
 
 

■ B4(XQ3)LYP-APPROACH ·  RESULTS  

 50 

BB  44  ((  XX  QQ  33  ))  LL  YY  PP  --    AA  PP  PP  RR  OO  AA  CC  HH  

RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN      
Section

 3 

4.1 Spin multiplicity and the â0 parameter in B4LYP 

DFT-methods, fail often to describe the ground state multiplicities of TMCs correctly. 
Working on that problem, Reiher, Salomon and Hess[21, 22] found, that the energy 
splitting between high- and low-spin states of TMCs depends linearly on the exact 
exchange parameter [a0 in Eq.(1.1) ][21, 22]. They showed that the reduction of the exact 
exchange part X

xE  in the B3LYP functional to 15%, improves the functional (termed as 

B3LYP*) in respect to the prediction of the ground state spin multiplicities of TMCs. 
These findings were considered by the procedure of determination of the â0 parameter in 
our approach.  

The parameter â0 of the exact exchange term was varied in a manner similar to that used 
with the B3LYP* functional of Reiher et al.[21], to enable the B4LYP functional [eq. 
(3.6)], to predict the correct spin multiplicity of the electronic ground states of TMCs. 
For this purpose, all model compounds (Table A3 of appendix) were selected, for which 
the B3LYP functional produced wrong spin multiplicities, obtained from the free 
energies gG  in vacuum [see eq. (3.4)]. These are eleven compounds (4, 6, 11-13, 15-

19, 25, see Table 3). Compounds 7 and 8 were not considered in this analysis, since 
they exhibit spin-crossover behavior in solution[106, 130], indicating that the exact spin 
state depends on subtle interactions with the solvent.  

Since the spin multiplicity of a TMC is generally measured in the condensed phase, the 
free energy in dielectric medium [ sG , eq. (3.2)] is the relevant quantity, and must be 

considered. Under these conditions, the conventional B3LYP functional yielded the 
correct spin multiplicity also for compounds 15 and 17, which were therefore ignored in 
the following. For the remaining nine compounds (involving ten different redox states) 

4 
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both gG  and sG  for the high- and low-spin states were computed using the B4LYP 

functional for different parameters â0 (0.15, 0.13, 0.12, 0.11) fixing the other parameters 
at the conventional values a0 = 0.20, ax = 0.72 and ac = 0.81 (Table 3).  

Table 3. Total spin of electronic ground states of ten different TMCs in solution or crystal [one (16) in 
different redox states]. Except for compound 10, these compounds were selected, since computations with 
the B3LYP DFT functional yielded ground state energies with wrong spin multiplicity. Computations 
were based on free energies [ sG , eq. (3)] including the electrostatic energies in solutions. In cases where 

the spin multiplicities based on the free energies in vacuum [ gG , eq. (5)] and dielectric medium [ sG , eq. 

(3)] differed from each other, the computed spin multiplicities in vacuum were given in parenthesis.  

TMC 

â0 = a0  â0 [a0 = 0.20] 

  exp.B3LYP B3LYP*  B4LYP, eq (7) 

0.20 0.15  0.15 0.13 0.12 0.11 

4 [Fe(phen)3]2+ 2 0  0 0 0 0   0[131]

6 [Fe(sar)]2+ 2 0 
(2) 

 0 
(2) 

0 0 0   0[132]

10 [Fe(PypepO)2]1- 5/2 5/2  5/2 5/2 5/2 1/2 
(5/2) 

  5/2[109]

11 [Fe(PypepS)2]1- 5/2 1/2  1/2 1/2 1/2 1/2   1/2[110]

12 [Fe(PyAS)2]0 2 0  0 0 0 0   0[133]

13 [Fe(bpteta)2]2+ 2 2  2 0 
(2) 

0 
(2) 

0   0[101]

16 [Fe(Prpep)2]1+ 5/2 1/2  1/2 1/2 1/2 1/2   1/2[105]

16 [Fe(Prpep)2]0 2 2  2 2 0 
(2) 

0   0[105]

18 [Fe(PaPy3)(Cl)]1+ 5/2 5/2  1/2  
(5/2) 

1/2 1/2 1/2   1/2[113]

19 [Fe(PaPy3)(N3)]1+ 5/2 1/2 
(5/2) 

 1/2 
(5/2) 

1/2 1/2 1/2   1/2[113]

25 [Mn(CN)6]4- 5/2 1/2 
(5/2) 

 1/2 
(5/2) 

1/2 
(5/2) 

1/2 
(5/2) 

1/2 
(5/2) 

  1/2[134]
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Among all tested â0 parameters only at â0 = 0.12, B4LYP yields the correct spin 
multiplicity for all considered compounds in Table 3 (the related energy data are given 
in  Tables A2-A8 of appendix). With â0 = 0.15 the B4LYP functional yields the same 
spin multiplicity in vacuum as does B3LYP* (Table 3). A further reduction of the â0 
parameter to 0.11 yields correct spin multiplicities for all ten TMCs, with the exception 
of TMC 10. Here, erroneously the electronic ground state in solution is the low-spin 
state, whereas in the gas phase it is the high-spin state (Table 3). Hence, the parameter 
â0 = 0.12 was chosen for the B4LYP functional. 

