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Einleitung

Die vorliegende Arbeit befasst sich mit sogenannten Messfehlermodellen in der ange-

wandten Statistik. Dabei wurden Daten aus zwei sehr verschiedenen Fachgebieten ana-

lysiert und verarbeitet. Zum einen Umfrage- und Registerdaten, welche in der Survey-

Statistik Anwendung finden und zum anderen anthropologische Daten zu prähistorischen

Skeletten. Beiden gemeinsam ist, dass einige Variablen nicht hinreichend genau erfasst

werden können. Dies kann etwa aus Datenschutzgründen beabsichtigt sein oder auf

(Mess-) Ungenauigkeiten beruhen. Diesen Umstand kann man unter den Oberbegrif-

fen Messfehler oder Fehler-in-den-Variablen zusammenfassen. Diese Messfehler können

fatale Auswirkungen in der statistischen Analyse haben. Carroll et al. (2006) spricht

in diesem Zusammenhang von einem dreifachen Fluch (“triple whammy”). Zunächst

führen Messfehler bei vielen statistischen Verfahren zu erheblichen Verzerrungen in

den Parameterschätzungen. Diese Verzerrungen verschwinden nicht mit steigender Fall-

zahl sondern können – wie in Teil I dargelegt – bei einer nichtparametrischen Dich-

teschätzung etwa sogar erheblich wachsen. Ein weiteres prominentes Beispiel hierfür ist

der sogenannte “attenuation bias” in der linearen Einfachregression (Frost and Thomp-

son, 2000), in welcher der Steigungsparameter bei klassischem Messfehler in Richtung

Null verzerrt ist. Zusätzlich ist ein Verlust von statistischer Effizienz bzw. Power ei-

ne Folge. Als dritten Fluch von Messfehlern kann man die stark erschwerte grafische

Analyse, welche für das Entdecken von Strukturen und Zusammenhängen aber auch

Ungereimtheiten in den Daten so wichtig ist, bezeichnen, da Messfehler vorhandene

Zusammenhänge maskieren oder unkenntlich machen. Trotz dieser folgenschweren Aus-

wirkungen werden Messfehler in statistischen Analysen in der Anwendung fast immer

ignoriert. Diese Arbeit entwickelt daher für bekannte statistische Verfahren wie (mul-

tivariate) Kerndichteschätzung und nichtparametrische Regression eine Korrektur an-

hand konkreter Anwendungen.

Seien X = (X1, .., Xn) die wahren, unbeobachteten Werte, welche als latente Va-

riablen angesehen werden können, und W = (W1, ..,Wn) die beobachteten bzw. ge-

messenen Variablenwerte. Messfehler haben verschiedene Ursachen und müssen daher

unterschiedlich modelliert werden. Die beiden bekanntesten Modellierungsansätze sind

der klassische Messfehler mit

Wi = Xi + Ui, mit Ui u.i.v und unabhängig von Xi, i = 1, .., n

6



EINLEITUNG

und der Berkson-Fehler (Berkson, 1950):

Xi = Wi + Ui, mit Ui u.i.v und unabhängig von Wi.

Beide Modelle scheinen sich auf den ersten Blick sehr zu ähneln. Um sich den Unter-

schied klar zu machen, kann es hilfreich sein sich die Größe der Varianzen von Xi und

Wi zu verdeutlichen. Da beim klassischen Messfehlermodell der wahre Wert Xi und

der Messfehler Ui unabhängig voneinander sind, folgt, dass V ar(Wi) = V ar(Xi) +

V ar(Ui) > V ar(Xi). Umgekehrt resultiert beim Berkson-Modell, dass V ar(Xi) =

V ar(Wi) + V ar(Ui) > V ar(Wi). Der klassische Messfehler findet z.B. Anwendung

bei der Modellierung von fehlerhaften Messungen durch ungenaue Messinstrumente,

während der Berkson-Fehler für die Modellierung der Ausprägung eines Individuums

bei ausschließlicher Kenntnis des Populationsmittelwertes geeignet ist. Missklassifika-

tion kann in diesem Zusammenhang ebenfalls als Messfehler angesehen werden. Mit-

hilfe einer Übergangsmatrix Π lassen sich die Missklassifikationswahrscheinlichkeiten

ausdrücken, wobei die Einträge πwx bzw. πxw für P (Wi = w|Xi = x) – klassischer

Messfehler – bzw. P (Xi = x|Wi = w) – Berkson-Messfehler – stehen. Natürlich gibt es

daneben noch viele andere Formen von Messfehlern. Hervorzuheben sind dabei multipli-

kative Messfehler, Mischungen aus klassischem und Berkson-Messfehler sowie Rundung

oder Häufung bzw. “Heaping”. Kapitel 1 und 2 befassen sich intensiv mit den beiden

letztgenannten Phänomenen.

In der Regel sind die Messfehlermodelle abhängig von Parametern wie etwa der Va-

rianz σ2u des Messfehlers Ui im klassischen Messfehlermodell. Generell sind diese nur in

wenigen Anwendungen beziehungsweise unter bestimmten Voraussetzungen identifizier-

bar. Dies beinhaltet Mehrfachmessungen, wie bei dem Geschlecht der prähistorischen

Skelette in Kapitel 4 oder den Fall, dass nur ein Teil der Daten messfehlerbehaftet sind

oder dass eine zweite, kleinere Studie mit zusätzlichen Evaluierungsdaten durchgeführt

wurde. Andernfalls muss der Anwender die entsprechenden Parameter fix vorgeben.

Eine Ausnahme stellt das Heaping (Kapitel 2) dar, bei welchem die verschiedenen Run-

dungswahrscheinlichkeiten nur mithilfe des Endziffernmusters der angegebenen Werte

identifizierbar sind. In Kapitel 4 konnte dagegen die Ungenauigkeit der chronologischen

Einordnung der Skelette aufgrund von archäologischem Expertenwissen quantifiziert

werden, während in Kapitel 1 die Größe des Messfehlers durch dessen künstliche Er-

zeugung bereits bekannt war.

Viele Techniken zur Korrektur auf Messfehler sind nur für relativ einfache Mess-

fehlermodelle und statistische Verfahren wie die lineare Regression realisierbar. Um

komplexere Modelle zu verwirklichen, ist es daher sinnvoll ein komplettes Modell inklu-

sive Likelihood aufzustellen. Sei θ im Folgenden als der Parametervektor des Modells,

welches man bei Kenntnis der wahren Werte X wählen würde, definiert. Die direkte

Maximierung der Likelihood L(θ|W ) ist außerhalb von einfachen Spezialfällen kaum

möglich, da die Berechnung der marginalen Likelihood

L(θ|W ) = π(W |θ) =

∫
X
π(W ,X|θ) dX
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EINLEITUNG

nötig ist und hochdimensionale Integration erfordert. Um das Problem zu vereinfachen,

lässt sich aber ausnutzen, dass die Schätzung der Parameter θ mit üblichen Methoden

leicht möglich wäre, falls die wahren Werte X bekannt wären. Wenn ein passendes

Messfehlermodell π(W ,X) gefunden werden kann, ist π(W ,X|θ) dann proportional

zu π(W ,X) ·π(X|θ). Eine geeignete Vorgehensweise ist es nun in einem iterativen Ver-

fahren zunächst aus der konditionalen Verteilung von X gegeben W und θ zu ziehen

und im nächsten Schritt θ mithilfe der imputierten X-Werte zu schätzen. Diese Stra-

tegie ist auch unter dem Stichwort “data augmentation” bekannt. Somit wurde ein ein-

zelnes, schwierig zu lösendes Problem auf zwei relativ einfache Probleme reduziert. Die-

ser Algorithmus lässt sich im Kontext eines stochastischen Expectation-Maximization-

Algorithmus (SEM, Kapitel 1 und 2; Celeux et al. 1996) oder eines voll-Bayesianischen

Markov-Chain-Monte-Carlo-Verfahrens (MCMC, Kapitel 3 und 4) umsetzen.

