Endomorphisms of CAR and CCR Algebras

For the sake of completeness, we would like to include a brief survey on the
Cuntz algebras before discussing the main subject of our thesis. The content of
Section 1 is in no way essential for an understanding of Sections 2 — 4, so that this
section may be skipped at a first reading of the text.

We would further like to remark that proofs of statements in Sections 2 and
3 that already appeared in our papers [Bin95, Bin97, Bin98] will occasionally only
be sketched here.

1. THE CUNTZ ALGEBRAS O(H)

The universal C*—algebras O(H) generated by separable complex Hilbert spaces
H have been introduced by Cuntz in 1977 [Cun77]. (Hilbert spaces inside operator
algebras had before been considered by Doplicher and Roberts [DR72, Rob76a]).
They provided new examples of C'*—algebras with unexpected properties, but also
play an important role in the general structure theory of C*-algebras. See [EK98§]
for an account of O(H) in a textbook.

Let H be a separable complex Hilbert space of dimension™ > 2, with orthonor-
mal basis {s;}jes. The unital *-algebra generated by the elements of H, with
relations (cf. (0.5))

s*t=(s,t)1, s,te€e H

ZS]'S; =1

j€d
(resp. Eje 7, $i8; < 1 for any finite subset Jo C J, should H be infinite dimen-
sional), possesses a unique C*—norm. Its completion in this norm, the Cuntz algebra
O(H), is a separable, simple, nuclear C*—algebra [Cun77]. It can be constructed
from the full Fock space F(H) over H as follows [Eva80b]. Let 7(s) be the operator
of norm |[|s|| which acts on F(H) by tensoring on the left with s € H. Then

T(s)*7(t) = (s,)1, ZT(SJ‘)T(SJ‘)* =1-pqo (strongly)
j€d

and

where po denotes the rank—one projection onto the Fock vacuum 2. The C*-
algebra T(H) generated by all 7(s), s € H, is the Cuntz—Toeplitz algebra over
H. If H is finite dimensional, then T(H) contains the ideal generated by pq, the
compact operators on F(H). In this case O(H) is isomorphic to the quotient of
T(H) by this ideal. If H is infinite dimensional, then T(H) is simple, and in fact
isomorphic to O(H).

The isomorphism class of O(H) depends only on the dimension of H, thus it is
also customary to write O,, instead of O(H) (n = dim H). One has the following

"If dim H = 1, then the C*-algebra defined by these relations is the Abelian algebra gen-
erated by a single unitary operator s, isomorphic to the algebra of continuous functions on the
spectrum of s. The Cuntz—Toeplitz algebra T(H) introduced below then reduces to the C*-algebra
generated by the unilateral shift, the Toeplitz extension of C(T) by the compacts [Cob67].
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inclusions, since e.g. the elements s?,s;8s,...,818n,82,...,8, generate a copy of
021171 in On

On D On—i—m(n—l); m < o00.

In particular, O2 contains copies of all other O,. Algebras O,,, O, with m # n
cannot be isomorphic as their K¢—groups differ

Ko(0n) =Z/(n-1), Ko(0x) = Z.

Any orthogonal projection in O(H) is equivalent to a projection of the form
> finite 5355 O 1 — > q 40 8585. The unitary group U(O(H)) of O(H) is con-
nected, thus one has K;(O(H)) = {0} [Cun81]. If dim H is finite, U(O(H)) is
homeomorphic to the semigroup of all unital *-endomorphisms of O(H): given
u € U(O(H)), there is (by the universality of O(H)) a unique endomorphism g such
that o(s) = us, s € H C O(H); conversely, an endomorphism g determines the
unitary u =), ; 0(s;)s; € O(H) [Cund0].

Special examples of endomorphisms of O(H) have been given by Izumi [Izu93],
using fusion rules of sectors (cf. the definition (0.6) of direct sums of endomorph-
isms). Another class of endomorphisms of O(H) are the quasi—free endomorphisms,
namely those which leave H invariant. Non—surjective quasi—free endomorphisms
exist only in the case dim H = oo. Quasi—{ree automorphisms are extensions of
unitary operators on H. As a first step towards their duality theory for compact
groups, Doplicher and Roberts studied the quasi—free action of a closed subgroup
G of the special unitary group of H (dim H < oco0) on O(H) [DR&7], and in partic-
ular the relation between O(H) and its fixed point subalgebra O(H)% (serving as
a prototype for the relation between field algebra and observable algebra). They
showed that O(H)® is simple, with trivial relative commutant in O(H), and that
any automorphism of O(H) which acts trivially on O(H)% is given by an element
of G. Moreover, if gr(a) = ) sjas] is the endomorphism of O(H) induced by H,
then the G—invariant intertwiners between powers of QHlo( mye are the same as the
intertwiners between tensor products of the representation of G (the tensor powers
of H are canonically embedded in O(H)), and these intertwiners generate O(H)%.
These results have been extended to the case of Hopf algebra actions by Cuntz
[Cun9l).

An important tool in the study of O(H) is to consider O(H)T, the fixed point
algebra under the quasi—free action of the circle group T. As a Banach space,
O(H)T is generated by monomials s;, - - - s;,, s} ---sj (same number of s and s*).
If n = dim H is finite, then the monomials of the above form, with m fixed, con-
stitute a system of n™ Xx n™ matrix units, hence span an algebra isomorphic to
M(n™,C). Since the embedding s;, - - 8,87, -~ 8}, = D>_; iy " 8i,, 878585, " 8},
corresponds to the usual embedding M(n™,C) — M(n™*1,C), A~ A®1,, it
follows that O(H)T is an UHF algebra of type n®, canonically isomorphic to the
infinite tensor product of copies of M(n,C). In particular, 0,7 is isomorphic to
the CAR algebra. If dim H is infinite, then the monomials with fixed length m > 1
generate an algebra isomorphic to the compact operators Jo.(H) on H, and O(H)*
is isomorphic to a non—simple AF—subalgebra of the infinite tensor product of copies
(with unit adjoined) of Joo (H) [Cun77].

The representation of O(H)T as (a subalgebra of) an infinite tensor product
allows to define quasi—free states over O(H) as gauge invariant extensions of product
states to O(H) [Eva80b], by utilizing the canonical conditional expectation O(H) —
O(H)T. Specifically, any sequence of positive trace class operators {K;} on H with
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tr Kj =1 (resp. tr K; < 1if dim H = oo) yields a quasi-free state w3

k
wig(fr frg - 91) = Om Z(fjaKng'): fi»g9; € H.
=1

Quasi-free automorphisms restrict to product automorphisms on O(H)T, and og
restricts to the unilateral shift.

Quasi—free automorphisms and quasi—free states of O(H) have been studied by
Evans et al. [Eva80b, ACE84]. Among their results are conditions for existence
and uniqueness of KMS and ground states for one—parameter groups of quasi—
free automorphisms, characterizations of primary quasi—free states, and criteria for
implementability of quasi—free automorphisms in quasi—free states. For instance,
they showed that O(H) has no inner quasi—{ree automorphisms besides the identity.
Equivalence of quasi—ree states over O has been studied by Laca [Lac93b].

Representations of O(H) are closely related to endomorphisms of B(H). A
nondegenerate representation of O(H) on a separable Hilbert space H gives rise,
via the endomorphism gy induced by H, to a unital *~endomorphism of B(H)
(if dim H = oo, the representation 7 of O(H) has to be essential [Lac93a], i.e.
> w(s;)m(s;)* = 1 in the strong topology). Conversely, since B(H) has only
one normal representation up to quasi—equivalence, each unital *~endomorphism
of B(H) is inner. The representation of O(H) corresponding to an endomorph-
ism of B(H) is, however, only determined modulo quasi—free automorphisms. To
illustrate how properties of representations of O(H) are linked to properties of endo-
morphisms of B(H), one has e.g. that the commutant of an essential representation
7 of O(H) is equal to the algebra of fixed points of the corresponding endomorph-
ism gr, and that the commutant of the restriction of 7 to O(H)T is equal to the
intersection of the ranges of all powers of g,. Thus 7 is irreducible if and only if o,
is ergodic, and 7|gg)r is irreducible if and only if o, is a shift [Lac93a, BJP96]. A
classification of certain ergodic endomorphisms of %B(3H) up to conjugacy has been
achieved by Laca and Fowler, by describing all extensions of pure states over O(H )"
to O(H) [FL97].

Interest in the connection between representations of O(H) and endomorphisms
of B(H) arose from the theory of Ey—semigroups of endomorphisms which was initi-
ated by Powers [Pow88], with contributions by Arveson, Bratteli, Jorgensen, Laca,
Price, Robinson and others (see the review [Arv94] and references therein). One has
an index theory for Eyp—semigroups which gives partial results for the classification
of Ey—semigroups up to outer conjugacy. The basic examples of Ey—semigroups are
semigroups of Bogoliubov endomorphisms of CAR and CCR algebras.

Representations of O(H) related to wavelet theory have been studied by Bratteli
et. al. (see [BJ96, BJKW97] and references therein). They obtained the decompos-
ition of a special class of such representations (and of their restrictions to O(H)T)
into irreducibles via number theory.

The Cuntz algebras can be regarded as elementary building blocks of infinite
C*-algebras (algebras containing non—unitary isometries). Any unital simple infin-
ite C*—algebra contains copies of all O,, as subquotients (quotients of subalgebras)
[Cun77]. By Kirchberg’s results [Kir94a, Kir94b, Kir95, KP97], any separable unital
exact C*—algebra is isomorphic to a subalgebra of Q2 (and to a subquotient of the
CAR algebra); any separable unital nuclear (s.u.n.) C*-algebra is isomorphic to the
range of a conditional expectation of O2; and any simple s.u.n. C*—algebra which
contains a central sequence of copies of Oy is itself isomorphic to Q2 (cf. footnote
(h) on page 6). An important open question concerning Elliott’s classification pro-
gram for nuclear C*-algebras [El195, EK98] is whether any simple s.u.n. C*—algebra
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with vanishing Ky and Kj—groups is already isomorphic to Q2. Inductive limits of
matrix algebras over O,, have been classified by Rgrdam [Rgr93].
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2. QUASI-FREE ENDOMORPHISMS OF THE CAR ALGEBRA

Basics on the CAR algebra can be found in the textbooks [BR81, EK98, PR94]
and will be cited here only as far as necessary. Because of its convenience for
handling Bogoliubov transformations, Araki’s formalism of selfdual CAR algebras
[Ara68, Ara7l, Ara87] will be used throughout. A selfdual CAR algebra is simply
the complexification of a real Clifford algebra.

Most of the results in this section are contained in [Bin95]. However, it has
become clear in the meantime that a different arrangement of the material would
be desirable. Thus the present setup deviates from the one in [Bin95], most signi-
ficantly in Section 2.3. Minor improvements can be found throughout the text.

2.1. Quasi—free endomorphisms and quasi—free states. Let X be an
infinite dimensional separable complex Hilbert space, equipped with a complex
conjugation f — f*. The (selfdual) CAR algebra €(X) over X is the unique (simple)
C*—algebra generated by 1 and the elements of X, subject to the anticommutation
relation

{rat=fg+g9f* =1,  fgek
€(X) is the complexified (or C*-) Clifford algebra over the real Hilbert space

ReX={feX| [ = [},

a UHF algebra of type 2°°. The C*—norm on €(X) extends the norm on Re X (but
not the norm on X) up to a factor v/2. K will henceforth be viewed as a subspace
of ¢(X).

Quasi—free endomorphisms (or Bogoliubov transformations) are precisely the
unital *—endomorphisms of €(X) that leave X invariant. Put differently, every
isometry V on X that commutes with complex conjugation (and therefore restricts
to a real-linear isometry of ReX) extends to a unital isometric *—endomorphism
oy of €(X):

QV(f):Vfa fE:K

Such isometries V' are called Bogoliubov operators, and the semigroup of Bogoliubov
operators is denoted by
IK)={VeBXK)|VV=1V=V} (2.1)
where the bar indicates complex conjugation
Af = A(fH)*, fex (2.2)

for bounded linear operators A € B(X). The map V — gy is a unital isomorphism
from J(X) onto the semigroup of quasi—free endomorphisms; for fixed a € €(X),
the map V' — py(a) is continuous with respect to the strong topology on J(X) and
the norm topology on €(X).

Let V € J(X). Since ranV is closed and kerV = {0}, V and V* are semi-
Fredholm operators [Kat66] and have well-defined Fredholm indices. The map

J(XK) > NU{oc}, Vi —indV =dimkerV*

is a surjective homomorphism of semigroups (0 € N by convention). Additivity of
the Fredholm index follows in this special case simply from ker(VW)* = ker V* &
V(ker W*). The semigroup J(X) is the disjoint union of subsets

1= (J %), ™MK ={VeIX)|indV=-n}  (23)
neNU{co}

Note that gy is an automorphism if and only if V belongs to J°(X), the group of
unitary Bogoliubov operators. J°(X) acts on J(X) by left multiplication, the orbits
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of this action are the sets J*(X), and the stabilizer of V' € J*(X) is isomorphic to
O(n) (the orthogonal group of an n—dimensional real Hilbert space).
The quasi—free automorphism g_; induces a Zy—grading on €(X):

€(X) = €(K)o & €(K)1,

(’:(:K)g 'Q:(:K)g’ C €(j<:)g+g’;

€(X)y ={a| 0-1(a) = (-1)%a},  g,9' € Z»={0,1}.
Doplicher and Powers proved that the even subalgebra €(X)g is a simple C*—algebra
[DP68]. Stgrmer sharpened this result by showing that €(X), is UHF of type 2,
hence *-isomorphic to €(X) itself [Stg70]. We found that any V € J}(X) gives rise
to an isomorphism from €(X) onto €(X) in the following way [Bin97]. Let fy be
the unique (up to a sign) unitary skew—adjoint element in ker V* C €(X), and let
uy = %(1 + fv). Then uy is unitary, u?, = fv, and the map

oy :a— uyoy(a)uy”® (2.4)

defines a unital *-isomorphism from €(X) onto €(X)e. oy acts on even elements
like gy, and on odd elements like gy followed by left multiplication with fy. A
similar construction has been given independently by [Rob93].

Next we describe the set of states we are interested in. A state w over €(X) is
called quasi—free if it is invariant under g_; (i.e. it vanishes on €(X);), and if its
even n—point functions have the form [Ara71]

m(m

w(fiee fam) = (DF Y signo - w(fo fotmen) -+ (fotm Fotem))

where the sum runs over all permutations o satisfying o(1) < ... < o(m) and 6(j) <
a(j +m), j =1,...,m. Therefore quasi—{free states are completely determined by
their two—point functions, and one has a bijection

S ws, ws(f7g) =(f,59)

between the convex set
QUK)={SeB(XK)|0<S5<1, §:1—S}

and the set of quasi—free states. A (non—trivial) convex combination of two distinct
quasi—free states wg,wg: is quasiree if and only if S — S’ has rank two [Wol75].
Quasi—free endomorphisms act from the right on quasi—free states according to

Ws 0Py = Wy+sy- (2.5)
Any *—automorphism which maps the set of quasi—free states onto itself is known
to be quasi—free [Wol75].

Projections in Q(X) are called basis projections, and the corresponding states
are called Fock states; the latter are precisely the pure quasi—free states [MRT69].
The group of quasi—free automorphisms acts transitively on the set of Fock states,
because J°(X) acts transitively on the set of basis projections. Note that for a
basis projection P, the complementary (basis) projection is simply given by P.
Since wp(f*f) = 0if f € P(X), the elements of P(X) (resp. P(X)) correspond to
annihilation (resp. creation) operators in the state wp. A (faithful and irreducible)
GNS representation 7wp for wp is given by

mp(f) = a(Pf)" + a(P(f7)) (2.6)

on the antisymmetric Fock space F,(P(X)) over P(X), with the usual Fock va-
cuum Qp as cyclic vector and annihilation operators a(g), g € P(X). In a Fock
representation wp, a quasi—free endomorphism gy induces the transformation

a(g) = a(PV Pg) +a(PVP(g%)*, g€ P(X),
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which shows the connection to the (state-dependent) description of Bogoliubov
transformations by pairs of operators as preferred by some authors. GNS represent-
ations of arbitrary quasi—free states can be obtained, by the “doubling procedure”
of Powers and Stgrmer [PS70, Ara71], as restrictions of Fock representations of an
enlarged CAR algebra.

The grading automorphism g_; is not inner in €(X). However, since every
quasi—free state is invariant under this automorphism, g 1 is canonically imple-
mented in any quasi—free state. Let P be a basis projection, and let ¥p(—1) be
the self-adjoint unitary on Fock space given by

Up(—1)wp(a)Qp = 7p(0-1(a))Qp, a € ¢(X). (2.7
Then Op(—1) = \% (1—i¥p(—1)) is also unitary. Define a new representation ¢ p
of €(X) on F,(P(X)), which is unitarily equivalent to wp

Yp(a) = Op(—1)7p(a)Op(—1)*. (2.8)

We will call ¢p the twisted Fock representation induced by P. Then one has
Yple(x) = TPle(x)es (2.9)
Yp(a) = irp(a)¥p(-1), a € €(X)q, (2.10)
[7p (£)",¥p(9)] = i(f,9)¥p(-1),  fg€X, (2.11)

and, as shown by Foit [Foi83], twisted duality holds for all *~invariant subspaces
H C X, an adaptation of Haag duality (see p. 5) to Fermi fields:

7p(C(H)) = p(E(H))". (2.12)

Here €(H) is the C*—subalgebra of €(X) generated by the elements of 3, and
similar for ¢(H2).

Given a basis projection P, a state over €(X) is said to be (T-) gauge invari-
ant if it is invariant under the one—parameter group of quasi—free automorphisms
(0u, )rer with

Uy = P+ e 2P € I°(X). (2.13)

A quasi—free state wg is gauge invariant if and only if [P, S] = 0.

The so—called central state w; /> [SS64, Man70, Ara71] is the unique tracial state
over €(X). By uniqueness, w;/, is invariant under all unital *-endomorphisms
of €(X). It can be used to define conditional expectations on €(X). If V is a
Bogoliubov operator with —ind V' < oo, then there is a unique minimal (faithful)
conditional expectation Ey from €(X) onto gy (€(X)), determined by Ey (ab) =
awy /2(b) if a € €(ran V) = oy (€(X)), b € €(ker V*) (see [Bin95]). Using an explicit
“quasi-basis” for Ev, we computed the Watatani index [Wat90] of Ey in [Bin95]

ind By =2~ ndV,
Thus we found the fundamental index formula
1 1
dy = [€(X) : ov(€(X)))z =2Mv, My = —5indV (2.14)

which relates the Fredholm index of V' to the Watatani index [€(X) : oy (€(X))]
of pv. We shall take (2.14) as the definition of the numbers dy and My also in
the case —indV = oo. dy may be regarded as the statistics dimension of the
quasi—free endomorphism gy, cf. p. 8. One obviously has Myy: = My + My, and
dyyr = dydy:. Also note that the conditional expectations Ey allow to define left
inverses (see [Haa96]) oj,' o Ey for quasi-free endomorphisms. Explicitly, for a
quasi—free endomorphism gy, a left inverse ¢y is given by

pv(ab) = oy (a)wi 2(b) ifae&(ranV), be Cker V*). (2.15)
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Not surprisingly, the conditional expectations from €(X) onto €(X)o that are ob-
tained in this way from the isomorphisms oy of (2.4) (dy = v/2) are equal to the
mean over the action of Zs.

The von Neumann algebra generated by €(X) in the central state w; /, is the
hyperfinite II; factor. In general, the types of quasi—free factor states can be com-
puted from spectral properties of the associated operators S € Q(X). See [MY95]
for a complete classification (extending earlier results in [Del68, Rid68, PS70]),
including the fine classification of type III.

Of uppermost importance for our study of implementable quasi—free endo-
morphisms are the criteria for quasi—equivalence of quasi—free states. First results
in this direction were obtained by Shale and Stinespring [SS65]. These authors
showed that a quasi—free automorphism g7, U € J°(X), is unitarily implementable
in a Fock representation 7p if and only if

[P, U] is Hilbert—Schmidt. (2.16)

Equivalently, two Fock states wp,wp: (i.e. their GNS representations) are unitarily
equivalent if and only if P — P’ is Hilbert-Schmidt. A sufficient condition for
quasi—equivalence of gauge invariant quasi—free states followed from the work of
Dell’Antonio [Del68] and Rideau [Rid68]. Powers and Stgrmer proved this condition
also to be necessary [PS70], and Araki extended the result to arbitrary quasi—free
states [Ara71]. One has

ws mwg < SY2 — §"? is Hilbert-Schmidt. (2.17)

Here “~” means “quasi-equivalent”. It has been observed by Powers [Pow87] that
this criterion can be simplified if one of the operators S, S’ is a projection. Namely,
if P is a basis projection, then

wp X wg <= tr PSP < oo. (2.18)

Quasi—equivalence of the restrictions of gauge invariant quasi—{ree states to gauge
invariant CAR algebras ¢€(X)¢ (now with respect to the quasi-free action of an
arbitrary compact group G) has been investigated by Matsui [Mat87b], extending
results of Araki and Evans for the case G = Z2 [AE83], and of Baker and Powers
for the groups Z,, T and SU(2) [BP83b, BP83a]. If P, P’ are basis projections
commuting with the action of G, then one has [Mat87b]

wp|eye = wprle(xye <= P — P' is Hilbert-Schmidt, (2.19)
det p(30)1p7(sc)(9) =1 for all g € G. (2.20)

Ua?

Here “~" means “unitarily equivalent”, and P(X)NP'(X) is a finite dimensional G-
invariant subspace if P — P’ is Hilbert—Schmidt. The condition on the determinant
is a generalization of the Zs—index of Araki and Evans [AE83, Ara87, EK98]. If the
GNS representations of wp and wps are both realized on F,(P (X)) (this is possible
under the Hilbert—Schmidt condition), then the transformation law of the cyclic
vector (ps is exactly given by the character det p o)pr(x) (9). We will rediscover
this character in Section 4.1. On the other hand, if S, S’ € Q()K) commute with the
action of G and have trivial kernels, then one has [Mat87b]

wS|¢(g<)G = wS1|¢(g<)G = S§7 - S'% is Hilbert—Schmidt.

2.2. Representations of the form 7o g. As mentioned in the introduction
on p. 6, the representations describing superselection sectors in the algebraic ap-
proach have the form 7o o ¢ where my is a vacuum representation and g is some
localized endomorphism of the observable algebra. Here we study representations
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wpo gy of €(X) where mp is a Fock representation and gy a quasi—free endomorph-
ism, and in particular the decomposition of such representations into cyclic and
irreducible subrepresentations. Among the results are a necessary and sufficient
condition for implementability of quasi—free endomorphisms (a generalization of
the Shale—Stinespring condition), and alternative proofs of results of Bockenhauer
[B6c96].

Let us first repeat what is meant by “implementability of endomorphisms”.

DEFINITION 2.1.
A *—endomorphism g of a C*—algebra 2 is implementable in a representation (w, H)
if there exists a (possibly finite) sequence (¥,,)ner in B(H) with relations

T U, =l Z T,0r =1,° (2.21)
nel

which implements g via

m(o(@) =Y Tur(a)¥;,°  a€ (2.22)
nel

H then decomposes into the orthogonal direct sum of the ranges of the isomet-
ries ¥,,, and 7o g decomposes into subrepresentations 7 o g|ranw, , €ach of them
unitarily equivalent to w. But the converse is also true, so g is implementable in 7
if and only if 7o p is equivalent to a multiple of . For irreducible 7 this means

o is implementable in 7 <= 7wo g =~ 7. (2.23)

The isometries (¥, )ner constitute an orthonormal basis of the Hilbert space H =
span(¥,,) in B(H), with scalar product given by ¥*¥’ = (¥, ¥')1. Every element
¥ of H is an intertwiner from 7 to 7o p:

Ur(a) =7(0(a))¥, a€. (2.24)

H coincides with the space of intertwiners from 7 to 7o ¢ if and only if 7 is
irreducible. If 7 is reducible, there may exist several Hilbert spaces implementing
0, mutually related by unitaries in w(o(2))’. More precisely, if (¥,,)ner and (] )ner
both implement ¢ in 7, then ¥ = )~ ¥ ¥* is a unitary in 7(o())’, and ¥/, =
PU,,. Conversely, given (¥,),cr and a unitary ¥ € w(o())’, (TP, ),cr is a set of
implementing isometries.

