
Chapter 1

Quasicrystals

The discovery of a quasicrystalline phase in a rapidly cooled Al-Mn alloy [1] broke the funda-

mental concept of crystallography because the di�raction of the alloy had a sharp di�raction

pattern with a rotational symmetry incompatible with periodicity. This new �nding forced a

reconsideration of the traditional de�nition of a crystal as a periodic arrangement of identical

unit cells. In 1992, the International Union of Crystallography rede�ned crystals as any solid

having an essentially discrete di�raction diagram [34].

Periodic crystals are formed by a periodic repetition of a single building block the so-called

unit cell exhibiting a long range translational and orientational symmetry. Only 2-, 3-, 4-, and

6-fold non-trivial rotational symmetries are allowed in the periodic crystals and their di�raction

patterns give sharp Bragg peaks re
ecting the symmetry and long range order.

In contrast to periodic crystals, quasicrystals exhibit a long range order in spite of their lack

of translational symmetry and often possess n-fold (n = 5 and > 6) rotational symmetries. Most

of the quasicrystalline structures can be described by using quasiperiodic tiling models [35, 36],

where two or more di�erent `unit cells' (tiles) are used as the building blocks of the structure.

An alternative model is a covering model, where a single, overlapping tile acts as unit cell [37].

The di�raction pattern of quasicrystals shows a dense set of Bragg peaks with their positions

related by the irrational number � = 1:618 : : : = 2 cos �
5 , the so-called golden mean, which is

related to the geometry of pentagonal and decagonal symmetries. In contrast to periodic crystals,

where three integer indices are suÆcient to characterize the di�raction of a 3D structure, n

integer indices (n > 3) are required to generate the di�raction vectors of aperiodic crystals
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12 Chapter 1. Quasicrystals

indicating that the spots could be related to a nD periodic lattice. In fact, quasicrystals of all

kinds can be explained by periodic lattices in higher dimensional space.

This chapter includes a discussion about the basic concepts, stability and structure models

of quasicrystals followed by structural details of d-Al-Ni-Co.

1.1 Basic Concepts

1.1.1 Basic Types of Quasicrystalline Lattices

Fibonacci Sequence

The Fibonacci sequence is a fundamental and a well-known example of a 1D quasiperiodic

structure exhibiting aperiodic long range order. Although it does not feature orientational

symmetry, the Fibonacci sequence illustrates many important properties of quasicrystals, which

can be generalized to 2D and 3D quasicrystals. The Fibonacci sequence is built from two

elements `L' (large) and `S' (small). The sequence can be generated by a substitution rule L !

LS and S ! L. The resulting sequence is as follows:

Generation Fibonacci Sequence Fibonacci Number

1st L 1

2nd LS 2

3rd LSL 3

4th LSLLS 5

5th LSLLSLSL 8

6th LSLLSLSLLSLLS 13

: : : so on

The frequencies of `L' and `S' in each sequence and the ratio of successive Fibonacci number

(number of line segments in each generation) is � (the golden mean) in the limit of in�nite se-

quence length. The sequence is self-similar. This implies that in
ation or de
ation of a Fibonacci

sequence yields another Fibonacci sequences with di�erent length segment. The sequences can

be generated by taking a single line segment and applying the de
ation rule (L
n
!L

n+1Sn+1

and S
n
!L

n+1, n denotes number of generations) with an additional constraint that the ratio

of line segments in each generation is equal to the golden mean i.e. Ln

Sn
= � . Furthermore, the
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Figure 1.1: A rhombic Penrose pattern (right panel) generated by two rhombi (left upper panel).

The lower left panel shows the de
ating scheme.

di�raction of the Fibonacci sequence gives sharp Bragg peaks with many interesting features,

which will be discussed in the next section.

Penrose Tiling: A 2D Quasicrystalline Lattice

In 1974 the British mathematician Roger Penrose found that the 2D plane can be covered in

a non-periodic fashion with two types of rhombi with equal edge length [38]. The importance

of the Penrose tiling in solid state physics was realized only after the discovery of quasicrystals

in 1984. Indeed, the Penrose pattern gives a di�raction pattern very similar to the di�raction

observed from decagonal QCs [39].

Figure 1.1 shows a 2D rhombic Penrose pattern generated by two types of rhombi, one with

an angle of 36Æ (skinny rhombus) and another with an angle of 72Æ (fat rhombus) (also see

Figure 1.9). A perfect quasiperiodic pattern can be obtained only if the tiles are packed with a

speci�c matching rule. The rule is simple, two rhombi are allowed to join if the arrows in their

common edge match [38].

The Penrose pattern possesses many interesting features. Both areas and frequencies of

skinny and fat rhombi in the pattern are of a ratio 1 : � . The pattern consists of �ve sets
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of tile-edges each parallel to the sides of a regular pentagon. The edges belonging to each

set are orientated along a Fibonacci grid (a Fibonacci grid is a set of parallel lines separated

by distances forming a Fibonacci sequence). This gives evidence of the long range order of

the Penrose pattern. Furthermore, the local 5-fold and 10-fold rotational symmetries can be

observed in the pattern. Some of decagonal and pentagonal features are highlighted in Figure

1.9.