Entsprechend der sehr unterschiedlichen Anwendungsgebiete für Messfehlermodelle

wurde die Arbeit in zwei Teile gegliedert. Teil I behandelt zunächst zwei Fragestellun-

gen aus der Survey-Statistik. In Kapitel 1 wurden über einen Rundungsfehler anonymi-

sierte Geokoordinaten der Wohnsitze von Menschen bestimmter Bevölkerungsgruppen

in Berlin analysiert. Um eine sinnvolle nichtparametrische Kerndichteschätzung der

Populationsverteilung zu erhalten wurde der Rundungsprozess mittels eines stochas-

tischen Expectation-Maximization-Algorithmus umgekehrt. Der entsprechende Artikel

erscheint demnächst im “Journal of the Royal Statistical Society” (Serie A). In Kapitel 2

wurde dieser Algorithmus stark erweitert, um die Verteilung von Antworten in Survey-

Daten zu modellieren. Die dabei üblicherweise auftretende Häufung von bestimmten

Werten wird dabei über eine Rundung mit unbekannter Genauigkeit als Zufallsvaria-

ble modelliert. Nach bestem Wissen des Autors ist dies der erste generell anwendbare

Ansatz Verteilungen nichtparametrisch im Zusammenhang mit gehäuften Daten zu

schätzen. Eine Veröffentlichung ist im “Journal of Survey Statistics and Methodology”

geplant. Das Manuskript wurde bereits von dieser Zeitschrift bereits akzeptiert. Beide

Methoden wurden auch in Form eines Paketes namens Kernelheaping (Groß, 2016a)

für die populäre statistische Software R veröffentlicht. Dieses umfasst inzwischen auch

eine Erweiterung der Methode aus Kapitel 1, bei der auch aggregierte Daten aus be-

liebig geformten Flächenstücken, wie z.B. den sogenannten Lebensweltlich orientierten

Räumen (“LOR”) für Berlin, zur Kerndichteschätzung verwendet werden können.

Teil II der Arbeit befasst sich mit den Ergebnissen aus dem Emmy-Noether-Projekt

“Lebensbedingungen und biologischer Lebensstandard in der Vorgeschichte” – LiVES.

Ein Hauptbestandteil des Projekts war die Zusammenführung von drei Datenbanken

prähistorischer Skelette zu einer modernen, web-basierten MySQL-Datenbank. Genau-

er handelt es sich dabei um die “Mainzer Datenbank”, einer in der zweiten Hälfte des

vorigen Jahrhunderts entstandenen Lochkartenbank (Perscheid, 1974), einer Microsoft-

Access-Datenbank aus einem Vorläuferprojekt von Frau Dr. Rosenstock an der Univer-

sität Tübingen sowie der sogenannten ADAM-Datenbank der Universität Genf (Desi-

deri, 2015). Nach Entwicklung eines neuen Datenbankdesigns gemeinsam mit Dr. Eva

Rosenstock und Julia Ebert wurden die Daten aller drei Datenbanken in Zusammenar-
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EINLEITUNG

beit mit Martin Badicke von der INWT Statistics GmbH in die neue MySQL-Datenbank

übertragen. Nachdem alle Einträge auf Fehler (z.B. Dopplungen oder falsche Werte)

geprüft und die chronologische Einordnung auf den neuesten Stand gebracht worden

sind, soll die Datenbank im Jahre 2018 der Öffentlichkeit zugänglich gemacht wer-

den. Zusätzlich wird die Datenbank laufend um neue Einträge erweitert. In Kapitel

3 und 4 wurden die bereits korrigierten Daten für eine Vorabanalyse genutzt. Hier-

bei sollte die Forschungsfrage beantwortet werden, wie sich die Körperhöhe als Proxy

für den Lebensstandard in der Vorgeschichte entwickelt hat. Die Körperhöhe wird da-

bei aus den vorhandenen Langknochenmaßen rekonstruiert. Hierbei soll erwähnt wer-

den, dass anthropologische Fragestellungen in der Anfangszeit der modernen Statis-

tik eine große Rolle spielten. Den in der heutigen Statistik allgegenwärtigen Begriff

der Regression hat Francis Galton mit einer Untersuchung geprägt, in welcher die

Körperhöhe von Eltern und deren Kindern verglichen wurden (Galton, 1886). Ein an-

derer Gründervater der modernen Statistik, Karl Pearson, hat außerdem bereits eine

lineare Regressionsgleichung für die Körperhöhenrekonstruktion entwickelt (Pearson,

1899), die bis heute (u.a. auch in dieser Arbeit) breite Verwendung findet. Der Autor

hat in diesem Zusammenhang ein voll-Bayesianisches additives gemischtes Messfehler-

modell entwickelt, welches die räumlich-zeitliche Entwicklung der Körperhöhe model-

liert. Dabei wurde insbesondere die Unsicherheit bzw. der Messfehler in der chronolo-

gischen Einordnung der Skelette als auch die Unsicherheit über das Geschlecht jeweils

über ein Berkson-Fehler-Modell berücksichtigt. Das statistische Modell wird im De-

tail in Kapitel 4 vorgestellt, und wird in Kürze in der Zeitschrift AStA (“Advances in

Statistical Analysis”) erscheinen. Kapitel 3 befasst sich dagegen mit den technischen

und kulturellen Innovationen, welche zu einem verbesserten Lebensstandard respektive

Größenwachstum geführt haben sowie den ernährungsphysiologischen Hintergründen.

Dieses Kapitel ist als Aufsatz im Berichtsband zum internationalen Workshop “Socio-

environmental dynamics over the last 12.000 years: the creation of landscapes III”,

welcher vom 5. bis 18. April 2013 in Kiel stattfand, erschienen. Kapitel 5 befasst sich

mit der Körperhöhenschätzung und der Frage wie sich diese aus den vorhandende-

nen Langknochen der prähistorischen Skelette optimal schätzen lässt. Ein Messfehler

in der abhängigen Variable eines Regressionsmodells – also der Körperhöhe – führt

in der Regel zwar zu keiner Verzerrung der Parameterschätzer, aber zu einer verrin-

gerten Effizienz. Dies ist in Anbetracht der sehr aufwändigen Datenakquirierung ein

durchaus relevantes Thema. Dabei wird die Frage diskutiert, wie man aus der Vielzahl

von vorhandenen Formeln zur Körperhöhenrekonstruktion verschiedener Publikatio-

nen geeignete Formeln auswählen und gegebenenfalls kombinieren kann. In diesem Zu-

sammenhang werden Körperhöhenschätzungen aus verschiedenen Langknochen mittels

AIC-Kriterium optimal gewichtet sowie neue Universalformeln mithilfe einer statisti-

schen Metaanalyse hergeleitet. Diese Strategien sollen in Zukunft für die Schätzung der

Körperhöhe der Datenbankeinträge verwendet werden. Diese Arbeit wurde im “Ame-

rican Journal of Physical Anthropology” eingereicht.

9



Teil I
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Kapitel 1

Estimating the Density of Ethnic

Minorities and Aged People in

Berlin: Multivariate Kernel

Density Estimation Applied to

Sensitive Geo-Referenced

Administrative Data Protected

via Measurement Error

1.1 Introduction

Modern systems of official statistics require the estimation of area-specific densities of

sub-populations. In large cities researchers may be interested in identifying areas with

high density of ethnic minorities or areas with high density of aged people. The focus

can be even more specific for example, on density estimates of school age children of

ethnic minority background. In this work the term ethnic minority will be used to

define the part of the population with migration background. Estimates of this type

can be used by researchers in Government Departments and other organisations for

designing and implementing targeted policies.