An implementable endomorphism g gives rise to normal *—endomorphisms

or(a) =, c; ¥na¥;, of B(H), with index [Lon89)
[%(3) : on(B(30))] = (dim H)?,

where dim H does not depend on the choice of H = span(¥,). Let us outline
the computation of the index in the algebraic setting of Watatani [Wat90], for
the case dimH < oo. ¢m(a) = (dimH) 'Y, T*a¥, is a left inverse for gy
(cf. (0.15)), yielding the minimal conditional expectation Exy = gg o ¢g from
B(H) onto g (B(H)). (Vdim H - ¥} )p=1,. . dim g iS & quasi-basis for Ex, hence
indEg =dimH -, ¥, ¥, = (dim H)?. Of course, we will see that dim H = dy
(defined by (2.14)) if gy is a quasi—free endomorphism which is implementable in
some Fock representation.

Let us add a last remark on the general situation. Suppose we are given a set of
implementers (¥,,),ecs. Then for m,n € I, ¥, 0% € 7(p(™A))’ is a partial isometry
containing ran ¥,, in its initial space, and ¥,, = (¥,,¥*)¥,. This suggests to
construct a complete set of implementing isometries by multiplying one isometry

°in the strong topology if I is infinite. In the terminology of Laca [Lac93a], we only consider
essential representations of Cuntz algebras. See Section 1.
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¥ fulfilling (2.24) with certain partial isometries in 7w(o(21))’. We shall employ this
idea later in Section 2.4.

After this digression we concentrate on Bogoliubov transformations again. In-
spection of (2.23) leads one to study the representations 7p o gy; as will turn out,
they are quasi—equivalent to GNS representations associated with the states wpogy
(a similar observation has been made, in a different setting, by Rideau [Rid68]).
Thus the question of quasi—equivalence of such representations can be traced back
to the question of quasi—equivalence of the corresponding states.

Let P be a basis projection, let V' € J(X), and regard

v=PVV*P (2.25)

as an operator on P(X). The direct sum decomposition P(X) = kerv @ Tanv
induces a tensor product decomposition of Fock space: Fo(P(X)) = F,(kerv) ®
F.(tanv). Choose an orthonormal basis (f;);=1,...,n, for kerv = P(X) Nker V*,
where

Ny =dimkerv < My (2.26)

(the inequality follows from kerv @ kerv C ker V*). Let 1¢p be the twisted Fock
representation defined in (2.8), and let Iy, be the set of 2¥V multi-indices o =
(a1,...,1), aj €N, I < 00, obeying

0<I<Ny, 1<ai<--<aq<Ny (a=0ifl=0). (2.27)
For o € Iy, , set
Yo = Pp(for for) ($o =1),
Pa = Yallp,
Fo =mp(ov(€(X)))Pas
To = TPOQOV|7, -
Note that, by the CAR and (2.12), the 1), are partial isometries in mp(oy (€(X)))".

(2.28)

PROPOSITION 2.2.
Each of the 2NV cyclic subrepresentations (my, F o, do) induces the state wp o gy,
and wp o gy splits into their direct sum:

TpOopy = @ T

a€lny,

Proof. Tt is clear by definition that F, is an invariant subspace for 7p o gy with
cyclic vector ¢o. Since ¢, € 7p(ov(€(X))) and ¥ yQp = Qp, we have
(¢a,Ta(a)pa) = (Qp,mp(ov(a))p) = wp(ev(a)), a € €(X). Thus (Ta, Fa, $a) is
a GNS representation for wpogy (and the representations 7, are mutually unitarily
equivalent).

Next we show JF,1F3 for ¢ # (. Since at least one of the vectors
YatbpQp, Yj1haQp vanishes if a # 3, we have for a,b € €(X)

(mp(ov(a))da; mp(ov(D)ds) = (Yallp, mp(ov(a*b))sflp) =0,
implying orthogonality of F, and Fg.
Finally we have to prove F,(P(X)) = ®oF 4. Using 7p(ov(f)) = a(PV f)* +
a(PV f*), f € X, one can show by induction on the particle number
Fo = 7p(ov(€(X)))Qp = Fy(ran PV) = F,(tanv).

Since the ¢, form an orthonormal basis for F,(kerv), the assertion follows. O

The decomposition of these cyclic representations into irreducibles will be examined
after stating the implementability condition. Remember that P =1 — P.
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THEOREM 2.3.
A quasi-free endomorphism gy is implementable in a Fock representation wp if and
only if PV P is a Hilbert-Schmidt operator.

Proof. In view of (2.23) and Proposition 2.2, gy is implementable in 7p if and only if
wpogy = wp. Since wpogy = wy+py by (2.5), the Powers—Stgrmer—Araki criterion
in the form (2.18) implies that wp o gy ~ wp if and only if tr PV*PV P < co. The
latter condition is clearly equivalent to PV P being Hilbert-Schmidt. |

Note that PV P is Hilbert-Schmidt if and only if [P,V] = PVP — PVP is, so
the Shale—Stinespring condition (2.16) remains valid. We denote the semigroup of
Bogoliubov operators fulfilling this condition by

Ip(X) = {V € J(X) | PV P is Hilbert-Schmidt}.

Since PV P and PV P are compact for V € Jp(X), PVP+PVP =V —-PVP-PVP
is semi—Fredholm, and

My = —ind PVP € NU {o0}.
Thus we have a decomposition (cf. (2.3))

IpK) = |J IBK), IBK) ={V eTp(K) | My =m}.

meNU{co}

The group J%(X) is usually called the restricted orthogonal group [PS86]. Note
that the “statistics dimension” dy defined by (2.14) is contained in N U {oo} if
V € Ip(X). Note also that non—surjective quasi—free endomorphisms cannot be
inner in €(X) since the CAR algebra, being AF and thus finite, does not contain
non—-unitary isometries.

In the course of constructing localized endomorphisms for the conformal WZW
models, J. Bockenhauer described the decomposition of representations mpo gy and
of their restrictions to the even subalgebra €(X), into irreducibles [Boc96] (see also
[Sz194]). His methods work only for Bogoliubov operators with finite index, i.e.
those belonging to the sub-semigroup

I7(K) = {V € I(K) | My < oo}.
We shall now present alternative proofs of his results which have the merit of being
completely basis—independent.

For V € J(X), let Qv be the orthogonal projection onto ker V*, and let Sy be
the operator characterizing the quasi—{ree state wp o gy

Qv=[V*,V]=1-VV*, = Sy =V*PV € Q(X).
The operators Qv and Sy Sy have finite rank if V € 77 (X).

Let us first determine when two representations of the form wpo gy (P fixed)
are unitarily equivalent.

LEMMA 2.4.

Let V,V' € 3°(X). Then the following conditions are equivalent:
a) mpo gy and wp o gy are unitarily equivalent;
b) there exists U € 1%(X) with V! = UV;
¢)indV =ind V', and Sy — Sy is Hilbert-Schmidt.

Proof. We first show a) = ¢). By Proposition 2.2, 7p o gy ~ 7p o gy implies
1 1

Wsy = WpoQy R wpo gy = ws,,. Hence by (2.17), Sg — Sy, is Hilbert—Schmidt

(HS) which is, for V, V' € J%(X), equivalent to Sy — Sy being HS (see [B6c96)).

Moreover, equivalent representations have isomorphic commutants. We have by
(2.12) wp(ov (€(X))) = Yp(€(ker V*))" ~ mp(€(ker V*))". Hence the commutants
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have dimensions d3, = 27"V resp. d3,, = 274V’ and the indices of V and V"
must be equal.

Next we show ¢) = b). Let u be a partial isometry with initial space ker V*,
final space ker V'*, and u = % (such u exists due to *—invariance and equality of
dimensions of the kernels). Then U = V'V* + u is an element of J°(X) and fulfills
V! = UV. We have to prove that PUP is HS. But u has finite rank, so it suffices
to show that A = PV Sy, V*P is of trace class. Since Sy Sy and Sy Sy have finite
rank, Sy Sy + Sy Sy = (Syr — Sy)(Sy — Sy1) + Sy Sy + Sy+ Sy is trace class.
So the same is true for A = AQy + AVV* = AQv + PV (Sy/Sy + Sy Sy )V* +
PQyPV Sy V*.

b) = a) is obvious. O

In order to apply part c) of the lemma, we need information about the operators
Sy . An orthogonal projection E on X is called a partial basis projection [Ara7l] if
EE = 0. By definition, the codimension of E is the dimension of ker(E + E). For
instance, V. PV* is a partial basis projection with codimension 2My = —ind V' for
any V € J(X). The following lemma holds for arbitrary S € Q(X) (except for the
formula for the codimension, of course) as long as SS has finite rank.

LEMMA 2.5.

Let V € J87(X), and let Ey denote the orthogonal projection onto ker Sy Sy. Then
Sy Ey = EySy is a partial basis projection with finite codimension 2(My — Ny).
Moreover, there exist Ay,... , A\ € (0, %), r < My — Ny, partial basis projections

E.,... ,E,., and an orthogonal projection E1 = E1 such that

1 1
2 2

T
Ev+E% +Z(Ej +FJ) =1,

=1

1 - _
Sv = SvEy + 5By + ;1 (VB + (1= \)E). (2.29)

Proof. Since Sy Sy = Sy — S%, Sy commutes with Ey and fulfills Sy Ey = SZ Ey
and (SyEy)(SvEy) = SySyEy = 0. Hence SyFEy is a partial basis projec-
tion. The dimension of ker(Sy Ey + Sy Ey) = ker Ey (the codimension of Sy Ey)
equals the rank of Sy Sy. By Sy Sy = V*PQy PV, the rank of SySy is equal to
dim V*P(ker V*). Now consider the decomposition

ker V* = kerv @ ker v @ (kerV* o (kerv & kerﬁ))

with v given by (2.25). V*P vanishes on kerv @ ker v, but the restriction of V*P
to ker V* © (ker v @ ker D) is one to one since V*Pk = 0 = V*k implies V*Pk = 0,
i.e. k € kerv@kerv. Hence the codimension of Sy Ey equals dim(ker V* © (ker v ®
kerv)) = —indV — 2Ny.

Let sy denote the restriction of Sy to ranSySy. sy is a positive operator
on a finite dimensional Hilbert space and has a complete set of eigenvectors with
eigenvalues in (0,1). If X is an eigenvalue of sy, then 1 — A is also an eigenvalue
(with the same multiplicity) due to sy +38y = 1— Ey. Thus there exist A\,... , A, €
(0, 1) and spectral projections By, E,...,E, with E_% = Ey, E;E; = 0 such that
Ei 43 (Bj+Ej)=1-Ey and sy = 3B + Y7, (NEj + (1= N)E)). O

As a consequence, operators Sy with My = % necessarily have the form Sy =

Sy Ey + %E% where B3 = 1 — Ey has rank one. By taking direct sums of V' €

J1(X) with operators V(o) from Example 1 below, we see that any combination
of eigenvalues and multiplicities that is allowed by Lemma 2.5 actually occurs for
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some Syr. Therefore any S € Q(X) such that SS has finite rank is of the form
S = Sy for some V € Ji7(X).

We further remark that a quasi-free state wg with S of the form (2.29) is
a product state? as defined by Powers [Pow67] (see also [MRT69, Man70]) with
respect to the decomposition X = ker SS @ ran E% @ GBJ. ran(E; + E) Clearly,
the restriction of wg to €(ker SIS) is a Fock state, the restriction to €(ran Ey) the
central state.

EXAMPLE 1.
Let (fn)nen be an orthonormal basis for P(X), and set E, = fn{fn,.), with f; =

(fu+£)/V2, f7 =i(fn—£2)/V2. Then (£2)s=+, nen is an orthonormal basis for
X consisting of *—invariant vectors. For ¢ € R, define a Bogoliubov operator

V(p) = (fo" cosp + fi sing)(fg",-) + (fo sing — fi" cosp)(f5 ;)
+ Y faalfn).

s=+,n>1
Then V(p) € J%(X), and the eigenvalue A, = 3 (1+sin2¢) of Sy (,) = ApEo + (1 —
Ao)Eo + > n>1 En assumes any value in [0, 1] as ¢ varies over [~ /4,7 /4].

Next we characterize the Bogoliubov operators V' for which Sy takes a particu-
larly simple form. A distinction arises between the cases of even and odd Fredholm
index. Note that the parity of —ind V' is equal to the parity of dimker(Sy — %) (it
is well-known that quasi-free states ws with dimker(S — ) even resp. odd behave
differently (cf. [MY95)])).

LEMMA 2.6.
a) Let W € J(X). Then the following conditions are equivalent:
(i) wp o ow is a pure state;
() Sw is a basis projection;
(iii) [P,WW*] = 0.
If any of these conditions is fulfilled, then Myw = Nw and tpoow =~ dw -7g,, .
b) For any basis projection P' and m € NU{oo}, there exists W € J*™(XK) with
Sw = P'.
c) Let W € 357 (X). Then the following conditions are equivalent:
(i) wpo ow is a mizture of two disjoint pure states;
(i) SwEw is a partial basis projection with codimension 1;
(iii) [P, WW™*] has rank 2;
(i) Mw = Nw + %
d) For any partial basis projection P' with codimension 1 and m € NU {oo},
there exists W € 3™ (X) with SwEw = P'.

Proof. a) We know from Section 2.1 that wp o gw is pure if and only if Sw is a
projection. We have

SE, =Sy <= W*PQwPW =0 < QwPWW*=0 < [P,WW*]=0.

If this is fulfilled, then ker WW* = ker(PWW*P) @ ker(PWW*P) has dimension
2Mw = 2Nw. By Proposition 2.2, mp o gy is the direct sum of 2V = dy,
irreducible subrepresentations, each equivalent to the Fock representation 7g,, -

b) Let m and P’ be given. There clearly exists W' € 3™ (X) with [P, W'] = 0.
Since J°(X) acts transitively on the set of basis projections, we may choose U €
7%(X) with U*PU = P'. Then W = W'U has the desired properties.

PA state w is a product state with respect to a decomposition X = @;X; of X into closed,
*—invariant subspaces if w(ab) = w(a)w(b) whenever a € €(XK;), b € C(JCJJ.-).
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c) (ii) & (iii) follows from the facts that the codimension of Sy Ew equals
the rank of WW*PQw (cf. the proof of Lemma 2.5) and that [P,WW*] =
QwPWW* — WW*PQw. (ii) is equivalent to (iv) by virtue of Lemma 2.5.
(ii) = (i) has been shown by Araki [Ara7l]. To prove (i) = (iv), assume that
Mw > Nw + % (if Mw = Ny, then Sy is a basis projection and wp o gy pure).
Then one can show that wp o gy is a mixture of two quasi—equivalent orthogonal
states (see [Bin95]), hence cannot be a mixture of two disjoint pure states. This
proves part c).

d) Let (fn)nen be an orthonormal basis for P(X), (gn)n>1 an orthonormal basis
for P'(X), and go a unit vector in ker(P' 4+ P’). Set

V=g, )+ Y, fian)
s=£,n>1
(we used the notation of Example 1). Then V € J1(X) and Sy = go(go,.) + P".
This implies Sy Ey = P’, and if we choose W' as in the proof of b), then W = W'V
has the desired properties. O

Now we are in a position to discuss the decomposition of representations wp o gy
with V € J8%(K). If —indV is even (resp. odd), then Sy Ey is a partial basis
projection with even (odd) codimension by Lemma 2.5, and there exists a basis
projection (partial basis projection with codimension 1) P’ such that P’ — Sy is
Hilbert-Schmidt (we may choose P’ to coincide with Sy Ey on ker Sy Sy; then
P' — Sy has finite rank). By Lemma 2.6, there exists W with ind W = ind V' and
SwEw = P', and Lemma 2.4 implies mpo gy ~ mpoow. The latter representation
splits into 2% copies of the GNS representation 7s, for the state wp o pw by
Proposition 2.2. If —indV is even, then g, = mpr and 2Nw = dy. If —indV
is odd, then 7s, = 7+ @ 7~ where 7 are mutually inequivalent, irreducible, so—
called pseudo Fock representations by virtue of a lemma of Araki (see [Ara71] for
details), and 2Mv = 2~ 3dy.

Summarizing, we rediscover Bockenhauer’s first result on representations of the
CAR algebra [B6c96):

THEOREM 2.7.
Let P be a basis projection and V € 35°(X). If —indV is even, then there erist
basis projections P' such that P' — Sy is Hilbert—Schmidt, and for each such P’
mpo gy ~dy - Tpr.
If —indV is odd, there exist partial basis projections P' with codimension 1 such
that P' — Sy is Hilbert—Schmidt. For each such P’,
Tpogy ~2 3dy - (mh & 7p)
where 7r}i,, are the (inequivalent, irreducible) pseudo Fock representations induced
by P'.
Using the isomorphisms oy, : €(X) = €(K)o, V1 € I}(X), from (2.4), we can
immediately see how the restriction of wp o gy to €(X) decomposes. From
mpo ov(€(X)o) = mp o gv ooy, (E(K)) ~ mp o oy, (€(X))
and Myy, = My + %, dvv, = V/2dy, we infer Béckenhauer’s second result [B6¢96]:
COROLLARY 2.8.
Let P be a basis projection and V € J8°(X). If —ind V is even, then mpo ov |e(x0)0
is equivalent to a multiple of the direct sum of two inequivalent irreducible repres-
entations, with multiplicity dy. If —indV is odd, then wpo gv|¢(g<)0 s equivalent
to a multiple of an irreducible representation, with multiplicity v/2dy .
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2.3. The semigroup of implementable endomorphisms. From now on
we choose a fixed basis projection Py, and we set P, = 1—P; = P;. Let us introduce
the following notation. The components of an operator A € B(X) are denoted by

Apn = Ph,AP,, m,n=12
and are regarded as operators from X,, = P,,(X) to X,,. Thus ker A,,,,, (ker 4,,,)*,
(ran A, )"+ etc. are viewed as subspaces of K,,, and relations like
Amn* = A*nm, A—ll = ZQQ, etc.
will frequently be used. We also use matrix notation A = (4!! 412 with respect
to the decomposition KX = K; ® Ks. A is called antisymmetric if
AT = A* = —A. (2.30)

If H is a subspace of X, then H* will denote the complex conjugate space (and not
the dual space)
H ={f"| feH}

Thus one has e.g. X;* = K,. The reader is kindly asked to pay attention to the
various meanings of the star “*”. The correct one should always be clear from the
context.

Let V € Ip, (K) = {V € J(X) | V12 is Hilbert—Schmidt}. The relation V*V =1
reads in components

Vit Vin 4+ Va1 " Vo1 = P, (2.31a)
Vao*Vas + Vi2*Vip = P, (2.31b)
V1" Viz + Va1 *Vag = 0, (2.31c)
Vao*Var + Vi2* Vi1 =0, (2.31d)

and the relation V = V entails that
Vii = Voo, Viz = Var.

V11" Via, Va1 Vage, Vay* Va1 and Vi2*V); are antisymmetric by (2.31c) and (2.31d).
Since V15 is a Hilbert-Schmidt operator by Theorem 2.3, Va3* Vs is Fredholm
(with vanishing index) by (2.31b). This implies

Ly = dimker Vs = dimker V55" V55 < 0. (2.32)
Note that Viz|ker v3, 18 isometric and, by (2.31c),
Via(ker Vas) C ker Vi1* NranV. (2.33)

As mentioned after Theorem 2.3, Vi; is semi-Fredholm with —ind Vj; = My.
These observations imply

dim(ker ‘/11* S) Vlg(ker ‘/22)) = Mv. (234)

The semigroup of implementable quasi—free endomorphisms is isomorphic to
the semigroup Jp, (X). The latter is a topological semigroup relative to the metric
(cf. [Ara87])

o (V,V') = [V =V'[| + [[Vi2 = Vialuss
where || ||gg denotes the Hilbert-Schmidt norm. Jp, (X) contains the closed sub—
semigroup of diagonal Bogoliubov operators (which are also called gauge invariant,
because they commute with the T-action (2.13)):

Taing(K) = {W € I(X) | [P1, W] = 0} (2.35)

Jaiag (%K) is isomorphic to the semigroup of isometries of X1, via the map V' +— Vi;.
The restricted orthogonal group 3931 (X) has a natural normal subgroup

Jus(X) = {U € I(X) | U — 1 is Hilbert—Schmidt}.
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An automorphism gy, U € J%, (X), is implementable in all Fock representations
if and only if U € Jus(K) or —U € Ius(X) [SS65, Ara7l]. The group Ius(X) is
also related to the group of quasi—free automorphisms which are weakly inner in
the representation associated with the central state wi [Bla58].

We shall prove that each V' € Jp, (X) can be written as a product
V=UW, withU € sz(jC), W e Jdiag(fK) (2.36)

(it is known that each V' € J%, (X) has this form [CO83]). Suppose for the moment
that such U and W exist. Then P = UP,U* is a basis projection which extends
the partial basis projection V. P V* such that

P, — P is Hilbert—Schmidt, V*PV = Py. (2.37)

The corresponding Fock state wp is unitarily equivalent to wp, and fulfills wpopy =
wp,. The proof of the product decomposition V' = UW involves the construction
of such basis projections P. So let us start with a parameterization? of the set

Pp, = {P € QK) | P2 = P, P, — P is Hilbert-Schmidt} (2.38)

of basis projections of X which differ from P; only by a Hilbert—Schmidt operator.
P p, is isomorphic to the set of all Fock states which are equivalent to wp,. Let $p,
be the Hilbert space of all antisymmetric (see (2.30)) Hilbert—Schmidt operators
from X; to Ko

Hp, ={T € B(K1,X3) | T™ = =T, T is Hilbert—-Schmidt}, (2.39)
let §p, be the set of all finite dimensional subspaces of X
§p, = {h C X1 | b is a finite dimensional subspace},
and let
Pr, = {(T,h) € Hp, xTp, | h Cker T} (2.40)
Then the following holds.

PROPOSITION 2.9.
The map

P~ (P21P11_1,kerP11)
is a bijection from PBp, onto ‘i?pl, with inverse given by

(T, f)) — P(T,h) = Pr— Py + Dy- (2.41)

Here P ' € B(K1) is defined as the inverse of P11 on the closed subspace ran Pyq
and as zero on the finite dimensional subspace ker Py1. Pr is the (basis) projection
onto ran(Py + T)

Pr=(PL+T)P+T*T) Y (P + T, (2.42)
and py is the (partial basis) projection onto b C K.
Proof. Let us rewrite the conditions on P to be a basis projection

P=P*=1-P=P?

9Similar ideas can be found in the book of Pressley and Segal [PS86].
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in components:

Py = Pi,* = P, — P, (2.43a)
Py = Pyy* =P, — Py, (2.43Db)
Py = Pio* =P’ (2.43c)
Py — Piy® = Py * Py, (2.43d)
Py — Pyy® = Ppy* Pr, (2.43¢)
(P1 — Pi1) P12 = P12 Py, (2.43f)
(Py — Pa3)Poy = Py Py, (2.43g)

and note that, because P, — P = Pyy — Py; — Py1* — Pyo,
P, — P is Hilbert—Schmidt (HS) <= PP is HS.