Another important feature of the tiling is its self-similarity. A Penrose pattern can be

transformed to another Penrose pattern by de
ating/in
ating the skinny and fat rhombi. Figure

1.1 (left lower panel) shows the de
ating scheme, where the fat and skinny rhombi are divided

into smaller fat and skinny rhombi. The fat rhombus is divided into two fat and one skinny

rhombus, while the skinny rhombus is divided into one fat and one skinny rhombus. The area

of the new fat and skinny rhombi is smaller than the respective old rhombi by a factor of �2.

Starting from a single rhombus, an arbitrarily large section of a Penrose tiling can be produced

by continuously applying the de
ation rule. There are some other 2D quasicrystalline tilings

such as the pentagonal Penrose tiling (Figure 1.9) and the octagonal Penrose tiling, which

explain the di�raction pattern of other polygonal QCs [40]. The idea of space �lling is extended

to 3D space, where two kinds of rhombohedrons are needed to �ll the 3D space aperiodically

[41]. The Fourier transform of the 3D Penrose tiling explains the di�raction pattern observed

in icosahedral QCs [42, 43].

1.1.2 Higher Dimensional Concept

Higher dimensional crystallography was �rst introduced by deWol� in 1974 [44]. Many quasiperi-

odic structures can be considered as a physical space projection or irrational cut of a higher

dimensional periodic lattice. For instance, 2D and 3D Penrose tilings can be obtained from 4D

and 6D periodic space, respectively [45]. Rotational symmetries incompatible with 3D period-

icity are allowed in suitable nD (n > 3) periodic space. The body diagonal of a hypercubic

lattice in nD space, for example is an n-fold rotational axis.

In this section, a method to generate 1D and 2D quasicrystalline lattices is presented. There

are two procedures to derive quasicrystalline lattices from higher dimension: (a) the projection

method, and (b) the section or embedding method, also called the cut method. The section

method is dealt in the following because it provides a convenient way to obtain the di�rac-
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tion pattern and the quasicrystalline structure can be explained in term of symmetry, lattice

parameter and unit cell distributions in higher dimensional periodic space.

Fibonacci Sequence Generated from the 2D Square Lattice by the Section Method

Let us consider a 2D square lattice (lattice constant a) with a set of axes X? and Xk rotated

by an angle � with respect to the axes of the square lattice (Figure 1.2(a)). The lattice is

decorated with line segments A? of length � = a(cos� + sin�) with the orientation along the

X?-axis. The point of intersection of the A? with the Xk-axis yields a Fibonacci lattice if the

slope of Xk-axis is the reciprocal of the golden mean, i.e., cot� = � . This process of getting

quasicrystalline structures from higher dimension periodic decorated lattices is called the section

method. The line segment used to decorate the higher dimensional lattice is called the atomic

surface or occupation domain or hyperatom. The Xk-axis locating the quasicrystalline lattice

is called parallel space or physical space or external space, while its perpendicular counterpart

along which the atomic surface is situated is called internal or perpendicular space.

The di�raction pattern of the Fibonacci sequence is calculated now. The distribution of

lattice points in a 2D square lattice can be expressed by,

�(r) =
X
m;n

Æ(r�mae
x
� nae

y
): (1.1)

The Fourier transform of �(r) is a square lattice with lattice spacing of 2�
a

. It can be written as,

F (Q) =
1

a2

X
hh

0

Æ(Q�Qhh

0

); (1.2)

where Qhh

0

are vectors of the reciprocal lattice, which have two components 2�
a
h and 2�

a
h
0

along

X�- and Y�-axes (X� and Y� are the reciprocal space axes associated with the real space axes
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0

can be decomposed into the parallel and perpendicular space
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0

= (Qhh

0

k
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0

?
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k
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Figure 1.2: (a) The sec-

tion method generating a

Fibonacci sequence from

a 2D square lattice deco-

rated with line segments.

The density distribution of the decorated periodic lattice �
0

(r) is the convolution product of �(r)

with A?, i.e.,

�
0

= � �A?: (1.5)

The Fourier transform of �
0

(r) is given by the product of the Fourier transforms of � and A?,

F
0

(Q) = [
1

a2

X
hh

0

Æ(Q�Qhh

0

)]G(Q?); (1.6)

where G(Q?) is the Fourier transform of A? and given by,

G(Q?) = �
sin(Q?�=2)

(Q?�=2)
: (1.7)

The main idea of the section method is that the cut operation is performed in real space,

while the projection is carried out in the reciprocal space. This method uses the fact that the

Fourier transform of a projection is a cut and vice versa. Thus, the density distribution of the

Fibonacci lattice �(rk) is obtained by the cut of �
0

(r) by Xk, while its Fourier components are

evaluated by the projection F
0

(Q) on X�

k
. The Fourier components of the Fibonacci lattice thus

can be written as,

F
0

(Qk) =
1

a2

X
hh

0

[Æ(Qk �Qhh

0

k
)G(Qhh

0

? )]; (1.8)

The presence of the Æ-term implies that the di�raction pattern of the Fibonacci lattice exhibits

sharp Bragg peaks. The intensity of the di�raction peaks associated with (h; h
0

) is given by,

I
hh

0 = jG(Qhh

0

? )j2 = �2 sin
2(Qhh

0

?
�=2)

(Qhh
0

?
�=2)2

; (1.9)
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The intensity is maximized when h

h

0 ! � (ratio of successive Fibonacci number). The strong

di�raction peaks thus take indices having the ratio approximately equal to � .