To motivate the methodology we propose in this work, we start by presenting two

maps in Figure 1.1. The left map presents an estimate of the density of the population

of ethnic minority background in Berlin. The right map presents an estimate of the

density of the population aged 60 or over in Berlin. The blue points superimposed

on the left map show the spatial distribution of advisory centres in Berlin. These are

centres that provide assistance for migrants in Berlin. The blue points superimposed on

the right map show the spatial distribution of care homes in Berlin. Both kernel density

estimation plots in Figure 1.1 have been produced by using real data from the Berlin

11



KAPITEL 1. ESTIMATING THE DENSITY OF MINORITIES AND AGED
PEOPLE IN BERLIN

Figure 1.1: Density estimates of the population of ethnic minority background (left
map) and of the population aged 60 or above in Berlin (right map). The blue points
(left map) show the spatial distribution of advisory centres for migrants. The blue
points (right map) show the spatial distribution of care homes.

register, which is a register of residents in all Berlin household addresses that contains

exact geo-coded coordinates. At this point we must mention that the register data is

available only to the data host in a safe environment. Hence, for producing Figure 1.1

we had to rely on collaborating with staff at the Berlin-Brandenburg Statistics Office

who monitored the in-house use of the data. Maps such as those we presented in Figure

1.1 can be very useful for planning purposes. For example, city councils can use the

density estimation plots to decide where new advisory centres for migrants are mostly

needed or for deciding in which areas to offer planning permissions for opening new care

homes. Register databases are updated on a frequent basis and hence their timeliness

is better than that of alternative sources of data for example, Census data.

The statistical problem we face in this work is created by the fact that the register

with the exact coordinates used for producing the maps in Figure 1.1 is not publicly

available. Access to such data is impeded by confidentiality constraints (VanWey et al.,

2005) and this holds true also for the Berlin register data. It is easy to see why con-

fidentiality constraints are in place. The availability of precise geo-coding alongside

information on demographic characteristics can increase the disclosure risk in partic-

ular for sensitive sub-groups of the population such as ethnic minorities. Restricted

access to sensitive data may not only apply to users working outside the data host but

also to researchers working for the data host or for related organisations for example,

Government Departments. As we will see in this work, in the case of the Berlin reg-

ister data specific procedures are used to ensure confidentiality of the sensitive data.

Nevertheless, policies that govern access to sensitive data are country-specific. Other

countries that have a long tradition of maintaining register geo-coded data are the Scan-

dinavian ones for example, Norway and Finland. However, access to and use of such

data is restricted and these restrictions are decided by the data host in each country.
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The host of the data can offer access, possibly in a safe setting, to geo-coded data

whilst ensuring confidentiality. One way to achieve this is by introducing measurement

error to longitudes and latitudes (Armstrong et al. 1999; Ozonoff et al. 2007 or Rush-

ton et al. 2007). However, this raises the following question. Can we derive precise

density estimates of the sub-groups of interest by using data that has been subjected

to disclosure control via the introduction of measurement error in the geographic co-

ordinates? The present work proposes non-parametric multivariate density estimation

in the presence of measurement error in the geographic coordinates. The aim is to

investigate how the precision of density estimates produced by using coarsened data

and the use of a non-parametric statistical methodology for reversing the measurement

error process compares to density estimates produced by using the exact geo-referenced

data. At this point we should make clear that the work does not discuss whether the

released geo-referenced information makes identification possible. Instead, we assume

that the parameters of the disclosure control process are decided by the data provider.

For a discussion on the effectiveness of anonymisation techniques, we refer the reader

to Kwan et al. (2004).

Scott and Sheather (1985) used Naive density estimation methods that disregard

the presence of rounding. To account for rounding Härdle and Scott (1992) introduced a

kernel-type estimator based on weighted averages of rounded data points and Minnotte

(1998) developed an approach of histogram smoothing. An iterative estimation scheme

presented by Blower and Kelsall (2002) ensures non-negative estimates and can poten-

tially be applied to multivariate data as well. A recent publication of Xu (2014) extends

this approach to asymmetric kernels. However, the bandwidth selection which is cru-

cial in kernel density estimation is done with a rather ad-hoc approach on the binned

data. Wang and Wertelecki (2013) proposed a parametric and a non-parametric kernel

density estimator for rounded data but considered only the univariate case. Wang and

Wertelecki (2013) showed that using a Naive kernel density estimator to rounded data

with standard bandwidth selection may lead to poor results for large rounding intervals

and large sample sizes.

An alternative idea, explored in this work, is to interpret rounding as a measurement

error process and to formulate the problem by using measurement error models (Carroll

et al., 2006; Fuller, 2009). For classical additive error models the problem can be re-

garded as density deconvolution and can be solved using Fourier methods (Stefanski and

Carroll, 1990; Zhang, 1990). The topic of density deconvolution has been extensively

studied and literature has focused on optimal convergence rates (Fan, 1991), different

error distributions such as Gaussian or uniform distributions (Feuerverger et al., 2008)

and choice of an optimal bandwidth (Delaigle and Gijbels, 2004). Moreover, the case

of additive Berkson errors (Berkson, 1950) in the context of non-parametric density

estimation has been investigated. Delaigle (2007, 2014) proposed a density estimator

which does not require any bandwidth choice and converges at a parametric rate but

with the drawback of producing spiky estimates with high variance when the measure-

ment error is rather low. A recent paper by Long et al. (2014) empirically compares
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the estimator of Delaigle (2007, 2014) to two novel approaches for multivariate kernel

density estimation contaminated with Gaussian Berkson error and states that one of

them shows superior performance. However, rounding error can neither be classified

as classical nor Berkson additive error structure as the error is neither independent

of the true coordinate nor the rounded one. Nevertheless, a Berkson model with uni-

form error distribution can be used as an approximation (Wang and Wertelecki, 2013).

In this case the estimator by Delaigle (2007) is a bivariate histogram type estimator.

When the rounding error, which governs the binwidth, is high the estimator proposed

by Delaigle (2007) can be biased. Therefore, in this work we develop a method that

correctly specifies the measurement error model under rounding.

From a methodological perspective the present article proposes a novel approach to

multivariate non-parametric kernel density estimation in the presence of rounding errors

used to ensure data confidentiality. The main advantage of the proposed methodology,

compared to alternative methodologies, is that under our approach the bandwidth is

derived as part of the estimation process. Moreover, our method is very easy to imple-

ment and works regardless of the dimension, the kernel and the bandwidth selection

method.

In this work we assume only the availability of register geo-coded data with mea-

surement error in the geographic coordinates. Hence, conventional estimation methods

that combine Census/register data with survey data are not applicable in this case. In

this work we use the Berlin register data, a complete enumeration of the entire Berlin

population in private households, for illustrating how to derive precise density estimates

of sensitive groups in the presence of measurement error in two applications.

The first application aims at estimating the density of the Berlin population that

is of ethnic minority background. The focus on this application is motivated by the

debate on integration/segregation of migrants. Residential segregation describes the

phenomenon of a separation of residents according to certain characteristics such as

ethnicity. Recent literature suggests that higher levels of segregation are linked with

higher crime rates and lower health and educational outcomes (Peterson et al., 2008;

Card and Rothstein, 2007; Acevedo-Garcia et al., 2003). To prevent the segregation

of ethnic minorities it is necessary to assist these groups with integration programmes

offered by advisory centres. Programmes of this kind should be established in areas

with high density of ethnic minorities. For the purposes of this application we study

the current location of advisory centres in relation to density estimates and identify

areas where more support is potentially needed.

The second application relates to the provision of social services for the elderly and

urban planing in the context of changing demographics. Longer life expectancy and

declining birth rates lead to an ageing population, which needs to be accounted for

in urban and social planning. For example, the German National Statistical Institute

(Destatis, 2009) predicts the ratio of people over 65 to rise from 20% in 2008 to 34%

in 2060. This is a common issue for other industrialised countries too. To ensure

the wellbeing of the elderly and to secure adequate and affordable support for this
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group it is necessary to analyze where the elderly live. Gorr et al. (2001) used the

density of the elderly population as a basis for a spatial decision support system for

home-delivered services (meals on wheels). Further challenges arise in urban planing,

where an ageing population requires easy access to buildings, public services and public

transportation. Shortcomings in urban development can be analyzed by comparing the

density of the elderly population against those characteristics (Federation of Finnish

Learned Societies’ Open Journal Systems, 2014). In addition, many elderly people

decide to live in a retirement home. To secure adequate and affordable support for the

elderly population it is necessary to establish services where needed. The methodology

we propose in this work is also used for providing precise density estimates of the

elderly population in the Berlin area. For both applications the sensitivity of density

estimation to the severity of the rounding error process is studied and the proposed

methodology is contrasted to a Naive kernel density estimator which disregards the

presence of measurement error.