Now let P € Pp,. Then Po; is HS, Pag is of trace class, and P;; is Fredholm with
index zero by (2.43a). Therefore ran Py; is closed and ker P;; has finite dimension.
It follows that Py;~! is a well-defined bounded operator such that Py1 P1 ™' =
Py Py is the projection onto ran Py;. We have ker Py C ker P2y by (2.43d),
hence by (2.43a)—(2.43¢) and (2.43g)

_ s [P ——
Py Py~ + (PuPii™") =PuPu™' =Py Py
—_— 1= _
=Puu  (PuuPo — PoPii) Pyt
— 1 _
=Pn ((Pz — Py3)Py; — P21P11)P11 !
=0,
50 Py P tis antisymmetric in the sense of (2.30). This proves Py Pyt €~Y) P
Since by definition ker P11_1~= ker Py1, it follows that (P21P11_1, ker Pi1) € Bp,.
Conversely, let (T, h) € Pp, be given. We associate with T' the bounded oper-
ator
X =(Pr)u = (P +T*T)! (2.44)
so that, by (2.42)

. X XT*

Pr is a projection because (P, +T*)(P, +T) = X~!. To prove that Pr + Pr = 1
holds, note that TX ! = X T and therefore XT = TX, XT* =T*X. It follows
that
Pr+Pr=P+T)X(P+T"+ (P, -TX(P-T)
=X4+TX+XT*+TT* X+ X - XT*-TX +T*TX
=(PL+T'TNX + (P +TT"X
=P+ P
=1.
Thus Pr is a basis projection. It is obvious that ran Pr = ran(P; +T'). Since PrP,
is HS, Pr belongs to Bp,. The condition Th = 0 ensures that py C Pr. Therefore
P15y = Pr — py + Py is a basis projection. It is also contained in Pp, because py
has finite rank.
To show that the two maps (T, bh) — P15y and P (P21P11_1,ker Pyy) are

each other’s inverse, let first (T,h) € Pp, be given and set P = Pr,p). Since
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X = (Pr)11 is bijective and since Th = 0, we have
ker P;; =ker X 'P;; =ker X H(X — py) = ker (P1 — (P + T*T)ph)
=ker(P1 —py) =b.
By Th = 0, and because (X — py)(X — py)~! is the projection onto ran Pi; = b,
PPy~ = (Pr)ar((Pr)i—py)  =TX(X—py) ' =T(X —pp)(X —py) ' =T.

Conversely, let P € Pp, be given and set T = Py Pn_l, h = ker P;;. Then we
have, using (2.43d),

P4+TT=Py ' +P —Py ‘P =P, +py = (P11 +py) "
Together with Th = 0, (2.43c) and (2.43b) we get
Py =(PL+T)(PL+T*T) " (PL +T*) —py + Py

=P+ T)(Pi1+py)(PL+T")—py + Py

=Pi1 +TPi1 + PiyT* +TPiiT* + py — py + Dy

=Pi1 + Py + Po + TT*Pi1 + Py

=P — Py +TT*Pi1 + Py

=P-(P—py)+Pu Pu

=P
This completes the proof. O
Remark. Note that

ker P;; = X; Nker P. (2.45)

The basis projections of the form P ), h € Fp,, are precisely the elements of Pp,
which commute with Py, and the projections of the form Pr = Py (0y), T € Hp,,
are precisely the elements P € PBp, with ker P;; = {0}. For a general element
Pirpy € Bp,, it is well known that the unique (up to a phase) cyclic vector in
F (K1) which induces the state WP, 18 proportional to

a(er)*---aler)* exp(3Ta*a*)Qp, (2.46)
where the e; form an orthonormal basis in h, and the exponential term will be
explained later on.

LEMMA 2.10.
For T € $p,, define a Bogoliubov operator

Ur = (P, +T)(PL+ T*T) "% + (Po = T*)(P, + TT*)"% € Jus(X).
For ) € §Fp,, choose an orthonormal basis {e1,...,eL} in b, define the partial

isometry uy = Zle ex{er,.) with initial space b and final space h*, and define a
self-adjoint Bogoliubov operator

_ pb u,,
Uy=1- € Jus(XK). 2.47
b (uh ph) HS( ) ( )

Then one has, in the notation of Proposition 2.9,
UrP Ut = Pr, Uy P1Uy = Po,p)-
If (T, ) € Pp,, one has in addition
[Ur,Uy] =0,  UrUpyPAUgUT = Prp)-

It follows that the action P — UPU* of the restricted orthogonal group Jopl (X) on
Bp, restricts to a transitive action of Tus(XK).
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Proof. Let T € §p, be given. The unitary Ur results from polar decomposition of
1+T+T =Ur|1+T+T|. With X defined by (2.44), Ur can be written as

xi TX?
UT = 1 _ 1 .
TX?2 X?2

It is straightforward to see that Uy is a Bogoliubov operator which transforms P,
into Pr. To prove that Uy — 1 is HS, note that

X:—P =X3(P— X )P +X"3) = _X3T*T(P, + X~ 3)""

is of trace class. Therefore (Ur —1)P; = (P + T)X% —P=X:-P +TX? is
HS, which implies that Ur — 1 = (Ur — 1)P, + (Ur — 1)P; is HS.

Now let h € §p,. Then Uy is clearly a Bogoliubov operator with Uy — 1 of
finite rank and with Uy LUy = PFo,p). Uy is therefore contained in Jus(X). It is
self-adjoint because uy is symmetric: u] = wy. (Actually, self-adjointness of Uy
or symmetry of up will not be needed in the sequel. The above definitions aim at
reducing the ambiguity in the choice of Uy. uy is now determined up to the action
of the unitary group of b.)

If (T,h) € ‘iSpl, then one has T'py = 0 and, by functional calculus, X %pf, =
Py X 3= py- Using this, one gets by straightforward computations

UrUy =UyUr =Ur + Uy -1 = )fipbl -T )ilpb—l_u_h , (2.48)
TXéphJ_ — Uy X2ph—J_
UTprlU;;U} = UTP((),b)Uq*w = U[)PTU;]'= = P(TJ)). (2.49)

Here py 1 denotes the orthogonal projection onto ht C K. It is obvious that 3931 (X)
acts transitively from the left on Pp, as indicated. By (2.49) and by UrU, €
Jus(X), Jus(X) acts already transitively. O

Remark. T and b can be recovered from U = UrUy as h = ker Uy, T = Un Uy 1
(see below for the definition of Uy; ~1).

Next we would like to assign to each V € Jp (X) distinguished operators
Py, Uy and Wy having the properties stated in (2.37) and (2.36). Note that
any basis projection P fulfilling (2.37) has the form

P=VPV*+gq
where ¢ is a partial basis projection (see page 38) with
g+7=Qyv=1-VV*
It follows from this and from (2.33) that necessarily
Via(ker Vas) C ker Pyy. (2.50)

In general, dim ker P;; can take any value between Ly (defined in (2.32)) and Ly +
My . Similarly, if U is a Bogoliubov operator such that [U*V, P;] = 0 (cf. (2.36)),
then

Via(ker Vas) C ker Uy * (2.51)

(this follows from 0 = PLU*V P, = Uy1"Via + Us;"Vas). We shall choose Uy and
Py such that equality holds in (2.50) and (2.51).

Now let Vi1 ! € B (K1) be defined as the inverse of V11 on the closed subspace
ran V11 and as zero on ker Vi;* (and define V22 analogously). For a closed subspace
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H C K, let pg¢ be the orthogonal projection onto H. Then

ranVy; ' =ranVii*, VitVii ™' = Pranvas (2.52)
ker Vi; ' = ker Vi, %, Vit Vi1 = Pran v, (2.53)
Define (Ty, by) € Bp, by
Ty = Vo Vit ™" — Voo *Via* Prer vas = (2.54)
by = Via(ker Vay). (2.55)

By Proposition 2.9, any basis projection P € PBp, with ker P;; = Via(ker Va3) has
the form P = Pp ) for some T' € §p,. The possible choices of T such that (2.37)
holds are determined in

LEMMA 2.11.
Let by be defined by (2.55). A basis projection Pt ) € Bp, satisfies
V*Piy, )V = P, (2.56)
i.e. extends the partial basis projection V. PLV*, if and only if
T=Ty+T, (2.57)

where T' € $p, is an operator from ker Vi1* © by to ker Voo™ © (hy)*. For such T
one has

2 2 m2

||T”HS = ”TV”HS + ||T ”HS (2-58)

Proof. The formula

pf)v = ‘/vIZPkel‘ng‘/IQ*
entails that V*py, V. = Via*Viopkerva,Vi2"Vi2 = Prerva, by (2.31b), (2.33). It
follows from (2.41) that

V*Pir,yy)V = V*PrV — prer o + Pker vi: -

Therefore (2.56) is equivalent to

V*PTV = P(O,ker V11) = Pran Vii* +pker Vas
or, by Lemma 2.6a, to PrV = VPguyervy,)- This is further equivalent to 0 =
PpV P kervyy) and, since ker Pp = ker(Py — T), t0 0 = (Py — T)V P xerviy) =
Vai1pran v, — TVi1 — TVioPxer viy- Looking at the components, we finally obtain
the following conditions, which are equivalent to (2.56)

by C ker T, TVii = Vo1Pran vy, *- (2.59)

(Of course, the first relation of (2.59) is also necessary for having (T, hy) € Pp,, cf.
(2.40).) Let us show that Ty is a special solution of this problem. Ty is Hilbert—
Schmidt since V51 and Vi5 are. It is antisymmetric because

Ty +T% = Var Vit ' = Voo Y Vio™prer vir + Va2 7 Viz®™ — Drervans Var Vir *
= Pran V22V21V11_1 + Vao 7 Vio* pran Via
= V22_1*(V22*V21 + ‘/12*‘/'11)‘/11_1
=0

(we used (2.31d) and (2.52)). Thus Ty belongs to $p,. One clearly has Ty Vi1 =
Va1Pran v+ and Ty hy = 0 (use (2.33), (2.52) and (2.31b) to see the latter). Thus
Ty solves (2.59).

If T € $Hp, is another solution of (2.59), then T’ = T — Ty is contained in Hp, .
(2.59) is equivalent to ran Vi1 @ hy C kerT", i.e. to (ker T')* C ker V11* © hy. By
antisymmetry of 7", this is also equivalent to ranT" C ker Va2™ © (hv)*.
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Finally, (2.58) holds because Ty and T’ are orthogonal as elements of the
Hilbert space $Hp, . O

Remark. Ty takes the simpler form Ty = Vo Vn_l, which is well-known from the
case of automorphisms (ind V' = 0), whenever [P, VV*] = 0, i.e. whenever the
state wp, o gy is pure (cf. Lemma 2.6a). One can show that Ty = 0 if and only if
Vo1 V11™ = 0 if and only if one (and hence, in view of (2.31a), (2.31b), all) of the
operators Vi1, Va1, Via, Vas is a partial isometry.

Having specified (Ty,bhy) in (2.54), (2.55), let us now associate with V' € JIp, (X)
the following operators:

PV = P(TVJ)V)7 (260)
UV = UTvUbv7 (2.61)
Wy = Uy*Y, (2.62)

and let us collect their properties.

PROPOSITION 2.12.

Py belongs to Pp, and satisfies V*PyV = Py. It is chosen such that ker(Py)11
and ||(Py)21 (PV)11_1||HS are minimal (cf. Proposition 2.9 and (2.50), (2.58)). Uy
belongs to Ius(K) and Wy to Jgiag(X); their definition depends on the choice of an
orthonormal basis in hy. The operators Uy and Wy fulfill

My, =0, Ty, =Tv, bu, = bv, Py, = Py; (2.63)
Mw, = My, Tw, =0, bw, = {0}7 Py, = P, (264)
P+ TV*TV)%VM — Uy, Vo1 0 )
wy = (¢ v (265
v ( 0 (Py + Ty Ty*) 3 Vas — up, Via (265)
and
V = Uy Wy (2.66)
If My =0, then the formulas reduce to
Vit Vigvao* — W) (’U11 — g, Vo1 0 )
Uy = | L) Wy = v
v (Vzlvu* — Upy, [Vas ™| v 0 v22 — Up, V12
(2.67)

where vy, and vey are the partial isometries appearing in the polar decomposition
of Vir = vi1|Va1] and Vay = v92|Vas|. On the other hand, if V € Jqiag(X), then
UVZI andezV.

Remark. Equipped with the metric induced by || |lzg, Bpr, becomes a topological
space. It consists of two connected components which are distinguished by the
parity of dim ker P;;. It follows that the map V' — Py is not continuous on Jp, (X),
because ker(Py )11 = by, and (—1)4™Yv is not constant on the connected compon-
ents of Ip, (X) (see Corollary 2.15 and Example 2 below).

Proof. The assertions made about Py have been proved in Proposition 2.9 and
Lemma 2.11. The claims concerning Uy are implied by Lemma 2.10 and the remark
following that lemma. Wy is diagonal because P,Wy = PLUy*V = Uy*PyV =
Uy*V P, = Wy Py, where we used Lemma 2.10 and an argument from the proof
of Lemma 2.11. The formula (2.65) can be derived from (2.48) together with the
relation Vi1 + Tv* Va1 = Xy'Va1, Xv = (Py + Tv*Ty)~ 1. V = UyWy holds by
definition of Wy and entails that ind Wy = ind V. The remaining statements on
Wy clearly follow from Wy € Jgiag(X).
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If ind V = 0, then one has hy = ker V11* (cf. (2.34)) and Xy = prer vy, * +|V11*|?

so that Xéph‘l/ = |V11"]. (2.67) then follows by straightforward computation from
(2.48).

If V is diagonal, then Ty = 0 and by = {0}, so that obviously Uy = 1 and
Wy =V. O

Remark. A different product decomposition V = UW was established in [Bin95],
essentially by polar decomposition of V7;:

W _ ( V11 V12pkerV22) 7 (j’ — VW* + ...
Vv21pker Vi1 V22

W is obviously not diagonal (unless ker V;; = {0}), but has off-diagonal compon-
ents of finite rank. (However, using the operators Uy from (2.47), the definition of
W could easily be modified to make W diagonal.) WW* commutes with P,. U
is in general not contained in Jus(X), but only in J% (X). These operators have
nevertheless some useful properties, similar to Uy and Wy :

My =0, Ty =Tv, o = {0}, Py = Pry;
My, = My, Ty =0, bw = bv, Py = Po,py)-

COROLLARY 2.13.
TP, (K) = Tus(K) - Jaiag(K). The I%, (X)—orbits in Ip, (X) with respect to left mul-
tiplication are precisely the sets I (X), m € NU {oo}.

Proof. The product decomposition of Jp, (X) has been obtained above. To show
that J%, (X) acts transitively on each J3"(X), let V,V' € J3*(X) be given, with
decompositions V.= UW, V' = U'W' as in (2.66). Since P; leaves ker W'* and
ker W* invariant, we can choose a partial isometry 4 with initial space ker W'* and
final space ker W* such that @ = @ and [P, 4] =0. Then U = WW"* + 4 € 7%, (X)
fulfills UW' = W. This implies that (UUU)V' = V. O

These results can be used to determine the connected components of the semig-
roup Jp, (X). It is known that the restricted orthogonal group I, (X) C Jp, (X) has
two connected (and simply connected) components J%, (X)* [Car84, PS86, Ara87].
Namely,

X(U) = (_l)dimkerUn — (_1)dith
defines a continuous character x on J%, (X), and X|go (5)+ = £1. (This character
1

is equal to the Araki-Evans index of the pair of basis projections (P;,UP,U*)
[AE83, Ara87].) We shall see that J3"(X) is connected if m > 0, and that the map
x: Vi (=1)dimker Vi — (_1)dimbv remaing neither multiplicative nor continuous
when extended to the whole semigroup Jp, (X). We need the following preparatory
result.

LEMMA 2.14.
The set of all isometries with a given fized index on an infinite dimensional complex
Hilbert space is arcwise connected in the uniform topology.

Proof. Let V,V' be two isometries with indV = indV’. Since dimkerV* =
dim ker V'*, there exists a unitary operator U with V' = UV (choose a partial
isometry u with initial space ker V* and final space ker V'*, and set U = V'V* +u).
Since the unitary group is arcwise connected, there exists a continuous curve U(t)
of unitary operators with U(0) = 1 and U(1) = U. Then V(t) = U(t)V is a
continuous curve of isometries with V' (0) =V and V(1) = V. O
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COROLLARY 2.15.
The connected components of Ip, (X) are precisely the subsets 1% (X)* and
TEH(K), 1 <m < oo,

Proof. Let V,V' € J3"(X) with x(V) = x(V') be given, and let
V=Uw, V' =UW
be decompositions as in (2.66). It follows from (2.63) that
x(U) =x(V) =x(V') = x(U")

so that there exists a continuous curve in J9, (X) connecting U to U’. Since W
and W' are both diagonal and have index —2m, there exists a continuous curve
in J3"(X) connecting W to W' by Lemma 2.14. It follows that UW = V and
U'W' = V' can be connected by a continuous curve in J37*(X). Therefore either of
the two subsets

TEIO*F ={V € TE (%) | x(V) = 1}
is arcwise connected. Below, we give an example of a continuous curve in J?JF (X)
which connects JE"(K)* to I3 (X) . Hence J5™(X) itself is connected. O

EXAMPLE 2.

Let V(p) be the Bogoliubov operator introduced in Example 1 in Section 2.2 (with
P = P;). Then V(p) € 73 (X) since V()12"V(p)12 = (1 = \y)Eo has finite
rank, and ¢ — V(p) is a continuous curve in J%, (X). We have ker V(p)1 =
ker(A, Eo + 3-,,>1 En), hence

;¢ ¢ (4Z+3)
-1, p€(4Z+3)

NN

Now let V € 3?;1”*2(3() with [Py, V] = 0. Then x(VV(p)) = x(V(¢)) since Vi; is
isometric, so ¢ — V'V (p) is a continuous curve in 3" (X) which connects J37(X)*
to J3™(X)~. This completes the proof of Corollary 2.15.

V(¢) may also serve to illustrate that x is not multiplicative on Ip, (X). Define
a Bogoliubov operator

U= Lfifd+ ) = Sy — )+ S ho (o + £,-)
— LU - )+ Y (B + ).

n>2
Then U € J9, (X), and a calculation shows that Uy, = %(EO +Ei)+ 3,59 En
and UV (3F) = V(%). This entails

-2 (ove) £ () =

since ker Uyy = ker(V(%)11) = {0}, but ker(V(3 )11) = Cfo. We finally note that
the eigenvalues +(1 — \,) of P — Sy () = (1 — Ay)(Eo — Eo) have multiplicity one
if A, # 1, in contrast to the unitary case where the multiplicities of eigenvalues in
(0,1) are always even [AE83, Ara87, EK98].

2.4. Normal form of implementers. Unitary operators which implement
quasi—free automorphisms of the CAR algebra have been constructed by several
authors, notably by Friedrichs [Fri53], Berezin [Ber66], Schroer, Seiler and Swieca
[SSS70], Labonté [Lab74], Fredenhagen [Fre77], Klaus and Scharf [KS77], Ruijsen-
aars [Rui77, Rui78]. Our construction of isometric implementers for quasi—free
endomorphisms follows Ruijsenaars’ approach in [Rui78] which is to our knowledge
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the most complete treatment of the implementation problem for quasi—free auto-
morphisms. Another advantage of [Rui78] for our purposes is the (implicit) use of
Araki’s “selfdual” formalism.

Let us begin with a generalization of the definition of “bilinear Hamiltonians”
from the case of trace class operators to the case of bounded operators. Bilinear
Hamiltonians have been introduced by Araki [Ara68] as infinitesimal generators of
one—parameter groups of inner Bogoliubov automorphisms. More specifically, one
may assign to a finite rank operator H = =, f;(g;,.) on X the bilinear Hamiltonian

b(H) = ijg;

and extend b by continuity to a linear map from the ideal of all trace class operators
on X to €(X). If a trace class operator H satisfies H = H and H™ = —H, then
1b(H) is the generator of the one-parameter group (Oexp(¢H))ter:

Oexp(tir) (@) = exp (3tb(H))aexp (— 3tb(H)), a € €(X).

The map H — %b(H ) is an isomorphism from the Lie algebra formed by all such
H onto the Lie algebra of the spin group. See [Ara71, Ara87] for details.

Since the elements f € X; correspond to creation operators in the Fock rep-
resentation wp,, we may write

TP, (b(H)) = Hiy1ja*a + Hisa*a* + Hyiaa + Havaa®

where the terms on the right are defined by Hyi1a*a = 7p, (b(H11)) etc. Introducing

Wick ordering by :a(f)a(g)*: = —a(g)*a(f), we get
:H22aa*: = —HQQTCL*G = H22aa* - (tI‘HQQ)l, (268)
TPy (b(H)) L= (Hll - szT)a*a + H12a*a* + Hzlaa. (269)

According to [Rui78, CR87], one can define such Wick ordered expressions for
bounded H as follows. Assume from now on that (without loss of generality)

%, = I2(RY),

and let & C F,(X;) be the dense subspace consisting of finite particle vectors ¢
with n—particle wave functions ¢(™ in the Schwartz space G(R%"). For p € R?, the
unsmeared annihilation operator a(p) with (invariant) domain & is defined by

(a®)®) ™ (p1, - -, pn) = VA F 16 (0,1, ..., ).

Since a(p) is not closable, one defines a(p)* as the quadratic form adjoint of a(p)
on & x &. Then Wick ordered monomials a(g,)* - - -a(q1)*a(p1) - - - a(p,) are well-
defined quadratic forms on & x &, and for ¢, ¢' € &,

(¢,a(gm)" ---a(qr)"a(py) - - a(pn)¢') = (alqr) - - - algm); a(p1) - - - alpn)¢')

is a function in &(R¥™+™)) to which tempered distributions may be applied. For
example, one has in the quadratic form sense

am=/m%@m
dwz/mmww,mxb
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Now let H be a bounded operator on X which is antisymmetric in the sense of
(2.30)". Then there exist tempered distributions H,,,(p,q), m,n = 1,2, given by

(f, Hing) = /WHu(p, 9)9(q) dpdg,
faH12g /f H12 pa ( )dpdqa
(f*, Hng) = /f(p)Hzl(p, q)9(q) dpdy,

(f*, Ha29") /f VHo2(p,q)9(q) dpdg, f,g € S(R) C K.

Hence the following expressions are quadratic forms on & x &

fua'a= [ ap) Hu(pg)ale) dpdy
Hisa*a* = /a(p)*Hu(P, q)a(q)* dpdy,
Hyaa = /a(p)Hzl(p, q)a(q) dpdg,

:Hyaa™: = —/a(q)*sz(p,Q)a(p) dpdq = Hya*a.

Wick ordering of Hasaa* is necessary to make this expression well-defined. The
last equality follows from antisymmetry of H:

Hy1(p,q) = —H2a(q,p), Hi2(p,q) = —Hi2(q,p), Ho1(p,q) = —H21(q,p)-

The Wick ordered bilinear Hamiltonian induced by H is then defined in analogy to
(2.69) as

:b(H): = Hi2a%a* + 2H10*a + Haaa;
it is linear in H. We define its Wick ordered powers as

1 *2011l2 Jl2
Zb(H)l: =]! Z W(le)ll (2H11)l2 (Hgl)l3a 2h+l al +2s (270)

l1,l2,l3=0
li+le+13=l

where the terms on the right hand side are quadratic forms on & x & (cf. [Rui78])
(Hi2)" (Hy1)™ (Hay)'o a1tz gl2+2ls

= /le(plafh)"'Hm(pll,qh Hyi(py,q) - Hi(py,, q,)

-Ho(pi, q) - - Ha (pry, ai)a(p1)* - - - alpry ) *alqr,)™ -~ a(@1)”

~a(py)" - --a(py,)"algy,) - - algy)a(py) - - - alpy;)algy) - - - alqy)

~dpy dqy .. .dpy, dgi, dp' dq; . ..dp;, dg;, dpy dqy .. .dpy, dgj; .
Finally, we define the Wick ordered exponentlal

rexp(5b(H Z l'2l :b(H)': (2.72)

which is also a well-defined quadratic forrn on & x G, since the sum in (2.72) is
finite when applied to vectors ¢, ¢’ € &.

By Ruijsenaars’ result [Rui78], :exp(3b(H)): is the quadratic form of a unique
linear operator, defined on the dense subspace © of algebraic tensors in F, (K1),
provided that His is Hilbert-Schmidt. (This is equivalent to Hi2 € Hp,.) In

~—

(2.71)

~—

"The bilinear Hamiltonian corresponding to a symmetric operator vanishes.
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this case, the series (2.72) converges strongly on D, :exp(3b(H)): (viewed as an
operator) maps ® into the dense subspace of C*°—vectors for the number operator,
and

:exp(3b(H)): Qp, = exp(3Hi2a*a*)Qp,, (2.73)
Hexp(%Hma*a*)Qpl || = (Cletgc1 (Pl + H12H12*))1/4. (2.74)

Let us compute the commutation relations of the operators :exp(3b(H)): with
creation and annihilation operators.

LEMMA 2.16.

Let H € B(X) be antisymmetric with Hio Hilbert-Schmidt. For f,g € Xy, the

following relations hold on ©

[ :exp(%b(H)) s,a(f)*] = a(Huf)” :exp(%b(H)) : + :exp(%b(H)) : a((Hglf)*),
[:exp(%b(H)) 1,a(9)] = a(Hiag")" :exp(%b(H)): - :exp(%b(H)) :a(H11"g).