Many features important for quasicrystals can be extracted from the di�raction vector Qhh

0

k

of the Fibonacci lattice (Equation 1.3). Firstly, the di�raction peaks are indexable with two

indices h and h
0

(which are the Miller indices of the 2D square lattice) even though the structure

is 1D. Secondly, the di�raction vector produces an aperiodic reciprocal lattice because of an

irrational coeÆcient of h
0

. Thirdly, since Qhh

0

k
is invariant under multiplication of �n, there

is no restriction of minimum separation between the di�raction spots. (The invariance can

be illustrated by taking an arbitrary value of n, say n = 1 for simplicity, then Qhh

0

k
� � =

2�
a

q
�
2

�
2+1

(h+ h

0

�
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a
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k
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0

).

Penrose Tiling Generated from 4D Space

A 2D rhombic Penrose tiling can be obtained from 4D periodic space, which can be decomposed

into a 2D physical space V k and a 2D perpendicular space V ?. The unit cell of the 4D lattice is

decorated with �ve types of pentagonal atomic surfaces [39, 45] orientated parallel to V ?. The

atomic surfaces intersect V k at points generating the vertices of the rhombic Penrose tiling. The

Penrose patterns of other variants are obtained by taking di�erent types of atomic surfaces. For

example, a pentagonal Penrose pattern is obtained by a single decagonal atomic surface. The

section method to generate a periodic stacking of the pentagonal and rhombic Penrose tilings

from a 5D space will be discussed later in Section 1.3.3.

1.1.3 Phasons and Approximants

The higher dimensional description of the quasicrystals introduces additional degrees of freedom

related to perpendicular space. The ordinary elastic excitation in quasicrystals is characterized

by phonons, which involves the translation of atoms in physical space. In contrast, the elastic

excitation associated with the new degrees of freedom corresponds to the translation of the

atomic surfaces along the perpendicular space. The associated elementary excitations are called

phasons. Since the perpendicular space does not exist in reality, only the e�ects of phason

excitation in the physical space are relevant in practice. The phason excitations cause atomic

jumps in the physical space in contrast to the phonon excitations which result in a collective
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Figure 1.3: An illustration of phason-disorder (a) and approximants of a Fibonacci sequence

generated by employing uniform phason strain rotating the physical space Xk.

continuous motion of atoms. A very simple example illustrating how phasons in
uence the

structure in the physical space is presented below.

Consider once again the section method generating a Fibonacci sequence (Figure 1.3(a)).

Assume the atomic surfaces are displaced along X? due to the phasonic excitations and the

displacement is de�ned by a sinusoidal function (for the sake of simplicity, the physical space is

sliced by a curve represented by the sinusoidal function in the �gure). The displacement of atomic

surfaces results in a new sequence LLSLSLLSLLSLS. . . , where some of the tiles (written in

bold characters) have been rearranged as compared to the original sequence LLSLLSLSLLS. . . .

The rearrangement of tiles in real quasicrystals corresponds to atomic jumps between di�erent

positions, which are normally referred to as phason-
ips. Indeed, the atomic jumps has been

experimentally observed by transmission electron microscopy [46]. At low temperatures, the

phason-
ips are trapped as defects (phason disorder).

Both phonon and phason disorder in
uence the di�raction pattern. While the presence of

phonons decreases the di�raction intensities via the conventional Debye-Waller factor yielding

background intensity, the phasons decrease the intensities via a phasonic Debye-Waller factor

[47]. The phonon and phason Debye-Waller factors are dependent on Qk and Q?, respectively.

The phonons constitute small displacements of the atoms from their equilibrium position and
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the average structure maintains a long range order. In contrast, phasons may break down the

long range order and thus result not only in decreased intensities but also broaden the peaks, or

even shift the peak position depending upon the nature of phason disorders (see Ref. [48, 49]).

Phasons are believed to play an important role in the formation of quasicrystals and in

the phase transition between crystalline and quasicrystalline phases of an alloy. Let us present

a simple example illustrating a transformation of a quasicrystalline structure into a periodic

structure via a special phason strain. Consider the physical space rotated due to a phason

strain such that the new slope is a rational number, which approximates the initial slope 1/�

(Figure 1.3 (b)). The new slope may be 1/1, 1/2, 2/3, 3/5, or 5/8 . . . (ratio of successive

Fibonacci numbers). The intersection of the rotated physical space with the atomic surfaces

results in a periodic sequence. For example, an Xk-axis with a slope of 2/3 cuts the atomic

surfaces yielding the sequence LSLLSLSLLSLSLLSL. . . , which has a periodic repetition of

LSLLS. The resulting sequence is known as the 3/2 rational approximant of the Fibonacci

sequence. Similarly, 1/1, 2/1, 5/3, and 8/5 rational approximants of the Fibonacci sequence

are LSLSLSLSLSLSLSLSLS. . . , LLSLLSLLSLLSL. . . , and LSLLSLSLLSLLSLSL . . . with

repeating unit cells LS, LSL, and LSLLSLSL, respectively, revealing that the higher the order

of the approximant the more similar it is to the corresponding quasicrystalline structure. The

approximants are useful to model the local structure and to determine the physical properties

of quasicrystals (see Ref. [50] for a review).

1.2 Stability and Structural Models

One and a half decades have passed since the discovery of quasicrystals with a tremendous e�ort

to �nd a cause behind the physical origin of quasicrystals. There are two distinct approaches

proposed so far to explain the stability of quasicrystals. The �rst approach is based on an

energetic stabilization, the second on an entropic stabilization [49]. Depending on the speci�c

quasicrystalline phase, one of these approaches re
ects the dominant mechanism of stability.