The structure of the work is as follows. In Section 1.2 we describe the Berlin

register data. In Section 1.3 we review multivariate kernel density estimation in the

presence of measurement error. A multivariate kernel density estimator is proposed

and the computational details of the proposed method are described. In Section 1.4

we present the results of the two applications by using the Berlin register data. In

Section 1.5 we empirically evaluate the performance of the proposed methodology under

different assumptions for the rounding error process with data generated from known

bivariate densities. The precision of the density estimates provided by the proposed

methodology is contrasted to the precision of the estimates derived by (a) using a

Naive kernel density estimator that disregards the presence of rounding error and (b)

alternative approaches that have been proposed in the literature. Finally, in Section

1.6 we conclude the work with some final remarks.

1.2 The Berlin Register Data

The statistical problem we face in this work is motivated by the Berlin register of

residents dataset, which comprises all Berlin household addresses and contains exact

geo-coded coordinates. Such a comprehensive data set is gathered because of German

legislation. In particular, registration at the local residents’ office is compulsory in

Germany and is carried out by the federal state authorities. In the federal city state of

Berlin registration is regulated by the Berlin registration law. This law requires every

person who moves into a new residential unit in Berlin to be registered in person within

one week.

This register is not publicly available because of the detailed geo-coded information

it contains. However, a version of the register data is publicly available as part of the

Open Data initiative in Berlin (http://daten.berlin.de), an initiative that aims at

using data for improving urban development. The open dataset includes aggregates for

the 447 lowest urban planning areas, the so-called LORs (’Lebensweltlich orientierte

Räume’), with coordinates given by the centroid of these areas. This is a discrete and
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Figure 1.2: Density estimates of the population with ethnic minority background in
Berlin (left map) and of the population aged 60 or above in Berlin (right map) based
on the publicly available data.

possibly arbitrary demarcation. The discreteness of the demarcation is apparent in

Figure 1.2, which shows kernel density estimates of the population of ethnic minorities

(left map) and of the population aged 60 or over (right map) in Berlin by using the

publicly available data. A main aim of the present work is to derive precise density

estimates of population groups by using a more flexible definition of geographic demar-

cation. This in turn may provide more useful information to local authorities than the

currently available LOR demarcation.

An alternative to the currently available data, and one explored by the data host,

is to generate a grid-based version of the data that is independent from the somewhat

arbitrary geometry of the LORs. In this case the grid-aggregates can be interpreted as

the result of rounding geo-coded data for ensuring data confidentiality. Here each point

of the grid defines a square-shaped area around the grid point with a longitude and

latitude increment equal to the grid length. Then the value of the variable of interest

is the aggregate of the values with exact geo-coordinates over the area surrounding the

grid point. In fact, the LOR demarcation in Berlin can be thought of as the process

of rounding the geo-referenced data by using grids of average size 2000 meters by 2000

meters. The methodology we propose in this work attempts to reverse the rounding

process for deriving estimates that are more precise than density estimates that ignore

the measurement error process and relate to a more flexible definition of geographic

demarcation.

The data that we have access to in this work contains all 308,754 Berlin household

addresses on the 31st of December 2012 with the exact geo-coded coordinates subject

to different degrees of rounding error. One of the scenarios we explore is rounding by

using grids of size 2000 meters by 2000 meters that approximately correspond to the

LOR demarcation. The location is measured by (Soldner)-coordinates in meters. The

original (without rounding error) data includes the total number of residents (Berlin
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Table 1.1: Summary statistics of the number of residents living at a household address.

Sum Min. 1st Qu. Median Mean 3rd Qu.

Berlin Total 3,469,619 1 2 4 11.24 15
Migration 949,184 0 0 0 3.07 3
Migration Vietnam 21,637 0 0 0 0.07 0
Migration Turkey 176,738 0 0 0 0.57 0
Age over 60 859,170 0 0 1 2.78 3

Total) at their principal residence and the number of persons according to some key

demographic characteristics. The first demographic variable is the migration back-

ground (Migration) of individuals defined by the number of people that are of (a)

non-German nationality, (b) German nationality but born abroad and (c) non-German

nationality who changed their nationality into German at the coordinates of the princi-

pal household address. The definition of this variable is further refined by the number

of individuals of migration background from Turkey (Migration Turkey) or Vietnam

(Migration Vietnam). The second demographic variable is age (age over 60) defined

by the number of individuals who are older than 60 years old. The density estimates

of the subgroups of interest that are produced by using the proposed methodology are

contrasted to maps of the corresponding densities produced by using the data with the

exact geo-coded coordinates. The use of these maps has been approved by the data

host, the Berlin-Brandenburg Statistics Office.

Table 1.1 presents summary statistics of the number of residents living at a house-

hold address of the key variables based on the exact geo-coded data. Due to confi-

dentiality restrictions we are not allowed to publish the maximum number of residents

living at a household address. The average of individuals living at a household address

in Berlin is 11.24 leading to a total population of 3,469,619 (registered) inhabitants.

Note that a household address in the data is defined for example, as an entire block

of apartments. Around 27% of the total population are of migration background and

around 24.8% of the population are older than 60 years. The average number of resi-

dents of migration background is 3.07 with a median of 0, whereas the average number

of individuals above 60 years of age is 2.78 with a median of 1. This gives a first in-

dication that inhabitants with migration background are more clustered compared to

older people in Berlin.

1.3 Multivariate Kernel Density Estimation in the Pres-

ence of Measurement Error

In this section we propose an approach to non-parametric multivariate density estima-

tion in the presence of measurement error in particular, rounding of the geographical

coordinates used for disclosure control of sensitive data. Multivariate kernel density

estimation is introduced in Section 1.3.1. In Section 1.3.2 we investigate kernel den-

sity estimation in the presence of measurement error and in Section 1.3.3 we present

a model that corrects for measurement error in multivariate kernel density estimation.
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Estimation and the computational details of the algorithm we use for implementing the

proposed model are described in Section 1.3.4.

1.3.1 Multivariate kernel density estimation

Kernel density estimation as a non-parametric approach is an important tool in ex-

ploratory data analysis. Multivariate kernel density estimation attempts to estimate

the joint probability distribution for two or more continuous variables. This method has

the advantage of producing smooth density estimates compared to a histogram whose

appearance heavily depends on the bin’s breakpoints. Let X = {X1,X2, . . . ,Xn}
denote a sample of size n from a multivariate random variable with unknown density

f(x). In the following, we only consider the two-dimensional case without loss of gen-

erality such that x = (x1, x2). Thus, Xi, i = 1, . . . , n is given by (Xi1, Xi2), where – in

our application – Xi1 and Xi2 denote longitude- and latitude- coordinates, respectively.

The multivariate kernel density estimator at point x is given by

f̂H(x) =
1

n|H|
1
2

n∑
i=1

K
(
H−

1
2 (x−Xi)

)
, (1.1)

where K(·) is a multivariate kernel function, H denotes a symmetric positive definite

bandwidth matrix and | · | denotes the determinant. A standard choice for K(·), used

throughout this work, is the multivariate Gaussian kernel. The choice of bandwidth H

is crucial for the performance of a kernel density estimator. Approaches for bandwidth

selection have been widely discussed in the literature. A popular strategy is to chooseH

by minimizing the asymptotic mean integrated squared error (AMISE) through plug-

in or cross-validation methods (Izenman, 1991 or Silverman, 1986). In the univariate

case we refer the reader to Marron (1987) or Jones et al. (1996). Wand and Jones

(1994) discussed the choice of the bandwidth in the multivariate case by using a plug-

in estimator. The approach by Wand and Jones (1994) is the one we use for bandwidth

selection in this work.