4.1.1 Spin multiplicity in dielectric medium 

The energy splitting between low- and high-spin states in vacuum is defined as 

  g ,LS/HS g ,HS g ,LSΔ = −G G G  (4.1) 

and in condensed phase as 

 s, LS/HS s,HS s, LSΔ = −G G G , (4.2) 

where g,LSG , g,HSG , s,LSG  and s,HSG  are the low- and high-spin state free energies in 

vacuum and condensed phase, respectively.  

The linear dependence of the energy splitting ( g,LS/HSΔG and s,LS/HSΔG ) from the exact 

exchange parameter reported earlier by Reiher et al.[21] is nicely observed also from the 
results of the present study (Figure 22, Figure 23). Comparison of the dependencies 

g,LS/HSΔG  (Figure 22) and s,LS/HSΔG  (Figure 23) on the parameter â0, demonstrates 

clearly the influence of the dielectric medium on the energy difference between low- 
and high-spin states. In the environment with dielectric constant of ε > 1 the electronic 
ground state multiplicity of the TMCs can change to both low- or high-spin (compare 
Figure 22 and Figure 23). The magnitude of this effect differs from compound to 
compound and in the case of TMCs considered in this work, obtains  values of up to 
39.9 kcal·mol-1 (25) . Therefore this influence cannot be neglected. Moreover, in many 
cases the predicted ground state multiplicities agree with experiment only after 
considering the effect of the dielectric medium (see Figures 22, 23 and Table 3). From 
equations (3.2), (4.1) and (4.2) follows, that the difference between s,LS/HSΔG  and 

g,LS/HSΔG  is nothing else than the difference in solvation energies between both spin 

states sol,LS/HSΔΔG  



 
 

B4(XQ3)LYP-APPROACH ·  RESULTS ■ 

 53

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 22. Energy splitting between high- and low-spin states of  selection of TMC o
g,LS/HSΔG in

vacuum, depending on the parameter â0 of exact exchange in the B4LYP functional [eq. (3.6)]. The
other parameters in eq. (3.6) are fixed at values a0 = 0.20, ax = 0.72 and ac = 0.81. Incorrectly
reproduced ground state multiplicities are denoted by red symbols.     

Figure 23. Energy splitting between high- and low-spin states of of  selection of TMC o
s,LS/HSΔG in the

condensed phase, depending on the parameter â0 of exact exchange in the B4LYP functional [eq. (3.6)].
The other parameters in eq. (3.6) are fixed at values a0 = 0.20, ax = 0.72 and ac = 0.81. Incorrectly
reproduced ground state multiplicities are denoted by red symbols. Since the difference between
appropriate o

s,LS/HSΔG  values for compound 4 in the water, acetonitrile and dimethylformamide is
insignificant, for clearness, only the values in water are plotted on the graph.  
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 s,LS/HS g ,LS/HS sol,HS sol, LS sol, LS/HSΔ − Δ = Δ − Δ = ΔΔG G G G G , (4.3) 

where sol,LSΔG  and sol,HSΔG  are solvation energies of TMC in low- and high-spin states, 

respectively.  

For the compounds studied here in most of the cases a destabilization of the high-spin 
state in the condensed phase (see sol,LS/HSΔΔG  values in the Table A9 of appendix) was 

observed. Hence, the question arises, what are the reasons for such a behavior. 
Obviously, the factors influencing the sol,LS/HSΔΔG  are structure and charge distribution, 

which change by the alteration of the spin state. It is possible to determine the 
contributions from both factors to the sol,LS/HSΔΔG  separately, by combining the partial 

charges and structures of low- and high-spin states independently, as described in the 
following. Let us consider the solvation energies for the three following cases (see 
Figure 24):  

1. (LSstructure;LScharge) – with the structure optimized for low-spin state and partial 
charges generated for low-spin state (solvation energy sol,LSΔG ); 

2. (HSstructure;HScharge) – with the structure optimized for high-spin state and partial 
charges generated for high-spin state (solvation energy sol,HSΔG );  

3. (HSstructure;LScharge) – with the structure optimized for high-spin state and partial 
charges generated for low-spin state (fictitious solvation energy sol,(HS;LS)ΔG ).  

In further discussion for convenience the short notations (LS;LS), (HS;HS), and 
(HS;LS) will be used, instead of (LSstructure;LScharge), (HSstructure;HScharge) and 
(HSstructure;LScharge), respectively.  

 

 

 

 

 

 

 

 

Figure 24. Thermodynamic cycle connecting (LS;LS), (HS;HS) and (HS;LS) states.  
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Note, that similarly to (HS;LS) the (LS;HS) state (combination of the structure 
optimized for low-spin state with the partial charges from the high-spin state) can be 
used alternatively. For our discussion, however, it is enough to use only one of these 
two fictitious cases. Arbitrarily, the (HS;LS) state was chosen. Additionally, the 
solvation energy of the (LS;HS) state ( sol,(LS;HS)ΔG ) are given in the Table A9 of the 

appendix. 