Similarly, di�erent structural models have been proposed to explain the unique properties of

quasicrystals.
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Energetic and Entropic Stabilization

The energetic stabilization of quasicrystals can be interpreted in terms of a perfect Penrose tiling

picture. The key idea is that the edge-matching rules of the Penrose tiling could re
ect local

rules to attain a minimal binding energy. However, many quasicrystals are stable only at high

temperature and convert into crystalline phases at low temperature [51, 52]. One should thus

expect that entropy may be responsible for stabilizing the quasicrystalline phases. The entropic

stabilization can be described in terms of random tilings. The basic idea of the random tilings

is that the edge-matching rules of the Penrose tiling are completely discarded and the tiles are

allowed to join randomly to �ll the space without gaps. The randomness induces topological

disorder (topological entropy) in the system. The randomization of tilings may not be the

only source of entropy. The entropy can be induced by chemical disorder (chemical entropy).

If the chemical entropy is dominant, the structure can be topologically ordered even at high

temperature. Joseph et al. have shown theoretically that Ni-rich d-Al-Ni-Co with a perfect

tiling is stable only above 800 ÆC [53], which is also con�rmed experimentally [54, 55].

Electronic Stabilization

An alternative possibility to explain the energetic stability of quasicrystals may be electronic

stabilization. Electronic properties and stoichiometry observed in many quasicrystals indicate

that a Hume-Rothery type mechanism of intermetallic compounds may play an important role

in the stability of quasicrystals [3, 56]. The Hume-Rothery mechanism states that a speci�c

structure of alloy is formed for a �xed e�ective density of valence electrons (e=a, electron-per-

atom ratio) in such a way that the Fermi surface matches the Brillouin zone boundary opening

a pseudo gap [57, 58], which lowers the energy of the system.

In fact, almost all stable icosahedral quasicrystals are found to have a speci�c value of e=a

(� 2.1 for the Zn-Mg-Al class and � 1.75 for the Al-TM class, where TM refers to transition

metals) [3] satisfying the condition of gap opening at Fermi level, i.e., Q = 2k
F
(where Q is

the magnitude of reciprocal lattice vector and k
F
the radius of the Fermi sphere) [3, and �nd

references therein]. In many quasicrystals, a pseudogap at the Fermi level has been observed

theoretically and experimentally [2, and �nd references therein] supporting the Hume-Rothery

type mechanism for many icosahedral phases. Although the value of e=a is �xed for icosahedral
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quasicrystals, it varies in a signi�cant wide range for decagonal quasicrystals [3].

Perfect Quasiperiodic Tiling Model

Geometrically constructed quasiperiodic tilings show many features similar to those observed in

quasicrystals such as non-crystallographic orientational symmetry and perfect long range. The

tiling is a suitable starting point in modeling the structure of quasicrystals. In a structural

model based on a rhombic Penrose tiling, atoms are organized into two distinct clusters or tiles,

the skinny and fat rhombi. The edge-matching rules of the Penrose tiling could be enforced by

the energetic preference of parts of clusters to properly match across tiling edges.

Random Tiling Model

In the random tiling model, two di�erent types of tiles are considered as basic building blocks as

in the perfect tiling model. But unlike in the perfect tiling model, where a strict edge-matching

rule is followed, the random tiling model allows the tiles to join their edges randomly, keeping

the occurrence frequencies �xed due to �xed concentration of elements in the alloy. Obviously,

randomness allows to form several degenerate states (con�gurations) including ones that are

periodic and disordered. Henley has shown that the state (con�guration) having maximum

entropy has an average decagonal symmetry and a long range quasiperiodic order [59].

Most quasicrystals exhibit some degrees of disorder. Extremely few quasicrystals, in particu-

lar the Ni-rich phase of d-Al-Ni-Co, are known to reveal almost a perfect quasiperiodic ordering

[54, 60, 61]. Therefore, the random tiling model is appropriate for the majority of quasicrys-

talline phases. This model also accounts for the experimentally observed di�use scattering, as

the di�raction pattern of the random tilings have sharp Bragg peaks in addition to some di�use

background [47].

Cluster Model

An alternative picture of quasicrystals is the covering picture. A single repeating cluster can

be used to cover the space in quasiperiodic order, provided that the clusters can overlap or

neighboring clusters can share the atoms (�rst introduced by Burkov in 1991) [62]. In the cluster

model, the formation of quasicrystals can be explained in a similar fashion as the periodic crystal
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in the sense that only a single type of low energy cluster is used to close-pack a macroscopic

structure. The cluster is analogous to the unit cell in a periodic crystal, hence termed `quasi-unit

cell' and the cluster model is sometimes called quasi-unit cell model.

Indeed, clusters of decagonal shape have been observed in high-resolution transmission elec-

tron microscopy (HRTEM) in many decagonal phases [63, and �nd references therein], and

most of the theoretical structural models of the decagonal quasicrystals are also based on a

single decagonal overlapping cluster [55, 62, 64-69]. Similarly, icosahedral quasicrystals are be-

lieved to be made up of Mackay clusters [63]. Scanning tunneling microscopy of 2-fold and 5-fold

surfaces of i-Al-Pd-Mn shows the aggregation of Mackay-type clusters [14, 15]. Furthermore,

the cluster approach is suitable to interpret some physical properties of quasicrystals, especially

the dynamical properties of i-Al-Pd-Mn and d-Al-Ni-Co measured by Neutron scattering [70-72]

and electrical and thermal properties [73, and �nd references therein].

