51), 132.78 (C2, C13), 131.80 (C17, C18), 130.09 (C26, C33), 129.80 (C7, C8), 128.77 (C3, C12), 127.19 (C41, C43, C48, C50), 123.51 (C15, C20), 112.98 (C5, C10), 64.66 (C28, C35), 31.06 (C29, C36), 21.26 (C45, C52), 19.46 (C30, C37), 13.74 ppm (C31, C38) UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 438 (5.14), 572 (4.00), 616 nm (3.92)

MS (TOF, MS, ES+, 70 eV): $m/z = 805 (100 \%, [M + H]^{+})$

HMRS: $C_{48}H_{45}N_4O_4Zn$ ber. 805.2732 gef. 805.2706

Analog zur Vorschrift 10.3.3.1 wurde (5,10-Dibrom-15,20-di-*p*-tolylporphyrinato)zink(II) **180** (71.3 mg, 0.10 mmol) mit Methylvinylketon **193** (0.57 ml, 7.02 mmol) umgesetzt.

{(all-E)-5,10-Bis-(4-(3-oxobut-1-enyl)-15,20-di-p-tolylporphyrinato}zink(II) 194

Ausbeute: 35 mg (0.05 mmol, 50 % bez. auf 180)

Fp.: 215 °C

R_f: 0.50 (CH₂Cl₂ 5 % MeOH, v/v, Kieselgel, 6 x 3 cm)

¹**H-NMR** (300 MHz, CD₂Cl₂): $\delta = 9.80$ (2H, *d*, ³J_{*H*25,*H*26} = ³J_{*H*32,*H*33} = 15.7 Hz, C<u>H</u>=CH-CO), 9.28 (2H, *AB*, ³J_{*H*3,*H*2} = ³J_{*H*12,*H*13} = 4.7 Hz, 3,12-C_{β-H}), 9.22 (2H, *s*, 7,8-C_{meso-H}), 8.89 (2H, *AB*, ³J_{*H*2,*H*3} = ³J_{*H*13,*H*12} = 4.7 Hz, 2,13-C_{β-H}), 8.80 (2H, *s*, 17,18-C_{β-H}), 8.00 (4H, *d*, ³J_{*H*34,*H*35} = ³J_{*H*38,*H*37} = ³J_{*H*41,*H*42} = ³J_{*H*45,*H*44} = 7.5 Hz, Ar_{o-H}), 7.55 (4H, ³J_{*H*35,*H*34} = ³J_{*H*37,*H*38} = ³J_{*H*42,*H*41} = ³J_{*H*44,*H*45} = 7.5 Hz, Ar_{m-H}), 6.58 (2H, *d*, ³J_{*H*26,*H*25} = ³J_{*H*33,*H*32} = 15.7 Hz, CH=C<u>H</u>-CO), 2.71 (6H, *s*, Ar-C<u>H</u>₃), 2.50 ppm (6H, *s*, CO-C<u>H</u>₃)}

¹³C-NMR (63 MHz, CD₂Cl₂): δ = 196.33 (C27, C34), 149.98 (C16, C19), 149.32 (C4, C11), 148.83 (C1, C14), 148.25 (C6, C9), 144.93 (C25, C29), 139.20 (C33, C40), 136.96

(C36, C43), 133.88 (C34, C38, C41, C45), 132.49 (C2, C13), 131.61 (C17, C18), 131.04 (C26, C30), 129.33 (C7, C8), 128.53 (C3, C12), 126.81 (C35, C37, C42, C44), 123.21 (C15, C20), 112.81 (C5, C10), 27.29 (C28, C32), 20.78 ppm (C39, C46) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 443 (4.44), 577 (4.18), 621 nm (4.14) **MS** (TOF, MS, ES+, 70 eV): m/z = 689 (100 %, [M+H]⁺) **HMRS:** C₄₂H₃₃N₄O₂Zn ber. 689.1895 gef. 689.1889

11 Darstellung von Dendrimeren

11.1 Vorstufen

11.1.1 3,5-Dimethoxybenzylbromid³⁵

In einen 500 ml Dreihalskolben wurde unter Argon zu einer eisgekühlten Lösung von 3,5-Dimethoxybenzylalkohol **200** (2.05 g, 12.19 mmol) und PPh₃ (4.80 g, 18.30 mmol) in trockenem THF (100 ml) portionsweise CBr₄ (6.07 g, 18.30 mmol) gegeben und diese Lösung 60 min bei 0 °C gerührt.

Die Lösung wurde mit H₂O (ca. 200 ml) und Ethylacetat (50 ml) versetzt. Die organische Phase wurde mit H₂O (2 x 50 ml) gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Die Reinigung erfolgte säulenchromatographisch an Kieselgel (Eluent: *n*-Hexan : Ethylacetat = 4 : 1, v/v). Das Produkt **201** wurde als zweite Fraktion in Form eines weißen Feststoffs erhalten.