Via the fictitious (HS;LS) state, two real (LS;LS) and (HS;HS) states can be connected. 
These states are energetically coupled (Figure 24), so that sol,LS/HSΔΔG  can be given as  

 ,structure ,charge
sol,LS/HS sol,LS/HS sol, LS/ HSΔΔ = ΔΔ + ΔΔG G G , (4.4) 

where   

 ,structure , (HS;LS) , (LS;LS)
sol,LS/HS sol solΔΔ Δ − ΔG = G G , (4.5) 

 ,charge , (HS;HS) , (HS;LS)
sol,LS/HS sol solΔΔ = Δ − ΔG G G . (4.6) 

While ,structure
sol,LS/HSΔΔG  includes the contributions due to the structural differences of two 

spin states, the ,charge
sol, LS/HSΔΔG  results from the alterations in the charge distribution. 

Analysis of data in the Table A9 of appendix shows no obvious correlation between the 
values of ,structure

sol,LS/HSΔΔG  and ,charge
sol,LS/HSΔΔG . It seems, that the observed preference to 

destabilize the high spin state in the dielectric medium is rather accidental. 

While ,charge
sol,LS/HSΔΔG  depends only on the charge distribution in the low- and high-spin 

states, two factors are contributing to the value of ,structure
sol,LS/HSΔΔG . In the high spin state, the 

electrons of the transition metal occupy the d-orbitals (t2g-orbitals by the octahedral and 
eg-orbitals by the tetrahedral geometries), which are oriented towards the orbitals of the 
ligands. The repulsion between these orbitals leads to an increase of the metal-ligand 
distances and therefore to spacial expansion of the high-spin complex. Due to the 
volume enlargement of the compound in the high-spin state, the charge density of the 
transition metal complex decreases, compared to the low-spin state. As a consequence, 
the solvation energy of the high-spin TMCs is higher than in the low-spin state, 
resulting in the positive value of ,structure

sol,LS/HSGΔΔ . However this factor is effective only for 

the symmetric compounds possessing a dipole moment close to zero. Especially 
pronounced is this effect in case of the highly charged [Fe(CN)6]4- (1) and [Mn(CN)6]4- 
(25) complexes. For the non-symmetric TMCs the dipole moment becomes the 
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dominant factor influencing the value of ,structure
sol,LS/HSΔΔG . The dipole moment itself depends 

not only on the structure, but also on the partial charges. Respectively, ,structure
sol,LS/HSΔΔG  can 

obtain positive as well as negative values dependent on the charge distribution of both 
spin-states.
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4.2 Determination of GX term in B4(XQ3)LYP-approach 

To determine the correction term GX(q) one assumes that it can be expressed as third-
order polynomial in the total charge of the reduced state of the TMC  

 3 2( ) A B C D= + + +XG q q q q . (4.7) 

Since only one-electron reduction processes are considered in present study the total 
charges of the reduced (qRed) and oxidized (qOx) states obey qOx = qRed +1. Hence, ΔGX = 
GX(qRed) − GX(qOx) can be expressed as  

 2
Red Red Red Red( ) A(3 3 1) B(2 1) CΔ = − + + − + −XG q q q q . (4.8) 

Note that in the above difference the constant term D cancels. The remaining 
polynomial coefficients A, B and C in eq. (4.8) were determined via the following two-
step fitting procedure, for which the compounds of the training set only (see Table 1) 
were used: 

initialisation - To initialize the procedure, the , B4LYP
gΔG  [eq. (3.7)] and solΔΔG  [eq. 

(3.3)] were calculated, where the latter were computed using in zero 
order approximation the same set of atomic radii (Bondi radii[129]) for 
all three solvents considered. These energies enter the free energy of 
reduction as follows  

 , B4LYP
s g sol Red( )XG G G G qΔ = Δ + ΔΔ + Δ . (4.9) 

1-st step - for fixed values of , B4LYP
gΔG  and solΔΔG , the redox potentials obtained 

from sG , eq. (4.9), were matched with the measured values, by 

adjusting the parameters of ΔGX(qRed), eq. (4.8), using the averages 

Red( )Δ XG q  of TMCs with the same charge qRed in a least square fit of 

the polynomial coefficients in GX(qRed) with the program Origin 7.5.[135] 

2-nd step - for fixed ΔGX(qRed), the solΔΔG  were reevaluated to improve the 

agreement with the measured redox potentials, by varying the atomic 
radii. For different solvents different values of atomic radii were used. 

 Then, one returns back to step 1 to reevaluate ΔGX(qRed) for fixed 

solΔΔG  and so forth. The optimization procedure was repeated until the  
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Figure 25. Flowchart of the fitting procedure used to obtain the coefficients in the eq. (4.8) 
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RMSD between calculated and measured redox potentials did not 
decrease anymore.  

The flowchart of the described fitting procedure is shown on the Figure 25. The fitting 
procedure yields the following values for the coefficients in eq. (4.8): A = −0.333, B = 
1.545 and C = 21.634 in units of kcal·mol−1. The corresponding polynomial ΔGX(qRed) is 
given in the Figure 26. It is used to the calculate the post-computational correction GX  
in eq. (3.7), which is required for the evaluation of redox potentials. 

 

 

 

 

 

 

 

 

 

 

 

 

From the non-linear plot in Figure 26 it becomes evident that at least a third-order 
polynomial is required.  