The cluster picture of decagonal quasicrystals is very closely related to the Penrose tiling

picture. It has been shown that a rhombic Penrose tiling can be equivalently produced by using a

single decagonal tile with an overlapping rule, instead of edge-matching rule [37, 74, 75]. Further

developments have been made by H. C. Jeong and P. J. Steinhardt in this respect [37, 75]. They

have shown that a perfect Penrose tiling can be uniquely produced by maximizing the density

of some suitably chosen atomic clusters having minimum energy con�guration, discarding the

overlapping rules. These clusters are in a one-to-one correspondence with the decagonal cluster.

This new approach is physically relevant to explain the formation of quasicrystals because the

constraint of cluster overlapping rules or the constraint of atomic decoration of the clusters does

not have to be considered.

The concept of random tiling can be introduced also in the cluster approach. Some con-

straints of the cluster overlapping rules of the perfect quasiperiodic covering are abandoned

to yield a randomly ordered quasiperiodic structure (refer to [76] for details). The resulting

structure is entropically stabilized similarly as the random tilings.

1.3 Decagonal Quasicrystals

Soon after the discovery of icosahedral quasicrystals, varieties of 2D quasicrystals were found

(see [3, 77] for review). The 2D quasicrystals have periodic ordering along one direction and qua-
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Figure 1.4: A macroscopic

view of decagonal quasicrys-

tal, which is formed by a pe-

riodic staking of quasiperi-

odic planes along the 10-

fold axis. Two inequiva-

lent 2-fold planes perpendic-

ular to the 10-fold planes are

shaded.

sicrystalline ordering in the plane perpendicular to the periodic direction. The quasicrystalline

plane can possess pentagonal, octagonal, decagonal, or dodecagonal symmetry. The in
uence of

both quasicrystalline and crystalline ordering on the physical properties of quasicrystals can be

investigated in a single sample of the 2D quasicrystals, which is not possible in case of icosahedral

quasicrystals exhibiting quasicrystalline ordering in all directions. In fact, some physical proper-

ties of decagonal quasicrystals show a strong anisotropy along the periodic and quasicrystalline

directions [73].

Decagonal quasicrystals, which possess a unique 10-fold rotational axis along the periodic

direction and two inequivalent sets of 2-fold axis perpendicular to the 10-fold axis (see Figure

1.4), are the most studied 2D quasicrystals because of the availability of thermodynamically

stable, large, and high quality samples. A variety of periodicities has been observed along

the 10-fold axis. Mainly, three groups of decagonal quasicrystals with a basic periodicity of

4 �A (Al-Co-Cu type), 12 �A (Al-Mn type), and 16 �A (Al-Fe-Pd type) have been found [77].

Decagonal Al-Ni-Co, the structure of which is discussed in this thesis, consists of two sets of

quasicrystalline planes stacked alternatingly along the 10-fold axis. The distance between the

planes is approximately 2 �A yielding a basic 4 �A periodicity [40, 64].

Al-Ni-Co alloys have attracted much attention due to the existence of various types of qua-

sicrystalline and approximant structures observed in a wide composition range. They possess

at least eight di�erent types of quasicrystalline phases, namely basic Ni-rich (bNi), type I su-

perstructure (I), S1 superstructure (S1), type II superstructure (II), basic Co-rich (bCo), one

dimensional quasicrystal (1D), pentagonal (5f), and pentagonal with superstructure (5f
HT

) (ab-

breviation after Ref. [78]). A cut through the phase diagram is shown in Figure 1.5. A brief
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States Periodicity Tiling Tiling Type

Basic Ni-rich 4 �A pentagonal perfect

S1 superstructure 8 �A pentagonal random

Type I superstructure 8 �A rhombic random

Type II superstructure 8 �A pentagonal and rhombic random

Basic Co-rich 8 �A pentagonal random

One dimensional 8 �A pentagonal and rhombic random

Pentagonal 8 �A pentagonal random

Pentagonal with superstructure 8 �A rhombic random

Table 1.1: Di�erent phases of Al-Ni-Co with their periodicities and tiling.

explanation of some of these phases is presented here (refer to Ref. [78] for details).

Among the eight states listed, the �rst �ve show a di�raction pattern of 10-fold symmetry

perpendicular to the periodic direction, while the pentagonal states possess a 5-fold symmetric

di�raction pattern. The quasicrystalline ordering along one direction within the 10-fold plane

transforms to crystalline ordering, forming a one dimensional quasicrystal state. As such, the

1D state is an intermediate state between the quasicrystalline and approximant phases. Both

pentagonal and one dimensional states are closely related to the decagonal phases.

The HRTEM of the Ni-rich basic structure reveals that clusters of 20 �A diameter are located

at the vertices of a perfect pentagonal Penrose tiling [54, 60, 61], while the clusters show some

chemical disorder. In contrast, the cluster centers of the other phases form a random rhombic

(Penrose) tiling of di�erent variants and the clusters are chemically ordered.

