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Section 1.07 
2 

In this chapter the background information related to the techniques used in this PhD 
work is presented. The overview of the DFT-method is skipped here for which the 
reader is recommended to consult the comprehensive and competent works available in 
the literature, e.g. [27, 28]. The issues considered here are the Poisson-Boltzmann 
equation, continuum electrostatics, atomic partial charges, reference electrodes and spin 
states of transition metal complexes. In writing of this chapter I was basically guided by 
materials published in the following literature [29-41]. 

 

 

2.1 Electrostatic computations 

In this part (2.1) the background is given, which is needed to understand the methods 
used in this PhD work for the electrostatic computations. 

2.1.1 Poisson-Boltzmann equation 

2.1.1.1 Derivation 

Let us consider a system of point charges in a homogeneous continuum dielectric ε. In 
the simple case of a one charge q1 the electrostatic potential at position P (Figure 1), is 
given by:  
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 (2.1) 

where r and r1 are the vectors corresponding to positions of point P and charge q1, 
respectively. From now on the expressions will be given in atomic units, where the 
factor 4πε0 is unity. For the set of N point charges qi the equation (2.1) generalizes to  
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 (2.2) 

    
 

 

If dealing with the charge distributions instead of point charges (Figure 2), the 
electrostatic potential is defined using charge density ρ 
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. (2.3) 

 Recalling that the Green’s function for the three-dimensional Laplacian 2∇ is given by 
1( 4 )iπ −− −r r , and applying the Laplacian to both sides of the equation (2.2) one gets 

another fundamental equation of electrostatics − the Poisson equation 

 2

1

4( ) ( )πφ δ
ε=

∇ = − −∑r r r
N

i
i

i

q
, (2.4) 

where δ(r) is the Dirac delta function. Combination of equation (2.4) with expression 
(2.5)  
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= −∑r r r
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i i
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q , (2.5) 
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Figure 1. Simple model consisting of one charge
placed in homogeneous dielectric continuum ε. 

Figure 2. Electrostatic potential due to charge
distribution in homogeneous dielectric
continuum ε. 
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leads to more convenient form of Poisson equation  

 2 4 ( )( ) πρφ
ε

∇ = −
rr . (2.6) 

In the inhomogeneous medium the dielectric constant becomes dependent on the special 
position (Figure 3). For such cases the Poisson equation (Eq. (2.6)) adopts the more 
general form  

 [ ]( ) ( ) 4 ( )ε φ πρ∇ ⋅ ∇ = −r r r . (2.7) 

 

 

 

Let us consider now the more complex electrostatic model containing three regions. 
Two- and three-dimensional views of such model are represented on the Figure 4 and 
Figure 5. The internal region A with the dielectric constant of εA consists of the 
immobile point charges and is assumed to represent the molecule for which the 
electrostatic potential should be determined. The external region C represents the 
solvent as a dielectric continuum with dielectric constant εC and may contain mobile 
ions [for the simplicity the electrolyte consisting of monovalen ions (from now on 
denotet in text as 1:1 electrolyte) is considered to be a source of the mobile ions in the 
region C]. The region B is a layer around the region A, called “ion-exclusion layer”, 
which is penetrated by the solvent, remains however inaccessible for mobile ions. So 
the region B has the same dielectric constant εC as a region C. The thickness of the layer 
corresponds to the radius of the solvated ions. This system represents an extension to 
the basic Debye-Hückel model[42], where region A is just a single ion of the solution.  

      εε((rr))

PP

rr  

rrii  
  OOrriiggiinn      ρρ((rrii))  

rr  −−  rrii  

Figure 3. Electrostatic potential due to charge
distribution in inhomogeneous dielectric
continuum ε(r). 



 
 

THEORETICAL BACKGROUND ■ 

 15

The electrostatic potential φA in the A is described by Poisson equation (Eq. (2.6)) with 
the charge density ρA(r) and dielectric constant εA. Since there are no charges in the 
region B, the charge density function there is given by ρB(r) = 0, leading to  

 2 4 ( )( ) 0B
B

C

πρφ
ε

∇ = − =
rr . (2.8) 

The electrostatic potential φC in the region C is determined by the charge density 
function of the mobile ions and dielectric constant εC of the solvent. Debye-Hückel 
theory assumes, that the mobile ions in solution are distributed according to the 
Boltzmann distribution law, so that the ratio of the concentration of the ions of type s 
near the molecule in A ( r

sc ) to its concentration far away from A (cs) is given by 

 
W ( )r i

s kT

s

c e
c

−
=

r

, (2.9) 

where Wi(r) is the work required to move the ion of type i from |r| = ∞ (φ(r) = 0) to the 
point r, k − Boltzmann constant and T − absolute temperature.  

Since the solution in the studied model is considered to be 1:1 electrolyte solution, 
consisting of ions with charges +qs and −qs, then  

 W ( ) ( ), W ( ) ( )+ −= + = −r r r rs C s Cq qφ φ  (2.10) 

for the positive and negative ions, respectively. If rc+  and rc−  are the concentrations of 

positive and negative ions, respectively, then using Boltzmann distribution one can 
write  

 
( ) )

r r,
s C s Cq q

kT kT
s sc c e c c e

φ φ
− +

+ −= =
r (r

, (2.11) 

where cs is the concentration of ions at infinite distance from A where the electrostatic 
potential vanishes (φ(r) = 0).  