Proof. Tt is a lengthy but straightforward exercise in anticommutation relations to

calculate the commutation relations of Wick monomials of the form (2.71) with
creation and annihilation operators:

[Hll,12,l37 a(f)*] = l2a(H11f)*Hll,lz—1,l3 + 2l3Hll,l2,l3—1a((H21f)*)7
[Hiy 15,05,a(9)] = 2Lia(Hi29") Hyy 115,05 — l2Hiy 1, —1,50(H11™9),
where Hy, 1,1, = (H12)"t (H11)!2(Hop )2 a*2 1+ 2!2+2I3 - From this one obtains
* - — 2 *
[rexp(3b(H)):,a(f)]=) 27" Y W[Hh,lz,la:a(f) ]

=0 li+la+13=l

e (1-1) 2[2—1
= a(Hu f) 22 Z mHll,lg—l,lg
=1 l1+la+13=l
S 9—(-1) 20
+22 B Z mHZhlz,l:;fla((Hélf)*)
=1 lilatlz=t 172\3 :

= a(Hy f)* :exp(%b(H)) : + :exp(%b(H)) : a((Hzlf)*)
and
o0 l2
esp(30() s a0 = 327 Y i s alg)

=0 l1+la+i3=l

o) 212
= a(Hisa*)* 2—(l—1) -~
a(Hi2g") ; 2 = 1)”2”3!H11 1,la,l3

li+la+13=l
= (1—1) 2021
S22 ) g, e tsatHin )
=1 lilotlg=1 “1T\2 3

= a(H129%)" :exp(3b(H)): — :exp(3b(H)): a(H11*g).

O

From now on let a fixed V' € Ip, (X) be given. To construct implementers for gy,
we have to look for antisymmetric operators H with His € $p, and (cf. (2.24))

:exp(3b(H)) : mp, (f) = wp (V f) :exp(3b(H)) -, fEe€Xi ®dranVa™ (2.75)

on ®. Note that (2.75) cannot be fulfilled for nonzero f € ker Va3 since for such
f, mp, (f) = a(f*) is an annihilation operator and 7p, (V f) = a(Vi2f)* a creation
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operator, so that the left hand side (but not the right hand side) of (2.75) vanishes
on Qp,. This defect can be cured by “filling up the Dirac sea” corresponding to by
(cf. (2.46) and (2.85)) if we impose the following relation for vectors in ker Va,:

:exp(3b(H)): mp (g%) =0, g € ker Va,. (2.76)
It turns out that the solutions H of (2.75) and (2.76) are in one—to—one corres-

pondence with the operators T described in Lemma, 2.11:

LEMMA 2.17.
The antisymmetric solutions H of (2.75) and (2.76) with Hy, Hilbert-Schmidt are
precisely the operators of the form

Vit — P+ TV =T
H= X s . N 2.77
((V22 —Vio'T*)War Po— Vi +V12T> @.77)
where T' € $p, fulfills (2.59), i.e. is of the form (2.57).
Proof. First note that a Wick ordered expression of the form a(f)* :exp($b(H)): +
:exp(3b(H)): a(g) vanishes if and only if f and g both vanish. In fact, ap-
plication to the vacuum gives a(f)* exp(3Hiz2a*a*)2p, which is zero if and only
if f = 0 (to see this, look for instance at the one-particle component). Simil-
arly, :exp(3b(H)): a(g)a(9)*Qp, = ||gl|% exp(3 Hi2a*a*)Qp, vanishes if and only
if g=0.

Hence we get all solutions of (2.75) and (2.76) if we write these equations in
Wick ordered form and then compare term by term. We have by Lemma 2.16 and
by the definition (2.6) of 7p,, with the shorthand ng = :exp(3b(H)):,

namp, (f) = a((Pl + Hu)f)*TIH + TIHG((Pl + H—m)f*)7
we (Ve = a((Py — Hi2)V ) g + naa((Pr — Ha)V f7),
nam(f)* = a((Pr + Hu)f*) 'nu +nua(Han ), feX.
Thus (2.75) is equivalent to
Py + Hi1 + (Hi2 — PA)V(Py + Pran vie*) = 0, (2.78a)
Dran Vao* + Ho1 + (Haz — P2)V(P1 + Pran v4,+) = 0, (2.78b)
and (2.76) is equivalent to

(Pr + Hi1)pyervi; =0, (2.78¢)
Hapeerviy, =0, (2.78d)

where complex conjugation was occasionally applied. Note that (2.78a)—(2.78d) are
equivalent to the single equation

1-V +H(P 4+ PV) + (Via + H)prer v, = 0, (2.79)

which is a generalization of Eq. (4.4) in [Rui78].
Let us show that each solution H of (2.79) is completely determined by its
component His. Given Hyo, Hy is fixed by (2.78a):

Hiy =Vi1 — PL — HipVay, (2.80)
H, is fixed by antisymmetry:
Hyy = —Hy" = Py — Voo™ — Vi2"Hya, (2.81)
and Hs; is determined by (2.78b):
Hyy = (P2 — H29)Va1 = (Va2 + Vi2"Hiz)Var. (2.82)

Therefore H must have the form (2.77), with T = Hjs.
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It remains to determine the admissible components Hi5. (2.78a) implies that
H12V2e = VigPran vase-
Inserting (2.80), (2.78c¢) is equivalent to
Vo1 (ker V11) C ker Hyoa,

and under this condition, (2.78d) holds automatically. Thus T = H;» has to fulfill
(2.59). Conversely, it is straightforward to verify that via (2.77), any T € $p,
obeying (2.59) gives rise to a solution H of (2.79). In fact, one only has to check
that Ho; defined by (2.82) is antisymmetric and that pran vi,* + (Hoo — P2)Vaa =0
(the rest is clear by construction). By antisymmetry of Hys and by (2.31d)

Hy + Ho " = (Voo™ + V12" Hi2) Va1 + V12" (Vi1 — H12Va1) =0,
so Hy; is antisymmetric. By (2.81), (2.59) and (2.31a),
PranVao* + (H2o — P2)Vao = Pranvay+ — Va2 " Voo — V12" H1 Vo
= (P1 — V" Vg — V12*V12)pranV22*
=0.
O
Now we can proceed to exhibit the normal form of a complete set of imple-

menters for gy. Let Hy be defined by (2.77), with T' = Ty (see (2.54)). Using
Pker Vag* = P — Vas Vas ™1, one computes that

(Hv)11 = Vi1 ™" = Pi — prervay» Va2 Va2 "' Vo,
(Hv)12 = ViaVao 7' = Vi1 7 Vor " Prer v
(Hy)21 = (Voo 7 = Via* Vi1 ™" * Va1 * Prer vao* ) Vai,
(Hy)z2 = Py — Voo ' + Vi2 " Vit Va1 *Dicer Voo -
Hy is the analogue of Ruijsenaars’ “associate” A [Rui78].
Furthermore let {ei,...,er, } be the orthonormal basis in hy = Via(ker Va3)

that was already used to define Uy in (2.61) (cf. Lemma 2.10), let {ej,... e} } be
the orthonormal basis in ker V55 given by

e. =V*e, = Vix%e,, r=1,...,Ly,
and let {g1,...,9m, }, My = —3indV, be an orthonormal basis in
ty = Py (ker V™). (2.83)

(Note that Py commutes with VV* and therefore restricts to a basis projection of
ker V*.) Recall that the statistics dimension dy (2.14) of gy is given by

dy = oMv

and that the twisted Fock representation 1 p, defined in (2.8) fulfills

e, (o (€(X) ) = o, (€lier V)" (2.8)
One has
Yp, (er) =iale,)*(-1),  ¢p(e,) =iale,”)¥(-1)

(for notational convenience, we shall drop the index P; on implementers like ¥(—1)
from now on, cf. (2.7)). Finally define the following operators on ®, with range
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contained in the space of C*°—vectors for the number operator

T, (V)= (detx1 (P + TV*TV)) 71/4¢P1 (9an - gaz)

> ()P signo ¢, (eo(1) -+ €o(s)) 1exp (3D(HV)) :
= (2.85)

P (g (s41) " Co(Ly))-

Here a = (a1,...,01) € Iy, is a multi-index as in (2.27), and Py, is the index
set consisting of all pairs (o, s) with s € {0,..., Ly} and ¢ a permutation of order
Ly satisfying o(1) < --- < o(s) and o(s +1) < --- < o(Ly). Pr, is canonically
isomorphic to the power set Py, of {1,..., Ly} through identification of (¢, s) with
{o(1),...,0(s)}, hence its cardinality is 2/v. Note that

\I’a(V)QPI = (deth1 (Pl + Tv*TV ¢P1 (ga1 T gaz)

)_ (2.86)
. ¢P1 (61 e eLV) exp(%T *)QPI
by (2.73) and because the ¢p, (e.) annihilate the vacuum.

THEOREM 2.18.

Let V € Ip,(X). Then the dy operators ¥, (V), a € In, , have continuous ex-
tensions to isometries on F,(K1) (henceforth denoted by the same symbols) which
implement gy in wp, in the sense of Definition 2.1.

Proof. 1. We first show that the following intertwiner relation holds on ®
Yo (V)mp (f) =mp, (VA ¥(V), feX. (2.87)
Note that it suffices to prove (2.87) for @ = 0 because
a(V) = 9P (ga; =+ o) ¥o(V) (2.88)

and because the 9 p, (g;) belong to 7p, (ov (€(X)))'.
Let first f € ranVy1* @ ran Vs ™. Then it follows from (2.11) that

[¢P1 (6;,), TP (f)] =0= [¢P1 (67‘)7 TP (Vf)]

so that (2.87) is a consequence of (2.75).
To prove (2.87) for f € ker V1; @ ker Vi, note that for fixed r, the bijection

MePr, |[reM} = {M €Pr, | r¢M},
M M\ {r}

induces a bijection (o, s) — ( s') from {(o,s) € P, | r € {o(1),...,0(s)}} onto

{(0',8") € Pry, | 7 ¢ {0'(1),...,0'(s")}} with
s=s+1, (—1)°signo = (—1)"signo’, o '(r)+0' '(r)=r+s (2.89)

Now let Dy = (detg, (P, + Ty*Ty))~ /%, and consider the case f = el € ker V.
We have on ©, by virtue of

Yp (e)mp (€)) = 0= mp, (e)ip (er),
{¥p (h), T(-1)} = 0= [:exp(3b(Hy)): , ¥(-1)]
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and by (2.11), (2.10) and (2.89), where terms under the sign “~” are to be omitted

o(V)7p, (e;) = Dvp, (er) > (—1)Ev s+ (DL gign o

(a’,s)EfPLV
re{a(l),...,a(s)}
¢P1 (eo(l) eo(s) eXp(% )
: 1/1P1( a'(s+1)) o ( )’lL'Pl( ;') ( a(LV))
= DV7TP1 (er) Z (—1) v—s' 51gna ’(ﬁp1 (60.:(1) s e,,(s,))
(a",s')ETLV

r¢{o'(1),...,0"(s")}
. :exp(%b(HV)) 1P (e:J'I(SIJFl) U etf’(Lv))
=mp, (Ver) (V).

The remaining case f = e.” € ker Vq; is similarly obtained with the help of (2.75)
and (2.76)

mp, (e}) :exp(1b(Hy)): = :exp(3b(Hy)): mp (e).") =0, (2.90)
in connection with
[7p,(e7), PPy (€5)] = [mp, (€17), ¥py (€5)] = i, ¥ (1)
(cf. (2.11)):
(Ve ) ¥o(V) = 7p, (e7) o (V)
=i¥(-1)Dy Y (=DFv T (O signg

(0,5)€PLy,
rE{a(l),...,a(s)}
PPy (€o(1) € v eo(s)) 1exp(5b(Hy)) :
P (€ (sy1) a(LV))
=i¥(-1)Dy 3 (=1)Lv ="+ (") 5ign o
(0,8 )EPLy,

ré¢{o’(1),....,0"(s")}
- ’LPP1 (651(1) .- 601(3/)) :exp(%b(Hv)) :
. ¢P1(e:7’(s’+1) . .ei‘ . 'e:I’(Lv))
= To(V)mp (e))-

This completes the proof of (2.87).
2. To show that ¥, (V) is isometric, note that one has on ©

Yp,(9)"Yo(V) =0, g€ty =Py(kerV"). (2.91)

To see this, remember that the basis projection Py has the form (2.41) Py =
Pr, —pgy, + Dy, - Since hy is contained in ran V', we have

PyQv = Pr, Qv (2.92)

where )y = 1 — VV™* is the projection onto ker V*. It follows that ¢, = ker V* N
ran Pr, = ker V* Nran(P; 4+ Ty). We thus get from ran(P; + Ty) = ker(P, — Ty)
that Pog = Ty Pig. By Lemma, 2.16, this entails

mp (9)" :exp(3b(Hy)): Qp, =0, g € by,
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and we get, using (2.87), (2.10) and (2.11), for f1,...,fn € X
Vp(9)* To(V)mp, (f1) - mp (fr) P,
= —imp, (V1) - 7p (V fr) ¥ (=1)mp, (9)" To (V) P,
= —iDynp, (Vf1)---7p,(V fn)¥(—1)
-p,(er---epy, )mp (9)* :exp(3b(Hy)): Qp,
=0
which proves (2.91).

Since the v p, (g;) are partial isometries whose source and range projections
sum up to 1 by the CAR

¢P1 (gj)*¢P1 (gj) + ¢P1 (gj)¢P1 (g])* =1
and because these projections mutually commute for different values of j, it follows
that ¥p, (9ay) - - ¥p, (9a,) is a partial isometry in mp, (oy (€(X)))" which contains
ran o (V) in its initial space. Therefore ¥, (V) will be isometric provided that
Py (V) is. We have from (2.86), (2.90), (2.74) and the CAR
190(V)2 | = D} (exp(5b(HV)): Uy b e, -+ 0)
~py(e1---ery) rexp(3b(Hv)): Qp,)
= DY| :exp(3b(Hv)): Qp, |
=1.

Using the CAR and the fact that ¥o(V){p, serves as a vacuum for the transformed
annihilation operators, this implies for arbitrary fi,..., fm,h1,...,hn € X

<lIJO(V)7TP1 (fl e 'fm)QP1 s \IIO(V)T‘-P1 (hl T hn)QP1>
= (To(V)Qpy,mp, (v (fr - fihi -+ ha)) To(V)2p,)
= (QP177TP1(f;:1 o fl*hl e hn)QP1>
Therefore ¥o(V) is isometric on © and has a continuous extension to an isometry
which satisfies (2.87) on F,(X1). By the above, the same holds true for the ¥, (V).
3. It remains to show that the ¥, (V) fulfill the Cuntz relations (2.21) (or

(0.5)). Since 9 p, is a representation of the CAR and by (2.88), (2.91), the ¥, (V)
are orthonormal:

o (V) (V) = ®o(V) Pp, (93, -~ 9a,)¢P (98, - 98.,) To(V) = Japl

for a as above and 8= (81,...,08m) € Iy -
The proof of the completeness relation

Z T, (V)T(V) =1 (2.93)
aEIMV

relies on the product decomposition V' = Uy Wy from Section 2.3. Recall that
the orthonormal basis {e1,...,eL, } in hy = hy, was used to define Uy. By Pro-
position 2.12, Uy maps ker Wy * unitarily onto ker V* and fulfills Uy Py = Py Uy.
Therefore Uy restricts to a unitary isomorphism from €y, = Pj(ker Wy *) onto &y .
We choose

fi= (D Ovrg,  j=1,..., My (My = Mw,) (2.94)

as orthonormal basis in fy,, . Applying (2.85) to Wy, we obtain an orthonormal
set of isometries satisfying (2.87) with respect to Wy

lI;Ot(I/VV) = ¢P1 (fal e 'fal) :exp(%b(HWv)) o)

. _ (WV)ll - P 0
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Let us show that this set of isometries is complete. We have

‘IJQ(WV)QPH = ¢P1 (fot1 T fal)ﬂpl‘ (295)

Comparing with (2.28), we see that ran ¥, (Wy) is exactly the cyclic (in fact,
irreducible) subspace F,(Wy ) for the representation mp, o gw, . Completeness for
the ¥, (Wy) thus follows from Proposition 2.2:

Baran ¥, (Wy) = @, F.(Wy) = F(Ky).

Now let ¥(Uy) be the unitary implementer for gy, given by (2.85). Then the
isometries ¥ (Uy ) ¥, (Wy) obviously constitute a complete set of implementers for
ov. We are going to show that actually

T(Uy)Ta(Wy) = To(V) (2.96)

holds under the above assumptions. Since each implementer is completely determ-
ined by its value on Qp, (this follows from (2.24)), it suffices to prove (2.96) when
applied to Qp,. Note that ¥(Uy )¥(—1) = (=1)Xv¥(=1)¥(Uy) so that

T(Uv)yp,(f) = (D)"Y yp UvHTUY),  feX.
Hence we obtain from (2.95), (2.86) and Proposition 2.12

T(Uy)To(Wy)p, = (=1 Vpp, (Uy fay - - Uv fo,) ¥ (Uv)Qp,
=Dyvp,(9oy ** 9o, )P, (€1 - - €L)
-exp(3Tva*a*)Qp,
=T, (V)Qp,.

Therefore (2.96) holds. Since (2.22) follows from (2.21) and (2.24), the theorem is
proven. ([l

Remark. The proof of Theorem 2.18 shows (cf. (2.96), (2.95), (2.94), (2.5) and
Prop. 2.9) that the vectors ¥,(V)Qp, are cyclic vectors inducing certain Fock
states, viz. the Fock states corresponding to the basis projections

P& = Py — Dee +W.

Here &§; is the subspace of £y spanned by the vectors gq,,...,9gq, if [ is the length
of a. This is a non—trivial fact because linear combinations of such vectors will in
general not induce quasi—free states.

Since v¥p, is a representation of the CAR and by (2.91), the Hilbert space H (ov)
generated by the ¥, (V) carries a Fock space structure:

COROLLARY 2.19.
The map

lI;Ot(‘/) Ha(gal)*"'a(gaz)*ﬂﬂ a = (aly"'aal) € IMV

extends to a unitary isomorphism from H(ov) onto the antisymmetric Fock space
Fa(ty) over ty.

Here a(g)* and Q denote the creation operators and the Fock vacuum in F,(€y).

We shall see in Section 4.1 that, if V' is gauge invariant, then the isomorphism
depicted in Corollary 2.19 is not only an isomorphism of (graded) Hilbert spaces
but (up to a character of the gauge group) also an isomorphism of G—modules.
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2.5. Bosonized statistics. Though the formula (2.85) for ¥, (V') looks quite
complicated, it is not difficult to write the “Bosonized statistics operator” €y associ-
ated with V' € Jp, (X) as a polynomial in g;, g7 if ov has finite statistics dimension.
Recall from the introduction (see (0.14)) that &y is defined in terms of the imple-
menters as

v = Y (V)T Ta(V) Ta(V)" (2.97)
a,BEIn,,

Let us first derive a simple formula for the operators ¥, (V)¥4(V)*. (These op-
erators are matrix units for the commutant 7p, (ov(€(X)))’.) We will use the
following notation for multi-indices o, 8 € I, , which is suggested by the identi-
fication a = (a4, ...,q1) = {a1,...,a;} of I, with the power set of {1,..., My }.
lo = 1 will denote the length of a, and a N B € Iy, will denote the multi-
index whose entries are the elements of the intersection of the entries of o and
B. af € In, will be the “complementary” multi-index whose entries are the ele-
ments of {1,..., My} \{ai,...,q;}. We further set
9a = 9oy 9ar,
Faﬂ = ga(ga“ﬂﬂ“)*gacﬂ,@‘gﬁ* = Fﬂa*a a,pB € IMV'

LEMMA 2.20.
Let V € Ip,(X) with —indV < oo, and let a, 3 € Ing, . Then

Uo(V)¥s(V)* = 9P, (Cag)-
Proof. Let Ay = ¥p, (9dagac*gac)- One has, by the CAR and by (2.91), (2.88)
A To(V)o(V)" = 1bp, (9a) To (V)T (V)" = To (V)T (V)".
If o' # 0 is another multi-index in Iy, , then
AqVor (V) = Agtop, (9o ) ¥o(V) =0
because gf- =0, j=1,...,My. Hence we obtain from (2.93)
Ao =Aa Y Ts(V)Ts(V)" = AaWo(V)To(V)" = Wa(V)To(V)".
BEIM,,
This entails, for arbitrary o, 8 € Iy, ,
To(V)Ts(V)" = Ta(V)To (V)" (Ta(V)To(V)")
= A, Ag"
= Yp, (9agac"Jac gpe"9p-95")-
Now, by the CAR, g, commutes with g,c*gq-, gg* commutes with gg-*gg-, and

one has ga(gﬁcna)*gﬂcma = go and (gacng)*9acnpgp™ = gp*. Thus we finally get
U, (V)lI’B(V) =1p (ga(ga“ﬂﬁc)*ga“ﬁﬂcgﬂ*) =1p (Faﬁ)- O

Remark. 1. As a special case, one obtains the projections onto ran ¥, (V)
lI'Ot(v)lIJoz(V)* = 7P, (9ago" goc " gac ),
(we used (2.9)) from which one directly sees that (2.93) holds

Z \IJQ(V)\IJQ(V)* =Tp ((glgl* + gl*gl) T (nggMV»< + ng*ng)) =1L

*

2. If ind V = —o0, then one still has

To(V)s(V)" = 9P, (92)To(V)To (V) PP, (957),
where U, (V)¥,(V)* can be obtained as a strong limit

To(V)To(V)" =slimmp, (91791 gn" gn)-
n— oo
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But this projection is no longer contained in €(X).

PROPOSITION 2.21.
Let V' be as in Lemma 2.20. Then the Bosonized statistics operator €y defined by
(2.97) can be written as

Ev—7rp(E~ )

z 1)tatle)Us+LVIT b0y (Dga) € €(K)o. (2.98)
€lu

Proof. Tt follows from (2 85) that
T(-1)Ta(V)T(-1) = (-1)=Hw (V). (2.99)
Therefore one has for f € X, using (2.10)
o (V)ipp, (f) = i®%a(V)mp, (f)¥(-1)
= i(= 1)tV (V)8 (=1) o (V)
= (=)t (V) Ta(V),
and hence

¥r(98)Ta (V)" = (D)= 0, (V) P, (0v (96)), .8 € Tuy -

Thus one gets from Lemma 2.20

gy = Z‘I’ T, (V) Wp(V)"
= Z \IJ 'QbPl Fﬁa)‘IJﬁ(V)
_ Z 1)U+ Lv)Eatla) § (V)T 5(V)*Yp, (ov(Tsa))

_ Z (lg-‘rLV)(l +lﬂ)¢p ( aﬁQV(Fﬁa))

- ¢P1 (EV)J

with £y as above. But £y is even so that ¥p, (€v) = 7wp, (€v) by (2.9). O

To check the consistency of our constructions, let us finally calculate the “Bosonized
statistics parameter”

Av = 7p,(dv (Ev))
which is associated with the Bosonized statistics operator and with the left inverse
¢v from Section 2.1 (see (2.15)). Recall that ¢y is given by

¢y (ab) = g;l(a)wl/Q(b) ifaeC(ranV), b e E(ker V*),
where w; is the trace on €(X).

COROLLARY 2.22. X
The “Bosonized statistics parameter” Ay of V € Ip (X) with —indV < oo equals

Proof. Tt follows from T'n5 € €(ker V*) that Tagov (Tga) = (=1)H2 0y (T54)Tap
and that ¢y (ov (Tga)Tag) = Fgawl( 3). We claim that

1

wi(Tag) = = - dap-
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Consider first a term of the form wi (9a*ga)- Since the g; are mutually orthogonal,

one has wi(ga"9a) = w1(9a:"gar) w1 (9, "Jau,) = 27le. Next assume that
a # B. Without loss of generality, assume that «; does not occur in 8. Then there
exists a quasi—free automorphism g which maps g, t0 —ga, and leaves all other g;
unchanged. It follows that 9(ga*gs) = —ga™gp so that w%(ga*gg) =0, because w;
is invariant under p. This yields

w1(FPag) = w1(98"9a(9acnse) gacnpe) = w1 (98" ga)ws (9acnpe) gacnpe)
=2"MV§,5 = dy, 6ap
as claimed. Hence we obtain
pv(Ev) =D (=1)lettallstiv)gy (T 50y (Tpa))

a’ﬁ
— Z(_l)(la+lﬁ)(lﬁ+Lv+l)FBa R w% (Faﬁ)
a’ﬁ

O

It is clear that one gets the same result by applying the left inverse ¢g(,, ) from
Section 2.2 (or from the Introduction, Eq. (0.15)) to éy. Recall that ¢p(,, ) is a
left inverse for the normal extension of gy to B(F,(XK1)), given by

bit(on) (@) = % S0 (V)'2Ua(V), @€ BEFK)).