Ausbeute: 2.42 g (10.47 mmol, 86 % bez. auf 200)

 $\mathbf{R}_{\mathbf{f}}$: 0.74 (CH₂Cl₂, Kieselgel, 6 x 3 cm)

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 6.52$ (2H, *d*, ³J_{*H*3,*H*5} = ³J_{*H*7,*H*5} = 2.1 Hz, Ar_{*o*-<u>H</u>}), 6.38 (1H, *t*, ³J_{*H*5,*H*3} = ³J_{*H*5,*H*7} = 2.1 Hz, Ar_{*p*-<u>H</u>}), 4.40 (2H, *s*, C<u>H</u>₂Br), 3.78 ppm (6H, *s*, OC<u>H</u>₃)

¹³C-NMR (63 MHz, CDCl₃): δ = 160.94 (C4, C6), 139.20 (C2), 107.01 (C3, C7), 100.64 (C5), 55.38 (C8, C9), 33.56 ppm (C1)

MS (40 °C, 80 eV): m/z = 232 (9 %, [M]^{•+}), 230 (9 %, [M]^{•+}), 151 (100 %, [M – Br]⁺), 121 (12 %, [C₇H₅O₂]^{•+}), 91 (11 %, [C₇H₇]^{•+}), 77 (18 % [C₆H₅]^{•+})
11.1.2 3,5-Bis-[3,5-(dimethoxy)benzyloxy]benzaldehyd³⁶

In einem 250 ml Dreihalskolben wurde eine Suspension aus 3,5-Dimethoxybenzylbromid **201** (3.35 g, 14.48 mmol), 3,5-Dihydroxybenzaldehyd **202** (1.00 g, 7.24 mmol), K_2CO_3 (3.00 g, 21.72 mmol) und 18-Krone-6 (0.38 g, 1.45 mmol) in trockenem THF (150 ml) unter Argon 72 h auf 58 °C erhitzt.

Anschließend wurde das Lösungsmittel unter vermindertem Druck entfernt, der Rest in CH_2Cl_2 (ca. 100 ml) aufgenommen, mit H_2O (2 x 50 ml) gewaschen und über Na_2SO_4 getrocknet. Die Reinigung erfolgte säulenchromatographisch an Kieselgel (Eluent: CH_2Cl_2). Das Produkt **203** wurde als zweite Fraktion in Form eines weißen Feststoffs erhalten.

Ausbeute: 2.03 g (4.63 mmol, 64 % bez. auf 202)

R_f: 0.54 (CH₂Cl₂, Kieselgel, 6 x 3 cm) ¹**H-NMR** (500 MHz, CDCl₃): δ = 9.85 (1H, *s*, C<u>H</u>O), 7.07 (2H, *d*, ³J_{H3,H5} = ³J_{H7,H5} = 2.3 Hz, Ar_{o-H}), 6.83 (1H, *t*, ³J_{H5,H3} = ³J_{H5,H7} = 2.3 Hz, Ar_{p-H}), 6.56 (4H, *d*, ³J_{H10,H12} = ³J_{H14,H12} = ³J_{H19,H21} = ³J_{H23,H21} = 2.3 Hz, Bn_{o-H}), 6.40 (2H, *t*, ³J_{H12,H10} = ³J_{H12,H14} = ³J_{H21,H19} = ³J_{H21,H23} = 2.3 Hz, Bn_{p-H}), 4.99 (4H, *s*, OCH₂), 3.77 ppm (12H, *s*, OCH₃)

¹³**C-NMR** (126 MHz, CDCl₃): δ = 190.61 (C1), 160.98 (C11, C13, C20, C22), 160.20 (C4, C6), 138.51 (C9, C18), 138.34 (C2), 108.58 (C5), 108.21 (C3, C7), 105.17 (C10, C14, C19, C23), 99.92 (C12, C21), 70.17 (C8, C17), 55.24 ppm (C15, C16, C24, C25) **MS** (EI, 150 °C, 80 eV): m/z = 438 (20 %, [M]^{•+}), 409 (1 %, [M – CHO]⁺), 287 (4 %, [M – C₉H₁₁O₂]⁺), 151 (100 %, [C₉H₁₁O₂]^{•+})

11.2 Kondensationsreaktion

11.2.1 Allgemeine Vorschrift^{36,37}

Folgende Vorschrift wurde bei der Synthese von dendritischen Porphyrinen der nullten und ersten Generation angewendet. Modifizierungen der Reaktionsbedingungen und der Mengen der eingesetzten Edukte sind, falls notwendig, bei den Einzelverbindungen aufgeführt.

In einen 2 1 Dreihalskolben wurden unter Argon in CH_2Cl_2 (ca. 1 l) das entsprechende Pyrrol (1 Äquiv.) und der entsprechende Aldehyd (1 Äquiv.) gelöst. Unter Lichtausschluß wurde zu dieser Lösung Bortrifluorid-Etherat (0.1 Äquiv.) getropft, und die Lösung wurde über Nacht bei Raumtemperatur gerührt. Anschließend wurde DDQ (1.5 Äquiv.) hinzugefügt und die Lösung 1 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit einer Pipette NEt₃ neutralisiert und am Rotationsverdampfer auf 1/3 des Ausgangsvolumens eingeengt. Die Lösung wurde über basisches Aluminiumoxid (Brockmann Grad III) filtriert (Eluent: CH_2Cl_2 : EtOH = 20 : 1, 1 % NEt₃, v/v) und das Lösungsmittel unter vermindertem Druck entfernt.