For each solvent a different set of atomic radii was used, as explained in paragraph 
3.1.6. The values of the optimized atomic radii are given in Table 4. For the aprotic 
solvents acetonitrile and dimethylformamide the atomic radii have to be considerably 
larger than for water, a protic solvent. This is in agreement with prior work[14, 128]. The 
smaller atomic radii for the protic solvents were explained to be necessary to account 
for the stronger interaction of the solute with the polar hydrogens of the protic 

 

Figure 26. The ΔGX(qRed) polynomial fitted to the mean values Red( )Δ XG q  (open circles). For the fit
procedure the complexes 1-12 and 14-30 were used. Individual ΔGX(qRed) values are displayed by crosses.
The fitted parameters in Eq. (4.8) are A = −0.333, B = 1.545 and C = 21.634. Numbers in the plot refer to
the number of measured redox potentials for different TMCs and solvents available at a specific qRed. The
charges are given in dimensionless units of the elementary charge. 
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solvent[14]. The explanation of small differences in atomic radii between the two aprotic 
solvents is more subtle. 

Table 4. Optimized atomic radii for different solvents in comparison to Bondi radii[129]. 

atom 
atomic radii, Å 

water AN a DMF a Bondi

H 1.00 1.00 1.17 1.20

C 1.65 1.80 1.85 1.70

N 1.60 1.76 1.76 1.55

O 1.60 1.76 1.76 1.52

S 1.71 2.18 2.20 1.75

Cl − 1.76 2.05 1.80

a AN: acetonitrile; DMF: dimethylformamide. 
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4.3 Redox potentials. Theory versus experiment. 

The results of redox potential calculation for the training set of TMCs (Table 1), using 
the B4(XQ3)LYP-approach are demonstrated in Figure 27, where 38 calculated redox 
potentials are plotted against the corresponding experimental values. For these redox 
potentials the calculated and experimental values correlate very well yielding RMSD = 
68 mV and a mean absolute deviation (MAD) of 58 mV. The maximum absolute 
deviation of 148 mV was observed for compound 13.  

 

 

 

 

 

 

 

 

 

 

Figure 3.  

 

 

Such a large deviation could be due to the fact that the exact structures of the redox 
states in solution are missing. Instead of them, one uses the geometries optimized in 
vacuum, under assumption that structural changes occuring by transferring the TMC 
from the vacuum into the solvent are small enough to be neglected. This assumption 
might not always be correct. Excluding compound 13 the RMSD reduces to 65 mV 
(MAD = 55 mV). According to results obtained with the B4(XQ3)LYP-approach the 
procedure works surprisingly well. It provides the equally good agreement for iron, 

Figure 27. Correlation between calculated and measured redox potentials of the training set (Table 1). 
Redox potentials were calculated for 38 redox potentials of 30 different transition metal compounds using
the B4(XQ3)LYP-approach. RMSD = 68 mV, MAD = 58 mV. 
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manganese and nickel TMCs, although, the method was developed originally only for 
iron metal complexes. For these three transition metals a single parameter set of the 
correction term GX(q) is sufficient to reproduce redox potentials reliably. However, it is 
possible that an individual parameterization of the B4(XQ3)LYP-approach for each type 
of transition metal might give even better results.  

 

 

 

 

 

 

 

 

 

 

 

 

The reliability of the B4(XQ3)LYP-approach was demonstrated by applying it for the 
calculation of the redox potentials of TMCs in the prediction set (Table 2). In that case 
(see Figure 28) the B4(XQ3)LYP-approach shows very good performance, with an 
RMSD of 57 mV (MAD = 50 mV), confirming the quality of the parameters gained the 
training set. The RMSD for both training and prediction sets together is 65 mV 
(MAD = 55 mV). The comparison of results obtained from the B4(XQ3)LYP-approach 
with those obtained from B3LYP (Tables 5 and 6) demonstrates clearly the superiority 
of the B4(XQ3)LYP-approach (Figure 29). Despite a strong correlation of the measured 
redox potentials with results computed with the B3LYP functional the deviations are 
considerably larger (RMSD = 183 mV, MAD = 127 mV and a maximal deviation of 
464 mV) (Figure 30, Tables 5-6). Nevertheless, the MAD value (127 mV) is still 23 mV 
less than obtained in previous computations[2] using the same level of theory 
(B3LYP/LACV3P**++) for TMCs. This shows clearly that our electrostatic approach 

Figure 28. Correlation between calculated and measured redox potentials for the prediction set (Table 2).
Redox potentials were calculated for 20 redox potentials of 18 different transition metal compounds using
the B4(XQ3)LYP-approach. RMSD = 57 mV, MAD = 50 mV. 
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(involving specific values of atomic radii and charges), although optimized for the 
B4(XQ3)LYP-approach, also works well in combination with the B3LYP functional. In 
fact, the absolute redox potentials calculated with B3LYP are generally underestimated 
(Figure 30). Hence, adding 90 mV to the computed redox potentials reduces the RMSD 
from 183 mV to 162 mV (Figure 31). For comparison, the RMSD reported for 
calculated redox potentials of 270 different organic compounds involving similar 
corrections is 170 mV[12].  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 29. Absolute deviations (AD) between calculated (using B4(XQ3)LYP and B3LYP) and
measured redox potentials considering all 58 values in Tables 1 and 2. N refers to the sequence of redox
potentials as listed in Tables 1 and 2. 
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Table 5. Redox potentials versus SHE [V] calculated for the training set using B3LYP, B4(XQ3)LYP-
approach and experimental redox potentials of the model compounds in different solvents. Where 
multiple experimental redox potentials are available, the mean values were considered (given in 
parenthesis). The considered solvents are water, acetonitrile (AN) and dimethylformamide (DMF). Redox 
potentials reported originally for different reference electrodes were converted to SHE by adding the 
following constants: SCE +0.244 V[78], Fc+/Fc in AN +0.624 V[78], Fc+/Fc in DMF +0.702 V[85], 
Ag/AgCl +0.200 V[84]. Using the B3LYP DFT functional to compute redox potentials, the electronic states 
of lowest energy obtained in the computations were considered, regardless of the nature of the measured 
spin multiplicity.  