The charge density at the point r in the region C can then be determined by  

 
( ) ( )

r r ( )( ) 2 sinh
s C s Cq q

s CkT kT
C s s s s s s s s

qc q c q c q e c q e c q
kT

φ φ φρ
−

+ −
⎛ ⎞= − = − = − ⎜ ⎟
⎝ ⎠

r r rr . (2.12) 

For the general case equation (2.12) can be rewritten as 
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Figure 4. Schematic two-dimensional representation of the extended Debye-
Hückel model, consisting of three regions (A, B and C). εA and εC are the 
dielectric constants for the appropriate regions. 

Figure 5. Three-dimensional representation of the extended Debye-Hückel
model. The volume covered with meshed surface represents a region A,
including immobile point charges. The ion-exclusion layer (B) surrounding
region A is the volume between meshed and transparent-gray surfaces. The
outside volume is region C with mobile ions.   
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where Ns is the number of different types of ions s.  Accordingly, the electrostatic 
potential in region C is given by  
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2

1
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s Cs qN

C kT
C s s

sC C

c q e
φπρ πφ

ε ε
−

=
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rrr , (2.14) 

or in our case of a 1:1 electrolyte as 

 2 4 ( ) 8 ( )( ) sinhC s s s C
C

C C

c q q
kT

πρ π φφ
ε ε

⎛ ⎞ ⎛ ⎞∇ = − = ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

r rr . (2.15) 

Adding the ionic charge density [Eq. (2.13)] to the general Poisson equation [Eq. (2.7)] 
leads to the nonlinear Poisson-Boltzmann equation, governing the electrostatic potential 
φ(r) in all three described regions (A, B and C)  

 [ ]
s ( )N

s 1

( ) ( ) 4 ( ) e 4 ( )
−

=

∇⋅ ∇ + = −∑
r

r r r r
sq
kT

s sc q
φ

ε φ π πρ . (2.16) 

Concentration cs in equation (2.16) depends on the position (r), so that cs = 0, for the 
r ∈ A or B. Being nonlinear, this differential equation is difficult to solve. However it 
can be linearized by expanding the exponential term under the assumption that the 

rsq ( )
kT
φ   is small  

 
( )

2

1 1 1

1( ) ( ) ( ) ( )
ss s sqN N N
kT

s s s s s s
s s s

c q e c q c q
kT

φ

φ
−

= = =

≈ −∑ ∑ ∑
r

r r r r . (2.17) 

Since in the Debye-Hückel model the number of positive and negative ions is required 
to be the same, providing overall electroneutrality, the first summation in equation 
(2.17) vanishes  

 
1

( ) 0
sN

s s
s

c q
=

=∑ r . (2.18) 

The second summation in equation (2.17) can be rewritten elegantly using the definition 
of the ionic strength ( I ) which is  
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2

sN

s s
s

I c q
=

= ∑r r . (2.19) 

Then the Poisson-Boltzmann obtains its final linearized form 

 [ ] 8( ) ( ) ( ) ( ) 4 ( )I
kT
πε φ φ πρ∇ ⋅ ∇ − = −r r r r r . (2.20) 

The Debye-Hückel parameter (also called Debye screening constant) (kD) is defined as  

 2 2
D 2

1 D

4 8 1sN

s s
s

Ik c q
kT kT l
π π

ε ε=

= = =∑ , (2.21) 

where lD is called the Debye length. The modified Debye-Hückel parameter k  is given 
by  

 Dk k ε=  . (2.22) 

Finally, the equation (2.20) can be rewritten using the modified Debye-Hückel 
parameter k  

 [ ] 2( ) ( ) ( ) ( ) 4 ( )∇ ⋅ ∇ − = −r r r r rkε φ φ πρ . (2.23) 

2.1.1.2 Numerical solution of the Poisson-Boltzmann equation 

While analytical solutions of the Poisson-Boltzmann equation are available only for few 
idealized geometries (e.g. spherical or cylindrical), the complex geometries and charge 
distributions formed by most solutes, require numerical solutions. Most of the available 
programs use different versions of the finite difference method[43-45], where all relevant 
physical quantities  (molecular charges, electrostatic potentials, dielectric constant and 
ionic strength) are discretized (mapped) on a grid, replacing differential operators by 
grid value differences. More recently Holst et al.[46, 47] proposed and implemented new 
multigrid techniques, in order to achieve faster and more accurate solutions.  Among the 
other proposed approaches are so called boundary element method[48-50] and the finite 
element method[51, 52]. The program suite MEAD[53, 54] which is used in this doctoral 
work is solving the Poisson-Boltzmann equation using the finite difference method. The 
mapping is usually carried out on a cubic grid with grid constant h, by linear 
interpolation (Figure 6).  