Di�raction patterns of all phases except the basic Ni-rich structure show di�use layers un-

derneath the Bragg planes perpendicular to the periodic direction as well as half-way in between

these planes, corresponding to an 8 �A periodicity [52, 79-84]. These di�use layers are due to posi-

tional and orientational disorder of the columnar clusters [80, 85]. Other decagonal quasicrystals

also exhibit such di�use scattering [81, 86]. The intensity of the 8 �A periodic layers increases

with increasing Co content and �nally converts into sharp spots with quasicrystalline ordering.

Di�erent phases with their periodicities and tiling for the cluster centers are summarized in

Table 1.1.
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Figure 1.5: Phase di-

agram of Al-Ni-Co alloy

from Ritsch et al. [78].

1.3.1 Indexing of the Di�raction Pattern

Five basis vectors are needed to generate a reciprocal lattice of decagonal quasicrystals. The

di�raction vector Hk can be obtained by,

Hk =
5X

j=1

h
j
b
j
; (1.10)

where h
j
are integers, b

j
= b(cos 2�j

5
; sin 2�j

5
; 0) for j = 1, . . . , 4 and b5 = b5(0; 0; 1) with b = jb

j
j

(j = 1, . . . , 4 ) and b5 = jb5j. The vectors bj (j = 1, . . . , 4) are the in-plane vectors pointing

from the center to four vertices of a regular pentagon, while b5 is along the periodic direction

(Figure 1.6).

A set of �ve indices (h1h2h3h4h5) is assigned to each di�raction spot. The set (h1h2h3h4h5)

is called generalized Miller indices, which are used to label the orientation of lattice planes as in
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Figure 1.6: The projection of the 5D reciprocal basis vectors into the physical space (left) and

perpendicular space (right).

Figure 1.7: The indexing scheme of a decagonal quasicrystal. The circles denote the position

of di�raction spots generated by Hk =
P

5

j=1 hjbj . The four of the �ve independent vectors

bj = b(cos 2�j

5
; sin 2�j

5
; 0) (j = 1, . . . , 4) shown by solid lines with arrow head are the in-plane

basic vectors, while the �fth vector (00001) is along the periodic direction (here, perpendicular to

the plane of the paper). The vector (�1�1�1�10) is sum of the four vectors bj (j = 1, . . . , 4) and not

an independent basis vector.
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the case of periodic crystals. The plane perpendicular to the vector [00001] has 10-fold symmetry

and is referred as the (00001) plane. Similarly, the two inequivalent 2-fold planes perpendicular

the vectors [10000] and [10110] are referred as (10000) and (10110) planes, respectively (see

Figure 1.7). The vectors b
j
(j = 1, . . . , 5) can be regarded as the physical space projections of

the reciprocal basis vectors d�
j
(j = 1, . . . , 5) of a 5D periodic lattice given by,

d�
j
= b

0
BBBBBBBBB@

cos 2�j
5

sin 2�j
5

0

cos 6�j
5

sin 6�j
5

1
CCCCCCCCCA
; j = 1; : : :; 4; d�5 = b5

0
BBBBBBBBB@

0

0

1

0

0

1
CCCCCCCCCA
; (1.11)

where b and b5 are the lattice constants of the 5D space. The physical and perpendicular space

projections of d�
j
= (b

j
;b

0

j
) are shown in Figure 1.6.

1.3.2 Superstructure in d-Al-Ni-Co

As in periodic crystals, superstructure re
ections in quasicrystals appear with weak intensity

as compared to the intensity of main re
ection. They are not indexable with integer indices

with respect to the basis vectors of the main re
ections. Several types of superstructures have

been identi�ed in both decagonal [87-89] and icosahedral quasicrystals [90]. Decagonal Al-Ni-

Co phases exhibit three di�erent types of superstructures: S1, type I, and type II. Decagonal

Al71:8Ni14:8Co13:4, which was investigated in this study, possesses the type I superstructure at

room temperature.

For the type I superstructure, the physical space components s
j
of the reciprocal basis vectors

of the 5D superlattice are rotated by �

10
and contracted by a factor 2 cos �

10
with respect to the

physical space components of the normal basis vectors. They can be related by b
j
=
P

i
S
ij
s
i

with,

S =

2
6666666664

1 0 �1 0 0

0 1 0 �1 0

1 1 2 1 0

�1 0 0 1 0

0 0 0 0 1

3
7777777775
: (1.12)

Since the determinant of the matrix S is 5, the reciprocal lattice spanned by s
j
,Hk =

P
j
hs
j
s
j
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Figure 1.8: The physical space compo-

nents of the normal and superstructure

basis vectors of d-Al-Ni-Co.

can be divided into �ve sublattices satisfying the conditions
P

j
hs
j
= 0,

P
j
hs
j
= �1, and P

j
hs
j

= �2. The sublattice with
P

j
hs
j
= 0 corresponds to the main re
ections, while

P
j
hs
j
= �1

and
P

j
hs
j
= �2 represent superlattice re
ections named S1 (�rst order) and S2 (second order)

spots, respectively.

The type I superstructure phase exhibits both S1 and S2 spots, while the S1 superstructure

state shows S1 spots and possibly much weaker S2 spots. The S1 spots appear around all strong

re
ections forming a decagon. Both S1 and S2 superstructure spots take 1
5 -integer indices with

respect to the basis vectors of the normal phase. At high temperature, the type I superstructure

state undergoes a phase transition to the S1 superstructure state (see Figure 1.5).