11.2.2 Reaktion von 3,4-Diethylpyrrol

Analog zur Vorschrift 11.2.1 wurden 3,4-Diethylpyrrol **195** (1.96 g, 15.90 mmol), 3,5-Dimethoxybenzaldehyd **196** (2.64 g, 15.90 mmol) und BF₃*OEt₂ (200 μ l, 1.59 mmol) umgesetzt.³⁷ Die Oxidation erfolgte mit DDQ (5.41 g, 23.83 mmol). Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an basischem Aluminiumoxid (Brockmann Grad III) (Eluent: CH₂Cl₂, 1 % NEt₃, v/v). Das Porphyrin **197** wurde als einziges Produkt in Form eines grünen Feststoffs erhalten.

5,10,15,20-Tetrakis-(3,5-dimethoxyphenyl)-2,3,7,8,12,13,17,18-octaethylporphyrin 197 Ausbeute: 1.43 g (1.32 mmol, 33 % bez. auf **196**)

Fp.: 304 °C R_f: 0.79 (CH₂Cl₂, Kieselgel, 6 x 3 cm) ¹H-NMR (500 MHz, CD₃OD, T = 320 K): $\delta = 7.59$ (8H, d, ⁴J_{H26,H28} = ⁴J_{H30,H28} = ⁴J_{H34,H36} = ⁴J_{H38,H36} = ⁴J_{H42,H44} = ⁴J_{H46,H44} = ⁴J_{H50,H52} = ⁴J_{H54,H52} = 2.1 Hz, Ar_{o-H}), 7.04 (4H, t, ⁴J_{H28,H26} = ⁴J_{H28,H30} = ⁴J_{H36,H34} = ⁴J_{H36,H38} = ⁴J_{H44,H42} = ⁴J_{H44,H46} = ⁴J_{H52,H50} = ⁴J_{H52,H54} = 2.1 Hz, Ar_{p-H}), 4.05 (24H, s, OC<u>H</u>₃), 2.57, 2.32 (16H, q, ³J_{H57,H58} = ³J_{H59,H60} = ³J_{H61,H62} = ³J_{H63,H64} = ³J_{H65,H66} =

 ${}^{3}J_{H67,H68} = {}^{3}J_{H69,H70} = {}^{3}J_{H71,H72} = 7.5 Hz, CH_{2}CH_{3}), 0.42 ppm (24H,$ *t* $, {}^{3}J_{H58,H57} = {}^{3}J_{H60,H59} = {}^{3}J_{H62,H61} = {}^{3}J_{H64,H63} = {}^{3}J_{H66,H65} = {}^{3}J_{H68,H67} = {}^{3}J_{H70,H69} = {}^{3}J_{H72,H71} = 7.5 Hz, CH_{2}CH_{3})$ ${}^{13}C-NMR$ (126 MHz, CD₃OD): δ = 161.98 (C27, C29, C35, C37, C43, C45, C51, C53), 141.30 (C25, C33, C41, C49), 139.36 (C2, C3, C7, C8, C12, C13, C17, C18), 120.62 (C5, C10, C15, C20), 116.46 (C26, C30, C34, C38, C42, C46, C50, C54), 102.42 (C28, C36, C44, C52), 56.42 (C31, C32, C39, C40, C47, C48, C55, C56), 19.59 (C57, C59, C61, C63, C65, C67, C69, C71), 16.60 ppm (C58, C60, C62, C64, C66, C68, C70, C72) UV/Vis (CH₂Cl₂, 1 % NEt₃, v/v): λ_{max} (lg ε) = 276 (4.30), 348 (4.27), 455 (5.03), 552 (3.92), 597 (3.73), 631 (sh), 698 nm (3.70) MS (EI, 200 °C, 80 eV): m/z = 1080 (10 %, [M + 2H]^{•+}), 1078 (1 %, [M]^{•+}), 1063 (13 %, [M - CH₃]⁺), 539 (3 %, [M]²⁺)

HMRS: $[C_{68}H_{78}N_4O_8]^{2+}$ ber. 540.2948 gef. 540.2933

Analog zur Vorschrift 11.2.1 wurden 3,4-Diethylpyrrol **195** (0.61 g, 4.95 mmol), 3,5-Bis-[3,5-(dimethoxy)benzyloxy]benzaldehyd **203** (2.08 g, 4.74 mmol) und BF₃*OEt₂ (60 μ l, 0.47 mmol) umgesetzt.³⁶ Die Oxidation erfolgte mit DDQ (1.62 g, 7.12 mmol). Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an basischem Aluminiumoxid (Brockmann Grad III) (Eluent: CH₂Cl₂, 1 % NEt₃, v/v). Das Porphyrin **204** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH₂Cl₂/MeOH wurden violette Kristalle erhalten.