substance solvent E°calc 
(B3LYP)

E°calc 
(B4(XQ3)LYP-

approach)
E°exp

1. [Fe(CN)6]3−/4− water 0.670 0.408 0.358[127]

2. [Fe(bpy)3]3+/2+ water 0.748 1.049 1.030[127], 1.089[136], 
1.120[137] (1.080)

AN 0.999 1.301 1.322[138], 1.304[139], 
1.302[140] (1.309)

DMF 1.148 1.450 1.504[141]

3. [Fe(bpy)2(CN)2]1+/0 water 0.318 0.842 0.782†

4. [Fe(phen)3]3+/2+ water 0.958 1.116 1.147[127], 1.141[137] (1.144)
AN 1.206 1.355 1.322[139]

DMF 1.361 1.502 1.487[141]

5. [Fe(diammac)]3+/2+ water -0.180 -0.038 -0.150[142]

6. [Fe(sar)]3+/2+ water 0.152 0.143 0.050[142]

7. [Fe(tacn)2]3+/2+ water 0.216 0.190 0.130[117]

8. [Fe(PyIm2H2)2]3+/2+ AN 0.981 0.932 0.920[106]

9. [Fe(PyIm2)2]1−/2− AN -0.641 -0.412 -0.460[106]

10. [Fe(PypepO)2]1−/2− DMF -0.983 -0.769 -0.838[109]

11. [Fe(PypepS)2]1−/2− DMF -1.275 -0.981 -0.878[110]

12. [Fe(PyAS)2]1+/0 DMF -0.012 0.202 0.112[110]

13. [Fe(bpteta)]3+/2+ AN 0.913 0.801 0.949[101]

14. [Fe(DITim)2]1+/0 AN -0.574 -0.555 -0.438[107]

15. [Fe(Pypep)2]1+/0 water -0.256 -0.122 -0.038[114]

AN -0.192 -0.142 -0.088[114]

DMF -0.114 -0.065 -0.068[114]

16. [Fe(Prpep)2]1+/0 water 0.109 0.217 0.184[105]

17.  [Fe(PaPy3)(AN)]2+/1+ AN 0.285 0.494 0.452[113]

18. [Fe(PaPy3)(Cl)]1+/0 AN 0.053 0.259 0.212[113]

19. [Fe(PaPy3)(N3)]1+/0 AN -0.066 0.043 0.102[113]

20. [Fe(PaPy3)(CN)]1+/0 AN -0.072 0.312 0.232[113]

21. [Fe(PaPy2O)(Cl)]0/1− DMF -0.551 -0.255 -0.268[109]

22. [Fe(SEt)4]1−/2− AN -0.885 -0.813 -0.838[108]

23. [Fe(S2-o-xyl)2]1−/2− DMF -0.802 -0.733 -0.783[119]

24. [Fe(SEtOH)4]1−/2− water -0.234 -0.117 -0.110[116]

25. [Mn(CN)6]3−/4− water -0.002 -0.286 -0.220[127]

26i. [Mn(bpia)(Cl)2]1+/0 AN 0.779 0.846 0.852[115]

26ii. [Mn(bpia)(Cl)2]2+/1+ AN 1.697 1.700 1.772[115]

27i. [Mn(py2(NMe)2Cl2)]1+/0 AN 0.541 0.625 0.740[100]

27ii. [Mn(py2(NMe)2Cl2)]2+/1+ AN 1.725 1.694 1.770[100]

28. [Mn(bpteta)]3+/2+ AN 1.515 1.387 1.299[101]

29. [Ni(bpy)3]3+/2+ water 1.863 1.817 1.720[143]

30. [Ni(bpteta)]3+/2+ AN 1.624 1.545 1.634[101]

†-extrapolated using data from [144]. 
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Table 6. Redox potentials versus SHE [V] calculated for the prediction set using B3LYP, B4(XQ3)LYP-
approach and experimental redox potentials of the model compounds in different solvents. Where 
multiple experimental redox potentials are available, the mean values were considered (given in 
parenthesis). The considered solvents are besides water AN=acetonitrile and DMF=dimethylformamide. 
Redox potentials reported originally for different reference electrodes were converted to SHE by adding 
the following constants: SCE +0.244 V[78], Fc+/Fc in AN +0.624 V[78], Fc+/Fc in DMF +0.702 V[85], 
Ag/AgCl +0.200 V[84]. Using the B3LYP DFT functional to compute redox potentials, the electronic states 
of lowest energy obtained in the computations were considered, regardless of the nature of the measured 
spin multiplicity.  

substance solvent E°calc
(B3LYP)

E°calc 
(B4(XQ3)LYP-

approach)
E°exp

31i. [Fe(cyclamAc)(N3)] 2+/1+ AN 1.491 1.566 1.614[145]