One can show, by similar computations as above, that ¢g,, ) extends ¢v:
¢H(gv)(7TP1 (a)) =Tp (¢V ((1)), ac Q:(:K)
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3. QUASI-FREE ENDOMORPHISMS OF THE CCR ALGEBRA

This section contains an analysis of the semigroup of quasi—ree endomorphisms
of the CCR algebra similar to the analysis done in Section 2 for the CAR algebra.
Generally speaking, the CCR case is algebraically simpler, but the analytic aspects
are more involved. For an introduction to the CCR algebra see the textbooks
[BR81, Pet90].

3.1. The selfdual CCR algebra. Let X° be an infinite dimensional complex
linear space, equipped with a nondegenerate hermitian sesquilinear form x and an
antilinear involution f — f*, such that

k(f*,9%) = =k(g,f),  frgeX’.
One should think of X° as being the complexification of the real linear space
ReX® = {f e X’ | f* = f},

together with the canonical conjugation on X° = C®g Re X?. —ix should be viewed
as the sesquilinear extension of a nondegenerate symplectic form on Re K°.

The (selfdual) CCR algebra €(X°, k) [AS72, Ara72, AY82] over (X°, k) is the
simple *-algebra which is generated by 1 and elements f € X9, subject to the
commutation relation

[f*, 9] =6(f,9)1,  f,g€X° (3.1)

We henceforth assume the existence of a distinguished Fock state over €(X°, k). As
in the CAR case, Fock states correspond to basis projections. A linear operator Py,
defined on the whole of K°, is a basis projection of (X°, k) if it satisfies for f,g € K°

P12:P1: ’V"’(faplg):l{’(PlfJg)a (32)
P +P =1, k(f,Pif)>0 if PLf#0. '

Here we used the notation (2.2)
Pf=R(f)"
for the complex conjugate operator. Let
PR=1-P, C=P-P, ({9 =x(fCg).

The positive definite inner product ( , }p, turns X° into a pre-Hilbert space. We
assume that the completion X is separable. By continuity, the involution “x”
extends to a conjugation on X, P, and P» to orthogonal projections, C' to a self-
adjoint unitary, and k to a nondegenerate hermitian form. These extensions will

be denoted by the same symbols. Setting
janPn(jC)a n=12,

we get a direct sum decomposition X = K; &Ky which is orthogonal with respect to
both x and { , )p,. The following notations will frequently be used for A € B(X):

Apn = PhAP,, m,n=12,
At =cA*C
AT = Ax.

The components A,,, of A are regarded as operators from X, to X,,, and A will

sometimes be written as a matrix (ﬁ; ﬁ” ) At is the adjoint of A relative to ,

while A* is the Hilbert space adjoint. Thus one has relations like

P=P =P/ =P, T=-0C, Ap'=Aly =—Ap*, A5 =4, et
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The Fock state wp, is the unique state® which is annihilated by all f € ran Ps:
wp (f*f)=0 ifPf=0.

(In the conventional setting mentioned above, wp, is the Fock state corresponding
to the complex structure i{C on ReX.) Let F4(X;) be the symmetric Fock space
over X; and let © be the dense subspace of algebraic tensors. A GNS representation
mp, for wp, is provided by

e (f) = a*(Pf) +a(Pf"), feX

where a*(g) and a(g), g € X, are the usual (Bosonic) creation and annihilation
operators on ®. The cyclic vector inducing the state wp, is 0p,, the Fock vacuum.
The operators 7p, (a), a € €(X, k), have invariant domain 2, are closable, and one
has wp, (a*) C wp,(a)*. In particular, if f € ReX, then 7p, (f) is essentially self-
adjoint on @, and the unitary Weyl operator w(f) is defined as the exponential of
the closure of imp, (f). Its vacuum expectation value is

_1)42
wp, (w(f)) = (Qp,, w(f)Qp,) = e~ 11F1ley
and the Weyl relations hold

w(fw(g) = e *IDw(f +g), f,g € ReX.

The Weyl operators generate a simple C*—algebra 20(X, k) which acts irreducibly
on F4(Ky). If H is a subspace of X with H = H*, then the C*-algebra generated
by all w(f) with f € ReH will be denoted by 2(H). If H* is the orthogonal
complement of H with respect to s, then duality holds [Ara63, AS72, AY82):

W(H)' = W(HH". (3.3)

LEMMA 3.1.
For f € X, let 3y be the subspace spanned by f and f*. Then the closure of wp, (f)
is affiliated with Q0(H¢)".

Proof. Let T be the closure of 7p, (f), with domain D(T'). We have to show that,
for any A € 20(H;)'

A(D(T)) C D(T), AT =TA on D(T).

Now by virtue of the CCR (3.1), ||T8|> = ||T*||> + (f, f)||¢||? for ¢ € D. Hence,
for a given Cauchy sequence ¢,, € D, T'¢,, converges if and only if T*¢,, does. This
implies that

D(T) = D(T™).
Let f£ € ReH; be defined as f+ = 3(f+ f*), f~ = 3(f — f*), and let T* be the
(self-adjoint) closure of 7p, (f*). We claim that

D(T)=D(TH)ynD(T™), T =T—iT~ on D(T).

For if ¢ € D(T), then there exists a sequence ¢, € D converging to ¢ such that
7p, (f)bn and 7p, (f*) ¢, converge. Thus ¢ belongs to the domain of the closure of
7p, (f£). Conversely, if ¢ € D(T+) N D(T ™), then there exists a sequence ¢,, € D
converging to ¢ such that both wp, (f + f*)¢, and 7p, (f — f*)¢, converge (this
follows from the detailed description of the domains of such operators given in
[Rui78]). Therefore 7p, (f)¢n is also convergent, i.e. ¢ is contained in D(T'), and
T¢ = (T* —iT ).

Now if A € 20(H;)', then A commutes with the one-parameter unitary groups
w(tf*) = exp(itT*). As a consequence, A leaves D(T*) invariant and commutes
with T% on D(T%). Tt follows that A(D(T)) C D(T) and AT = TA on D(T) as
was to be shown. O

SA state w over €(XK, k) is a linear functional with w(1) = 1 and w(a*a) > 0, a € €K, k).
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3.2. Implementability of quasi—free endomorphisms. Quasi—free endo-
morphisms are the unital *~endomorphisms of €(X, k) which map X, viewed as a
subspace of €(X, k), into itself. They are completely determined by their restric-
tions to X which are called Bogoliubov operators. Hence V € B(X) is a Bogoliubov
operator? if and only if it commutes with complex conjugation and preserves the
hermitian form k. Bogoliubov operators form a unital semigroup which we denote
by

S(K,k) ={VeBXK) | V=VViVv=1L

Each V € 8(X, k) extends to a unique quasi—free endomorphism of €(X, k) and to
a unique *—endomorphism of 20(X, k). By abuse of notation, both endomorphisms
are denoted by gy, so that oy (f) =V f, f € X, and gy (w(g)) = w(Vyg), g € ReX.

The condition V1V = 1 entails that V is injective and V* surjective; hence
ranV is closed, and V is a semi-Fredholm operator [Kat66]. We claim that the
Fredholm index —ind V = dimker V1 cannot be odd, in contrast to the CAR case
(cf. (2.3)). For let f € ker VT such that 0 = k(f,g) = (f,Cg)p, Vg € ker V1. Then
f € (Cker VL = (ker V*)+ =ranV, but ran V Nker V1 = {0} due to VIV =1, so
f has to vanish. This shows that the restriction of & to ker V1 stays nondegenerate.
It follows that dim ker V1 cannot be odd (there is no nondegenerate symplectic form
on an odd dimensional space).

On the other hand, each even number (and oo) occurs as dim ker V't for some
V. Hence we have an epimorphism of semigroups

8(X,k) » NU{oo}, V= —2indV =1dimker V'
(remember that 0 € N). Let
8"(K,k) ={V € 8(K,k) | indV =-2n}, neNU{oo}.

89(XK, k) is the group of quasi—free automorphisms (isomorphic to the symplectic
group of ReX). It acts on 8(XK, k) by left multiplication. Analogous to the CAR
case, the orbits under this action are the subsets 8"(X, k), and the stabilizer of
V € 8"(X, k) is isomorphic to the symplectic group Sp(n).

We are interested in endomorphisms gy which can be implemented by Hilbert
spaces of isometries on F3(XK;1). This means that there exist isometries ¥; on
Fs(K1) which fulfill the Cuntz algebra relations (2.21) and implement gy according
to (2.22):

ov(w(f)) = Z‘I’jw(f)‘l’}f, f €ReX.

As explained in Section 2.2, such isometries exist if and only if gy, viewed as a
representation of (XK, k) on Fs(K1), is quasi-equivalent to the defining (Fock)
representation.

To study gy as a representation, for fixed V' € 8(X, k), let us decompose it into

cyclic subrepresentations. Let fi, f2,... be an orthonormal basis in K; N ker V'
and let @ = (a1, ...,q;) be a multi-index with a; < a;1. Such a has the form
a=(al,...,a],a,...,ay,...,ah, ..., ak) (3.4)
——— ——— ————

l1 lo In

tWe may disregard unbounded Bogoliubov operators V' (defined on X°) since the topologies
induced by the corresponding states wp, o gy on KO differ from the one induced by w p,- Hence
these states cannot be quasi—equivalent to wp, (cf. [Ara72, AY82]), and gy cannot be implemented.
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withof <ay<---<alandly +---+1. =1 Let

ca= ! 1,13

aEcaa* ai ceea” a Q 19

bu = ot (for) 0" (fo) 2 s
Fo = W(ran V)¢,

Ta = 0v]7.-

The Bosonic analogue of Proposition 2.2 is

PROPOSITION 3.2.

One has oy = ®o7o, where the sum extends over all multi-indices a as above,
including o = 0 (¢po = Qp, ). Fach (14,F o, do) is a GNS representation for wp, ooy
(regarded as a state over (XK, k)).

Proof. By definition, the ¢, constitute an orthonormal basis for F(K; Nker V1),
and (7q, Fo, da) is a cyclic representation of (K, k). Since the closures of a*(f;)
and a(f;) are affiliated with 20(ker V1)" = 20(ran V)’ (see Lemma 3.1 and (3.3)),
one obtains for f € ReX

(b Ta(W(f))ba) = A(a* (fa,) - a
= C§<QP1 ’ ’lU(Vf)

~

*(faz)QP1aw(Vf)a*(fa1) o 'a*(fal)QP1>
(faz) o 'a(fal)a*(fal) o 'a*(faz)QPL)

~~

—2
Ca 2Py

= <QP1 ) w(Vf)Qpl)

This proves that (7a,Fa, @) is a GNS representation for wp, o gy. Similarly, one
finds that (¢q, w(V f)¢a) =0 for a # a', so the F,, are mutually orthogonal.

It remains to show that ®,F, = F4(K1). We claim that Fy equals Fs(ran P, V),
the symmetric Fock space over the closure of ran P,V. The inclusion ¥y C
Fs(ran P,V) holds because vectors of the form w(V f)Qp, = expi(a*(PVf) +
a(PVf))Qp, € Fy(ranP,V) are total in Fo. The converse inclusion may be
proved inductively. Assume that a*(g1)---a*(gm)Qp, is contained in Fy for all
m < n, g1,...,9m € ranP V. Then, for f € V(ReX) and g1,...,9, €
ran PV, %%a*(gl) ---a*(gn)lp, has a limit a*(P f)a*(g1)---a*(gn)Qp, +
a(Pif)a*(g1)---a*(gn)Qp, in Fo as t N, 0. By assumption, the second term lies
in Fy, and so does the first. Since each g € ran P,V is a linear combination of
such Py f, it follows that a*(g1)---a*(gn+1)Qp, is contained in Fy for arbitrary
g; € ran PV, and, by induction, for arbitrary n € N. But such vectors span a
dense subspace in Fs(ran P,V), so Fo = Fs(ran P,V) as claimed.

Finally, K; Nker V1 equals ker V*Py;, where V*P, is regarded as an operator
from X; to K. Thus we have X; = ran P,V & (K; Nker V1) and F,(X1) = Fo ®
F,(K1Nker V). Under this isomorphism, F,, is identified with Fo®(Ce, ). Since the
¢, form an orthonormal basis for T, (K1 Nker V1), the desired result ®,F, = F,(X1)
follows. [l

As a consequence, the representation gy is quasi—equivalent to the GNS repres-
entation associated with the quasi—free state wp, o gpy. So gy is implementable if
and only if wp, o py and wp, are quasi-equivalent. Now the two-point function of
wp, o oy (as a state over €(X, k)) is given by

wPloQV(f*g):H(faSg):<f7§g>P17 f;gE:Ka

with
S=vtpv, S=Vv*pPV.
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The latter operators contain valuable information about wp, o gy. For example, it
can be shown (cf. [MV68]) that wp, ogy is a pure state over (X, ) if and only if S
is a basis projection, that is, if and only if S is idempotent (the remaining conditions
in (3.2) are automatically fulfilled). This is further equivalent to [Py, VV1] = 0, by
the following argument;:

S?2=8 & 0=SS (since S =1 —5)
& 0=V*PVCV*RV
& 0=PVCV*P, (since ran V* PV =ran V* P,

and ker V*PV = ker P, V)
& 0=PRPVVip,
& 0= [Pl, VVJr]

On the other hand, the criterion for quasi—equivalence of quasi—free states, in the
form given by Araki and Yamagami [AY82] (see also [AST72, Ara72, vD71]), yields
that wp, o gy is quasi-equivalent to wp, if and only if P — 53 is a Hilbert-Schmidt
operator on K. Using Theorem 2.3, this condition can be simplified:

THEOREM 3.3.

Let a Bogoliubov operator V € 8(X, k) be given. Then there exists a Hilbert space of
isometries H(py) which implements the endomorphism oy in the Fock represent-
ation determined by the basis projection Py if and only if [Py, V] (or, equivalently,
Vi2) is a Hilbert-Schmidt operator. The dimension of H(py) is 1 if indV = 0,
otherwise oco.

Proof. First note that [P, V] = Via — Vo = Vi — Vi is Hilbert-Schmidt (HS) if
and only if Vi, is.

By the preceding discussion, gy is implementable if and only if P, — S 3 is HS.
In this case, P (P — S'%)ZPQ = P,SP, = V15"V, is of trace class, hence Vi, is HS.

Conversely, assume V2 to be HS. Let V = V'|V| be the polar decomposition
of V. Then |V| = |V is a bounded bijection with a bounded inverse, and [V| -1 =
(V= (V] + 1) = (VF = VHV(V]+ )7 = 2(Vio™ + Var YV (V] + 1)L is
HS. Thus, by a corollary [AY82] of an inequality of Araki and Yamagami [AY81],
(IV|A|V])2 — Az is HS for any positive A € B(X). Applying this to A = V'*P,V’,
we get that

S: — (V"*P,V")* is HS. (3.6)

Now V' is an isometry with V/ = V', i.e. a CAR Bogoliubov operator (see (2.1)).
Since [P1, V] and [P1,|V|~Y] = V||V, A ]|V|™' = [V|7Y[|[V| - 1, L] |V|~! are
HS, the same holds true for [Py, V'] = [Py, V|V|7!]. So V' fulfills the implement-
ability condition for CAR Bogoliubov operators derived in Theorem 2.3, and, as
shown there, this forces P, — (V/*P,V')2 to be HS. This, together with (3.6),
implies that P, — §% is HS as claimed.

It remains to prove the statement about dim H(py). Let gy be the nor-
mal extension of gy to B(Fs(X1)). Then B(H(ov)) =& ov(B(Fs(X1))) =
ov(W(XK, k) = W(ran V)" = W(ker V)" The latter (and hence H(gy)) is one—
dimensional if ker Vt = {0} and infinite dimensional if ker V' # {0}. O

Remark. Shale’s original result [Sha62] asserts that a quasi—free automorphism gy,
V € 8°(X, k), is implementable if and only if |[V/| — 1 is HS. This condition is equi-
valent to [Py, V] being HS, not only for V € §°(X, k), but for all V € §(X, k) with
—indV < oco. However, the two conditions are not equivalent for V' € 8 (X, &),
as the following example shows. Let 1 = H @ H' be a decomposition into infinite
dimensional subspaces. Choose an operator V5 from X to 3 with tr|Vi2|* < oo,
but tr|Vi2|? = co. Let Va1 = Via and Vii| = (P1+|V21|2)%. Choose an isometry v11



3. QUASI-FREE ENDOMORPHISMS OF THE CCR ALGEBRA 67

from Xy to H' and set Vi1 = v11|Vi1|, Voo = Vi1. These components define a Bogoli-
ubov operator V € 8 (X, k) (cf. (3.8a)—(3.8d) below) which violates the condition
of Theorem 3.3. But it fulfills Shale’s condition since |V|? — 1 = 2(|Vi2|? + |Va1]?)
is HS and since |[V| -1 =(|V]? = 1)(|[V|+ 1)L

Let V € 8§(X, k) with Viz compact. Due to stability under compact perturbations
[Kat66], V11 and Vay = V11 are semi-Fredholm with

indVi; =ind Vay = %indV. (3.7
We will occasionally use the relation V1V = 1 componentwise:
Vit* Vi = Va1 *Voy = Py, (3.8a)
Vao*Vag = Vip*Vip = P, (3.8b)
V1" Vig = Va1 *Vap = 0, (3.8¢)
Vaz*Var — V12" Vi1 = 0. (3.8d)

Since Vi is injective by (3.8a) and has closed range, we may define a bounded

operator Vlfl as the inverse of Vi; on ranVj; and as zero on ker V3;* (the same

applies to V22). These operators will be needed later. Note that dimker Vi;* =
1:

—5ind V.

3.3. The semigroup of implementable endomorphisms. According to
Theorem 3.3, the semigroup of implementable quasi—free endomorphisms is iso-
morphic to the following semigroup of Bogoliubov operators:

8p, (K, k) ={V € 8(X, k) | V12 is Hilbert—Schmidt}.

8p, (X, k) is a topological semigroup with respect to the metric ép, (V,V') =
[V =V'|| + [[Vi2 = Vi5|lug, where || ||g denotes Hilbert—Schmidt norm. It con-
tains the closed sub—semigroup of diagonal Bogoliubov operators

Saiag(K, &) = {V € 8(K, k) | [1,V] = 0}.
One has (cf. (2.35))
S diag (I &) = Jdiag(XK) = 8(XK, k) N I(X).
The Fredholm index yields a decomposition
Sp(K.r) = | 8B(K,K), 8B (K k) =8p (K, k) NS (K, k).
neNU{oo}

The group 8%, (X, ) is usually called the restricted symplectic group [Sha62, Seg81].
It has a natural normal subgroup
Sus(X, k) = {V € 8(X, k) | V — 1 is Hilbert-Schmidt} C 8%, (X, k).

As in the CAR case, we will eventually show that each V' € 8§ 5, (X, k) can be written
as a product V = UW with U € 8yg(X, k) and W € 84;,,(X, k). Assume that such
U and W exist. Then Py = UP,U' is a basis projection extending the “partial
basis projection” VP,V such that

P, — Py is Hilbert-Schmidt, VP,V = Py, (3.9)

so the corresponding Fock state wp, is unitarily equivalent to wp, and fulfills wp, o
ov = wp,. In order to construct such basis projections, let us investigate the set
PBp, (not to be confused with Pp, from Section 2) of basis projections of (K, k)
which differ from P; only by a Hilbert—Schmidt operator:

Bp, = {P | P is a basis projection, P; — P is Hilbert-Schmidt}.
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PBp, is isomorphic to the set of all Fock states which are unitarily equivalent to
wp,. Further let €p, be the infinite dimensional analogue of the open unit disk
[Sie64, Seg81], consisting of all symmetric Hilbert—Schmidt operators Z from X; to
Ko with norm less than 1

€p, ={Ze€B(K1,X2) | Z=27, ||Z|| <1, Z is Hilbert—Schmidt} (3.10)

(the condition ||Z]| < 1 is equivalent to P, + Z!Z being positive definite on X;).
Then the following is more or less well-known (cf. [Seg81]).

PROPOSITION 3.4.
The map P +— Py Pt defines a bijection from Pp, onto €p,, with inverse

Zw Pyr= (P +2) P+ 21 2)Y(P + Z1). (3.11)

The restricted symplectic group SOP1 (X, k) acts transitively on either set, in a way
compatible with the above bijection, through the formulas

P~ UPU! (3.12)
7 — (U21 + UQQZ)(UH + U12Z)_1. (312')

The restrictions of these actions to the subgroup Sug(XK, k) remain transitive, as
follows from the fact that, for Z € €p,,

Uz=(Pi+2Z) P+ 2'2)"% + (P, - ZY) (P, + 2212 (3.13)

lies in 8ug(K, k) and fulfills Uz Py U} = Py (equivalently, under the action (3.12"),
Uy takes 0 € €p, to Z).

Proof. Having made X into a Hilbert space, the conditions (3.2) on P to be a basis
projection may be rewritten as

P=pPt=1-P=pP? CP is positive definite on ran P; (3.14)
or, in components:
Py = Pi1* = P, — Py, (3.15a)
Poy = Poy* = P, — Py, (3.15Db)
Py = Py " = —Ppy*, (3.15c¢)
P> — Piy = Py, *Pay, (3.15d)
Pyy? — Pyy = Pjy* Py, (3.15¢)
(Py — P11) P12 = P12 Poo, (3.15f)
(P — Pa3)Psy = Py Py, (3.15g)
(_Pllj; _P11322> is positive definite on ran P. (3.15h)

Moreover, P, — P is Hilbert—Schmidt if and only if PP is.
Now let P € PBp,. Then P33 <0 by (3.15h), hence, by (3.15a),

Py =P — Py > Py,

so that P;; has a bounded inverse. Thus Z = Py P11 ! is a well-defined Hilbert—
Schmidt operator. By (3.15a)—(3.15c) and (3.15g),

Z—7*=PyPy ' — Py Pyt

= P11_1((P2 — Pyo) Py — 13211311)1311_1
=0,
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so Z is symmetric in the sense of (3.10). Furthermore, by (3.15d),
PL—Z*Z =P — Py 'Pyu*PyuPy!
=P —Pu (P’ - Pu)Pu ! (3.16)
=Pyt

is positive definite on X;, which proves Z € €p,.
Next let Z € €p, and let Pz be given by (3.11). We associate with Z an
operator

Y=P +2'2) ' =P -2*2)! (3.17)

which is bounded by assumption. Then Pz = P}, = P} since (P, + Z')(P1 + Z) =

Y ~'. To prove that Py + Pz = 1 holds, note that ZY ' = Y 'Z and therefore
YZ=27Y,YZ = ZtV. 1t follows that

Pr+P;=(P+2)Y(PL+ZY)+(P-ZYY (P - 2)
=Y+ ZY+YZ' + ZZ'YV +Y -YZ' - ZY + Z1ZY
=Y 'Y+Y 'Y
=P+ 5
=1.
Since P, Py is clearly HS and since
CP; = (P, - 2)Y(P, - Z*) (3.18)

is positive definite on ran Pz = ran(P; + Z), we get that Pz € Pp, as desired.

To show that these two maps are mutually inverse, let first Z € €p,. Then
(P2)21(Pz)1n ' = ZYY ! = Z. Conversely, let P € PBp, be given and set Z =
P21P11_1. Then ZP11 = .Pz_lal’ld P11ZT = P21T = P12. By (316) and (317),
Y = Py, hence P;; Zt = ZtPy;. Thus we get

P—Pz=P—(P,+Z)Pu(P + 27"
=P—-P, —2ZP, - P, 7' —7ZP, 7!
=P-Py—Py—Pn-ZZ'P

=Pp—22'P;
=P, — (P, + ZZ")Py; (by (3.15b))
=0.

