List of Figures

Chapter 1: Quasicrystals

1.1	Rhombic Penrose pattern	13
1.2	Fibonacci sequence generated by the section method	16
1.3	Illustration of phason-disorder and approximants	18
1.4	Macroscopic view of a decagonal quasicrystal	23
1.5	Phase diagram of Al-Ni-Co alloy	25
1.6	Physical and perpendicular space components of the 5D reciprocal basis vectors .	26
1.7	Indexing scheme of decagonal quasicrystals	26
1.8	Normal and superstructure basis vectors	28
1.9	Penrose patterns generated by the section method	29
1.10	Atomic structure of <i>d</i> -Al-Ni-Co	30
1.11	Fourier amplitude versus $\ \mathbf{H}^{\perp}\ $	32

Chapter 2: Experimental Methods

2.1	Different nature of He atom and electron scattering from the crystal surfaces	36
2.2	Interaction of neutral atoms with a solid surface	37
2.3	Scattering geometry	38
2.4	Ewald construction	39
2.5	Scan curves and phonon dispersion	44
2.6	Schematic diagram of surface phonon measurement with TOF analysis	46
2.7	Schematic of the experimental chamber for He diffraction	48
2.8	Schematic of the vacuum system	49
2.9	Schematic of the SPA-LEED instrument	54

Chapter 3: The 10-fold *d*-Al-Ni-Co Surface

3.1	SPA-LEED image at 65 eV	60
3.2	SPA-LEED image at 75 eV	61
3.3	Comparison between calculated and experimental diffraction pattern \ldots .	64
3.4	SPA-LEED images in magnified scale	64
3.5	Superstructure spots around a strong diffraction spots $\ldots \ldots \ldots \ldots \ldots \ldots$	65
3.6	Indexing with respect to the superstructure basis	66
3.7	Line scans by electron diffraction	67
3.8	He diffraction along the high symmetry directions	69
3.9	Comparison between HAS and SPA-LEED	70
3.10	Comparison of He diffraction from differently prepared surface	71
3.11	He specular intensity as a function of momentum transfer $\ldots \ldots \ldots \ldots \ldots$	72
3.12	STM image demonstrating a high step density	74
3.13	STM image showing two different surface terminations within a single terrace $\ . \ .$	74
3.14	STM image of two adjacent terraces	75
3.15	Gray scale image of the Fourier transform of a STM image $\ldots \ldots \ldots \ldots$	75
3.16	High resolution STM image with a tiling overlaid	76
3.17	Atomic structure of the topmost layer of the bulk terminated surface	77
3.18	Observed individual tiles and rhombic tiling	77
3.19	Comparison between observed and theoretical cluster	78

Chapter 4: The 2-fold *d*-Al-Ni-Co(10000) Surface

4.1	Bulk decagonal basis vectors	82
4.2	SPA-LEED images at different electron energies	83
4.3	Line scans along the quasicrystalline direction	84
4.4	Projection of the in-plane bulk decagonal basis vectors onto the 2-fold axes \ldots	85
4.5	Gray scale plot of LEED intensity $I(k_{\parallel},k_{\perp})$	86
4.6	He diffraction along the quasicrystalline direction	88
4.7	Comparison between the HAS and SPA-LEED along the quasicrystalline direction	90
4.8	He diffraction along the periodic direction	91
4.9	Comparison between HAS and SPA-LEED along the periodic direction	92

Chapter 4: The 2-fold *d*-Al-Ni-Co $(001\overline{1}0)$ Surface

4.10	He diffraction along the quasicrystalline direction	93
4.11	Angular distribution of He diffraction at different beam energies \ldots \ldots \ldots	94
4.12	He diffraction around the facet specular $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	95
4.13	Comparison of He diffraction from the facet and the (10000) surface \ldots	96
4.14	Comparison of He specular variation from the facet and the (10000) surface \ldots	97

Chapter 5: Surface Phonons of the 10-fold *d*-Al-Ni-Co

5.1	Analysis of TOF spectra	103
5.2	TOF spectra at different sample temperatures	104
5.3	Intensity of phonon and diffuse elastic peak as a function of sample temperature	105
5.4	Series of TOF spectra	106
5.5	High symmetry points of the quasi-Brillouin zone	107
5.6	Experimental surface phonon dispersion	108
5.7	Dispersion folded in the first quadrant	109
5.8	Phonon peak height and intensity as a function of wavevector	110
5.9	Data analysis to determine peak widths	111

Chapter 6: The 5-fold *i*-Al-Pd-Mn Surface

6.1	Macroscopic view of an icosahedral quasicrystal	4
6.2	Reciprocal basis vectors of icosahedral quasicrystals	5
6.3	LEED image	6
6.4	He diffraction along the high symmetry directions	6
6.5	High symmetry points of the quasi-Brillouin zone	7
6.6	Series of TOF spectra 11	8
6.7	Experimental surface phonon dispersion	9