31ii. [Fe(cyclamAc)(N3)] 1+/0 AN -0.057 -0.112 -0.126[145]

32. [Ni(tacn)]3+/2+ water 1.002 0.879 0.950[117]

33. [Fe(dtne)]3+/2+ water 0.461 0.342 0.410[146]

34. [Ni(dtne)]3+/2+ water 1.204 1.078 1.100[146]

35. [Fe(terpy)2]3+/2+ DMF 1.325 1.673 1.597[141]

36. [Fe(SPh)4]1−/2− AN -0.296 -0.247 -0.271[108]

37. [Fe(SCH2CON(CH3)2)4]1−/2− AN -0.417 -0.401 -0.468[104]

 DMF -0.444 -0.429 -0.384[104]

38. [Fe(S-i-Pr)4]1−/2− AN -0.981 -0.908 -0.866[108]

39. [Fe(bpy)(CN)4]3+/2+ water 0.247 0.635 0.542[137]

40. [Fe(tacnPy2)(AN)]3+/2+ AN 1.025 1.119 1.146[112]

41. [Fe(N4Py)(Cl)]2+/1+ AN 0.692 0.804 0.834[111]

42. [Fe(N4Py)(AN)]3+/2+ AN 1.085 1.269 1.254[111]

43. [Fe(Py3tacn)]3+/2+ AN 0.838 1.049 0.974[118]

44. [Ni(Py3tacn)]3+/2+ AN 1.786 1.713 1.634[118]

45.  [Fe(TCTA)]0/1− water 0.065 0.223 0.195[147]

46. [Ni(TCTA)]0/1− water 1.388 1.271 1.160[147]

47. [Mn(TCTA)]0/1− water 0.851 0.748 0.800[147]

48. [Fe(Pyr2Py)2]3+/2+ AN 1.039 1.285 1.304[148]
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Figure 30. Correlation between calculated and experimental redox potentials for the training and
prediction sets. Redox potentials are calculated using B3LYP.  RMSD = 183 mV, MAD = 127 mV 

 

Figure 31. Calibrated correlation between calculated and experimental redox potentials for the training
and prediction sets. Redox potentials are calculated using B3LYP. Originally calculated redox potentials
Eo

calc  were corrected by adding  90 mV to get calibrated redox potentials Eo,c
calc . 
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4.4 Computational costs 

The CPU-time is an important issue for prospective users of the B4(XQ3)LYP-
approach. It is difficult to give here exact numbers, since many factors can influence 
CPU-time (number of atoms, basis sets, type of calculation and quantum-chemical 
software used, type of CPU and memory of the computer, etc.). The time limiting part 
here is generally the quantum chemistry. Compared to the quantum chemical 
computations, the time which is needed for the electrostatic calculations is negligible 
(typically some minutes). Examples are given in the Table 7 to get a general idea of 
how expensive the quantum-chemical computations in B4(XQ3)LYP-approach are for 
different cases. The data presented in the Table 7 are related to the values obtained from 
the computations using the quantum-chemical package Jaguar 5.0[122], which proceeds 
much faster than many others conventional ab initio programs, and is especially 
optimized for treating the systems containing TMCs.  

Table 7. Detailed information on CPU-time needed to perform quantum-chemical computations within 
the B4(XQ3)LYP-approach for the systems of different molecular size using the program JAGUAR 5.0[122] 
on a single CPU. 

Number 
of atoms 

TMC 
Spin 
state 

1 CPU-time*, hours Total 
1 CPU-time**, 

hours optimization frequency 
calculation 

13 

1. [Fe(CN)6]3− 1/2 0.43 1.20 

8.78 
1. [Fe(CN)6]3− 5/2 0.40 1.46 
1. [Fe(CN)6]4− 0 0.33 0.83 
1. [Fe(CN)6]4− 2 0.43 1.20 

48 

18. [Fe(PaPy3)(Cl)]1+ 1/2 8.00 58.94 

273.87 
18. [Fe(PaPy3)(Cl)]1+ 5/2 5.82 74.07 
18. [Fe(PaPy3)(Cl)]0 0 0.40 1.46 
18. [Fe(PaPy3)(Cl)]0 2 8.00 58.94 

67 

4. [Fe(phen)3]3+ 1/2 1.63 162 

540.92 
4. [Fe(phen)3]3+ 5/2 2.07 134.6 
4. [Fe(phen)3]2+ 0 0.92 83.75 
4. [Fe(phen)3]2+ 2 10.35 145.6 

*   on the 64 bit 2.6 GHz Opteron 285 processor 
** includes CPU-time of optimization and frequency calculation for the low- and high-spin states of both 
redox species. 
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Depending on the size of the TMC system the computations can take from some hours 
to up to several days on a single CPU (Table7). If the ground state multiplicities of the 
TMCs are unknown, the low- and high-spin states must both be calculated within the 
B4(XQ3)LYP-approach, which increases the computational costs.  Most expensive are 
the frequency calculations (see Table 7) for getting zero-point vibrational energy and 
the termal vibrational energy at 298 K, 0 298KG →Δ  (see Eq. (3.4)). The contributions of 

these values to the redox potential are essential (see Table A2), such that their 
computation cannot be avoided. However, it should not be a big problem in the near 
future, since the processor manufacturer are continually coming out with more 
powerfull and faster CPUs. Moreover, by using of parallel computing the real-time for 
the prediction of the redox potential can be essentially decreased. For example, the 
redox potential for the biggest TMC considered in this work, the 67 atom compound 4  
can be obtained in 3.5 days by using 8 CPUs in parallel. 