Integrating equation (2.23) over volume (Figure 6) yields  
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 3 2 3 3[ ( ) ( )]d ( ) ( )d 4 ( )dkε φ φ πρ∇⋅ ∇ − = −∫∫∫ ∫∫∫ ∫∫∫r r r r r r r r . (2.24) 

The second term in equation (2.24) can be approximated by 2 3
0 0k hφ , where 0k  and φ0 

are respectively, modified Debye-Hückel parameter and electrostatic potential, 
associated with the grid point. The third integral gives 4πq0, where q is a total charge 
inside the volume element. The first integral can be transformed to a surface integral 
using Gauss’s theorem  

 2 3
0 0 0( ) ( ) d 4k h qε φ φ π∇ ⋅ − = −∫∫ r r A  , (2.25) 

where dA is the normal vector of the surface of the cubic element. The surface integral 
can now be calculated for all six sides of the cubical volume element separately, 
whereas the grad operator in the first term in [Eq.(2.25)] is substituted by its finite 
difference form 
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0
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r hε φ ε φ φ
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∇ ⋅ = −∑∫∫ A , (2.26) 
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Figure 6. Three-dimensional grid and a cubic volume element related to the grid points. The dielectric
constant (ε) is associated with the midpoint of the line joining neighbor grid points. The potential (φ),
charge (q), and ionic strength (I) are associated with the center of the cube. 
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where φ0 is the electrostatic potential at the center grid point, φi is the electrostatic 
potential at the six neighboring grid points and εi is the dielectric constant associated 
with the center of the line joining the center grid point with its neighbors (see Figure 6). 
Thus one becomes 
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2 3
0 0 0 0

1
( ) 4i i

i
h k h qε φ φ φ π

=

− − = −∑ , (2.27) 

Rearranging the equation (2.27) and solving it for φ0 gives  
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The solution of the equation (2.28) is starting from the initial guess for the φ at all grid 
points. Then the new estimates are calculated using equation (2.28). This procedure is 
repeated until the convergence criterion is met.  

Focussing. By using the grid method one should account for a problem, which appears 
on the boarders of a grid, namely the grid points at the boarders have less than 6 
neighbors. This leads to the problem to assign φ values for the grid points on the edges. 
To solve this problem it helps to take a grid, which is much larger than the molecule 
itself. In this case the points at the outer boundary of cubic grid have vanishing φ values, 
or are calculated from the Debye-Hückel approximation[35]  

 
ijkr

j
i

ij

q e
r

φ
ε

−

=∑ , (2.29) 

where rij is the distance of the j-th charge from the i-th grid boundary point. This 
expression is a better approximation to the correct values of the electrostatic potential at 
the boundary than zero. However for a large enough grids, there is no significant 
difference between setting electrostatic potentials at the boundary of the volume to zero 
or to the screened coulomb potential from the equation (2.29)[34].  

Despite of advantage of using large grids, one is forced to use for larger grid boxes 
poorer resolution, due to the computer limitations in CPU time and memory. 
Nevertheless, it is possible to solve this problem by using of the so called “focusing 
procedure”[55]. An initial calculation is performed on a large grid of lower resolution 
(Figure 7). This is followed by a computation on a smaller grid with higher resolution, 
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centered on the region of interest (focusing). The electrostatic potentials on the 
boundaries of the smaller grid are taken from the interpolated values of the larger grid. 

 

 

 
 
 

Grid energy. In the electrostatic computations one is confronted with a problem 
associated with the self-energy, which is the electrostatic energy of the point charge in 
its own electrostatic potential, which formally diverges. Usage of discretization on a 
grid allows to avoid these singularities, since the point charges here are smeared over 
the grid points in the volume elements. However the self-energy remains in form of so 
called “grid energy”, which is finite, but of an unknown arbitrary value, depending on 
the grid resolution and position (grid artifact). Nevertheless, it is possible to get rid of 
the grid energy as follows. Instead of calculation of absolute electrostatic energy one 
can calculate the energy differences between the systems with the same grid energy 
(charges and grid resolution and position are unchanged), leading to cancelling of the 
grid energy.   

2.1.2 Continuum electrostatics  

2.1.2.1 Dielectric screening 

In classical electrostatic theory, materials are considered to be homogeneous dielectric 
media, which can be polarized by electrical charges. So the solvent molecules and ions 
in the electric field, generated by the charges of the solute, develop a nonzero dipole 
moment, or increase it further, if they already possess one. The field created by these 
induced dipoles is directed against the inducing field, leading to its weakening. This 
field is called “reaction field”. The strength of the reaction field is determined by the 
magnitude of the inducing field. There are two ways how atoms or molecules can 
develop the dipole moment in the external electric field: “electronic polarization” and 
“orientational polarization” (also called “nuclear polarization”). Electronic polarization 

ccoouurrssee ccaallccuullaattiioonn

ffooccuusssseedd ccaallccuullaattiioonn

Figure 7. Two-dimensional representation of the focusing
procedure. 
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refers to the distortion of a molecule’s electron clouds by an applied field. Orientational 
polarizability is limited to molecules with a permanent dipole moment and refers to the 
tendency of the polar molecules to orient in an electric field. Both electronic and 
orientational polarizations are contributing to the value of a dielectric constant. Another 
contribution to the dielectric constant is an atomic polarization, which results from 
intramolecular vibrations and is estimated to have a small contribution (0.05-0.30) to 
the dielectric constant[56]. Electronic polarization alone leads to dielectric constants of 
about 1.5-2.5[56]. The orientational polarization leads to much larger dielectric constants 
(for example 80 in case of water). Accordingly, instead of explicitly accounting for the 
polarization of each atom, one can use a dielectric constant as a bulk measure of the 
polarizability of the media. In this case one speaks of a continuum model.  

2.1.2.2 Electrostatic energy 

An important property, which can be calculated from the electrostatic potential, is the 
electrostatic energy. In the simplest case of two charges qi and qj the electrostatic energy 
is given by  

 i jel
i i

ij

q q
G q

r
φ

ε
= =

 
, (2.30) 

where rij is a distance between two charges and φi is the electrostatic potential at atom i 
due to a charge at atom j. However, this expression (2.30) is valid only for a 
homogeneous dielectric, and cannot be applied for modeled system, containing a 
molecule placed in the solvent. In such a continuum electrostatic model, two regions 
with different dielectric constants are present: the solute with low dielectric constant and 
an infinite region with the dielectric constant of the solvent. To calculate the 
electrostatic energy of such heterogeneous system one can use electrostatic potentials 
calculated from the Poisson-Boltzmann equation (2.23).  