Another type of superstructure observed in d-Al-Ni-Co is the so-called type II superstructure

[89]. In this type, strong re
ections are surrounded by a ring of pentagons. The pentagon is

formed by �ve superstructure spots (new type, neither S1 nor S2) at the corners and a S1 spot

at the center. The new spots are indexable with 1
2
-integer indices with respect to the normal

basis vectors.

1.3.3 Atomic Structure of d-Al-Ni-Co

The main building blocks of the d-Al-Ni-Co quasicrystals are columnar clusters. The cluster

centers are located at the vertices of a periodic stacking of Penrose tilings. These cluster centers

can be generated by decorating the unit cell of the 5D periodic lattice by atomic surfaces and

taking the appropriate 3D cut.
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Figure 1.9: Penrose pattern generated by the section method, (a) Rhombic Penrose pattern and

(b) Pentagonal Penrose pattern. Atomic surfaces of corresponding Penrose pattern are shown on

the top of each pattern. Among the four pentagonal atomic surfaces, the smaller 1st and 4th have

an equal radius of �1;4 =
2

5�2b
. The radius of large pentagons (2nd and 3rd) is � times larger than

�1;4, i.e. �2;3 =
2

5�b
. The 1st and 3rd pentagons have similar orientation and are related to the 2nd

and 4th by inversion symmetry.

A model determining the structure of d-Al-Ni-Co proposed by Yamamoto et al. [66] is

presented here, what successfully explains the observed superstructure (Type I). The model is

based on the fact that clusters of 20 �A diameter are located at the vertices of a rhombic Penrose

pattern of 20 �A edge length [66].

A rhombic Penrose pattern of edge length 20 �A can be generated by four types of pentagonal

atomic surfaces (see Figure 1.9) located at the points �(i,i,i,i,1.25)/5 (i = 1, 2) of the 5D unit

cell. The 5D basis vectors are given by,

d
j
=

2

5b

0
BBBBBBBBB@

cos 2�j
5 � 1

sin 2�j
5

0

cos 6�j
5
� 1

sin 6�j
5

1
CCCCCCCCCA
; j = 1; : : : ; 4; d5 =

1

b5

0
BBBBBBBBB@

0

0

1

0

0

1
CCCCCCCCCA
; (1.13)
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Figure 1.10: Atomic structure of d-Al-Ni-Co projected along the periodic direction obtained by

the 5D superstructure model [66]. The clusters of 20 �A diameter are located at the vertices of

a rhombic Penrose pattern of edge length 20 �A (solid lines). Dark and gray solid circles denote

transition metals and Al, receptively. The large circles represent the atoms in the layer at z = 0

and the small circles at z = c/2.

where b�1 (= 11.67 �A) and b�1
5 (= 4.081 �A) are the lattice constants of the 5D lattice. The

corresponding reciprocal basis vectors of d
j
are d�

j
given by Equation 1.11.

The atom positions around the vertices of the Penrose tiling are generated by placing two

independent occupation domains at 20 di�erent points of the 5D unit cell (see Ref. [66] for details

about occupation domains and their coordinates). The resulting atomic structure projected

along the 10-fold axis is shown in Figure 1.10.

The structure is made up of two types of atomic layers with stacking sequences AB (A

represents the layer at z = 0 and B the layer at c/2, with c = 4 �A (lattice constant along the

periodic direction). The cluster in each layer has pentagonal symmetry. The cluster in the
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layer A is rotated by 36Æ with respect to the cluster in the layer B yielding an overall decagonal

symmetry.

One of the columnar clusters projected along the 10-fold axis is marked by full circles in

Figure 1.10. It consists of ten rings surrounding the inner wheel-like atomic arrangement. The

neighboring two clusters overlap in two ways. First, they share the outer two rings (C and D)

if the center-to-center distance is equal to the edge length of the Penrose pattern (L = 20 �A).

Secondly, they share some of the atoms of the inner wheel (E and F) if the center-to-center

distance is equal to the shorter diagonal of the skinny rhombus (S = L/� = 12.36 �A)

In the normal phase of d-Al-Ni-Co, the clusters are located at the vertices of a pentagonal

Penrose tiling of 20 �A edge length [66, and �nd references therein], while the atomic distribution

in the cluster is the same for both phases. The pentagonal Penrose tiling can be generated from

the 5D space decorated with a single decagonal atomic surface per unit cell as opposed to four

pentagons for the case of the rhombic tiling [40]. The atomic positions of the normal phase are

generated by two independent occupation domains, placed at 20 points of the 5D unit cell (refer

to [66] for details).

The Di�raction Pattern

To calculate the di�raction patterns of the structures presented in the preceding section, a

starting point is to evaluate the di�raction of the rhombic (and pentagonal) Penrose pattern.

It can be obtained via the Fourier transform of the density distribution �(r) of the 5D lattice

decorated with pentagonal (and decagonal) atomic surfaces. The Fourier components of the 5D

lattice can be separated into the product terms depending on the 3D physical space components

and 2D perpendicular space components of the 5D reciprocal lattice vector. The physical space

component contains the information of the usual atomic scattering factor and the temperature

factor, while the perpendicular space components involve the Fourier transform of the atomic

surfaces and the term describing the phason 
uctuation.