1.3.2 Rounding and kernel density estimation

By introducing rounding for achieving anonymisation of sensitive data the true val-

ues X = {X1,X2, . . . ,Xn}, the exact geographical coordinates, are lost. Instead,

only the rounded (contaminated by measurement error) values, denoted by W =

{W1,W2, . . . ,Wn}, are available. As a consequence the data is concentrated on a

grid of points. Using a Naive kernel density estimator that ignores the rounding pro-

cess by replacing the true values Xi by the rounded values Wi in (1.1) may lead to

a spiky density that is not close to the density of the uncontaminated (true) data.

This effect becomes more pronounced with increasing sample size. In particular, as the

bandwidth determinant |H| is decreasing with higher sample size this causes higher

density estimates on the grid points and lower in between the grid points.

The process of rounding means that the true, unknown, values Xi = (Xi1, Xi2)
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given the rounded values Wi = (Wi1,Wi2) are distributed in a rectangle with Wi in its

center, [
Wi1 −

1

2
r,Wi1 +

1

2
r

]
×
[
Wi2 −

1

2
r,Wi2 +

1

2
r

]
. (1.2)

The value r denotes the rounding parameter. For instance, the data is rounded to the

next integer for r = 1.

1.3.3 The model

A model for the density f(x) could be formulated parametrically, for example by a mul-

tivariate Gaussian distribution, or non-parametrically either by a mixture of parametric

distributions (Escobar and West, 1995; Gelfand et al., 2005) or by using multivariate

kernel density estimation as introduced in Section 1.3.1. As discussed in Section 1.3.2,

the true values Xi are lost because of the rounding process and only the rounded

values Wi are observed. However, we still aim to estimate the density f(x) – from

which our sample X is drawn – only by using the rounded values Wi. Under the

assumption that the rounding/anonymisation process of the Xi is known, we are able

to formulate a measurement error model π(W |X) for W . In particular, the measure-

ment error model π(W |X) for rounding is defined by a product of Dirac distributions,

π(W |X) =
∏n
i=1 π(Wi|Xi), with

π(Wi|Xi) =

1 for Xi ∈ [Wi1 − 1
2r,Wi1 + 1

2r]× [Wi2 − 1
2r,Wi2 + 1

2r]

0 else.
(1.3)

From the Bayes theorem it follows that π(X|W ) ∝ π(W |X)π(X). Utilizing this for-

mulation we can draw pseudo samples (imputations) of the Xi from π(Xi|Wi) which

enables us to estimate f(x). As π(X) =
∏n
i=1 f(Xi) is initially unknown we propose

an iterative procedure, which uses an initial estimate of f(x) based on the Wi followed

by alternating simulations of X from π(X|W ) and re-estimation of π(X) until conver-

gence. The following subsection gives further details about the exact implementation

of the algorithm and discusses how this can be viewed as a variant of the Expectation-

Maximization (EM) algorithm (Dempster et al., 1977).

1.3.4 Estimation and computational details

As discussed in the previous subsection, for fitting the model we need to draw pseudo

samples of the Xi. The conditional distribution of the Xi given the rounded values

Wi is the following:

π(Xi|Wi) ∝ I(Wi1−
1

2
r ≤ Xi1 ≤Wi1 +

1

2
r)× I(Wi2−

1

2
r ≤ Xi2 ≤Wi2 +

1

2
r)× f(Xi),

(1.4)

where I(·) denotes the indicator function. The conditional distribution of Xi is the

product of a uniform distribution on the square with side length r around Wi and
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density f(x). As the density f(x) is unknown it is replaced by an estimate, which is

the multivariate kernel density estimator f̂H(x) defined in (1.1). In particular, Xi is

repeatedly drawn from the square of side length r around Wi using the current density

estimate f̂H(x) as a sampling weight. The steps of the algorithm are described below.

1. Get a pilot estimate of f(x) by setting H to

(
l 0

0 l

)
, where l is a sufficiently

large value such that no rounding spikes occur.

2. Evaluate the density estimate f̂H(x) on an equally-spaced fine grid G = z1 × z2
(with G = {g1, . . . , gm}, gridwidth δg and

z1 =

{
min
i

(Wi1)− 1
2r,min

i
(Wi1)− 1

2r + δg, . . . ,max
i

(Wi1) + 1
2r

}
,

z2 =

{
min
i

(Wi2)− 1
2r,min

i
(Wi2)− 1

2r + δg, . . . ,max
i

(Wi2) + 1
2r

}
(i = 1, . . . , n)),

where r denotes the rounding parameter introduced in Section 1.3.2.

3. Sample from π(Xi|Wi) by drawing a sample Xi
S =

(
XS

1i, X
S
2i

)
randomly from(

z1 ∈ [Wi1 − 1
2r,Wi1 + 1

2r]
)
×
(
z2 ∈ [Wi2 − 1

2r,Wi2 + 1
2r]
)

with sampling weight

f̂H(Xi
S), i = 1, 2, . . . , n.

4. Estimate the bandwidth matrix H by the multivariate plug-in estimator of Wand

and Jones (1994) and recompute f̂H(x). Here we should mention that other

bandwidth selectors are applicable.

5. Repeat steps 2-4 B (burn-in iterations) +N (additional iterations) times.

6. Discard the B burn-in density estimates and get the final density estimate of f(x)

by averaging the remaining N density estimates f̂H(x) on the evaluation grid G.

The prospective reader may ask how the algorithm fits into existing estimation frame-

works. Generally, a popular fitting algorithm for models that depend on latent, un-

observed data (the Xi values in our case) is the Expectation-Maximization (EM) al-

gorithm. The proposed algorithm is a variant of the classical EM algorithm, namely

the Stochastic Expectation-Maximization (SEM) algorithm (Celeux et al., 1996). The

SEM algorithm works by drawing samples from the conditional distribution π(Xi|Wi)

creating a pseudo sample of X in each iteration as a replacement of the E-step in the

classical EM algorithm where the conditional expectation of Xi given Wi is computed

analytically. The classical EM approach would clearly not work for kernel density esti-

mation with rounded data because all the observations within the rectangle around Wi

would still be concentrated at a single point, namely the expectation of the conditional

distribution of Xi given Wi, computed in the E-Step, leading to spiky estimates of the

density. In its original form both the EM and SEM algorithm are used for maximum

likelihood estimation in the presence of unobserved variables. However, kernel density

estimation is a non-parametric method. We therefore utilize a generalization of the

SEM algorithm for the use of surrogates of the likelihood in the M-step (McLachlan
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and Krishnan, 2007) such that the objective of maximization, i.e. the likelihood, is

replaced by the minimization of the AMISE of the kernel density estimator in our case.

The estimator we propose in this work – hereafter referred to as GRSST estimator

– allows for estimating the bandwidth matrix H simultaneously with the density. In

contrast, for the algorithm proposed by Blower and Kelsall (2002) it is not immediately

clear how to estimate H. Blower and Kelsall (2002) suggest using an initial estimate

based on the rounded data. Another advantage is that with the proposed algorithm we

can get an estimate of the variance induced by the rounding process. This is obtained

as a byproduct of the Monte-Carlo process. In particular, standard errors for the den-

sity estimates at some arbitrary point can be computed by using the f̂H(x) produced

in each iteration of the algorithm. The algorithm we propose in this work is also linked

to the one proposed by Wang and Wertelecki (2013) in the univariate case. Apart

from being derived only for the univariate case, the approach by Wang and Wertelecki

(2013) corresponds (in the univariate case) to the method we propose in this work with

B = 0 burn-in iterations and N = 1 or more sampling steps. However, without a

burn-in period no convergence is achieved and final estimates can heavily depend on

the pilot estimate. The influence of the burn-in iterations and the sampling steps on

the quality of density estimation is evaluated in a simulation study the results of which

are included as part of the supporting information. The algorithm is implemented by

using function dbivr in the Kernelheaping R package (Groß, 2016a), which is avail-

able on CRAN. Additionally, the proposed approach allows for the use of an adaptive

bandwidth selection method proposed by Davies et al. (2011) and is implemented in

the sparr package.