According to data given in Figure 19 the average number of atoms per compound is 48. 
According values in Table 7, for compound of that size redox potential can be computed 
in ~ 273.87 hours on a single CPU. Using this number it is possible to make a very 
rough estimate of the CPU-time spent for the redox potential computation of all 
considered in this study compounds together, which makes ~ 13146 hours.   
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4.5 Computation of the redox potential difference for non-
heme iron model compounds in vacuum using B3LYP 
und B4(XQ3)LYP-approach  

In this chapter an example is presented where the elements of B4(XQ3)LYP-approach 
were applied to characterize a transition metal cofactor in a protein. The system under 
investigation was the non-heme iron cofactor in bacterial photosynthetic reaction center 
(bRC) (Figure 32). The general scheme of the electron transfer in bRC is represented in 
Figure 33. In these reaction centers an electron is transferred from the special pair (P) 
via the accessory bacteriochlorophyll (BA), the bacteriopheophytin (HA) and the primary 
quinone (QA) to reach finally the secondary quinone (QB).  

   

 

 

 

 

 

 

 

 

  

In the electron transfer process between the two quinones QA and QB the role of the 
non-heme iron complex located between them is unclear. While some studies[150] 
indirectly suggested an involvement of the non-heme iron cofactor in this electron 
transfer process, others claimed the opposite[151]. Interestingly, the non-heme iron in the 
structurally similar photosystem II (PSII), is redox active although this is functionally 
not relevant. These conflicting views motivated to perform a computational study of the 
redox properties of non-heme iron complex in bRC by Ishikita et al.[152].  

      

Figure 32. General (left) and detailed (right) views of the non-heme iron cofactor in photosynthetic
bacterial reaction center of Rhodobacter sphaeroides. PDB code 1AIG[149]. 
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Normally such studies were done exclusively by using electrostatic energy 
computations[153, 154] combined with the knowledge of the measured redox potential of 
an analog model complex in a solvent. In this approach the electrostatic energy 
difference of the reduced and oxidized state of the cofactor is computed in the protein 
and solvent environment and the resulting difference of these electrostatic contributions 
to the redox energies is added the experimental redox potential of the model complex. 
This procedure works generally well since all other energy contributions approximately 
cancel in the double energy difference. However, for the non-heme iron complex no 
suitable model system in solution is available. Although in PSII the analog non-heme 
iron complex with measured mE  exists, it is structurally slightly different and more 

importantly it possesses a different ligand composition. Hence, the procedure developed 
in the present work is a suitable alternative to calculate the redox potential of this type 
of cofactor both in bRC and PSII.  

 

 

 

 

 

 

 

 

 

The mE  in bRC and PSII were estimated by computing the mE  of suitable model 

complexes in vacuum ( m
vac,E ). For this purpose, the non-heme iron model compounds 

corresponding to those in bRC (FemodelbRC) and PSII (FemodelPSII) were considered. 
Both models were derived from the atomic coordinates of the WT-bRC crystal 
structure[149], which was subsequently geometry optimized. The information from the 
PSII crystal structure was not considered for two reasons. (i) The crystal structure of 
PSII is of lower resolution than of bRC. (ii) Geometry optimizations of the model 

 

Figure 33. Electron transfer processes in bRC
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compounds that start from different initial coordinates may result in different energy 
minima.  

The redox potential difference in vacuum was calculated as  

 m m mod el m mod el
vac vac vac, , ,([Fe bRC]) ([Fe PSII])Δ = −E E E , (4.10) 

where the connection between redox potential and Gibbs free energy is defined by Eq. 
(3.4).  

 

 

 

 

 

 

 

Both model structures (FemodelbRC and FemodelPSII) include five ligands, which are four 
histidines and a carboxylic acid. The fifth bidentate ligand is a glutamate for bRC and a 
bicarbonate for PSII. The histidines were replaced by imidazoles the glutamate was 
substituted by acetate in bRC (Figure 34). This structure of FemodelbRC was then 
optimized according the procedure described in paragraph 3.1.3. Additionally, to avoid 
larger deviations from the atomic coordinates of the crystal structure all torsion angles 
were fixed such that only bond lengths and bond angles of FemodelbRC were optimized. 
In the quantum chemical computations, we considered the high spin states for the 
ferrous (S=2) and ferric (S=5/2) complexes. Based on the crystal structures of bRC and 
PSII the overlay of the atoms that are common for the two Fe model complexes yielded 
a RMSD of 0.32 Å. Relative to the initial model structure FemodelbRC from the bRC 
crystal the RMS deviation of the optimized reduced structure [FemodelbRC]1+ is 0.15 Å, 
while the RMS deviation is only 0.09 Å between optimized reduced [FemodelbRC]1+ and 
optimized oxidized [FemodelbRC]2+ geometries. The optimized structures of the redox 
states [FemodelbRC]1+ and [FemodelbRC]2+ were used to build up the starting structures of 
[FemodelPSII]1+ and [FemodelPSII]2+, respectively, where the methyl group of acetate was 

  

Figure 34. Model compound of non-hem iron in
bRC 

Figure 35. Model compound of non-hem iron in 
PSII 
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replaced by an OH group in order to generate a bicarbonate (Figure 35). During the 
geometry optimization of the FemodelPSII model complexes all atoms except for the OH 
group were fixed.  