The structure factor F (H) is the Fourier transform of �(r) and is expressed as [5],

F (H) =

Z
UC

�(r)e2�iHrdr =
nX

k=1

T
k
(H)f

k
(kHk)e2�iHrk ; (1.14)

where the factor f
k
(kHk) can be decomposed into the atomic scattering factor f

k
(kHkk) and the

Fourier transform of the atomic surface g
k
(H?) (k denotes the atomic surface and runs from 1 to
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Figure 1.11: Fourier amplitude

versus kH?k. The dotted- and

dashed-curves represent the Fourier

amplitudes along the high sym-

metry directions of the decagonal

atomic surface, the solid curve is

the envelop function. kH?k is nor-

malized by a lattice parameter b.

4 corresponding to the four pentagons for the rhombic Penrose pattern, while for the pentagonal

Penrose pattern it has only one value k = 1 corresponding to the decagon). Similarly, the factor

T
k
(H) can also be decomposed into the temperature and phason factor. Then Equation 1.14

can be rewritten as,

F (H) =
nX

k=1

T
k
(Hk;H?)f

k
(kHkk)g

k
(H?)e2�iHrk ; (1.15)

with

T
k
(Hk;H?) = e�2�2HkTBkHk � e�2�2H?TB?H?

; (1.16)

(B is the mean-square-displacement matrix), and

g
k
(H?) =

1

A?

UC

Z
Ak

e2�H
?r?dr?; (1.17)

(A
k
is the area of kth atomic surface and A?

UC
is the area of the 5D unit cell projected onto

perpendicular space). A?

UC
is calculated by,

A?

UC
=

4

25b2
[(7 + �) sin

2�

5
+ (2 + �) sin

4�

5
]: (1.18)

The Fourier transform of the pentagonal (or decagonal) atomic surface can be obtained by

summing the Fourier transform of �ve (or ten) triangles forming the pentagon (or decagon).
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Using the standard formula of the Fourier transform of a triangle, g
k
(H?) can be obtained by,

g
k
(H?) =

1

A?

UC

sin
2�

5

mX
j=0

A
j
(eiAj+1�k � 1)�A

j+1(e
iAj�k � 1)

A
j
A
j+1(Aj

�A
j+1)

(1.19)

where j runs over 5 (and 10) triangles of the pentagon (and decagon) and A
j
= 2�H?e

j
with,

H? = b
mX
j

h
j

0
BBBBBBBBB@

0

0

0

cos 6�i
5

sin 6�i
5

1
CCCCCCCCCA

(1.20)

In the simpli�ed case which excludes the e�ect of temperature and considers the identical atomic

scattering factor, f
k
(kHkk)=1, the intensity (I) depends only upon the Fourier transform of the

atomic surfaces,

I / jg
k
(H?)j2 (1.21)

The Fourier amplitudes of the decagonal atomic surface along the two high symmetry di-

rections are shown in Figure 1.11. The envelope function of the Fourier amplitudes gives the

average damping with H?. In principle, Fourier amplitudes corresponding to all H? contribute

to the di�raction intensities and �ll the reciprocal space in�nitely densely. But the di�raction

intensities for largerH? are extremely weak and are not experimentally detectable, which makes

it possible to distinguish individual spots.

Until now, the di�raction pattern of the cluster centers is discussed without taking account

of individual atoms in the cluster. To include the contribution of individual atoms, Fourier

amplitudes of 20 occupation domains have to be considered, which modulate the intensity of

di�raction spots but do not change their position.

The di�raction pattern obtained by the 5D superstructure model includes main, S1 and S2

spots (one can refer to Ref. [66] for the di�raction pattern). The intensity of the S2 spots is

weaker than that of the S1 spots [91]. X-ray di�raction also shows that S2 spots are relatively

weak [88].

Summary

Fundamental examples of quasiperiodic structure, the Fibonacci sequence and the Penrose pat-

tern, were presented. The Fibonacci sequence illustrates quasiperiodic structure in 1D, the



34 Chapter 1. Quasicrystals

Penrose tiling in 2D. These basic structures show discrete di�ractions pattern without having

periodicity demonstrating a long range order. The di�raction pattern of the Penrose pattern

is very similar to the di�raction pattern observed in 2D quasicrystals. The section method to

derive a quasicrystalline structure in physical space from higher dimensional periodic lattice

was discussed. A simple example illustrating the generation of a Fibonacci sequence from a 2D

periodic lattice was given. In addition, di�erent models for the structure and the stability of

quasicrystals were brie
y discussed.

The phase diagram of Al-Ni-Co alloys was illustrated. Depending on temperature and exact

alloy composition, Al-Ni-Co exhibits several di�erent decagonal phases. Decagonal phases are

2D quasicrystals consisting of a periodic staking of quasicrystalline planes along the 10-fold

axis. The samples used in this work belong to the type I superstructure phase. As revealed

by transmission electron microscopy, the structure of this phase can be explained in terms

of a random tiling. Its di�raction pattern shows S1 and S2 superstructure spots. The atomic

structure can be derived from a 5D decorated lattice and exhibits 20 �A diameter clusters located

at the vertices of a rhombic Penrose tiling of 20 �A edge length.

The presented indexing scheme and other properties of the di�raction pattern of decagonal

quasicrystals play an important role in the discussion of the experimental results of electron and

He di�raction of the 10-fold d-Al-Ni-Co surface in Chapter 3. The tilings and clusters will be

illustrated in scanning tunneling microscopy images of the same surface. The discussed features

of the di�raction pattern of the Fibonacci lattice are re
ected in the di�raction of the 2-fold

d-Al-Ni-Co(10000) surface given in Chapter 4.