1.4 Analysis of the Berlin Register of Residents

The benefits of using the proposed multivariate kernel density estimator that accounts

for measurement error are illustrated in two applications both of which use the Berlin

register data we described in Section 1.2. The first application aims at estimating the

density of the population with migration background in Berlin. The density estimates

are compared to the current geographical distribution of advisory centres for migrants

in Berlin. The second application aims at estimating the density of the population aged

60 and above in the Berlin area. The density estimates are compared to the current

geographical distribution of care homes in the Berlin area.

The analysis is carried out by using the two variables (a) Migration and (b) Age

over 60. The setup of the analysis is as follows: To start with, we impose grids on the

geographical space of the Berlin data set with respective grid sizes of 250, 500, 1250,

2000 and 2500 meters. The grid sizes correspond to different degrees of measurement

error used for anonymisation purposes. Note that the use of the 2000m by 2000m grids

is because these are of similar size to the currently used urban planning areas in Berlin

a level at which data is publicly available. Subsequently, we estimate the density of the

target population by using the Naive and the proposed GRSST density estimators

for each of the grid sizes. We use B = 5 and N = 20 iterations for the proposed
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Table 1.2: Berlin register data: RMISE for Naive and GRSST multivariate kernel
density estimators for different grid sizes (results in units of 10−8)

r = 250m r = 500m r = 1250m r = 2000m r = 2500m
Variable Naive GRSST Naive GRSST Naive GRSST Naive GRSST Naive GRSST

Age above 60 0.66 0.67 1.32 1.27 4.52 2.46 14.08 4.06 23.34 4.66
Migration 0.98 0.97 1.98 1.84 7.33 3.43 22.07 6.12 36.94 6.31

GRSST method in the algorithm presented in Section 1.3.4. The sensitivity of the

density estimators to the size of the dataset, (n) and the effect of the burn-in size, (B)

and sample steps (N) is assessed in the supporting information.

The performance of a generic density estimator f̂(x), for example the Naive or the

GRSST , is typically evaluated by the root mean integrated squared error (RMISE),

which is approximated by a Riemann sum over an equally-spaced fine grid,

RMISE(f̂(x)) =

√
E

(∫
(f(x)− f̂(x))2dx

)
≈

√√√√ 1

m

m∑
j=1

(f(gj)− f̂(gj))2δ2g , (1.5)

where m is the number of grid points gj and δg is the gridwidth. For computing the

Naive estimator and the GRSST estimator (using the algorithm in Section 1.3.4) we

use a bivariate Gaussian kernel and the plug-in bandwidth selector of Wand and Jones

(1994). This is implemented by using the R functions kde (kernel density estimation)

and Hpi (bandwidth selector) provided by the ks package (Duong, 2014). The un-

observed true density f(x) is substituted by the kernel density estimator (1.1) that

uses the original data without rounding with bivariate Gaussian kernel and the plug-

in bandwidth selector. This is treated as a benchmark because it is not affected by

rounding error. At this point we must mention that the original data is available only

to the data host. Hence, for implementing the code with the original data we had to

collaborate with staff at the Berlin-Brandenburg Statistics Office. Table 1.2 shows the

goodness of fit in terms of RMISE for the Naive and the proposed density estimators

and for different grid sizes. Figures 1.3 and 1.4 present kernel density estimation plots

for selected grid sizes for Age over 60 and Migration respectively. To start, we note

that the proposed estimator outperforms the Naive estimator especially for large grid

sizes (≥ 1250m). For grid sizes larger or equal to 1250m the Naive estimator produces

small spikes at the location of the grid points since in this case the probability mass is

mostly attributed to the center points of the grid. In contrast, the proposed estimator

preserves the fundamental structure of the underlying density. For the largest grid size

(2500m), which implies strongly anonymised data, the general shape produced with the

proposed estimator is clearly visible. This is not the case with the Naive estimator.

Having assessed the performance of both estimators, we now discuss the results of

the density estimates in the context of two applications.

Advisory services for population with migration background: Around 950,000 peo-

ple with migration background from around 190 countries live in the 12 districts in

Berlin. The four largest communities consist of approximately 200,000 people with
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Figure 1.3: Density estimates of population aged 60 and above: Naive (left panel)
and GRSST estimators (right panel) with rounding step sizes of 0 (original data), 500,
1250 and 2500 m (top down).
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Figure 1.4: Density estimates of population with migration background: Naive (left
panel) and GRSST estimators (right panel) with rounding step sizes of 0 (original
data), 500, 1250 and 2500 m (top down).
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Figure 1.5: Migration background (left panel) and Age above 60 (right panel) for the
original data, Naive method and GRSST method (top down) for rounding step size
of 2000 m including points of interest. Blue points indicate migrant advisory centers
and retirement houses respectively.

25



KAPITEL 1. ESTIMATING THE DENSITY OF MINORITIES AND AGED
PEOPLE IN BERLIN

Turkish migration background, around 100,000 people from Russia or from the former

Soviet Union and its successor states, approximately 60,000 people of migration back-

ground from the successor states in the former Yugoslavia and around 45,000 people

of Polish migration background. The history of many migrants started in former West

Berlin in the mid-sixties with the recruitment of guest workers. Workers were recruited

mainly from Mediterranean countries like Greece, Italy, Yugoslavia or Turkey. In the

former East Berlin workers were employed by inter-state agreements from countries like

Angola, Poland or Vietnam. From the very beginning Berlin offered advisory services

for migrants. For instance, Berlin has a commissioner for integration and migration.

This office was established in 1981 and was the first of its kind in Germany. Nowadays,

there are specialized advisory service centres that assist people with migration back-

ground. The youth migration services provide advice to young adults and teenagers

of migration background. In addition, Berlin has in total 32 advisory service centres

for adults. In these centres migrants can receive support and personal consultation

directly that will assist with their integration. For example, people receive support

with finding appropriate child care facilities. To secure an appropriate level of support

it is important to establish advisory centres where mostly needed. The left panel of

Figure 1.5 shows the estimated densities of the population with migration background

in Berlin. The blue points represent the 32 advisory service centres for adults. The plot

on the top panel shows the density estimates produced by using the original data and

the exact address coordinates, which are not publicly available. The plots in the mid-

dle and at the bottom present density estimates produced by using the Naive and the

GRSST density estimators with a rounding step size of 2000m. The choice of 2000m

times 2000m grids is because these are of similar size to the currently used urban plan-

ning areas in Berlin. The estimates based on the original data in Figure 1.5 show that

the density of populations with migration background varies by Berlin districts. The

estimated density is particularly high in the former West-Berlin districts of Wedding

(in the north), Neukölln (in the south-east), Kreuzberg (in the center to south) and

Schöneberg (in the south). Friedrichshain and Prenzlauer Berg (in the north-east),

show a lower estimated density of population with migration backgrounds.

The spatial distribution of advisory centres cover populations in the centre and

north of Berlin quite well. However, there are some hotspots for example, in the west-

ern and south-west parts (Charlottenburg or Moabit) or in the very northern parts

(Märkisches Viertel) of Berlin, with a high density estimate of ethnic minority popu-

lations but without any advisory service centres. The commentary on the first map

above depends on precise geo-coded addresses which are not publicly available. The

second and third maps show the density estimates based on the rounded data. The

density plot obtained by using the Naive estimator (plot in the middle in Figure 1.5)

produces spikes at the center of the grids. In contrast, the proposed estimator produces

a map (plot at the bottom in Figure 1.5) that is able to preserve the fundamental den-

sity structure of the original data. Hence, the commentary we produced by looking

at the map of the original data holds also true for the map of density estimates pro-
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duced by using the proposed multivariate kernel density estimator that accounts for

measurement error. In addition, the proposed density estimator produces more precise

density estimates than the Naive one (see Table 1.2). Local authorities should prefer

the density estimates produced by the proposed estimator, to the one produced by the

Naive estimator, for making informed decisions.