5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl])-2,3,7,8,12,13,17,18-octaethylporphyrin 204

Ausbeute: 740 mg (0.34 mmol, 29 % bez. auf 203)

Fp.: 233 °C

R_f: 0.42 (CH₂Cl₂, 1 % NEt₃, v/v, Aluminiumoxid, 6 x 3 cm)

¹**H-NMR** (270 MHz, CDCl₃): $\delta = 7.62$ (8H, *m*, Ar_{*o*-<u>H</u>}), 7.07 (4H, *m*, Ar_{*p*-<u>H</u>}), 6.71 (16H, *m*, Bn_{*o*-<u>H</u>}), 6.46 (8H, *m*, Bn_{*p*-<u>H</u>}), 5.32, 5.20 (16H, *AB*, ²J_{*H*47,*H*47'} = ²J_{*H*56,*H*56'} = ²J_{*H*71,*H*71'} = ²J_{*H*80,*H*80'} = ²J_{*H*95,*H*95'} = ²J_{*H*104,*H*104'} = ²J_{*H*119,*H*119'} = ²J_{*H*128,*H*128'} = 11.8 Hz, OC<u>H</u>₂), 3.82 (48H, *s*, OC<u>H</u>₃), 2.62, 2.20 (16H, *m*, C<u>H</u>₂CH₃), 0.57 (24H, *br s*, CH₂C<u>H</u>₃), -2.14 ppm (2H, *br s*, N<u>H</u>)}

¹³**C-NMR** (126 MHz, CDCl₃): *δ* = 160.96 (C50, C52, C59, C61, C74, C76, C83, C85, C98, C100, C107, C109, C122, C124, C131, C133), 158.15 (C43, C45, C67, C69, C91, C98, C100, C107, C109, C122, C124, C131, C133), 158.15 (C43, C45, C67, C69, C91, C98, C100, C107, C109, C122, C124, C131, C133), 158.15 (C43, C45, C67, C69, C91, C98, C100, C107, C109, C122, C124, C131, C133), 158.15 (C43, C45, C67, C69, C91, C98, C100, C107, C109, C122, C124, C131, C133), 158.15 (C43, C45, C67, C69, C91, C98, C100, C107, C109, C122, C124, C131, C133), 158.15 (C43, C45, C67, C69, C91, C98, C100, C107, C109, C122, C124, C131, C133), 158.15 (C43, C45, C67, C69, C91, C98, C100, C107, C109, C122, C124, C131, C133), C100, C107, C109, C122, C124, C104, C10

C93, C115, C117), 142.48 (C41, C65, C89, C113), 139.26 (C48, C57, C72, C81, C96, C105, C120, C129), 117.33 (C5, C10, C15, C20), 115.64 (C42, C46, C66, C70, C90, C94, C114, C118), 105.10 (C49, C53, C58, C62, C73, C77, C82, C86, C97, C101, C106, C110, C121, C125, C130, C134), 102.72 (C44, C68, C92, C116), 99.79 (C51, C60, C75, C84, C99, C108, C123, C132), 70.21 (C47, C56, C71,

C80, C95, C104, C119, C128), 55.19 (C54, C55, C63, C64, C78, C79, C87, C88, C102, C103, C111, C112, C126, C127, C135, C136), 17.03 ppm (C26, C28, C30, C32, C34, C36, C38, C40)

UV/Vis (CH₂Cl₂, 1 % NEt₃, v/v): λ_{max} (lg ε) = 277 (4.59), 456 (5.14), 553 (4.06), 598 (3.87), 637 (sh), 695 nm (3.60)

MS (pos. FAB): $m/z = 2184 (12 \%, [M + O]^{+}), 2182 (7 \%, [M - H + CH_3]^{\bullet+}), 2167 (100 \%, [M - H]^{+}), 2152 (13 \%, [M - H - CH_3]^{\bullet+}), 2138 (8 \%, [M - OCH_2]^{+}), 2030 (4 \%, [M - H + CH_3 - C_9H_{11}O_2]^{+}), 2017 (28 \%, [M - C_9H_{11}O_2]^{+}), 2002 (8 \%, [M - C_9H_{11}O_2 - CH_3]^{\bullet+}), 1864 (3 \%, [M - 2 C_9H_{11}O_2]^{\bullet+}), 1084 (7 \%, [M]^{2+})$

11.2.3 Reaktion von 3,4-Dimethylpyrrol

Analog zur Vorschrift 11.2.1 wurden 3,4-Dimethylpyrrol **206** (0.51 g, 5.36 mmol), 3,5-Bis-[3,5-(dimethoxy)benzyloxy]benzaldehyd **203** (2.35 g, 5.36 mmol) und BF₃*OEt₂ (67 μ l, 0.54 mmol) umgesetzt.³⁶ Die Oxidation erfolgte mit DDQ (1.83 g, 8.04 mmol). Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an basischem Aluminiumoxid (Brockmann Grad III) (Eluent: CH₂Cl₂: EtOH = 100 : 1, 1 % NEt₃, v/v). Das Porphyrin **207** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH₂Cl₂/MeOH wurden violette Kristalle erhalten.

5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl])-2,3,7,8,12,13,17,18octamethylporphyrin 207

Ausbeute: 0.95 g (0.46 mmol, 34 % bez. auf 203)

Fp.: 216 °C

R_f: 0.41 (CH₂Cl₂, 1 % NEt₃, v/v, Aluminiumoxid, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): δ = 7.62 (8H, *m*, Ar_{*o*-<u>H</u>}), 7.15 (4H, *m*, Ar_{*p*-<u>H</u>}), 6.81 (16H, *m*, Bn_{*o*-<u>H</u>}), 6.54 (8H, *m*, Bn_{*p*-<u>H</u>}), 5.36 (16H, *br s*, OC<u>H₂</u>), 3.88 (48H, *s*, OC<u>H₃</u>), 2.05 (24H, *br s*, C<u>H₃</u>), -2.24 ppm (2H, *br s*, N<u>H</u>)