The total electrostatic standard  (°) free energy ( G ) of the solvated molecular system 

can be divided into a contribution from the Coulombic interaction of the charges with 
each other, CG , a contribution caused by the interaction of the charges with a 

polarizable solvent (reaction field energy), RG , and a contribution caused by the 

interaction of the charges with the distribution of ions in the solvent, induced by the 
charges, IG . Hence the total electrostatic energy G  will be given as  

 C R IG G G G= + + . (2.31) 
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Alternatively, the total electrostatic energy can also be represented as a sum of two sets 
of terms 

 ij iiG G G= + . (2.32) 

The first set ijG includes all pairwise interaction energies 

 , , ,ij C ij R ij I ijG G G G= + + , (2.33) 

where ,C ijG is a coulombic interaction energy between charges of atoms i and j, ,R ijG

represents an interaction energy of the charge on atom i with the reaction field induced 
by the charge on atom j, ,I ijG  is the interaction energy of charge at atom i with the ionic 

distribution in the solution induced by charge on atom j.  
The second set iiG includes all self-interaction energies 

 , , ,ii C ii R ii I iiG G G G= + + . (2.34) 

The coulombic self-interaction energy term ,C iiG  in expression (2.34) is the electrostatic 

energy of the charge in its own electrostatic potential. As it was already mentioned in 
the paragraph (2.1.1.2), the self-interaction energy ,C iiG is infinite. Nevertheless it can 

be transformed into finite grid energy by using a grid mapping in the numerical 
calculations (see paragraph 2.1.1.2). In analytical calculations, the problem of infinite 
self-energies is avoided by treating charged atoms as spherical shells of uniformly 
distributed charge[36]. The self-energy thus becomes finite. 
The second term in the equation (2.34), ,R iiG  is an interaction energy of the charge on 

atom i with its self reaction field, and the third term, ,I iiG stands for the interaction 

energy of the charge at atom i with the ionic distribution induced by the same charge in 
the solution. 

Using electrostatic potentials calculated from Poisson-Boltzmann equation (2.23) 
numerically on a grid, one obtains the total electrostatic energy, which includes however 
the grid energy. Considering a special technique, described above in the paragraph 
(2.1.1.2), one can get rid of the grid energy by using differences of electrostatic 
energies.  
In such a way it is possible to calculate separate contributions to the total electrostatic 
energy. In Figure 8 the thermodynamic steps of such procedure are represented. The 
contribution of IG  can be determined, by performing two finite-difference calculations 

(see step 3 on the Figure 8). While in both calculations the charges and dielectric 
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constants are the same, ionic strength in one of them is set to zero, leading to vanishing 
of IG  [Eq. (2.31)]. In the difference coulombic and reaction field terms cancel, since  

 

 
 
 
 
 
 
 
 

they are in both cases the same. Thus, one obtains 

 ( 0) ( 0), ,I I
IG G G> == − . (2.35) 

Similarly, the reaction field term RG  can be evaluated (step 2 in Figure 8) as a 

difference of the total electrostatic energies of the system by transferring the solute from 
the medium having the same dielectric constant as the solute (εm) to the medium with 
dielectric constant of the solvent (εext). 

The ionic strengths and charges should be kept unchanged. Here the CG  and IG  terms 

[Eq. (2.31)] are canceling in the difference, so that  

εεmm 

                  +           −                        +      +                                − −                  

II ==  00 
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εεeexxtt 

               +           −                        +      +                                − −                  

II ==  00 

εεmm 
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               +           −                        +      +                                − −                  

II >>  00 
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                   +             −                                   +  +                                                                                         − −                  
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CChhaarrggeess  iinnffiinniitteellyy  sseeppaarraatteedd 

II ==  00 

,C ijG  (1) 

RG
 
(2) 

IG  (3) 

Figure 8. Thermodynamic process for calculation of the contributions

,C ijG , RG and IG to the total electrostatic energy G of the solute
placed in a continuum dielectric. The dielectric constants of the solute
and external medium are signed as εm and εext, respectively. In step 1,
the value of the dielectric constant of the external medium εext is equal
to that of the solute εm. 
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 ( ; ) ( ; ), ,ext m m m
RG G Gε ε ε ε= −  . (2.36) 

The first step described in the Figure 8 is a molecular assembly of all charges in a 
homogeneous dielectric medium with dielectric constant εm. The energy of such an 
assembly, corresponding to the coulombic term ,C ijG , is calculated by using Coulomb’s 

law and carried out analytically  

 ,
1
2

i j
C ij

i j ì m ij

q q
G

rε≠

= ∑∑  . (2.37) 

The analytical solution of (2.37) doesn’t contain self-energy interaction. Adding the 
terms ,C ijG , RG  and IG  together yields the total electrostatic energy totG , which is free 

of the grid energy.  