Care for the elderly: Life expectancy in Germany has improved due to advances

in medical research. This leads to a change in the demographic structure with an

increasing number of old-aged people. Approximately 860,000 individuals aged 60 and

above live in Berlin. It is projected that by 2030 the average age of Berlin’s population

will increase from 42.5 years (in 2007) to 45.3 years and roughly every third citizen of

Berlin will be 60 years or older. With increasing age the prevalence of diseases and

functional restraints, which are often chronic and irreversible, rises as well (Saß et al.,

2009). In 2012, 58.3% of German women and 55.3% of German men suffered from at

least one chronic disease (Robert Koch Institut, 2014). According to the World Health

Organization (2005), the prevalence and incidence of various chronic diseases, such as

cardiovascular diseases, cancer, diabetes mellitus, dementia or respiratory problems, is

predicted to increase in the next years. For this reason older people are more likely

to need help in their daily life and will increasingly depend on care. According to

the nursing care insurance in 2011 there were roughly 117,500 care-dependent people

in Berlin. In order to support the increasing elderly population it is necessary to

offer high-quality medical and social community structures of care that are close to

the people’s place of residence. This is important because elderly people tend to feel

connected to their neighbourhood. These structures consist of:

- Neighborhood centers: These are combinations of accessible living, residential

care homes and social/cultural centres with neighbourhood cafes, which are suit-

able for senior citizens. Such structures offer elderly people with or without care

dependency the opportunity to live actively within the community until old age.

- Foster ambulatory care: These are home care nursing services that enable care-

dependent people to live at home.

- Networked care: The different forms of care systems (e.g., ambulatory care, semi-

residential care or impatient care) need to be more strongly interconnected than

they currently are. This will offer more choices for older people for example,

live at home with ambulatory care but have the opportunity to change to semi-

residential or impatient care near to the place they live.

In order to improve such services for the city of Berlin it is necessary to have an ac-

curate picture about the distribution of the elderly population in Berlin. The right

panel of Figure 1.5 shows the density estimates for the population aged 60 years or

above. The blue points represent 108 retirement homes in Berlin. The location of

these points was extracted by using Google Maps. The plot on the top panel indicates

the density estimates based on the original data with the exact address coordinates,

which are not publicly available. The plots in the middle and at the bottom present
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the density estimates by using the Naive and the proposed density estimators with a

rounding step size of 2000m. The supply of retirement houses is particularly good in

the center of Berlin. However, locations for future expansion of retirement houses and

other support structures can be identified. For instance, there are some hotspot ar-

eas in the north (Reinickendorf and especially Märkisches Viertel) or in the south-east

(Gropiusstadt) with a high density estimate of the population over 60 but without re-

tirement homes. As in the first application,the proposed estimator (plot at the bottom

in Figure 1.5) preserves the structure of the density of the population over 60 years

despite the presence of measurement error in the available data and offers more precise

estimates. Hence, the use of the proposed estimator may enable local authorities and

other organisations to make sound strategic decisions regarding the best places for in-

vestigating in creating infrastructure for social care without requiring access to exact

geo-referenced data. A more refined analysis of the Berlin register data could consider

the use of local bandwidths as opposed to a global bandwidth. This is possible by

using the R package that has been written for implementing the methodology we pro-

pose in this work. Nevertheless, use of local bandwidths can increase significantly the

computational time.

1.5 Simulation Study

In this section we present results from a Monte-Carlo simulation study that was con-

ducted for evaluating the performance of the proposed multivariate kernel density es-

timator we presented in Section 1.3. The objective of this simulation study is to in-

vestigate the ability of the proposed methodology to account for measurement error,

under different scenarios for the intensity of the measurement error process, and hence

provide more precise estimates than Naive kernel density estimation that disregards

measurement error. The proposed estimator is further compared to the estimator pro-

posed by Delaigle (2007). Finally, the sensitivity of the proposed method in relation

to the size of the data (n), to the burn-in size (B) and sample steps (N) used in the

GRSST algorithm is evaluated and the results are provided as part of the supporting

information.

The simulation data is generated under different bivariate normal distributions.

Three scenarios, denoted by A, B and C, are considered. Under Scenario A data is

generated by using a bivariate standard normal distribution,

fA(x) = φ(x|µ,Σ),

where φ(x|µ,Σ) denotes a multivariate normal density with mean µ and variance-

covariance matrix Σ given by,

µ =

(
0

0

)
, Σ =

(
1 0

0 1

)
.

Under Scenario B data is generated by using a mixture of three uncorrelated bivariate
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normal distributions,

fB(x) =
1

3
φ(x|µ1,Σ1) +

1

3
φ(x|µ2,Σ2) +

1

3
φ(x|µ3,Σ3),

with

µ1 =

(
0

0

)
,µ2 =

(
5

3

)
,µ3 =

(
−4

1

)
,Σ1 =

(
2 0

0 2

)
,Σ2 =

(
1 0

0 1

)
,Σ3 =

(
1 0

0 3

)
.

Finally, under Scenario C data is generated by using a mixture of three correlated

normal distributions with

µ1 =

(
0

0

)
,µ2 =

(
5

3

)
,µ3 =

(
−4

1

)
,Σ1 =

(
4 3

3 4

)
,Σ2 =

(
3 0.5

0.5 1

)
,Σ3 =

(
5 4

4 6

)
.

The corresponding density contours under the three scenarios are shown in Figure 1.6.

The use of bivariate distributions is motivated by the fact that our application data in

Section 1.4 is bivariate. The use of Gaussian distributions for generating the simulation

data follows Zhang et al. (2006) and Zougab et al. (2014).
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−10 −5 0 5 10

Scenario A
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Scenario B

−10 −5 0 5 10

Scenario C

Figure 1.6: Contour plots of the simulated data under the three simulation scenarios.

For each scenario we generate a dataset S0 of size n = 500 from the correspond-

ing distribution fA(x), fB(x) or fC(x). The dataset S0 includes the exact x- and

y-coordinates. For introducing measurement error via rounding of the coordinates, we

define a grid for the x- and y-coordinates ranging from -10 to 10 with gridwidth ac-

cording to rounding values r = 0.75, 1.5 and 2.25. For a formal definition of r and the

rounding process we refer to Section 1.3.2. We denote the dataset after rounding by Sr.

Figure 1.7 shows the different scenarios for the rounding process for a specific dataset

under Scenario B. The size of the points represents the number of points at a specific

rounding tick.

By using Sr, we estimate the density with three methods: a) Naive: a standard

kernel density estimator that ignores measurement error, b) GRSST : This is the pro-

posed SEM estimator with B = 5 burn-in and N = 20 sample steps and c) Delaigle:
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Figure 1.7: Scenario B: Rounding procedure for a specific dataset.

Table 1.3: Mean RMISE for different grid sizes (r) and scenarios. Corresponding
standard errors of the RMISE in parentheses.

r = 0 r = 0.75 r = 1.5 r = 2.25
Original Naive GRSST Delaigle Naive GRSST Delaigle Naive GRSST Delaigle

Scenario A
0.205 0.238 0.239 0.301 3.952 0.242 0.887 4.917 0.568 1.113
(0.026) (0.029) (0.031) (0.027) (0.301) (0.030) (0.034) (0.248) (0.045) (0.056)

Scenario B
0.162 0.172 0.170 0.328 0.380 0.183 0.272 0.679 0.256 0.390
(0.016) (0.017) (0.016) (0.019) (0.033) (0.018) (0.013) (0.043) (0.016) (0.014)

Scenario C
0.119 0.125 0.121 0.268 0.147 0.131 0.181 0.351 0.152 0.172
(0.012) (0.013) (0.012) (0.015) (0.013) (0.013) (0.009) (0.034) (0.014) (0.012)

this is the estimator presented in Delaigle (2007). As in Section 1.4, for computing the

Naive and GRSST estimators we use a bivariate Gaussian kernel and a plug-in band-

width selector. The density of the original data S0 (r = 0 in Table 1.3) is estimated

by using function kde (kernel density estimation) with a bivariate Gaussian kernel and

a plug-in bandwidth selector. The density estimates of the original data are treated

as a benchmark because S0 is not affected by rounding error. The simulation steps

(generation of a dataset, rounding of the coordinates and the density estimation) are

independently repeated 500 times for each scenario.