¹³C-NMR (126 MHz, CDCl₃): δ = 161.02 (C42, C44, C51, C53, C66, C68, C75, C77, C90, C92, C99, C101, C114, C116, C123, C125), 159.01 (C35, C37, C59, C61, C83, C85, C107, C109), 143.47 (C33, C57, C81, C105), 139.25 (C40, C49, C64, C73, C88, C97, C112, C121), 117.35 (C5, C10, C15, C20), 115.28 (C34, C38, C58, C62, C82, C86, C106, C110), 105.22 (C41, C45, C50, C54, C65, C69, C74, C78, C89, C93, C98, C102, C113, C117,

C122, C126), 102.55 (C36, C60, C84, C108), 99.87 (C43, C52, C67, C76, C91, C100, C115, C124), 70.17 (C39, C48, C63, C72, C87, C96, C111, C120), 55.21 ppm (C46, C47, C55, C56, C70, C71, C79, C80, C94, C95, C103, C104, C118, C119, C127, C128) **UV/Vis** (CH₂Cl₂, 1 % NEt₃, v/v): λ_{max} (lg ε) = 277 (4.58), 448 (5.23), 544 (4.10), 588 (3.93), 628 (sh), 690 nm (3.57)

11.2.4 Reaktion von 4,5,6,7-Tetrahydro-2*H*-isoindol

Analog zur Vorschrift 11.2.1 wurden 4,5,6,7-Tetrahydro-2*H*-isoindol **209** (1.32 g, 10.89 mmol), 3,5-Bis-[3,5-(dimethoxy)benzyloxy]benzaldehyd **203** (2.23 g, 5.09 mmol) und BF₃*OEt₂ (64 μ l, 0.51 mmol) umgesetzt.³⁶ Die Oxidation erfolgte mit DDQ (1.73 g, 7.64 mmol). Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an basischem Aluminiumoxid (Brockmann Grad III) (Eluent: CH₂Cl₂: EtOH = 100 : 1, 1 % NEt₃, v/v). Das Porphyrin **210** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH₂Cl₂/MeOH wurden violette Kristalle erhalten.

5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl])-2,3,7,8,12,13,17,18-29*H*,31*H*-tetrabenzoporphyrin 210

Ausbeute: 1.12 g (0.52 mmol, 41 % bez. 203)

Fp.: 224 °C

R_f: 0.51 (CH₂Cl₂, 1 % NEt₃, v/v, Aluminiumoxid, 6 x 3 cm)

¹**H-NMR** (500 MHz, CDCl₃): δ = 7.48 (8H, *m*, Ar_{*o*-<u>H</u>}), 7.07 (4H, *m*, Ar_{*p*-<u>H</u>}), 6.73 (16H, *m*, Bn_{*o*-<u>H</u>}), 6.46 (8H, *m*, Bn_{*p*-<u>H</u>}), 5.29 (16H, *m*, OC<u>H₂</u>), 3.82 (48H, *s*, OC<u>H₃</u>), 2.48 (16H, *br s*, CC<u>H₂CH₂</u>), 1.53 (16H, *br s*, CCH₂C<u>H₂</u>), -2.49 ppm (2H, *br s*, N<u>H</u>)

¹³**C-NMR** (126 MHz, CDCl₃): δ = 160.99 (C50, C52, C59, C61, C74, C76, C83, C85, C98, C100, C107, C109, C122,

C124, C131, C133), 159.67 (C43, C45, C67, C69, C91, C93, C115, C117), 143.46 (C41, C65, C89, C113), 139.35 (C48, C57, C72, C81, C96, C105, C120, C129), 116.58 (C5, C10, C15, C20), 114.80 (C42, C46, C66, C70, C90, C94, C114, C118), 105.15 (C49, C53, C58, C62, C73, C77, C82, C86, C97, C101, C106, C110, C121, C125, C130, C134), 102.67 (C44, C68, C92,

C116), 99.83 (C51, C60, C75, C84, C99, C108, C123, C132), 70.07 (C47, C56, C71, C80, C95, C104, C119, C128), 55.24 (C54, C55, C63, C64, C78, C79, C87, C88, C102, C103, C111, C112, C126, C127, C135, C136), 25.48 (C25, C28, C29, C32, C33, C36, C37, C40), 23.50 ppm (C26, C27, C30, C31, C34, C35, C38, C39)

UV/Vis (CH₂Cl₂, 1 % NEt₃, v/v): λ_{max} (lg ε) = 277 (4.55), 439 (5.25), 531 (4.23), 573 (3.75), 611 (3.70), 675 nm (3.30)

11.3 Esterspaltung³⁸

In einen 50 ml Rundkolben wurde zu **197** (52 mg, 0.05 mmol) in CH_2Cl_2 (20 ml) 1 M BBr₃-Lösung (0.48 ml, 0.48 mmol) bei -78 °C innerhalb einer Stunde zugetropft. Die Lösung wurde über Nacht bei Raumtemperatur gerührt und anschließend vorsichtig in Eiswasser gegossen. Es wurde Ethylacetat (20 ml) zugegeben und die Lösung mit NaHCO₃ neutralisiert. Die Phasentrennung erwies sich als sehr aufwendig, da das Porphyrin besser in der wässrigen Phase als im Ethylacetat/CH₂Cl₂-Gemisch löslich war. Die wässrige Phase wurde deshalb mit MeOH extrahiert, die organischen Phasen über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Das Porphyrin **198** wurde als einziges Produkt in Form eines grünen Feststoffs erhalten.