It remains to prove the statements about the group actions. It is fairly obvious
that 8%, (X, k) acts on Pp, via (3.12). The proof that Uz is a Bogoliubov operator
which takes P; to Py is also straightforward. To show that Uz € 8y5(X, k), let Y
be given by (3.17). Then

Yi-P =Y (P -Y )P +Y ) =Yz Z(P +Y 3)7

is of trace class. Therefore (Uz — 1)P; = (P, + Z)Y% —P=Y2—-P, +2Y% is
HS, which implies Uz € 8y5(K, ).

Finally we have to show that the action (3.12) on PBp, carries over to the action
(3.12) on €p,. Thus, for given Z € €p, and U € 8%, (X, k), we have to compute

the operator Z' = P}, P}, " which corresponds to P = UP,U!. By definition,
P2ll = (U21 + UQQZ)Y(Ull + UlQZ)*,

3.19
Plll = (Ull + U12Z)Y(U11 + U12Z)*. ( )
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Suppose that (Uy; +U12Z) f = 0 for some f € ;. Then || f||p, = U1 "' Ui2Zf||p, -
Since [[U1y " 'Uis|> = [|Ui2*Uni Ui " 'U2|| = [|Us2*(Py + UreUr2*) " tUs2|| =
|U12]12/(1 + ||U12||?) < 1 and ||Z|| < 1, it follows that f = 0. Hence Uy; + U2 Z is
injective, and, as a Fredholm operator with vanishing index (3.7), it has a bounded
inverse. So we get from (3.19) that Z' = P2’1P1’1_1 = (U1 + Us2 Z) (U + U2 Z) 7t
as claimed. O

Remark. Tt is known that the unique (up to a phase) cyclic vector in F5(X;) indu-
cing the Fock state wp, is proportional to exp(3Zta*a*)Qp,.

The following construction will enable us to assign, in an unambiguous way, to each
Bogoliubov operator V € 8§p, (X, k) a basis projection Py such that (3.9) holds.

LEMMA 3.5.

Let H C X be a closed *~invariant subspace such that k|g5¢x 3¢ is nondegenerate and
such that [Py, E] is Hilbert-Schmidt, where E is the orthogonal projection onto 3.
Let A = ECE be the self-adjoint operator, invertible on 3, such that k(f,g) =
(f,Ag)p,, f,g € H, and let AL be the unique positive operators such that A =
Ay — A_ and AL A_ = 0. Further let A~' be defined as the inverse of A on
H and as zero on HL, and similarly for A;l. Then A~'C is the k—orthogonal
projection onto H, py = A;IC is a basis projection of (K, K|sx5), and Papy is
Hilbert-Schmidt. Moreover, py = PLE if and only if [P1,E] = 0.

Proof. Let E' = 1 — E. Since ECE' and E'CE are compact by assumption,
C — ECE' — E'CE = A+ E'CE' is a Fredholm operator on X with vanishing
index. Hence A is Fredholm on H with ind A = 0. A is injective since k is
nondegenerate on H. It is therefore a bounded bijection on H with a bounded
inverse (the same holds true for AL as operators on ran A1). Thus Q = A7'C is
well-defined. Tt fulfills Q?> = A=Y (ECE)A~'C = Q and QT = C(CA~1)C = Q. So
(@ is a projection, self-adjoint with respect to . Since its range equalsran A=! = J,
it is the k—orthogonal projection onto H.

By a similar argument, p, is also a k—orthogonal projection. It is straightfor-
ward to see that p; = P, E if and only if [Py, E] = 0. To show that p, is actually
a basis projection of H (cf. (3.14)), note that A, = A_ because of A = —A (and
uniqueness of A1). This implies py +p; = AjrlC —AT'C = A7'C = 14. Positive
definiteness of C'ps on ranp, follows from (f,Cpy f)p, = ||A;1/20f||2pl.

To prove that Pypy is HS,let D = EPE — A,. Since EPLE — EP,E = A =
Ay —A_, we have D = D. We claim that D is of trace class. Since ECE' is HS,

ECE'CE = EC(1 - E)CE

= (E+|ADE - |4)])

is of trace class. Since E+|A| has a bounded inverse (as an operator on H) and since
|A] = Ay +A_, it follows that E— |A| = EPLE+EPRE—-A, -A =D+D=2D
is of trace class as claimed. As a consequence, AP, = (EP,E — D)P, is HS
(PLEP, is HS by assumption). By boundedness of A:Ll, piPy = —AI2(A+P2) and
Pop, = (py P)! are also HS. This completes the proof. O

Now let V € 8, (K, k). We already showed in Section 3.2 that the restriction of & to
ker V1 is nondegenerate. We also showed in the proof of Theorem 3.3 that [Py, V']
is Hilbert—-Schmidt where V' is the isometry arising from polar decomposition of
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V. Hence [Py, E] is Hilbert—-Schmidt where
E=C0c1-V'V")C (3.20)
is the orthogonal projection onto ker V. Thus Lemma 3.5 applies to H = ker V1.

DEFINITION 3.6.
For V € 8p, (X, k), let py = py be the basis projection of (ker V1, &lxer vt xker vi)
given by Lemma 3.5, and set

Py =VPVi+py €PBp, (3.21)
Zy = (Py)ar(Py)u™" € €p, (3.22)

(cf. Proposition 3.4). Further let Uy € 8yg(X,x) be the Bogoliubov operator
associated with Zy according to (3.13), and define Wy = U;r,V € Sging (K K).

Py clearly is a basis projection which satisfies (3.9). Actually, any basis projection
P fulfilling VTPV = P, or, equivalently, PV = V P, is of the form P = VP,V +¢
where g is some basis projection of (ker V1, &|er vt xier vt )- What had to be proved
above is that ¢ can be chosen such that P»q is Hilbert—Schmidt, which is not obvious
in the case dimker V1 = co. In fact, any such extension of V. P, VT would suffice for
what follows.

The condition VI Py V = P; translates into the condition

ZyVin = Va (3.23)

for Zy. Again, each Z € €p, fulfilling (3.23) would do, but we prefer to have a
definite choice. It follows from symmetry (3.10) that any Z which solves (3.23)
must have the form

Z =V Vi1 7' + Voo T Vio*Drerviy+ + 2 (3.24)

where pg¢ denotes the orthogonal projection onto some closed subspace H C X,
Vi1 ' and Vs ' have been defined below (3.8), and Z' is a symmetric Hilbert—
Schmidt operator from ker V11" to ker Va9*. The freedom in the choice of Z’ corres-
ponds to the freedom in the choice of q. Note that Z can be written, with respect
to the decompositions K; = ran Vi1 @ ker V1%, Ko = ran Vs @ ker Vao*, as

Z — (pranVHVél‘/ll_l ‘/"22_1*‘/12*171(61“/11*)

_ 3.25
Drer Van* Vo1 Vi1 ' z' (3:25)

The Hilbert—Schmidt norm of Z is minimized by choosing Z’ = 0, but there are
examples in which this choice violates the condition ||Z|| < 1, i.e. it does not always
define an element of €p,. This is in contrast to the CAR case where the choice
analogous to Z' = 0 appeared to be natural (cf. (2.54)).

The operators Uy and Wy constitute the product decomposition of V' that
was announced earlier, generalizing a construction given by Maafi [Maa71] to the
infinite dimensional case. Wy is diagonal because P,Wy = PlU‘t,V = UQL,PVV =
U‘T,VPl = Wy P,. Explicitly, one computes that

Wy — ((P1 + Z{Zv)2 Vi o )
0 (P2 + Zv Z},)2 Vi

with respect to the decomposition X = K; @ K. Let us summarize the properties
of these operators.

PRroOPOSITION 3.7.
Definition 3.6 establishes a product decomposition of V € 8p (X, k),

V=UwWy,
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where Uy € Syg(XK, k) and Wy € 84, (X, k) have the properties
indUy =0, Zy, = Zy, Py, = Py,
ind Wy =indV, Zw, =0, Py, =P.
In particular, if V € 8% (X, k), then

Vit V12’U22*> (vu 0 >

Uy = | i I Wy =

v (Vzl’Un* [Vaz™| v 0 v

where v11 = V11|V11|_1 and ve = 11 are the unitary parts of Vi1 and Vaz; whereas
if V € 84iag(K, k), then Uy =1 and Wy = V.

The well-known fact that the restricted symplectic group S‘}gl (X, k) is connected

[Seg81, Car84] entails for 85, (X, k)

COROLLARY 3.8.

8p, (K, k) = Sps(K, k) - S4ing(XK, k).  The orbits of the action of 8%, (K, k) on
8p, (K, k) are the subsets 8% (X,k), n € NU {oo}. They coincide with the con-
nected components of 8p, (K, k).

3.4. Normal form of implementers. The first step in the construction of
implementers consists in a generalization of the definition of “bilinear Hamiltonians”
[Ara72] from the finite rank case to the case of bounded operators. If H is a finite
rank operator on X such that H = H™ = —H*, then €% belongs to Sy¢(X, k).
Expanding H =} f;(gj,-)p,, one obtains a skew-adjoint element bo(H) = 3_ f;g;
in €(X, k) which is a linear function of H, independent of the choice of f;,g; € K.
Then 7p, (bo(H )) is essentially skew—adjoint on ®, and, if b(H) denotes its closure,
exp(3b(H)) is a unitary which implements the automorphism induced by e
[Ara72, AY82].

Using Wick ordering, the definition of bilinear Hamiltonians can be extended
to arbitrary bounded symmetric* operators H:

Hyy = Hy', Hyy = Hyp', Hy = Hy". (3.26)

Without loss of generality, we henceforth assume that X; = L?(R?). Then let
S C F4(XKy) be the dense subspace consisting of finite particle vectors ¢ with
n-particle wave functions ¢(™) in the Schwartz space &(R™). The unsmeared
annihilation operator a(p) with (invariant) domain & is defined as usual

(@®)$)™ (b1, ,pn) = Vo + 16" (0,1, ..., p).

Let a*(p) be its quadratic form adjoint on & x &. Then Wick ordered monomials
a*(q1) ---a*(gm)a(p1) - - - a(pn) make sense as quadratic forms on & x & [GJ71,
RS75], and, for ¢, ¢’ € &,

(9,0 (q1) -~ a”(gm)a(py) - - - alpn)¢') = (alqr) - - - algm)$; a(p1) - - - alpn)9')

is a Schwartz function to which tempered distributions can be applied. In particular,
the distributions Hj(p,q), j, k = 1,2, given by

(f, Hirg)p, = /WHu(I% 9)9(q) dpdg,
(f, Hisg*)p, = /@Hm(p, 9)9(q) dpdg,
(f Harg)r = [ 1) Ha )9l dpda

(f*, Ha29")p, = /f(p)sz(p,q)@dpdq

“The bilinear Hamiltonian corresponding to an antisymmetric operator (H = —HT) vanishes.
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for f,g € G(R?) C K, give rise to the following quadratic forms on & x &:
Hyja*a= /a(p)*Hll(P; q)a(q) dpdq
Hiza*a* = /G(p)*le(P; q)a(q)” dpdq
Haraa= [ alp)Har (5, )a(a) dpds

:Hysaa*: = /a(q)*Hgg(p,q)a(p) dpdq = Hyia%a.

Wick ordering of Hasaa* is necessary to make this expression well-defined. The
last equality follows from symmetry of H:

Hi1(p,q) = Ha2(q,p), Hi2(p,q) = Hi2(¢,p), Ha1(p,q) = H2 (g, p)-
We next define :b(H): and its Wick ordered powers as quadratic forms on & x &:
:b(H): = Hi2a"a* + 2Hy10%a + Haaa,
BE): =1 2 . leN
I llalgl e ’

l1,l2,13=0
l1+la+13=l

with — Hjy 015 = /H12(P1,Q1) - Hio(pry, @, ) Hi (93, q1) - - Hu (o1, 41,)
“Hoy (pY, ) -+ Hoa (py,, qi)a™ (p1) - -~ @™ (py )a™ (q1) - - - @™ (a1,)
-a*(ph) - a*(p,)alqr) - - - algy,)a(py) - - - a(pyy)alqy) - - - alqry)
~dpy dqy . . .dpy, dqi, dp dqy - . . dpy, dgp, dpY ddy ... dpy., dgj,.

The Wick ordered exponential of %b(H ) is also well-defined on & x &, since only a
finite number of terms contributes when applied to vectors from &:

:exp(3b(H)): = Z l'% :b(H)': .
1=0 "

The important point is that these quadratic forms are actually the forms of uniquely
determined linear operators, defined on the dense subspace © and mapping ® into
the domain of (the closure of) any creation or annihilation operator, provided that
[Rui78]

[|Hi2l] < 1, H,5 is Hilbert—Schmidt. (3.27)

These operators will be denoted by the same symbols as the quadratic forms. The
analogue of Lemma 2.16 is

LEMMA 3.9.
Let H € B(X) satisfy (3.26) and (3.27). Then the following commutation relations
hold on ®, for f € K;:

[Hiy 1,05, a(f)*] = loa(Hyy f)* Hyy 1y 1,05 + 203 Hi, 105 10((H21 £)*),
[a(f), Hiy 10,05) = 2lia(Hia f*) Hyy —1,0505 + l2Hiy 1o —1,050(Hi ™ f),
implying that
[:exp(3b(H)):,a(f)*] = a(Hi1 f)* rexp(3b(H)): + :exp(3b(H)): a((Ha1 f)*),
[a(f), :exp(%b(H)) il =a(Hi2f")* :exp(%b(H)) : + :exp(%b(H)) sa(Hu* f).
Proof. Compute as in [Rui78, Bin95]. O
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For given V' € 8p, (X, k), we are now looking for bounded symmetric operators H
which satisfy (3.27) and the following intertwiner relation on ©

cexp(3b(H)): mp, (f) = wp (Vf) :exp(3b(H)):, feX (3.28)

(taking the closure of wp, (V f) is tacitly assumed here). This problem turns out to
be equivalent to the determination of the operators Z done in (3.23), (3.24).

LemMmA 3.10.
Each Z € €p, fulfilling (3.23) gives rise to a unique solution H of the above problem
through the formula

:<V11—P1+ZTV21 VAl )
(Voo™ + V12" ZN) Vo Vao* — Py + Vi Z1 )7

and each solution arises in this way.

Proof. Let us abbreviate ng = :exp(3b(H)): . Choosing f € X, resp. f € X and
inserting the definition of 7p,, one finds that (3.28) is equivalent to

nua(g) = (a(Virg) + a*(Viag*))nm, nma*(g) = (a*(Virg) + a(Vi2g™))nu

for g € K. Using the commutation relations from Lemma 3.9, these equations may
be brought into Wick ordered form:

0=a*((Vi2 + H12Va2)g9")nu + nHa(((P1 + Hy ")V — P1)g),
0=a*((P1 + Hi1 — Vi1 — Hi2Va1)g)nu + UHG((H—zl - (P + H11*)V12)g*)-

As in the CAR case (see the proof of Lemma 2.17), these equations hold for all
g € X if and only if

0 =Viz2 + Hi2Va9, (3.29a)
0=P + Hi —Vin — HiaVa, (3.29b)
0 = Hay — (P2 + Ha2) Va1, (3.29¢)
0= P, — (Py + Ha2)Vao (3.29d)

(we applied complex conjugation and used Hy1” = Hag).

Now assume that H solves the above problem. It is then obvious from (3.26),
(3.27) and (3.29a) that Z = Hy,' belongs to €p, and fulfills (3.23).

Conversely, let Z € €p, satisfy (3.23). If there exists a solution H with Hyy =
Z1, then Hy; is fixed by (3.29b), Hss must equal Hy,”, and Ho; is determined
by (3.29c). Thus there can be at most one solution corresponding to Z, and it is
necessarily of the form stated in the proposition.

It remains to prove that the so—defined H has all desired properties, i.e. that
Hj, is symmetric and that (3.29d) holds, the rest being clear by construction. The
first claim follows from (3.8d):

Hyy — Hoy™ = (Voo™ + Vi Z1)Var — Via™ (Vir + Z1Va1) =0,
and the second from (3.23) and (3.8b):

(Py + Hap)Vay = (Va2 — V12*7)V22 = V2" Vag — V12" Vip = Ps.
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Inserting the formula (3.24) for Z, one obtains
Hiy = Vir ™ = Pt = prervy - VaaVas ™' Var + 2"V,
Hiz = —ViaVao " = Vit " Vor* Prer vi» + Z'T,
Hyy = (Vaz ' = Via"Var " Var"Prcer vip+)Var + V22" 2" Vay,
Hoyy = Voo ' = Py = Via*Vir Vo1 *Prer vag + Vlz*ZnL-

H corresponds to Ruijsenaars’ “associate” A [Rui78]. If one compares the above
formula for H with Ruijsenaars’ formula for A in the case of automorphisms
(ker Vj;* = {0}, j = 1,2; Z' = 0), one finds that the off-diagonal components
carry opposite signs. This is due to the fact that Ruijsenaars constructs imple-
menters for the transformation induced by CVC rather than V, cf. (3.27) and
(3.29) in [Rui78].

Note that

:exp(3b(H)): Qp, = exp(: Hiza*a*)Qp, . (3.30)

By Ruijsenaars’ computation [Rui78] (see also [Seg81]), the norm of such vectors is

H cexp(Lb(H)) : Qp, || = (detxl (P + HIQHIJ))*M.

DEFINITION 3.11.
Let V € 8p (X,k), and let Py, Zy and Hy be the operators associated with
V according to Definition 3.6 and Lemma 3.10. Choose a k—orthonormal basis

91,92,... 111

ty = Py (ker V1), (3.31)

i.e. a basis such that k(g;,9r) = ;i (this is possible because the restriction of &
to €y is positive definite). Note that dim &, = —% indV. Let 1; be the isometry
obtained by polar decomposition of the closure of 7p, (g;). Then define operators
¥,(V) on D, for any multi-index a = (a1, ..., o) with a; < aj41 (or @ =0) asin
(3.4), as

N

T, (V) = (detxl (P + Z*VZV)) Yoy Py exp (Sb(Hy)): . (3.32)

THEOREM 3.12.
The O, (V) extend continuously to isometries (denoted by the same symbols) on
the symmetric Fock space F4(K1) such that

\I’a(v)*\IJﬁ(V) = dapl, Z\PQ(V)\I’Q(V)* =1, (3.33)

and such that, for any element w of the Weyl algebra (X, k),
ov(w) =D U (V)wle(V)*. (3.34)

The infinite sums converge in the strong topology.

Proof. By (3.1) we have 7p, (9;)*7p, (9;) = 1+7p,(9;)7p, (9;)* on®, so the closure
of wp, (g;) is injective, and v; is isometric. It is also easy to see, using (3.28), the
CCR and ||P,(V)Qp,|| =1, that for f1,..., fm,h1,..., hn €K
(‘I!a(v)ﬂ-P1 (fl T fm)Qpl ) \I’a(v)ﬂ-P1 (hl T h‘n)QP1)
= <7TP1 (fl T fm)QP1 ) TPy (hl T hn)QP1>

Hence ¥, (V) is isometric on ® and has a continuous extension to an isometry on
Fs(XK1).
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Let H; = span(g;,9;), so that ¢; € 20(3;)" by virtue of Lemma 3.1. Since
H; C ker V1, the duality relation (3.3) implies that 20(3;) C 2(ranV)’. Now
let f € ReX and ¢ € D. Since ¢ is an entire analytic vector for 7p, (f) [AST72],
since ® is invariant under wp, (f), and since wp, (V f) is affiliated with 2(ran V)
by Lemma 3.1 (the bar denotes closure), it follows from (3.28) that
C(VIw(e = 3 (V) ()"

n=0 "

= 3 Db s (7 (V) " To(V)8
n=0 """

00 .,

= Y S (@ VD) (V)6
n=0
= w(V)¥a (V).
By continuity, this entails
Vo (Vw = ov(w)¥s(V), w € WK, k). (3.35)
We next claim that
Y;Po(V) =0 (3.36)

or, equivalently, that mp, (9;)*¥o(V) = 0. To see this, apply Lemma 3.9 and write
7p, (9;)*¥o(V) in Wick ordered form:

7p,(95)*Wo(V) = a((P + Hi2)g}) " To(V) + To(V)a((PL + Hi1*)g;)
on ®, with H = Hy. Then (3.36) holds if and only if
(Pl + ng)g; = 0, (P1 + Hll*)gj = 0 (336')

Now g; € ran Py is equivalent to g; € ker Py = ker CPy = ker(P; + Hi2) (we used
(3.18)). This proves the first equation in (3.36"). It also shows that Hi2*g; = —Pag;.
Hence by Lemma 3.10,

(Pr+ Hit*)gj = (Vir* + Var*Hi2 ) g = (Via* = Var*)g; = PLV1ig; =0

which proves the second equation in (3.36") and therefore (3.36).

The orthogonality relation ¥, (V)*¥5(V) = 0 (a # ) now follows from (3.36)
and from 20(H;) C W(Hy)' (j # k) which in turn is a consequence of k(H;, Hy) =
0 and (3.3).

The proof of the completeness relation Y U, (V)¥, (V)" = 1 is facilitated
by invoking the product decomposition V' = Uy Wy from Proposition 3.7. Set
fi = ‘T,g]- to obtain a k—orthonormal basis fi, fa,... in ¢y, = Pi(ker W‘T,) Let
; be the isometric part of a(f;)*. An application of Definition 3.11 to Wy yields
implementers ¥o,(Wy) = 9y, --- ¢y, Yo(Wy) for Wy. Zw,, = 0 entails that

U (Wy)Qp, =Py, -0, - (3.37)
One computes, using the CCR, that
Vo = Vo, VP = Pl (3.38)

where the ¢, are the cyclic vectors associated with the pure state wp, o gw, = wp,
as in Proposition 3.2. Let JF., be the closure of 20(ran Wy )¢!,. Since the F/, are
irreducible subspaces for 20(ran Wy) by Proposition 3.2, they must coincide with
the irreducible subspaces ran ¥, (Wy). @F/, = F,(K;) then implies completeness
of the ¥, (Wy).
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The proof will be completed by showing that
To(V) =¥ (Uv)Ta(Wy) (3.39)

holds where ¥(Uy) is the unitary implementer for Uy given by Definition 3.11.
It suffices to show that (3.39) holds on Qp, since any bounded operator fulfilling
(3.35) is already determined by its value on Qp,. Because of Zy, = Zy we have

To(V)Qp, = T(Uy)Qp,, (3.40)

so it remains to show that ¢, - - - ¥q, ¥ (Uy)p, = ©(Uy )Yy, -- -, Qp, . We claim
that

¥;¥(Uv) = T(Uv)y;- (3.41)

For let T (resp. T") be the closure of 7p, (g;) (resp. wp,(f;)). It suffices to prove
that ¥(Uy)(D(T")) = D(T) and that

TE(Uy) = T(Uy)T". (3.42)

(3.42) clearly holds on ®. Now let ¢ € D(T'), and choose ¢, € D with
¢n = ¢ and T'¢, — T'¢. Then ¥ (Uy)p, € D converges to ¥(Uy)¢g, and
TY(Uy)én = ¥(Uy)T' ¢p, converges to ¥(Uy )T"'¢. It follows that ¥ (Uy)¢ € D(T)
and T (Uy)¢p = ¥ (Uy)T'¢p, ie. that T¥(Uy) D ¥(Uy)T'. In the same way
one obtains that T'¥(Uy)* D ¥(Uy)*T, so that (3.42) and (3.41) hold. (An al-
ternative proof of (3.41) goes as follows. Let T% (resp. T'F) be the self-adjoint
operators corresponding to T' (resp. T') as in the proof of Lemma 3.1. Then one
has D(T) = D(Tt)ND(T~) and T = T+ — 4T, and similar for 7. There holds
T(Uy) exp(itT' ST (Uy)* = exp(itT%), t € R. Therefore ¥(Uy) maps D(T'F)
onto D(T), and ¥(Uy)T'*®(Uy)* = T*. Consequently, ¥(Uy)(D(T")) = D(T)
and ¥(Uy)T'®(Uy)* = T. This implies that ¥(Uy)y; ¥ (Uy)* = 1; as claimed.)
The proof is complete since (3.33) and (3.35) together imply (3.34). O

COROLLARY 3.13.