2.1.2.3 Solvation energy 

Solvation free energy is defined as transfer energy of the ion or molecule from the 
vacuum into the solvent. Electrostatic solvation energy ( solGΔ ) can be computed as a 

difference of electrostatic energies [Eq. (2.31)] of the system in solution (εext) and  
vacuum (εext = 1)  

 ( ; ) (1; ), ,ext m m
solG G Gε ε εΔ = −  . (2.38) 

The electrostatic solvation energy is equal to the reaction field energy of the system, if 
the inter-atomic space in the solute is “filled” with vacuum (εm = 1) 

 ( ;1) (1;1), ,ext
sol RG G G GεΔ = = −  . (2.39) 

So far only the electrostatic part ( solGΔ ) of the total solvation energy ( , total
solGΔ ) has 

been discussed. However additional factors are contributing to the overall solvation 
energy. Mostly, , total

solGΔ  is considered to have three components 

 , total
sol sol vdW cavG G G GΔ = Δ + Δ + Δ  , (2.40) 

 where vdWGΔ is the energy of van der Waals (vdW) interactions between solvent and 

solute molecules; cavGΔ  is the cavitation energy to form a hole in the solvent, which is 

ready to insert a solute molecule. The cavitation energy comprises the change in entropy 
caused by reorganization of the solvent molecules around the solute, and is positive. 
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The reorganization process mostly affects the solvent molecules in the first solvation 
shell. Therefore, the entropy costs for reorganization will depend on the number of the 
solvent molecules in the first solvation shell. This number is approximately proportional 
to the solvent accessible surface area of the solute (a definition of the solvent accessible 
surface area is given in the paragraph 2.1.2.4).  

Since the van der Waals interaction energy decreases quickly with distance (1/r6), it is 
also expected to be dependent on the number of the solvent molecules in the first 
solvation shell of the solute. Therefore it is also roughly proportional to the solvent 
accessible surface area. Thus the contribution of both van der Waals and cavitation 
energies can be approximated by following linear expression  

 vdW cavG G Sα βΔ + Δ = + , (2.41) 

where S is the total solvent accessible surface area, and α and β are constants. The 
coefficients α and β can be taken from the experimentally determined solvation free 
energies of alkanes. The solvent accessible surface area S can be calculated using, for 
example the algorithm developed by Shrake and Rupley[57]. Since the van der Waals 
interaction energy is negative, it is partially compensating the positive cavitation 
energy.  

The contributions from the van der Waals and cavity terms can become significant 
especially for the uncharged and non-polar solutes. Since the model systems considered 
in this doctoral work are polar and predominantly charged, the influence of the nonpolar 
terms ( vdWGΔ , cavGΔ ) relative to the polar term solGΔ  is generally small and can be 

neglected.  

2.1.2.4 Molecular surface 

In continuum electrostatics an important point is the definition of the solute surface. The 
simplest space-filling representation of the molecular systems is given by merging the 
atomic spheres defined by de vdW radii of the atoms. It is so-called “van der Waals 
volume” and the boundaries are the “vdW surface” (Figure 9). However the vdW 
surface is not suitable for the study of solute-solvent systems, since it does not 
appropriately describe solvent accessibility. Some of the vdW surface may be buried in 
the inner regions of the molecule (for example, in proteins), where the solvent has no 
access (Figure 9). Using an idea of Lee and Richards[58], the outer surface of a protein 
can be constructed by rolling a solvent-sized probe sphere over the solute molecule 
(Figure 10). This surface is defined as “molecular surface”.  
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In 1978 Richmond and Richards have introduced the concept of contact surface[59]. The 
contact surface is that part of the vdW surface which is in contact with a solvent probe 
sphere (Figure 11). Soon afterwards, Richards introduced the reentrant surface[60], 
which is the inward facing part of the probe sphere by contacting more than one atom 
(Figure 11). The contact surface together with the reentrant surface forms the molecular 
surface.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

The surfaces depend on probe, vdw… 

 

 

 

 

 

 

 

 

Figure 9. Representation of the van der Waals
surface (thick line) 

Figure 10. Representation of the molecular surface
(thick line) 

 

solvent accessible surface 

probe sphere 
reentrant surface 

contact surface atom 

Figure 11. Two-dimensional model describing the surfaces of the solvent molecule. Thick line shows the
reentrant (black) and contact (orange) areas, which together form the molecular surface.  
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The volume captured by the molecular surface was called by M. Connolly “solvent-
excluded volume”[61]. 

Another surface type, relevant for the solute-solvent systems, was introduced by Lee 
and Richards[58] and called “solvent accessible surface”. The solvent accessible surface 
is traced out by the probe sphere center as it rolls over the molecule of interest (Figure 
11). It can be also defined as an expanded vdW surface, which is created by union of the 
atomic spheres with vdW radii increased by the probe radius (expanded vdW radii).  

Nowadays there are number of methods available for the calculation of the solvent-
accessible and molecular surface areas. Most popular of them are the algorithms 
developed by Shrake and Rupley[57], Richmond[62], and Connolly[63, 64]. The topology of 
the surfaces generated by these methods depends on such factors as vdW radii of the 
solute molecule and probe radius of the solvent. 

In this work program MEAD[53, 54],  is used to solve the Poisson-Boltzmann equation, 
where the boundary between the solute and dielectric continuum corresponds to the 
molecular surface.  