5,10,15,20-Tetrakis-(3,5-dihydroxyphenyl)-2,3,7,8,12,13,17,18-octaethylporphyrin 198 Ausbeute: 32 mg (0.03 mmol, 68 % bez. auf 197) Fp.: > 330 °C R_f: 0.63 (MeOH, 1 % NEt₃, v/v, Aluminiumoxid, 6 x 3 cm) ¹H-NMR (500 MHz, CD₃OD, T = 320 K): δ = 7.37 (8H, d, ⁴J_{H26,H28} = ⁴J_{H30,H28} = ⁴J_{H32,H34} = ⁴J_{H36,H34} = ⁴J_{H38,H40} = ⁴J_{H42,H40} = ⁴J_{H44,H46} = ⁴J_{H48,H46} = 2.1 Hz, Ar_{o-H}), 6.80 (4H, t, ⁴J_{H28,H26} = ⁴J_{H28,H30} = ⁴J_{H34,H32} = ⁴J_{H34,H36} = ⁴J_{H40,H38} = ⁴J_{H40,H42} = ⁴J_{H46,H44} = ⁴J_{H46,H48} = 2.1 Hz, Ar_{p-H}), 2.59, 2.45 (16H, ³J_{H49,H50} = ³J_{H51,H52} = ³J_{H53,H54} = ³J_{H55,H56} = ³J_{H57,H58} = ³J_{H59,H60} = ³J_{H61,H62} = ³J_{H63,H64} = 7.5 Hz, CH₂CH₃), 0.50 ppm (24H, t, ³J_{H50,H49} = ³J_{H52,H51} = ³J_{H54,H53} = ³J_{H56,H55} = ³J_{H58,H57} = ³J_{H60,H59} = ³J_{H62,H61} = ³J_{H64,H63} = 7.5 Hz, CH₂CH₃) ¹³C-NMR (126 MHz, CD₃OD, T = 300 K): δ = 159.60 (C27, C29, C33, C35, C39, C41,

C45, C47), 140.62 (C25, C31, C37, C43), 140.06 (C2, C3, C7, C8, C12, C13, C17, C18), 120.33 (C5, C10, C15, C20), 117.09 (C26, C30, C32, C36, C38, C42, C44, C48), 105.19 (C28, C34, C40, C46), 19.58 (C49, C51, C53, C55, C57, C59, C61, C63), 16.30 ppm (C50, C52, C54, C56, C58, C60, C62, C64) **UV/Vis** (MeOH): λ_{max} (lg ε): 268 (3.96), 358 (3.97), 470 (4.81), 661 (3.63), 707 nm (3.57) **MS** (pos. FAB): m/z = 967 (100 %, [M + H]⁺) **HMRS:** C₆₀H₆₃N₄O₈ ber. 967.4646

11.4 Metallierung

11.4.1 Allgemeine Vorschrift³⁹

Die freie Porphyrinbase (1.0 Äquiv.) wurde in DMF (50 ml) gelöst und mit $MnCl_2 * 4 H_2O$ (5.5 Äquiv.) zum Sieden erhitzt. Der Umsatz wurde mit DC-Kontrolle verfolgt. Die Lösung wurde über basisches Aluminiumoxid (Brockmann Grad III) filtriert (Eluent: CH_2Cl_2 : MeOH = 100 : 5, 1 % NEt₃, v/v). Das Lösungsmittel wurde unter vermindertem Druck entfernt.

Die Struktursicherung konnte nicht mit NMR-Spektren erfolgen, da die high-spin Elektronenkonfiguration am Mangan(III) (d⁴) zu Verschiebungswerten führt, die unter normalen Messbedingungen keine Messung erlauben. Daher wurden die jeweiligen Massenspektren zur Sicherung der Struktur und Reinheit verwandt.

11.4.2Metallierung von 5,10,15,20-Tetrakis-(3,5-dimethoxyphenyl)-2,3,7,8,12,13,17,18-octaethylporphyrin

Analog zur Vorschrift 11.4.1 wurde 5,10,15,20-Tetrakis-(3,5-dimethoxyphenyl)-2,3,7,8,12,13,17,18octaethylporphyrin **197** (58 mg, 0.05 mmol) mit MnCl₂ * 4 H₂O (0.06 g, 0.29 mmol) 4 h zum Sieden erhitzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an basischem Aluminiumoxid (Brockmann Grad III) (Eluent: CH₂Cl₂, 1 % NEt₃, v/v). Das Porphyrin **199** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH₂Cl₂/*n*-Hexan wurden grüne Kristalle erhalten.