There is a unitary isomorphism from H(gv), the Hilbert space generated by the
U, (V), onto the symmetric Fock space Fs(ty) over ty, which maps ¥o(V) to
€a0*(gay) -+ - 0* (90, )Y, where the normalization factor c, is defined in (3.5), and
a*(g;) and Q are now creation operators and the Fock vacuum in Fg(ty).

We shall see in Section 4.2 that, for gauge invariant V', the isomorphism described
above is not only an isomorphism of graded Hilbert spaces but also of modules of
the gauge group.
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4. SUPERSELECTION SECTORS REACHED BY GAUGE INVARIANT
QUASI-FREE ENDOMORPHISMS

In the present section we will apply our results from Sections 2 and 3 to the
theory of superselection sectors. We are especially interested in the possible “charge
quantum numbers” that can be realized by quasi—free endomorphisms. We will
consider situations where the theory of Doplicher and Roberts applies, i.e. where
the observable algebra 2 consists of the invariant elements of a field algebra (given
in its vacuum representation) under a group G of gauge automorphisms of the first
kind. As mentioned in the introduction, the charge quantum numbers of a localized
endomorphism p then are labels for the unitary representation of G which is realized
on the Hilbert space H(p).

The CAR and CCR algebras will play the réle of the field algebra, so that
quasi—free endomorphisms are from the outset endomorphisms of the field algebra
rather than the observable algebra. The following simple observation shows that one
has to restrict attention to gauge invariant endomorphisms, i.e. to endomorphisms
which commute with all gauge transformations.

PROPOSITION 4.1.

Let o be an endomorphism of the field algebra which is implemented by a Hilbert
space H(p) of isometries. Then H(p) is invariant under G if and only if o is gauge
invariant.

Proof. Assume first that H(p) is invariant under G. Let R be the representation
of G on H(p):

R is clearly unitary because one has for any v € G

(R(Y, R(7) W) = y(T"¥) = (¥, ¥)1) = (¥, )1, ¥, ¥ € H(p).
Writing R(7y) as a matrix with respect to the orthonormal basis (¥;), one gets

Y(®;) =22 R(Vkj¥r and -, R(v)k; R(7)1j = 0w, so that
v(e(F)) = Z’Y(‘I’j)V(F)V(‘I’j)*

=3 (X ROWEG),) B (F)¥;
k,l J

= Z‘PW(F)‘I’Z

= o(v(F))

for any field F'. Therefore g is gauge invariant.

Conversely, assume that g is gauge invariant. Since the field algebra is irre-
ducibly represented, the Hilbert space H(g) consists of all field operators ¥ which
intertwine between the vacuum representation and the representation induced by

0:
U € H(p) < VUF = p(F)¥ for all local fields F (4.1)
(cf. (2.24)). Now let ¥ € H(p) and v € G. Then one has for any F'
YO)F =~(Ty~ (F)) = v(e(v™' (F)¥) = o(F)7(¥),
so that v(¥) € H(p) by (4.1). O

We are thus led to consider the following setting. We assume that a distinguished
basis projection P; of X (CAR) resp. of (X,x) (CCR) is given. The global gauge
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group G will consist of diagonal Bogoliubov operators (resp. of the corresponding
automorphisms)

G C 9% (K) N Jaiag(K) = U (K1) (CAR)
G C 8%, (K, k) N 8yje (K, 6) 2 U (K1) (CCR).

Gauge transformations leave the Fock state wp, invariant. The usual second quant-
ization of U € G (or, more precisely, of Uy1) will be denoted by I'(U). This is
the same as ¥(U) defined by (2.85) resp. (3.32); the map U — I'(U) is strongly
continuous. The gauge automorphism corresponding to U on Fock space will be
denoted by ~y:
w(F) =T(U)FT(U)",

where F' can now be any bounded operator on Fock space. The charge structure of
all implementable gauge invariant quasi—free endomorphisms gy will be unraveled
in the next sections, i.e. of all gy with V contained in either of the following
semigroups

Ip, (K)¢ ={V € Ip,(X) | [V,U] =0 for all U € G} (CAR)
8p, (K, k)7 ={V €8p (K,k) | [V,U] =0 for all U € G} (CCR).

Bogoliubov operators commuting with G will be called gauge invariant. The nota-
tions I (X) resp. 8% (X, k)¢ will be used to denote the subsets of V with
indV = —n. At this stage of generality, it is not necessary to assume that G
is a (strongly) compact topological group. However, if G is “too large”, then it
can happen that Jp, (X)¢ and 8p, (X, k)? become trivial and consist only of the
operators of the form e**P; + e **P,, A € R. On the other hand, if G is compact,
then Jp, (X)¢ and 8p, (X, )¢ can be described more explicitly as follows. The
representation of G on X can be brought into the form

X = P (Ke ® be) (4.2)
€

where the sum extends over all equivalence classes £ of irreducible representations
of G realized on X, h¢ is a finite dimensional subspace carrying a representation
Ug of class &, and X¢ is a Hilbert space with dimension equal to the multiplicity
of £. G acts on K¢ ® be like 15, ® Ue. Gauge invariant Bogoliubov operators then
have the form V' = @¢(V¢ ® 1p,), and there exist non—surjective gauge invariant
Bogoliubov operators if and only if at least one X is infinite dimensional. Also
note that one should require on physical grounds to have —1 € G, but we do not
need this assumption at this point.

The analysis of the representations of G on the implementing Hilbert spaces
H(py) is facilitated by the following lemma.

LEMMA 4.2.

Let V be an element of Ip, (X) or 8p (X, k)®. Then the representation of G on
H(ov) (obtained by restricting vy to H(ov)) is canonically unitarily equivalent to
the representation on H(ov)Qp, (obtained by restricting T'(U) to H(ov)Qp,), via
the map ¥ — ¥Qp, .

Proof. Obvious from gauge invariance of the vacuum. O

EXAMPLE 3 (THE FREE DIRAC FIELD WITH GAUGE SYMMETRY).

The setting specified above is abstracted from field theoretic examples of the follow-
ing kind. Let H = L?(R?"~',C?") be the single particle space of the free time—zero
Dirac field in 2n spacetime dimensions. Let H = —iav + Bm be the free Dirac
Hamiltonian, with spectral projections p+ corresponding to the positive resp. neg-
ative part of the spectrum of H. Tensored with 1, these operators act on the
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space H' = H ® CN. The gauge group U(N) also acts naturally on H'. In the
selfdual CAR formalism, one sets

K=HoH", (4.3)

where H{'* is the Hilbert space conjugate to H'. There is a natural conjugation
f = f* on X which is inherited from the antiunitary identity map H' — 3H'*. The
basis projection P; corresponding to the vacuum representation of the field is then
given by
P =y, @p.

with p/, = p1 ® 15. Gauge transformations act like U = (13 @ u) @ (19¢+ ®
u), u € U(N), on X. They commute with P;. With respect to the decomposition
X = X1 & X5 induced by P;, U has the form

_ (pi®u+P-®T 0
U‘( 0 p—+®ﬁ+p_®u>‘ (4.4)

The field operators ¢; at time ¢ are given by

pe(f) = mp (@ f) = a(@ e )+ a@ple M )

where H' = H®1y, f € H'. They are solutions of the Dirac—Schrodinger equation
. d
—lESOt(f) = p(H'f), f € D(H")

(the minus sign is due to the fact that our field operators ¢;(f) are complex linear in
f). If O is a double cone with base B C R?"~1 at time ¢, then the local field algebra
associated with O is generated by all ¢;(f) with supp f C B. The local observable
algebra 24(0) is the fixed point subalgebra of this local field algebra under the gauge
action. (The whole net of local algebras is generated from these special ones by
applying Lorentz transformations.) Bogoliubov operators in Jp, (X)) which act
like the identity on functions f with supp f N B = ) induce endomorphisms of 2
which are localized in the double cone O, cf. Prop. 4.8 below. (The charge carried
by such localized endomorphisms can be read off from our formulas in the following
section.) All gauge invariant Bogoliubov operators V' have the form

V=@wely)® [@®®1ly) (4.5)

with respect to the decomposition (4.3) where v is some isometry of H. This
holds because (4.3), with H' = H ® CV, is the decomposition of X analogous to
(4.2). Thus Ip, (X)V™) is isomorphic to the semigroup of all isometries of H. This
fact remains true if the group U(N) is replaced by SU(N), except for the case
of SU(2). In the latter case (and only in that case), the defining representation
of the group is equivalent to its complex conjugate representation, since one has
JuJ* =u, u € SU(2), with J = (9 7'). Therefore (4.3) is not the decomposition
of K as in (4.2), and there exist Bogoliubov operators in Jp, (X)°V(?) which do not
have the form (4.5).
Similar constructions work for the free charged Klein—Gordon field.

4.1. The charge of gauge invariant endomorphisms of the CAR al-
gebra. In this section we will compute the behaviour of the implementers ¥, (V)
defined by (2.85) under gauge transformations for arbitrary gauge invariant V.
Recall from (2.86) that the value of ¥, (V) on the Fock vacuum is given by

\Ila(V)Qpl = DV¢P1 (gal Gy €10 eLV) exp(%ﬁa*a*)ﬂlﬂ (46)

where Dy is a numerical constant, {g1,...,gm, } is an orthonormal basis in ¢, =
Py (ker V*), {e1,...,er, } is an orthonormal basis in hy = Via(ker Vaz), and Ty is
the antisymmetric Hilbert—Schmidt operator defined in (2.54). We have to calculate
the transformed vectors T(U)¥,(V)Qp,, U € G.
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LEMMA 4.3.
T(U) implements the gauge automorphism oy in the twisted Fock representation
Yp,, t.e. one has

L(U)¢p, (a) = ¢p (eu(@)T(U),  a€ X).
Proof. Tt suffices to consider the case that a belongs to X. Recall from (2.10) that
Yp, (f) = imp, (f)¥(-1) for f € X. Since U is diagonal, the implementer I'(U) is
even:

[C©), ¥(-1)] =0.

This implies T(U)ior, (/)T(U)* = v, (U ). O
It turns out that the transformation properties of the exponential term in (4.6) are
also easily obtained.

LEMMA 4.4. L
IfV € Ip (X)9, then exp(3Tyva*a*)Qp, is invariant under all gauge transforma-
tions T(U), U € G.

Proof. It T € $Hp, (see (2.39)) has finite rank, then one readily verifies that
L(U)(3Ta*a*)L(U)* = £(UTU*)a*a*.
Approximating Ty by finite rank operators from §)p, relative to Hilbert—Schmidt
norm (cf. [CR87]), one convinces oneself that
LU)(3Tva*a*)"Qp, = (%(UWU*)a*a*)nQH, n €N,
because I'(U)Qp, = Qp,. It follows that

o0
T(U)exp(3Tva’a’)p = )
n=0
= exp (5(UTyU*)a*a*)Qp, .
Since U commutes with Py, P> and V, it also commutes with all components of V

and V*, including the operators Vii L, Drervip+ €tc. Ty is by definition (2.54) a
bounded function of these operators, so that

[U,Ty]=0, UE€GQG. (4.7)

Hence we get T'(U) exp(3Tva*a*)Qp, = exp(3Tva*a*)Qp, as claimed. O

| =

T(U)(ATva"a")" 0,

3

Thus we arrive at the following formula

F(U)ma(v)QPﬁ = DV¢P1 (Ugcn U Ugaz)¢P1 (Uel U UeLv) exp(%ﬁa*a*)ﬂlﬁ
(4.8)

which enables us to derive the “charge” carried by gy. This is best described by
using the Fock space structure on H(gy) established in Corollary 2.19.

THEOREM 4.5.

Let Py be a basis projection of X, let G be a group consisting of diagonal Bogoliubov
operators, and let V € Ip, (X)¢. Further let by C X, be the Ly —dimensional
subspace defined in (2.55), Ly < oo, and let ¢, C X be the My —dimensional
subspace defined in (2.83), My = —%ind V. Then both hy and €y are invariant
under G. Let Ag, be the unitary representation of G on the antisymmetric Fock
space Fo(by) over €y that is obtained by taking antisymmetric tensor powers of
the representation on ¥y . Then the unitary representation Uy of G on the Hilbert
space of isometries H(oy) which implements oy in the Fock representation mp,
is unitarily equivalent to Ay, , tensored with the one—dimensional representation

dety, (U) = det(Uly,,):
Uy ~ dety, ® Ag,. (4.9)
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Proof. The finite dimensional subspace hy = Vig(ker Vo) is invariant under G
because the elements of G commute with the components of V. Since the e, form
an orthonormal basis in by, it follows from the CAR that

U(el)---U(eLv)=det(U|hv)-61---6LV, Uegd.

Similarly, the elements of G commute with the basis projection Py (cf. (4.7) and
(2.60)) and leave ker V* invariant, so that &, = Py (ker V*) is also left invariant. It
then follows from the CAR that g,, - - - ga, transforms like the [-fold antisymmetric
tensor product of ga,,-..,ga, under G.

Thus we see from (4.8) that the representation of G on H(gy)Qp, is unitarily
equivalent to dety, ® A¢,, . By Lemma 4.2, the same holds true for the representation
on H(pv). O

Theorem 4.5 shows that genuine (i.e. non—surjective) quasi—free endomorphisms
oy are always reducible in the sense that the representation Uy of G on H (gy)
or, equivalently, the representation of the gauge invariant “observable” algebra
¢(X)¢ induced by gy on the subspace of I'(G)-invariant vectors in F,(X;), is
reducible. In fact, each “n—particle” subspace of H(py) (i.e. the closed linear
span of all ¥, (V) with « of length n) is invariant under G. Let u(V" ) be the
restriction of Uy to this subspace. Closest to irreducibility is the case that at
least u‘V” is irreducible. In typical situations, the remaining representations U§7 )
will then also be irreducible. This happens for instance if G = U(N) or G &
SU(N), and &y carries the defining representation of G. In the U(N) case, the U&,")
are not only irreducible, but also mutually inequivalent. In the SU(N) case, the

representations u(v"), ey u&,N_l) are mutually inequivalent, but u‘VN) is equivalent
to u&ﬁ”. In general, it can nevertheless happen that Ug,l) is irreducible but some
u(V”) are not, as is the case if G 2 SO(N) (N > 2 even) and &y carries the defining

representation of G (cf. [Wey46, Boe70]). If u‘vl) is reducible, then one has an
additional Clebsch—Gordan type splitting according to the unitary isomorphism
Folty @) = F,(81) @ Fo(€2) where £ and € are G—invariant subspaces of &y .

In the special case that gy is an automorphism (ind V' = 0), there survives
only the factor dety, in Theorem 4.5. This is consistent with Matsui’s result
(2.19), (2.20) on the equivalence of Fock states over €(X)“ (G compact). For let
V € 7% (X)¢ and set P = VP V*. Then the GNS representation mp for the Fock
state wp can be realized on F,(X;) as mp = wp, 00y !, with cyclic vector Qp,. The
unitary implementer ¥ (V') intertwines the representations 7p|¢(x)e and p, |¢(x)e -
U (V) restricts to a unitary isomorphism between the closed cyclic subspaces
(7rp|¢(g<)c Qp1 )7 and (7rp1 |¢(g<)c Qpl )7 if and Only if [\I’ (V), F(G)] = 0, i.e. if and Only
if deth(G) = 1. Now one has hV = ‘/12(1(61‘ ‘/22) = ker ‘/11* = ker Pll = le QF(JC),
where we used (2.34) and (2.45). Therefore dety, (G) = 1 is equivalent to Matsui’s
condition (2.20). However, Matsui’s result applies more generally because a basis
projection P € PBp, (see (2.38)) which commutes with G is not necessarily of
the form P = VP V* with V € % (X)¢. In general, there exist V € 1% (X)
such that [VPV*,G] = 0 but [V,G] # 0. For such V, one does not have
LU)T (V)T (U)* ~ ¥(V) but only v(U)¥(V)Qp, ~ T(V)Qp,. If, for a given basis
projection P, the representation U of G on ker Py, is equivalent to its complex con-
jugate representation U*, then there exists a gauge invariant V with VP, V* = P.
If U and U* are disjoint but both contained in X; with infinite multiplicity then
V with VP, V* = P can also be chosen to be gauge invariant. (These statements
follow from part (a) of Proposition 4.6 together with Proposition 2.9.)
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Another case of interest is obtained by specializing further to the case of auto-
morphisms and G = T. Assume that T acts on K via Uy = e*P + e AP, A € R,
where P is a basis projection of X which commutes with the given basis projec-
tion P;. Then all gauge invariant Bogoliubov operators commute with P, and the
semigroup of (not necessarily implementable) gauge invariant Bogoliubov operators
is isomorphic to the semigroup of all isometries of P(X). Let

p. =PP,, p_ =PP,. (4.10)

(In the situation of the free Dirac field outlined in Example 3, p1 are just the
spectral projections of the Dirac Hamiltonian.) If V' is gauge invariant, then the
implementability condition (V2 Hilbert—Schmidt) is equivalent to the condition
that the components V,_ and V_, be Hilbert—-Schmidt, because one has

Vin= Vi # Voo Vo = Vit Vo, (4.11)
Vor=V 4 +V,, Voo =V__ +Vig,
with Vi = pVpe, €,€ = +. These relations also entail that, for V € Ip, (X)T,
by = Via(ker Vag) =V (ker V. )@V _(ker V). (4.12)

The subgroup J%, (X)” of gauge invariant implementable Bogoliubov operators with
index zero can be identified with the restricted unitary group of P(X), i.e. with the
group of all unitaries on P(X) whose (+—) and (—+) components are Hilbert—
Schmidt, through the restriction map V +— PV P. To describe the charge corres-
ponding to V € 3%, (X)T, we have to compute the determinant of Uy, , A € R. By
indV =0, V_ maps ker V__ isometrically onto ker V, 1 *, and V_ maps ker V4
isometrically onto ker V__* (cf. (2.33), (2.34)). Hence we get from (4.12)

dety, (Ux) = exp (iA(dimker V__ — dimker V ;))
=exp(iAind V__)
= exp(—iAind V44 ).

The charge corresponding to an element V' of the restricted unitary group is there-
fore equal to —indVyy. The implementer ¥ (V) maps the charge—¢ sector in
Fa(X1), g € Z, onto the sector with charge ¢ — ind V4. Of course, ind Vi can
only be nonzero if p; and p_ both have infinite rank. The fact that the charge
created by a gauge invariant quasi—free automorphism gy is in this way related
to the Fredholm index of V. was implicit in the literature of the 1970s on the
external field problem (see e.g. [Lab74, Lab75, Fre77, KS77, Rui77, Rui78, Sei78])
but has apparently first been pointed out explicitly by Carey, Hurst and O’Brien
[CHOS82]. These authors showed that the connected components of the restricted
unitary group J%, (X)* are precisely labelled by ind V4. Computations of ind V|
for certain classes of unitary operators V' can be found in more recent publications
[CR87, Mat87a, Rui89a, Rui89b, Mat90, BH92].

Let us return to the general situation. So far we have analyzed the represent-
ation of G on H(py) in terms of the given representations on hy and €. But we
can also characterize the representations of G which can possibly occur on by and
ty. Note that, if X C X; is a G-invariant subspace carrying a representation of
class &, then the complex conjugate space (X})* C Ko carries a representation of
the complex conjugate class £*.

PROPOSITION 4.6.

a) Let h C Ky be a finite dimensional G—invariant subspace carrying a rep-
resentation of class €. 1If £ is self-conjugate (i.e. € = &*), then there ewists
Ve 1% (K)¢ with by = b such that V — 1 has finite rank. If & and &* are
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disjoint, then there exists V € I, () with by = b if and only if both & and &*
are contained in Xy with infinite multiplicity.

b) Let ¢ C K1 be a closed G—invariant subspace carrying a representation of
class &. If € is contained in Ky with infinite multiplicity, then there exists a diagonal
Bogoliubov operator V. € Ip (X)¢ with €&y = €. If € is irreducible and if & is
contained in X; with finite multiplicity, then there exists V € Ip, (X)¢ with &y =
€ if and only if € is finite dimensional and £* is contained in Ky with infinite
maultiplicity. A class £ which is only contained in Ky but not in K, cannot be
realized on any ¥y, V € Ip, (K)¢.

Proof. The proof will be constructive.

a) 1. Assume first that ¢ is self-conjugate. Then there exists a partial isometry
u from Xy to K; with initial space h* and final space h which commutes with G.
Let py+ be the orthogonal projection onto ht C K;. Then

V= (pf i)
u pr

is a unitary Bogoliubov operator with [V, G] = 0, by = Via(ker Vas) = u(h*) = b,
and V — 1 has finite rank.

2. Next assume that £ and £* are disjoint. If £ and £* are contained in X; with
infinite multiplicity, one has a decomposition

Ky =02(h) @ 2(h) oK

where h is the given subspace carrying a representation of class £, b’ is a subspace
carrying a representation of the complex conjugate class &*, ¢2(h) is the Hilbert
space of square summable sequences of elements of h, and H is the orthogonal com-
plement of £2(h) @ £2(h') in K;. Then let s resp. s’ be the (G—invariant) unilateral
shift on £2(h) resp. £2(h'), given by (f1, f2,...) = (0, f1, f2,...). Define a Fredholm
operator V37 on X; with index zero by

Vii=s®s"”" @pg

so that kerVi; = b, ker V1" = bh. (Here b is identified with (§,0,0,...), and
similar for §’.) Furthermore let Vi be a G—invariant partial isometry from X2 to
XK, with initial space h'* and final space b (such Vi, exists because h'* and b both
belong to the class £). Then Vi1 and Vi5 define a Bogoliubov operator V' € 3(}31 (X)“
with by = h. (One can show that V' fulfills in addition VP, V* = Py, in the
notation of Proposition 2.9.)

Conversely, if there exists V € J%, (X)¥ with hy = b, then £* must be contained
in X; since ker Vi1 belongs to this class (recall that V2 restricts to a unitary
intertwiner between ker Voo = (ker V11)* and hy). Since £ and £* are disjoint, one
has a decomposition

:K:l = ker ‘/11* D ker Vil (&) H (413)

with H = ranVi; NranVy;*. Viewing Vi; as a bounded bijection from ran Vi *
onto ran Vi, one gets a unitary intertwiner from ranVi;* onto ranVi; by polar
decomposition of Vi;. Therefore the representations of G on ranV1;* and ran Vi,
must be unitarily equivalent. One has by (4.13)

ran Vi1 " = ker V11" @ K, ranVi; = ker V1 @ H.

Since ker Vi1* belongs to the class £ and ker Vi; to the (disjoint) class &*, the
representations on ran V11" and ran V1; can only be equivalent if £ and £* are both
contained in H with infinite multiplicity.

b) 1. Assume first that £ appears in X infinitely often. Then X; has the form

XK= oK
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where £ belongs to the class £. If s is the shift on £2(€) as above, then

_ (5O px 0
V_< 0 S@pgc)

is an element of Jp, (X)“ with & = ker Vi;* = €.

2. Next assume that € C X; is irreducible of class £ and that £ is contained in
X1 with multiplicity M < oo. Let first € be finite dimensional and £* be contained
in Ky with multiplicity co. Then £ and £* are necessarily disjoint. Without loss of
generality, we may restrict attention to the closed *—invariant subspace of X which
comprises all representations of the classes £ and £*, because a Bogoliubov operator
having the desired properties on this subspace can be canonically extended to X
by letting it act like the identity on the complement of that subspace (and because
all other relevant operators leave this space invariant). Thus we will assume that
X is of the form

K = £2(€) @ £2(¥)*

with 2(8)NXKy = {(f1,---, fm,0,0,...) | f; € &}. If P denotes the basis projection
onto £2(E), then we are in a situation similar to the one discussed on p. 82. P
commutes with P;, and if we define p1 as in (4.10): py = PP, p_ = PP, then
p+ has finite rank since M < oo by assumption. Any gauge invariant Bogoliubov
operator V has to commute with P and is therefore of the form (4.11). Such V is
automatically implementable because p; has finite rank. Now let s again be the
unilateral shift on £2(€), and set

V=sds.