2.1.3 Atomic partial charges 

One of the essential parameters in electrostatic energy computations are the atomic 
partial charges. The atomic partial charges are formed due to the asymmetric 
distribution of electrons within the molecule. Unfortunately, partial charges are not 
directly measurable physical quantities, but they can be estimated from the quantum-
chemical computations or other molecular properties, which directly or indirectly are 
related to the electron density distribution in a molecule. Since these methods consider 
different models and concepts, the determined atomic partial charges depend on the 
method used for there estimation. In the meantime a number of such methods[65-71] are 
available, which can be divided in following groups: 

charges derived from 

1. population analysis of wave functions 

2. partitioning of electron density distribution 

3. electron density-dependent properties 

4. spectroscopic data 

5. other experimental data 

6. electrostatic potentials (ESP) 
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Among the listed methods most popular at present is the derivation of the atomic partial 
charges by the fitting them to reproduce the electrostatic potential, calculated at a large 
number of grid points around the molecule, using the least-squares procedure. The first 
important contributions to this area have been done by Momany[72], Scrocco and 
Tomasi[73], Smit, Derrison, and van Duijneveldt[74], and Cox and Williams[75]. The 
major advantage of the electrostatic potential derived charges is due to the fact that they 
optimally reproduce the intermolecular interaction properties of molecules[65]. It 
presumes however an appropriate level of accuracy of the quantum chemical 
calculations used for the derivation of the electrostatic potentials at grid points around 
the molecule of interest. The dependency of ab-initio derived charges from the basis set 
diminishes significantly by using of the basis set 6-31G* or a larger basis set[65].   

2.1.3.1 Charge derivation from electrostatic potential 

Unlike the atomic partial charges, the molecular electrostatic potential ( )rφ  is in 
principle an observable quantity and can be determined for each space point from the 
calculated wavefunction, using equations (2.42) and (2.43) 

 nucl
=1

Z( ) =
−∑r

r R
φ

M
A

A A

, (2.42) 

 elec
elec

d ' ( )( )
'

= −
−∫

r rr
r r
ρφ , (2.43) 

 nucl elec( ) ( ) ( )= +r r rφ φ φ , (2.44) 

where nucl ( )rφ and elec ( )rφ are the electrostatic potentials due to the nuclei and electrons, 

respectively, ZA – nuclear charge, elec ( )rρ - electron density. The least-squares fitting 

procedure is then used to derive a set of atomic partial charges, that will best reproduce 
the electrostatic potential at a number of points surrounding the molecule. Equation 
(2.45) represents the function 2

espχ , which should be minimized during the least-squares 

procedure 

 2 0 calc 2
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1
( )φ φ

=

χ = −∑
N

i i i
i

w , (2.45) 

where 0φi  is the electrostatic potential at i-th grid point, calcφi  is the electrostatic 

potential derived from the charge model, N is the number of grid points and wi the 
statistical weighting factor for the i-th point. Since the sum of the charges must be equal 
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to the total charge of the molecule (Z), each N-th partial charge qN will depend on the 
values of the others (qj) as follows  

 
1

1

Z
−

=

= −∑
N

N j
j

q q . (2.46) 

Now the electrostatic potential calcφi at grid point i, which is due to all charges qj, can be 

calculated using  
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Inserting expression (2.47)  in equation (2.45) yields 
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To find the minimum of 2
espχ , the first partial derivatives of 2

espχ  with respect to each of 

the (N-1) atomic partial charges must be set to zero resulting linear equations with the 
atomic charges as unknown. The details of this procedure can be found elsewhere[69].  

There are several examples of methods using electrostatic potentials to compute atomic 
charges, such as CHELP[70], CHELPG[67], Merz-Kollman procedure[68] and RESP[65]. 
One of the differences between these methods is the way to select the grid points at 
which the electrostatic potential is calculated[76]. However in all cases the region where 
the points are generated is the one beyond the van der Waals radii of the atoms involved 
– it is necessary to avoid getting to close to the nuclei, where the electrostatic potential 
is always positive[68, 75]. A comprehensive comparison and evaluation of the mentioned 
methods can be found in the literature[71, 76].  

Despite the superiority of the electrostatic potential based methods to other 
computational charge derivation methods, they have also some weaknesses. The charges 
generated using these methods are, for example not easily transferable between common 
functional groups. Another problem is that they depend on the conformation, leading to 
a number of artifacts in the conformational energetics[65, 77]. One reason for such a 
behavior is due to the statistical nature of the fitting procedure, which is relatively 
insensitive to the charges of buried atoms (e.g. sp3 carbon). The grid points for the 
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charge fitting procedure must lie outside the vdW surface of the molecule[68, 75]. It is 
obvious, that under such conditions the charges of buried atoms will be poorly 
determined, since the even closest grid points are placed relatively far away from them. 
In general, the less solvent-exposed an atom is, the less well determined is its charge[65]. 
Among the approaches deriving ESP charges, the mostly used one is the restrained 
electrostatic potential (RESP) method[65, 77], where some of the above mentioned flaws 
of classical methods of generating ESP charges are partially rectified. 

The RESP method, which will be described in the following paragraph, was used also in 
the present work to generate the atomic partial charges. 

2.1.3.2 Some details of the RESP method 

As it was already mentioned in the previous paragraph, that the restrained electrostatic 
potential (RESP) method[65, 77] belongs to one of the approaches generating charges 
from the electrostatic potentials derived from the quantum-chemically computed 
wavefunction. Unlike other methods, it is using restraints in form of a special penalty 
function in the charge derivation procedure. Using of these restraints helps to 
considerably minimize the known problems (see paragraph 2.1.3.1) of the ESP methods 
at the expense of only minor decrease in the quality of the fit of the resulting 
electrostatic potential compared to that determined quantum chemically[65]. 