Since the redox potential difference in vacuum was needed, only the quantum-chemical 
part of the B4(XQ3)LYP-approach, B4LYP, was used (see Eq. (3.6). By chance, the 
results obtained for m

vac,ΔE  using B3LYP and B4LYP are identical giving -99 mV. 

Obviously an error compensation is taking place in the difference m
vac,ΔE , including a 

double difference of energies. Such efficient error compensation was provided also by 
using the above described method of creating and optimizing the model compounds 
FemodelbRC and FemodelPSII. The value of m

vac, 99mVΔ = −E was further used by Ishikita 

et al (ref) for the calculation of the redox potential of the non-heme iron cofactor in 
bRC, which was obtained to be 186 mV[152].  

By using structures of FemodelbRC and FemodelPSII, which where obtained by optimizing 
the model complexes without restraining the torsion angles, no efficient error 
compensation in the difference m

vac,ΔE can be provided anymore, so that B3LYP and 

B4LYP lead to different values of m
vac,ΔE , -134 mV and -73 mV, respectively. 
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4.6 Conclusion and outlook 

The success of the B4(XQ3)LYP-approach for calculations of the absolute redox 
potentials of TMCs yielding an RMSD of 65 mV in comparison with experimental data 
is obvious. Indirectly it justifies our B4XLYP-hypothesis at least for the calculation of 
redox potentials of the considered TMCs. However, the exact form and the nature of the 
additional term X

xE  in the DFT functional is unknown. In this context the following 

questions arise:  

1) Is the X
xE  term playing a general role in the DFT approach, improving not only 

the hybrid-GGA potentials, but also other LSDA- and GGA-type exchange-
correlation potentials?  

2) Is the X
xE  term specific only for the B3LYP functional? 

3) If X
xE  really refers to a term of the DFT functional, is it contributing only to 

exchange or to correlation energy or is it simultaneously contributing to both 
energies? 

4) Has X
xE  something to do with exchange-correlation or is it a pure empirical 

correction?  

The only information that is available at the moment is the empirical post-
computational simulation that mimics the influence of X

xE  for the redox potentials 

TMCs considered here. The post-computation is performed by the third-order 
polynomial GX(q) in the total charge that is parameterized using a number of TMCs. 
This is of course not enough to start with speculations on the nature of X

xE  and to 

answer the above mentioned questions. GX(q) probably does more than just 
compensation of X

xE . It could also compensate for other possible deficiencies inherent 

in the DFT approach for TMCs. For example, the systematic underestimation of the 
redox-potentials occurring by using B3LYP (it could well be that this defect is also 
present in the incomplete B4LYP functional). In this sense, the information included in 
the GX(q) term can be considered as “contaminated”. Extensions of the B4(XQ3)LYP-
approach in the future, and studies on other model systems and other functionals will 
help to better understand the exact nature of the X

xE  term.  

Knowing the exact form of the X
xE  term would in principle enable the DFT approach to 

be generally useful for a large class of compounds. However, without this knowledge 
one is restrained to employ an optimized post-computational correction function, which 
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is specialized to compute redox potentials of TMCs and could vary for different 
quantities and different types of compounds.  

In its present form the B4(XQ3)LYP-approach can be applied to calculate redox 
potentials of the mononuclear transition metal complexes of iron, nickel and manganese 
in proteins and/or their model compounds. This is particularly useful for TMCs where 
experimental values of the redox potentials are unavailable or difficult to determine. 
Moreover, the B4(XQ3)LYP-approach would be very useful for organometallic 
chemists, which could thereby obtain the redox potential values and ground state 
multiplicities of interesting TMCs before they are synthesized.  

Currently the B4(XQ3)LYP-approach is intended to be applied for the calculation of the 
redox potentials of the heme model systems. An appropriate preliminary computational 
study on the structure and energetics of such a system is already done by author[121] so 
that the know-how can be furthermore used.  

In the near future an extension of the B4(XQ3)LYP-approach to the multinuclear TMCs 
is planned. Preliminary results (unpublished) show, that the B4(XQ3)LYP-approach in 
its present form is working also for these systems, in case the involved transition metal 
atoms are not anti-ferromagnetically coupled with each other. However, in most of the 
cases multinuclear TMCs exhibit the anti-ferromagnetic coupling, in which the spin 
vectors associated with individual metal atoms are in opposite orientations. DFT, being 
a single-determinant method, does not account for the contribution of the spin-coupling 
between the transition metal centers. In practice, however, the broken-symmetry 
approach developed by Noodleman[155] helps to overcome this deficiency of DFT. In 
this context the B4(XQ3)LYP-approach will be configured and optimized to account for 
spin-coupling contributions, based on the broken-symmetry approach. Undoubtedly, 
such an extension would expand the application range of the B4(XQ3)LYP-approach. 
Particularly, the redox- and spin-properties of the Ni-Fe and poly-Mn complexes 
associated with important systems such as the Ni-Fe hydrogenases and photosystem II, 
respectively, could be computed.  

 