Then V lies in Jp, (X)¥. We claim that &, = £ Note that, by (2.92), &y =
Py (ker V*) = Pr, (ker V*) where the basis projection Pr,, is defined in (2.42) and
(2.54). By definition of V, one finds that V51 is a partial isometry so that Ty = 0
by the remark on p. 47. As a consequence, Pr, = P, and ty = Pp, (ker V*) =
P (k@ €*) = ¢ as claimed.

Conversely, assume that V € Jp, (X)€ exists with £, = £ Since all V*(ky), n €
N, are mutually orthogonal and belong to the class £, £ must be contained in X
with infinite multiplicity. This means that £* must appear in X; with infinite mul-
tiplicity, because the multiplicity of £ in X is finite by assumption. Then consider
again the closed *—invariant subspace X' of X which contains all the representations
of class £ and £*. Since £ and £* are disjoint, we can write

K =02E) @20 = (0t e ((C )"

Any operator A on X which commutes with G leaves X' invariant, and its restriction
to X' has the form (A'®1¢)® (A" ® 1¢). In particular, the projections p+ introduced
above can be written as pr = p/, ® 1, and the component V15 of a gauge invariant
Bogoliubov operator restricts to an operator of the form (Vj_ ® 1¢) ® (V! ® 1¢)
on X' (cf. (4.11)). Since V fulfills the implementability condition, Vi, is Hilbert—
Schmidt. If € were infinite dimensional, this would entail that V] _ and V', had
to vanish. But then the restrictions of P, and V to X' would commute, so that
the powers of V' acting on &y would produce infinitely many mutually orthogonal
copies of € in K;. This contradicts the assumption, and therefore € has to be finite
dimensional.

3. Finally, ¢y cannot be a subspace of X2 because one has ¢y = Pr,, (ker V*)
(see above), but Xy Nran Py = {0} for any operator T' € §p, (cf. the remark on
p. 44). O

One could also ask which combinations of representations can occur simultaneously
on hy and £y, for a single V. Let us only remark here that, if a fixed V € Ip, (X)¢
is multiplied with a unitary V' € 7% (X)¢, then the corresponding representation
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changes according to Uy'y ~ dety , -Uy so that the determinant factor in (4.9)
can be modified almost arbitrarily without affecting the factor Ag, .

Also note that, in the generic field theoretic situation described in Example 3,
X, has the form X; = K, ® KX_* where X, and X_ both carry the defining
representation of G with multiplicity co. Hence the defining representation and its
complex conjugate are both realized on some hy and &y .

These remarks complete our general discussion of the charge structure of quasi—
free endomorphisms of the CAR algebra. We would like to devote the rest of this
section to a comparison between the semigroup of gauge invariant quasi—free en-
domorphisms discussed above and the semigroup of localized endomorphisms ap-
pearing in the theory of superselection sectors. First of all, superselection sectors
are by definition #rreducible so that the question arises how to obtain the irre-
ducible “subobjects” of gauge invariant quasi—free endomorphisms gy. Suppose
that {¥y,...,¥,,} is an orthonormal set in H(gy) which transforms irreducibly
under G. According to the general theory, there should exist a gauge invariant
isometry @ on Fock space with ran® = @}, ran ¥; (cf. (0.7)). The correspond-
ing irreducible endomorphism g (which is not quasi—free) would then be given by
o(a) = 371, ®*T;a¥;P. However, the construction of such gauge invariant iso-
metries ® is at present unclear.

Similarly, the direct sum of quasi—free endomorphisms (which should be defined
as in (0.6)) can in general not be quasi—free. This is evident from the index formula
(2.14) and from the additivity of the statistics dimension on direct sums. The
statistics dimension and the Bosonized statistics operator from (2.97) and (2.98)
are the only invariants related to the statistics of a superselection sector which can
be unambiguously ascribed to a quasi—free endomorphism in this general setting.

Thus JIp, (X)¢ is only closed under composition and not under taking direct
sums or subobjects. Furthermore, the existence of conjugates is only guaranteed if
one makes additional assumptions on the action of G on X. Specifically, one needs
charge conjugation already on the level of first quantization:

PROPOSITION 4.7.
Assume that there exists a further basis projection P of X which commutes with Py
and with G, and let p+ be defined as in (4.10):

p+EPP1, p_EPPQ.

Assume further that there exists a unitary operator C4_ from X_ = p_(X) onto
K+ = pr(K) which commutes with G, and let C be the unique Bogoliubov operator
which commutes with P and which is given on P(X) = Xy & X_ by the matrix

_ 0 Ci
PCP = <€+_* 0 ) .
Then € is gauge invariant, unitary and self-adjoint, and the map
V= Ve=eve (4.14)

is an involutive automorphism of Ip, (X)¥ which preserves the statistics dimension.
In addition, one has

bve = C(hv7), tye = C(ty ")
so that the representation Uy associated with V¢ according to (4.9) is unitarily
equivalent to the complex conjugate of Uy (“charge conjugation”).

Proof. @ = PCP + PGP is clearly a gauge invariant self-adjoint element of J°(X).
Its components with respect to Py, P> are

0 Cy_
Ci1 =0, Ci2 = <e+_r 6 ) .
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Thus one has V¢15 = C12V2; €12 so that V¢ belongs to Ip, (X)¢ if V does. (V)¢ =V
follows from €2 = 1. The map (4.14) is consequently an involutive automorphism
of Ip, (K)¥ (it is unital and multiplicative). It preserves the statistics dimension
because ind € = 0.

Now let V € Ip,(K)¥. One has V55 = @5, V11 €15 so that

hye = VCia(ker VCy0)
= C12V51C12(ker €21 V11 C12)
= C12Vo1 (ker V11)
= Cra2(hv")
= C(hv").

Similarly, one finds that the antisymmetric Hilbert—-Schmidt operators Ty, Ty-
associated with V, V¢ through (2.54) are related to each other by

Tye = € TyCy
since
_ c c -1 ¢ —lkxyrc *
Tve =V V1™ — V™ "V Prerve,,*
= Co1V12Ca1 - C1aVas 'Co1 — Co1 Vi Cia - Co1Vo1*Coy - CraPrer vay-Cot
= Co1 (Vi2Va2 ™" — Vi1 ™" Va1 *Prer vap+ ) C21
= €1 TvCa.

One obtains for the corresponding basis projections (cf. (2.42))
Pr,. = (P + Tye)(Py + Ty*Tye) (P + Tye*)
= (P + €31 Ty Co1)(P1 + C1oTy Ty *Cop) ' (P + C12Ty " €C12)
=C(Py+Tv)Co1 - Cro(Py + TyTy™*) ' €a1 - Cra(P2 + Ty ")C
= CPr, C.
This entails further that
tve = Pr,. (ker V) = CPp, C(Cker V*) = C(y¥)
and finally
Uye ~ detp, . ® Ag,. =~ (dety, )" @ (Ag, )" =~ Uy ™.
([l

Note that the assumptions of the proposition amount to a decomposition of the
single—particle space X; into the direct sum of two antiunitarily equivalent G-
modules X and K _*. These assumptions are of course satisfied in Example 3. Tt
is also fairly obvious that, if these assumptions are violated, there will in general
exist operators V in Jp, (KX)¢ which do not admit conjugates in Ip, (X)¢ (i.e. there
is no V! € Jp, (K)¢ with Uy» ~ Uy™; cf. Proposition 4.6). But also note that,
if V € Ip,(X)¥ has finite index and if G acts on both subspaces by and €y with
determinant 1, then gy is automatically self-conjugate in the sense that Uy ~ Uy *.
Recall from Theorem 4.5 that Uy is then equivalent to the representation Ag, on

the antisymmetric Fock space F,(€y) over &y. Let Agz) be the restriction of Ag,
to the n—particle subspace of F,(8y) so that

My
Ae, = PAY.
n=0
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The character x(™ (U), U € G, of Agt) is equal to the nth elementary symmetric
function 37, . _; Aji -+ Aj, of the eigenvalues Ay, ..., Apry, of Ule,, (cf. [Mur62]).
It follows that
(™ = M)y (My —n)

and that Iy

Ag:) ~ dete, ® Agv vomx n=20,...,My
(this holds for any unitary representation on &y, the condition on the determinant
is not needed here). Assuming now that dety, = dete,, = 1, we get that

Ul ~ UMy

so that Uy is selfconjugate as claimed. (This remark applies in particular to the
Dirac field with gauge group SU(NV), see Example 3.)

The main reason for our inability to mimic the generic superselection structure
more closely is of course the complete lack of locality in our preceding considera-
tions. If one could find, in a specific model, a localized implementable quasi—free
endomorphism, then it is clear that our methods would apply and could be used
to construct the corresponding charged local fields and to determine their charge
quantum numbers. It is however not clear from the outset that localization and im-
plementability are compatible with each other. Known results in this direction only
deal with the case of automorphisms. Building on the work of Carey and Ruijsen-
aars [CR87] and others, we constructed in [Bin93] a family of (implementable and
transportable) localized automorphisms, carrying arbitrary T—charges, for the free
Dirac field in two spacetime dimensions with arbitrary mass. The Bogoliubov op-
erators V belonging to these automorphisms are given by two T—valued functions
which are equal to 1 at spacelike infinity, and the charge —ind V4 (cf. p. 83) cre-
ated by gy is equal to the difference of the winding numbers of these functions.
However, in contrast to the two—dimensional case, there are no known examples of
implementable charge—carrying (with respect to G = T') Bogoliubov automorphisms
in four spacetime dimensions. (Non-zero charge seems to be compatible with Vj5
compact, but not with Vi, Hilbert—Schmidt, cf. [Mat87a, Rui89a, Mat90, BH92].)

As a slight generalization of a result in [Bin93], we can characterize localized
gauge invariant endomorphisms of the free Dirac field as follows. Recall from Ex-
ample 3 that all gauge invariant Bogoliubov operators for the N—component Dirac
field with U(N) gauge symmetry have the form (4.5)

V=wely)®d @We1lN) (4.15)

where X = H' @ H'*, H' = H@CN, H = L>(R*1,C?"), and v is an isometry of
H. We restrict to the time zero situation.

PROPOSITION 4.8.

Let O be a double cone with base B C R at time zero. Let V € Ip, ()Y and
let v be the isometry of H associated with V via (4.15). Then gy is localized in O

in the sense of (0.3)" if and only if there exists, for each connected component A
of R2"=1\ B, a phase factor Tao € T such that

o(f)=7af for all f € H with supp f C A. (4.16)

Proof. Assume that gy is localized in O. Let by,...,by be the standard basis
in CV, let A be a component of the complement of B, and let f,g € H with
supp f,g C A. Then
N
a(f,9) =Y (f@b;)(g ®b))* € €I)W)

Jj=1

YMore precisely, the normal extension of gy in the representation 7p, is localized in O.
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is gauge invariant, and 7p, (a(f,g)) is a local observable in 2A(0O'). Since gy is
localized in O, one has a(f, g) = ov(a(f,9)) = 32, (vf ® b;)(vg ® bj)*. Since the b;
are linearly independent, it follows that

(f@b)(g@b;)" = (vf@bj)lvg®b)",  j=1,...,N. (4.17)

Now let P’ be the basis projection onto H' C X, and let wpr be the corresponding
Fock state. One has

wer ((F @5 (f @b;)(f @) (F @ b)) = [Ifll

and, since (vf ® b;)* belongs to the Gelfand (or annihilator) ideal of wpr,
wp ((F80)* (f@b) (0] 8h;)" (F@b)) = (vf, N ((F8h;)" (0] 1)) = (0], )P

Therefore one gets from (4.17), in the special case f = g, that ||f[|5. = [{vf, f)|-
It follows that there exists 7y € T such that v(f) = 77f. By the same argument,
v(g) = 749 for some 7, € T. Then (4.17) yields that 74 = 7,. Therefore these phase
factors depend only on A and not on the functions.

Conversely, assume that (4.16) holds. Let O C O' be a symmetric double cone
with base B at time zero, and let A be the connected component of R2"~! \ B
which contains B. Then gy acts on the local field algebra belonging to O like the
gauge transformation induced by 7o € T C U(N), and it consequently acts like

the identity on 4(O). Since the algebra 2((0') is generated by such local algebras

A(0), it follows that gy is localized in O. O

Of course, R2"~! \ B is connected if n > 1, but has two connected components
if n = 1. Recall that this is the basic reason for the generic violation of Haag
duality and for the possible occurrence of braid group statistics and soliton sectors
in two—dimensional Minkowski space.

We would like to close this section with a demonstration that at least the free
massless Dirac field in two spacetime dimensions possesses non—surjective imple-
mentable localized quasi—free endomorphisms. It suffices to consider one chiral
component of the field. Thus consider the Hilbert space 5 = L?(R) with Dirac
Hamiltonian —i%. It is convenient to transform to the Hilbert space L?(T) via the

Cayley transform s

i )
»x:RU{o0} = T, s _e2iarctanz _ .
T+

(cf. [CR87, Rui89b]). sr induces a unitary transformation 3¢

AT ®),  Gef)(e) = LD

The important point is that the spectral projections p4 of —i% are transformed

into the Hardy space projections (cf. [Dou72]): Set g+ = 5 !pyjz, then

qt = Zen(en,.), q- = Z enlén,.), en(2)=2"(2€T,neZ). (4.18)
n>0 n<o0

Our task is to construct an isometry v of L?(T) with ¢, vq_, q_vq, Hilbert-Schmidt
(implementability), with indv = —1 (close to irreducibility, cf. p. 82), and such
that vf = f for all f € L*(T) with supp f C T \ I where I C T is a fixed interval
(localization). As localization region we shall choose the interval

I={e*| 5 <A<}
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which corresponds, by the inverse Cayley transform, to the interval =1 (I) = [-1,1]
in R. We need the following orthonormal basis (fm)mez in L*(I) C L*(T)

fm(2) =V2(-1)"2""x1(2), z€T
where x is the characteristic function of I. The isometry v is now defined by
v=1+ Z(fm-f-l_fm)(fma-)- (4'19)
m>0

Note that v acts like the identity on functions with support in T\ I, that vf,, = fm
if m < 0, and that v acts like the unilateral shift on the remaining f,,.,: vf,, = fmt1
if m > 0.

The author gratefully acknowledges some private lessons in estimating infinite
series given to him by P. Grinevich which were indispensable for the proof of the
following lemma.

LEMMA 4.9.
q+vq— and q_vq4 are Hilbert—Schmidt.

Proof. The following inner products are easily computed

(—)m (% Q;azml, I even
(e ) = o [ 7N
™2 Jg T(;n)j , lodd.

1. This yields for the Hilbert—Schmidt norm of ¢;vg_, using (4.18) and (4.19)

lgvg-lfs = 3 |lasven]”

n<0
2
=SS elers fonrr = Fn)(Fomsen)
n<0"l,m>0
2
= Z Z Z (e1y fmt1 — fm){fm,en)
n<0 >0 'm>0

4 1 1 1
mt Z Z Z (2m+2—l_2m—l) 2m —n

n<0, [>0, m>0
nodd{odd

+ % Z Z Z <(—1)m+152m+2,l - (—1)m52m,l) ﬁ

n<0, >0, m>0
noddleven

16 1
Z Z Z 2m+2—-10)(2m—1)(2m +n)

n>0, {>0, \m>0
noddlodd

+ 2 Y (e )

n>0, [>0,
noddleven

1

K n,i>0 'mz>0 (2m—=21+1)2m -2l -1)(2m +2n + 1)

7(2 Z ( 21+2n—1)1(21+2n+1)>2
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This proves that ¢,vg_ is Hilbert—Schmidt. The Hilbert-Schmidt norm of ¢_vg,
can be estimated as follows:
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Thus the Bogoliubov operator V' induced by v by (4.15) yields a U(N)-gauge
invariant implementable localized endomorphism gy of the chiral Dirac field. Since
My = dim €y = N by construction, it is clear that €y carries either the defining
representation of U(N) or its complex conjugate. By the discussion on p. 82, the
irreducible constituents of gy correspond to the irreducible, mutually inequivalent
representations U&,"), n =0,...,N. It would be interesting to find a manageable
description of the Cayley—transformed operator swvsz~! on L?(R), which would
perhaps give an idea how to obtain implementable localized endomorphisms in the
two—dimensional massive case.

4.2. The charge of gauge invariant endomorphisms of the CCR al-
gebra. Our discussion of the charge structure of gauge invariant endomorphisms
of the CCR algebra will be short compared to the CAR case. Recall from the be-
ginning of Section 4 that we consider the following situation: We have an infinite
dimensional vector space X together with a nondegenerate hermitian sesquilinear
form k and a fixed basis projection P;. X is assumed to be complete with respect
to the inner product induced by P;. The gauge group G acts by diagonal Bogoli-
ubov operators on X and can be identified with a subgroup of the unitary group of
K1 = P1(X). Our interest is in the representations of G on the Hilbert spaces H (gy)
which implement gauge invariant quasi-free endomorphisms gy, V' € 8§, (X, n)G

By Lemma 4.2, it suffices to look at the values of the implementers on the Fock
vacuum. We have by (3.30), (3.32)

T, (V)Qp, = Dy b, - e, exp(%ZI,a*a*)Qpl (4.20)

where Dy is a numerical constant, Zy is the symmetric Hilbert—Schmidt operator
defined in (3.22), g1, g2, - - - is a K—orthonormal basis in &y = Py (ker V1), and 1, is
the isometry obtained by polar decomposition of the closure of wp, (g;). In contrast
to the Fermionic case (cf. Lemma 4.3), there is no simple transformation law for the
t¢; under G. This difficulty can however be circumvented by rewriting ¥,(V)Qp,
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with the help of (3.37)—(3.40) and (3.5) as follows
T, (V)Qp, = O (Uy)To(Wy)Qp,
= CalIJ(Uv)Trpl (U{/ (ga1) T U{/’ (gat))QP1
= CaTp, (gal) T Th (gal)‘IJO (V)Qpl
)

(4.21)

= COéDVﬂ-Pl (gal) TRy (gat exp (%Zi,a*a*) QPI

(the bar denotes closure). The behaviour of the mp, (g;) under gauge transforma-
tions is obvious. It remains to consider the exponential term. It is a salient feature
of Definition 3.6 that this term is gauge invariant:

LEMMA 4.10.
Let V € 8p (X, k)% be given, and let Zy € €p, be defined by (3.22). Then

exp(%Z{L,a*a*)Qp1 is tnvariant under all gauge transformations T(U), U € G.

Proof. Let E be the orthogonal projection onto H{ = ker VI = CkerV*, C =

P, — P, as in (3.20). Then E commutes with G since V and P; do so. Let

A = ECE be the self-adjoint operator introduced in Lemma 3.5. Then A and all

its spectral projections commute with G. It follows that the positive part A, of

A and the operator A, ! defined in Lemma 3.5 also commute with G. Therefore

Py =VPVI+ A, 7'C and Zy = (Py)21 (Pv)lf1 commute with G as well.
Arguing as in the proof of Lemma 4.4, one finds for U € G

r(U)(%Z"Va*a*)"Qpl - (%(UZTVUT)a*a*)"Qpl
and finally
I(U) exp (%Zi,a*a*) Qp, =exp (%(UZ{,U*)a*a*) Qp, =exp (%Z{,a*a*) Qp,.
O
Invoking the isomorphism H(gy) = F4(ty) from Corollary 3.13, we thus deduce

THEOREM 4.11.

Let Py be a basis projection of (X, k), let G be a group consisting of diagonal Bogoli-
ubov operators, and let V € §p (X, I‘é)G. Let ¥y = Py (ker V1) be the subspace of X
defined in Definition 3.11, with dim ¢y = —% indV. Then &y is invariant under G,
and the unitary representation Uy of G on the Hilbert space of isometries H(oy)
which implements py in the Fock representation mwp, is unitarily equivalent to the
representation on F;(y) that is obtained by taking symmetric tensor powers of the
representation on ty .

Proof. €y is invariant under G because ker V1 is invariant and because G commutes
with Py (see the proof of Lemma 4.10). The assertion hence follows from (4.21),
Lemma 4.10 and Lemma, 4.2. O

Theorem 4.11 shows that genuine quasi—free endomorphisms of the CCR algebra
are even “more reducible” than endomorphisms of the CAR algebra in that they
are always infinite direct sums of irreducibles, a fact which explains the generic
occurrence of infinite statistics in the CCR case (cf. Theorem 3.3). Again, each
closed subspace of H(py) spanned by all ¥,(V) with length of « fixed is invariant
under G. The special case of quasi—free automorphisms is of little interest in the
CCR case because they are all neutral (Uy is the trivial representation of G if
indV = 0).

There is also less freedom in the choice of the representation of G on &y (cf.
Proposition 4.6):
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PROPOSITION 4.12.

a) If ¢ C Ky is a closed G—invariant subspace carrying a representation of class
& and if € is contained in K1 with infinite multiplicity, then there exists a diagonal
Bogoliubov operator V € 8p (X, /-c)G with £y = €.

b) A class & of irreducible representations of G is realized on some %y, V €
8p, (X, K)G, if and only if £ is contained in K; with infinite multiplicity.

Proof. The proof of a) is the same as the proof of Proposition 4.6 b) 1. because
Sdiag (j{, I‘&) = jdiag (j()

To prove b), assume that £ is contained in X with finite (or zero) multiplicity.
(Recall that G commutes with Py so that any irreducible class £ contained in X is
contained in Xy or X3.) Assume further that V € 8p (X, Ii)G exists such that &y
belongs to the class £. Then let g, be the k—orthogonal projection onto V™ (&y)

n=V"Py(1-VVHyin

Since gmgn = 0 (m # n), the V(&) are mutually xk—orthogonal, and their direct
sum Ky = @52, V"™ (¢y) C X carries the representation £ with infinite multiplicity.
Therefore £ must be contained in KXo with multiplicity co. However, the restriction
of k to Ky is positive definite, whereas the restriction to X, is negative definite.
This is a contradiction and shows that no V' with £ of class £ can exist. On the
other hand, if £ is contained in X; with infinite multiplicity, then we are back in
the situation of a). O

The remarks made in Section 4.1 after Proposition 4.6 on the relation to the
generic superselection structure apply here as well. In particular, one needs addi-
tional assumptions to ensure the existence of conjugates (cf. Proposition 4.7):

PROPOSITION 4.13. .
Assume that there exists an orthogonal projection® P of X with P + P = 1 which
commutes with P, and G. Let p+ be defined by

p+EPP1, ,EPPQ,

and assume that there exists a unitary operator Co_ from X_ = p_(XK) onto Xy =
p+(K) which commutes with G. Let C be the unique operator on X which commutes
with P, which fulfills € = C, and which is given on P(X) = X, ® X_ by the matriz

(0 e,
rer= (0. %),

Then € is gauge invariant, unitary and self-adjoint, it fulfills {€,C} = 0 and
Ct = —C, and the map

Ve Ve=CVe (4.22)
is an involutive automorphism of 8p (X, K,)G. One has
tye = C(by™) (4.23)

so that the representation Uy- of G on H(gy<) is unitarily equivalent to the complex
conjugate of Uy .

Proof. The asserted properties of € are readily verified. It only remains to prove
(4.23). Let us first show that

Py. = CP,C (4.24)

“Such P is a CAR basis projection of X, but not a basis projection of (X, k) since k is not
positive definite on ran P.
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where Py, Py. are the basis projections associated with V, V¢ according to Defin-
ition 3.6:

Py =VP Vi +py, Pyc=VePVT +pye. (4.25)
Let E resp. E° be the orthogonal projections onto ker V1 resp. ker V¢f, and let
A = ECE, A¢ = E°CE° be the corresponding operators as in Lemma 3.5, with
positive/negative parts Ay, A°;. Since ker V! = C(ker V1), one has E¢ = CEC

and
A°®=CE(CCC)EC = —CECEC = —CAC

so that A°; = CA_C. Since A_ = A (see the proof of Lemma 3.5), since {C,C} =
0 and C' = —C, this implies
pye = A%, 'C = €A} 'eC = CA,~'CC = Cpye.
Thus we get from (4.25), using CP,C = P, and €f = —€
Py = VPV 4+ pye = CVRVIC + Cov€ = CPy €
which proves (4.24). It follows that (4.23) holds:
tye = Pye(ker V) = CPyC(Cker V) = €(Ey*).

Therefore the representation of G on £y. is unitarily equivalent to the complex
conjugate of the representation on £y, so that Uy ~ Uy* by Theorem 4.11. O
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