By introducing of the penalty function 2
rstrχ to the charge fitting procedure in the RESP 

method, an additional term is added to 2
espχ  so that an error function is represented as  

 2 2 2
esp rstrχ = χ + χ . (2.49) 

The introduced penalty function has a hyperbolic form 

 2 2 2 1/2
rstr

j

(( ) )χ = + −∑ ja q b b , (2.50) 

where  a  is a scale factor defining the asymptotic limits of the strength of the restraint 
and  b  determines the “tightness” of the hyperbola around its minimum[65]. The 
hyperbolic form of the restraint function allows to reduce the overall magnitude of the 
fitted charges, mostly for the statistically poorly determined charges, without 
exorbitantly penalizing the larger, but better determined charges.   

Another kind of constraint which is possible to apply within the RESP protocol is to 
enforce a symmetry. This constraint is applicable in the cases where, geometrically non-
equivalent atoms become equivalent due to rapid exchange (e.g. hydrogen atoms by 
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rotation of CH3 or CH2 group). However, enforcing symmetry leads to unwanted 
reduction of the ESP in the regions of the polar atoms. As a solution to this problem the 
developers of the RESP suggested a two-stage approach[65, 77]. In the first stage the 
fitting procedure is performed with weak restraints and without enforcing symmetry. In 
the second stage the fitting is carried out only for those groups, which should be 
symmetrized.  

It has been shown[77], that the atomic charges generated using the RESP approach 
perform quantitatively very well for both solvation free energies and intramolecular 
conformational energies. 
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2.2 Referencing of redox potentials 

In this paragraph some points will be addressed, which are related to the reference 
systems used for the experimental determination of the redox potentials. These 
considerations are important in context of the present work, which relies on available 
experimental data of redox potentials. These data must be correctly standardized before 
they can be utilized.   

In the experiment the redox potential is measured relative to a reference electrode. The 
standard hydrogen electrode (SHE) is the reference from which all standard redox 
potentials are determined and has been assigned an arbitrary half cell potential of 0 V. It 
is very reproducible, showing differences of only 10 μV between different hydrogen 
electrodes. A typical design is shown in Figure 12. 

 

 

 

 

 

 

 

 

  

 

However, in the praxis the experimenters commonly use other reference electrodes, 
which are more suitable for the studied system. Accordingly, the measured redox 
potentials are often reported relative different reference electrodes. This complicates the 
use and comparison of these redox potentials, since the recalculation of their values is 
needed. The problem is that for some reference systems contradictory redox potential 
values are reported in the literature[78]. The most critical example is the redox potential 
of the ferrocenium/ferrocene redox couple (Fc+/Fc), which is used as an internal 

T = 25 °C

platinum wire 

platinized platinum 
electrode 

hydrogen blow  

solution with 
aH3O+ = 1 mol/l 

H2 
at 1 atm 

Figure 12. The scheme of the SHE. The platinum foil is suspended in sulfuric acid
solution having H+ unit activity (aH3O+ = 1 mol/l) at 1 atm and 25 °C. In order to 
maintain aH3O+  at 1 mol/l, purified H2 gas is injected into the system. The equilibrium 
is established between hydrogen and hydroxonium ions in solutions through a
platinum electrode coated with platinum black (platinized).  
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standard. In acetonitrile it appears often to have the value +400 mV versus the SHE[79] 
and many authors adopt this by recalculation of the data standardized against Fc+/Fc. 
They follow obviously the false assumption, that redox potentials are invariant with 
solvent[79, 80]. This assumption, however has been shown to be incorrect[81]. Other 
conflicting values (+450 or +400 mV versus SCE) were reported recently[82, 83]. Detailed 
comparison and critical review of some reference systems was reported by Pavlishuk 
and Addison[78], which performed direct measurements of these reference electrodes 
versus each other.  

Taking into account the issue addressed above, the author was very careful by the 
selection of the available experimental redox potentials for the present thesis work. The 
conversion factors, which were used to transform the redox potentials to the standard 
hydrogen electrode are following: Ag/AgCl +0.200 V[84], SCE +0.244 V[78], Fc+/Fc in 
acetonitrile (AN) +0.624 V[78], and Fc+/Fc in dimethylformamide (DMF) +0.702 V[85]. 
A pictorial representation is given on the Figure 13. 

 
 
 

 

 

 

2.2.1 Absolute electrode potential of SHE 

In the previous paragraph it has already been mentioned, that half-cell redox potentials 
are measured relative to the half-cell potential of SHE, which is arbitrarily set to 0. The 
SHE half-cell reaction is defined as 

 water g 2(g)
1H e H
2

+ + →  . (2.51) 

An important question is to determine the absolute electrode potential of the SHE, 
defined as a half-cell potential versus a free electron at rest in vacuum[86]. There is 
substantial interest in this, because the knowledge of this value would allow making 
comparisons of calculated potentials to measurable values. Considerable effort was 
applied to answer this question, and numerous estimates have been made for the 
potential of the SHE versus a free electron[86-93]. Reiss and Heller proposed a value of 
4.43 V[88], calculated from the thermodynamic cycle. This cycle includes the work 