(Chloro)-[5,10,15,20-Tetrakis-(3,5-dimethoxyphenyl)-2,3,7,8,12,13,17,18-octaethyl-porphyrinato]mangan(III) 199

Ausbeute: 45 mg (0.04 mmol, 71 % bez. auf 197) **Fp.:** > 330 °C **R**_f: 0.47 (CH₂Cl₂, 1 % NEt₃, v/v, Aluminiumoxid, $6 \times 3 \text{ cm}$) ĊΙ **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 274 (4.25), 380 (4.49), 417 (sh), 495 (4.66), 594 (3.81), 631 nm (3.55) **MS** (EI, 320 °C, 80 eV): m/z = 1168 (4 %, [M]^{•+}), 1166 (14 %, [M]^{•+}), 1131 (100 %, [M – $Cl]^+$ **HMRS**: C68H76N4O8Mn ber. 1131.5044 gef. 1131.5052

11.4.3 Metallierung von 5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18-octaethylporphyrin

Analog zur Vorschrift 11.4.1 wurde 5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18-octaethylporphyrin **204** (53 mg, 0.02 mmol) mit MnCl₂ * 4 H_2O (0.02 g, 0.11 mmol) 90 min zum Sieden erhitzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an basischem Aluminiumoxid (Brockmann Grad III) (Eluent: CH_2Cl_2 : MeOH := 10 : 1, 1 % NEt₃, v/v). Das Porphyrin **205** wurde als einziges Produkt isoliert. Nach Umkristallisation aus CH_2Cl_2/n -Hexan wurden grüne Kristalle erhalten.

(Chloro)-{5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18octaethylporphyrinato}mangan(III) 205

Ausbeute: 50 mg (0.02 mmol, 91 % bez. auf 204)

Fp.: 227 °C

R_f: 0.65 (CH₂Cl₂ : MeOH = 10 : 1, 1 % NEt₃, v/v, Aluminiumoxid, 6 x 3 cm) **UV/Vis** (CH₂Cl₂): λ_{max} (lg ε) = 277 (4.57), 381 (4.61), 496 (4.78), 593 (3.96), 628 nm (3.74) **MS** (pos. FAB): m/z = 2221 (2 %, [M - Cl]⁺), 2071 (7 %, [M -Cl - C₉H₁₁O₂ + H]⁺), 1110 (< 1 %, [M - Cl]²⁺), 289 (100 %, [C₁₇H₂₀O₄ + H]⁺), 151 (32 %, [C₉H₁₁O₂]⁺⁺)

11.4.4 Metallierung von 5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18-octamethylporphyrin

Analog zur Vorschrift 11.4.1 wurde 5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18-octamethylporphyrin **207** (59 mg, 0.03 mmol) mit MnCl₂ * 4 H₂O (0.03 g, 0.16 mmol) 60 min zum Sieden erhitzt. Die Reinigung des Rohprodukts erfolgte säulenchromatographisch an basischem Aluminiumoxid (Brockmann Grad III) (Eluent: CH_2Cl_2 : MeOH := 10 : 1, 1 % NEt₃, v/v). Das Porphyrin **208** wurde als einziges Produkt in Form eines grünen Feststoffs erhalten. (Chloro)-{5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18octamethylporphyrinato}mangan(III) 208

11.4.5 Metallierung von 5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18-29H,31H-tetrabenzoporphyrin

Analog zur Vorschrift 11.4.1 wurde 5,10,15,20-Tetrakis-[3,5bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18-29H,31H-tetrabenzoporphyrin 210 (52 mg, 0.02 mmol) mit MnCl₂ * 4 H₂O (0.03 g, 0.13 mmol) 90 min zum Sieden Die erhitzt. Reinigung des Rohprodukts erfolgte säulenchromatographisch an basischem Aluminiumoxid (Brockmann Grad III) (Eluent: CH₂Cl₂ :

MeOH : = 10 : 1, 1 % NEt₃, v/v). Das Porphyrin **211** wurde als einziges Produkt in Form eines grünen Feststoffs erhalten.

(Chloro)-{5,10,15,20-Tetrakis-[3,5-bis-(3,5-dimethoxybenzyloxy)phenyl]-2,3,7,8,12,13,17,18-29H,31H-tetrabenzoporphyrinato}mangan(III) 211 Ausbeute: 40 mg (0.02 mmol, 73 % bez. auf 210) Fp.: 139 °C $R_f: 0.56 (CH_2Cl_2 : MeOH = 10 : 1, 1 % NEt_3, v/v, Aluminiumoxid, 6 x 3 cm)$ UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 278 (4.48), 379 (4.61), 491 (4.71), 585 (3.87), 625 nm (3.68) MS (TOF, MS, ES+, 70 eV): $m/z = 2212 (100 \%, [M-CI]^+)$