0       mV 

SHE Ag/AgCl   SCE Fc+/Fc in AN Fc+/Fc in DMF 

200 244 624 702 

Figure 13. Scale representing the redox potentials of reference electrodes relative SHE 
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function of a semiconductor (110 p-InP), the Schottky barrier created between the InP 
and H2 saturated Pt, and the potential of zero charge for the Pt surface by contacting 
water at pH=0. The dipole of InP is assumed in this model to be 0. For the absolute 
potential of SHE Parsons proposed the value of 4.44 V[89]. He used a thermodynamic 
cycle, which combines the atomization and ionization energies of hydrogen with the 
free energy of proton solvation in water. However the values of the proton hydration 
energy reported in the literature are controversial[94-99]. Recently, Truhlar and Cramer 
suggested a value of 4.36 V[92], based on the latest gas-phase measurements of proton 
hydration from Tissandier et al.[98]. The International Union of Pure and Applied 
Chemistry (IUPAC) recommends the value of 4.44 V, based on the Trasatti’s 
suggestion[86]. Trasatti used an approach, which was similar to Parsons’s, but considered 
slightly different thermodynamic cycle. It includes the potential of zero charge of Hg, 
with its work function, the potential of an Hg/air/SHE cell, and the contact potential 
difference between Hg and water. Other values for the SHE absolute potential of 4.73 V 
and 4.7 V were obtained respectively, by Gomer and Tryson[87]and Hansen and Kolb[90]. 
However, in a subsequent study, Hansen and co-workers got a different value of 4.456 
V[91]. Recently, Donald et al. obtained the absolute potential value of 4.2 V by doing 
measurements with aqueous nanodrops in the gas phase[93]. Hence there is no general 
agreement on the absolute value of the SHE potential. The problem is that all these 
methods include assumptions, and have significant uncertainties.   
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2.3 Spin states of transition metal complexes 

For the description of the bonding nature and electronic structure of coordination 
compounds two theories are commonly used. These are the ligand and crystal field 
theories. In this paragraph only few points from these theories will be shortly touched, 
which are related to present work.  

The electronic structure of an isolated transition metal-ion involves five d-orbitals, 
which have the same energy (they are degenerated). Coordination of ligands to the 
metal-ion leads to loss of the degeneracy of the d-orbitals, resulting in their energy 
splitting. Three-dimensional representations of the five d-orbitals along the x, y, and z 
axis are given on the Figure 14.  

Due to the different orientations of the five d-orbitals in space (Figure 14), they interact 
differently strong with the electron orbitals of the ligands, which leads to differences in 
the orbital energy (loss of degeneracy). The character and magnitude of the energy 
splitting depends on a number of factors. These are: 

• ligand strength 
• coordination number 
• arrangement of the ligands around the metal ion 
• nature of the transition metal 
• oxidation state of the metal 

The orbital energy splitting in the octahedral and tetrahedral ligand field is demonstrated 
in the Figure 15.  

In the octahedral geometry the energy of eg-orbitals (dx2-y2 and dz2) is increasing (Figure 

15), since they are directly involved in the repulsive interaction with the orbitals of the 
ligand. The opposite happens when the four ligands coordinated to metal ion are 
building a tetrahedral complex: here the t2g-orbitals (dxy, dxz, dyz) are shifted up relative 
to the eg orbital (Figure 15). In the ligand field of other possible geometries the d-
orbitals show different splitting patterns. Since this energy splittings are not relevant to 
the current work, they will not be described here in more detail (see more in the 
literature[40, 41]).  

Through the splitting of the d-orbitals both low- and high spin electronic ground states 
for the transition metal complexes are possible. Such spin states for the related to the 
current work metal-ions (iron, manganese and nickel) are shown in the Figures 16-18. 
The factors influencing the orbital energy splitting regulate also the spin states of the  
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Figure 14. Representation of the d-orbitals along the axis. The colors indicate a phase of wave-function: 
positive (gray) and negative (white). 

 

Figure 15. Example of the energy splitting of the d-orbitals in transition metal complexes with identical
ligands in octahedral and tetrahedral geometry. Degenerate orbitals remaining after energy splitting are
called by convention t2g (dxy, dxz, dyz) and eg (dx2-y2, dz2). 
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Figure 16. Electronic configuration of Fe3+ and Fe2+ in the low- and high-spin states for the octahedral and
tetrahedral ligand field. 

 

Figure 17. Electronic configuration of Mn4+, Mn3+and Mn2+ in the low- and high-spin states, for the
octahedral and tetrahedral ligand field. The electronic configuration with one possible state (neither low-
nor high-spin state) is colored blue. 
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transition metal complexes. In a weak ligand field the ground state spin multiplicity is 
maximal (high-spin), whereas strong ligand field stabilizes the low-spin state with 
minimum spin multiplicity. However, in the ligand fields of intermediate strength the 
energy difference between the lowest vibronic levels of the potential wells of the two 
states may be so small, that already minor perturbations are able to effect a change in 
the state. This phenomenon is called spin transition or spin crossover. Spin-crossover 
centers are of great interest, because they are one of the best-known forms of an 
inorganic electronic switch. Spin crossover effects are known to occur in solid state and 
in solution. Spin transitions are very important in the biological active systems. The 
factors which can induce the spin transfer are the thermal energy, pressure and light. 
Thermally induced spin crossover occurs when the difference between low- and high-
spin energy levels of the complex is of about kT. When this criterion is met pressure- or 
light-induced transitions may also be observed[39]. 

 

 

Figure 18. Electronic configuration of Ni3+and Ni2+ in the low- and high-spin states, for the octahedral and
tetrahedral ligand field. The electronic configuration with one possible state (neither low- nor high-spin
state) is colored blue. 