12 Literatur

- ¹ J. L. Kong, P. A. Loach, J. Heterocyclic Chem. **1980**, 17, 737–744.
- ² R. A. Cormier, M. R. Posey, W. L. Bell, H. N. Fonda, J. S. Connolly, *Tetrahedron* 1989, 45, 4831–4843.
- ³ X. Feng, M. O. Senge, J. Chem. Soc., Perkin Trans. 1 2001, 1030–1018.
- ⁴ S. Taniguchi, H. Hasegawa, M. Nishimura, M. Takahashi, *Synlett* **1999**, *1*, 73–74.
- ⁵ S. Taniguchi, H. Hasegawa, S. Yanagiya, Y. Tabeta, Y. Nakano, M. Takahashi, *Tetrahedron* **2000**, *57*, 2103–2108.
- ⁶ S. Hatscher, M. O. Senge, *Tetrahedron Lett.* **2003**, *44*, 157–160.
- ⁷ W. W. Tschelinzew, B. W. Maxorow, *Chem. Zentr.* **1923**, 1505.
- ⁸ R. P. Briñas, C. Brückner, *Tetrahedron* **2002**, *58*, 4375–4381.
- ⁹ J. L. Sessler, A. Mozaffari, M. R. Johnson, Org. Syntheses 1992, 70, 68-77.
- ¹⁰ S. E. Vitols, J. S. Roman, D. E. Ryan, M. E. Blackwood, Jr., T. G. Spiro, *Inorg. Chem.* **1997**, *36*, 764–769.
- ¹¹ M. Xie, D. A. Lightner, *Tetrahedron* **1993**, *49*, 2185–2200.
- ¹² T. D. Lash, J. Porphyrins Phthalocyanines **1997**, 1, 29–44.
- ¹³ T. D. Lash, J. Heterocyclic Chem. **1997**, 34, 273–278.
- ¹⁴ R. M. Silverstein, E. E. Ryskiewicz, S. W. Chaikin, J. Org. Chem. **1955**, 20, 668–672.
- ¹⁵ Z. Gross, S. Ini, J. Org. Chem. **1997**, 62, 5514–5521.
- ¹⁶ Z. Gross, A. Mahammed, J. Mol. Catal. A: Chem. **1999**, 142, 367–372.
- ¹⁷ X.-Z. Song, W. Jentzen, L. Jaquinod, R. G. Khoury, C. J. Medforth, S.-L. Jia, J.-G. Ma, K. M. Smith, J. A. Shelnutt, *Inorg. Chem.* **1998**, *37*, 2117–2128.
- ¹⁸ S. G. DiMagno, V. S. Y. Lin, M. J. Therien, J. Org. Chem. **1993**, 52, 5983–5993.
- ¹⁹ C. Brückner, J. Posakony, C. K. Johnson, R. W. Boyle, B. R. James, D. Dolphin, J. Porphyrins Phthalocyanines 1998, 2, 455–465.
- ²⁰ J. S. Manka, D. S. Lawrence, *Tetrahedron Lett.* **1989**, *30*, 6989–6992.
- ²¹ R. C. Jagessar, J. M. Tour, Org. Lett. **2000**, *2*, 111–114.
- J. M. Sutton, N. Fernandez, R. W. Boyle, J. Porphyrins Phthalocyanines 2000, 4, 655–658.
- ²³ G. Y.Gao, Y. Chen, X. P. Zhang, J. Org. Chem. 2003, 68, 6215–6221.

- ²⁴ C. Drexler, M. W. Hosseini, G. Pratviel, B. Meunier, *Chem. Commun.* 1998, 1343–1344.
- ²⁵ D.-F. Shi, R. T. Wheelhouse, D. Sun, L. H. Hurley, J. Med. Chem. 2001, 44, 4509– 4523.
- ²⁶ S. Hatscher, Dissertation, FU Berlin, 2003.
- ²⁷ M. O. Senge, S. S. Hatscher, A. Wiehe, K. Dahms, A. Kelling, J. Am. Chem. Soc.
 2004, 126, 13634–13635.
- ²⁸ X. Feng, M. O. Senge, *Tetrahedron* **2000**, *56*, 587–590.
- ²⁹ J. W. Buchler in *The Porphyrins*; D. Dolphin, Ed.; Academic Press, New York, 1978, pp. 389–483.
- ³⁰ M. Speck, D. Niethammer, M. O. Senge, J. Chem. Soc., Perkin Trans. 2 2002, 455–462.
- ³¹ X.-Z. Song, W. Jentzen, S.-L. Jia, L. Jaquinod, D. J. Nurco, C. J. Medforth, K. M. Smith, J. A. Shelnutt, *J. Am. Chem. Soc.* **1996**, *118*, 12975–12988.
- ³² X.-Z. Song, L. Jaquinod, W. Jentzen, D. J. Nurco, S.-L. Jia, R. G. Khoury, J.-G. Ma,
 C. J. Medforth, K. M. Smith, J. A. Shelnutt, *Inorg. Chem.* **1998**, *37*, 2009–2019.
- ³³ C. Ikeda, Y.Tanaka, T.Fujihara, Y.Ishii, T.Ushiyama, K. Yamamoto, N. Yoshioka, H. Inoue, *Inorg. Chem.* 2001, 40, 3395–3405.
- ³⁴ M. M. Pereira, G. Muller, J. I. Ordinas, E. M. Azenha, L. G. Arnaut, J. Chem. Soc, Perkin Trans. 2 2002, 1583–1588.
- ³⁵ G. M. Stewart, M. A. Fox, J. Am. Chem. Soc. **1996**, 118, 4354–4360.
- ³⁶ K. W. Pollak, E. M. Sanford, J. M. J. Fréchet, J. Mater. Chem. **1998**, 8, 519–527.
- ³⁷ W. W. Kalisch, M. O. Senge, *Tetrahedron Lett.* **1996**, *37*, 1183–1186.
- ³⁸ E. Tsuchida, T. Komatsu, E. Hasegawa, H. Nishide, J. Chem. Soc., Dalton Trans. 1990, 2713–2718.
- ³⁹ H. Volz, M. Hassler, Z. Naturforsch. **1988**, 43b, 1043–1052.