In Table 1.3 we compare the performance of theNaive, theGRSST and the Delaigle

density estimators in the three scenarios. The first column of Table 1.3 shows the means

and the standard deviations of the RMISE over 500 Monte-Carlo replications of the

benchmark case i.e. in the absence of rounding error (r = 0). Note that in the definition

of the RMISE in (1.5) f(x) denotes now the underlying true density, fA(x), fB(x) or

fC(x) respectively.

For the scenarios with small rounding errors (r = 0.75) we observe that the Naive

and the GRSST density estimators perform similarly and both methods have RMISE

which is comparable to the RMISE under the benchmark scenario. The Delaigle estima-

tor reveals a higher RMISE compared to the two other approaches. Data providers may

be keen, however, to introduce more severe measurement error to the data for ensuring
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confidentiality. For such scenarios (r = 1.5 and r = 2.25) the GRSST density estimator

clearly outperforms the Naive estimator. The Delaigle estimator performs better than

the Naive estimator but worse compared to the GRSST estimator. It is notable that

the Naive estimator performs very poorly especially for r = 1.5 and r = 2.25 in the

case of a bivariate standard normal distribution (Scenario A). Presumably this is due

to the small variance of the underlying density we are trying to estimate in Scenario

A such that discretizing for given rounding values has a much more pronounced effect.

For this reason we also tested a bivariate normal distribution with a larger variance.

The results for the Naive method become more stable but the GRSST estimator still

performs better. Figure 1.8 shows contour plots of a particular simulation run under

Scenario B for the Naive and GRSST estimators. It appears that, unlike the Naive,

the GRSST density estimator is able the maintain the underlying structure of the

density for different rounding levels. Contour plots under Scenarios A and C (provided

as part of the supporting information) confirm this finding. The anisotropic pattern

for the Naive estimator (r = 1.5 and r = 2.25) is caused by a larger bandwidth in

x-direction than in y-direction. This bandwidth is chosen by the plug-in bandwidth

matrix selector of (Wand and Jones (1994).
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Figure 1.8: Scenario B: Contour plots of Naive estimator (upper panel) and GRSST
estimator (lower panel), for grid size r = 0.75, 1.5, 2.25 (left to right). The original data
scenario (r = 0) is used as the benchmark.
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1.6 Discussion

Precise geo-coded data is rarely available due to confidentiality constraints. The work

proposes methodology for deriving density estimates of populations of interest in the

presence of rounding in the geographical coordinates used for disclosure control. The

proposed methodology is motivated by reversing the measurement error process by

combining a measurement error model with kernel density estimation. The method is

straightforward to implement and works for different dimensions, symmetric as well as

asymmetric kernel types and bandwidth selection methods. The use of the proposed

methodology is facilitated by the availability of function dbivr in the R package Ker-

nelheaping available on CRAN (Groß, 2016a). As we demonstrated with the analysis

of the Berlin register data the proposed method can offer considerably deeper insights,

compared to a Naive estimator that disregards the measurement error process, to

data analysts about the density of target populations within an area of interest. The

structure preserving property of the proposed method is particularly attractive when

working with data that has been subjected to disclosure control via the introduction

of measurement error. In addition, the work provides some first indications on how to

set the grid-lengths for geo-coding in the Berlin register of residents such that a data

analyst is able to derive precise density estimates. At the same time working with the

data host for deciding the grid-lengths is crucial for ensuring confidentiality.

Further work could extend the proposed approach to different geographical mask-

ing or anonymisation methods including for example the use of Gaussian errors added

to the original geographic coordinates. With minor adaptions to the algorithm di-

rect use of arbitrary demarcation shapes like the LORs instead of the grid-structure

induced by rounding is possible for obtaining smooth density estimates as well. The

proposed method can be further generalized for application to data with varying de-

gree of rounding (heaping) occurring, for example, in self-reported survey data (Pudney,

2008). Finally, one idea for further work is to explore the application of the proposed

methodology for generating synthetic geo-coded data based on anonymised data sets

with rounding errors.
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1.7 Supplementary Material: Additional Empirical Eval-

uations

As part of the supporting information we evaluate the sensitivity of the proposed

method in relation to the size of the data (n), the burn-in size (B) and the sample
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Table 1.4: Scenario B: Mean RMISE for different sizes of datasets. Corresponding
standard errors of the RMISE in parentheses.

r = 0 r = 0.75 r = 1.5 r = 2.25
Original Naive GRSST Delaigle Naive GRSST Delaigle Naive GRSST Delaigle

n = 100
0.273 0.280 0.278 0.682 0.304 0.294 0.400 0.434 0.332 0.382

(0.028) (0.028) (0.028) (0.055) (0.028) (0.029) (0.033) (0.039) (0.027) (0.029)

n = 500
0.162 0.172 0.170 0.328 0.380 0.183 0.272 0.679 0.256 0.390

(0.016) (0.017) (0.016) (0.019) (0.033) (0.018) (0.013) (0.043) (0.016) (0.014)

n = 1000
0.128 0.139 0.141 0.247 0.550 0.148 0.255 0.872 0.235 0.332

(0.013) (0.013) (0.013) (0.013) (0.036) (0.014) (0.011) (0.053) (0.016) (0.013)

n = 2000
0.100 0.112 0.105 0.189 0.727 0.123 0.241 1.187 0.221 0.331

(0.010) (0.011) (0.011) (0.012) (0.037) (0.011) (0.010) (0.064) (0.015) (0.014)

n = 5000
0.072 0.165 0.102 0.148 1.033 0.107 0.228 1.803 0.210 0.304

(0.012) (0.022) (0.016) (0.012) (0.081) (0.016) (0.015) (0.137) (0.024) (0.020)

steps (N) used in the algorithm for implementing GRSST estimator. This set of sim-

ulation results complements the results that we have included in the work. In addition

we present contour plots under Scenario A and C in Figure 1.9 and 1.10 respectively.

The remaining features of the simulation set up remain the same as in Section 1.5.

For evaluating the impact of the size of the dataset on the estimators, in Table 1.4

we report the means and the standard deviations of the RMISE under scenario B for

n = 100, 500, 1000, 2000 and 5000. First, we observe that the results of the benchmark

estimator (r = 0) improve as the size increases. This is expected because there is no

rounding error in the data and hence the larger the size of the data, the more precise

the estimates of the underlying density are. The advantage of using the proposed

GRSST estimator increases with the size of the dataset. For n = 100, the benefit

from using the GRSST estimator is relatively low. The small data size means that the

chosen bandwidth is large. However, for larger datasets the bandwidth determinant

|H| gets smaller. In this case the spikes of the density estimates obtained by using the

Naive estimator get more pronounced, which leads to an increasing RMISE for the

Naive method. In contrast, the GRSST and the Delaigle estimators benefit from an

increasing data size. In the presence of rounding information is irreversibly lost leading

to an increased RMISE for all estimators that utilise the rounded data. However, the

original data is not available. The proposed GRSST estimator, that accounts for the

rounding process, is able to provide a density that is close to the density of the original

data and appears to be more efficient than competitor estimators.

For assessing the effect of the burn-in size (B) and the sample steps (N) on the

proposed method we implement the GRSST algorithm for scenario B by using different

combinations of burn-in sizes (B = 0, 1, 5, 10, 20) and sample steps (N = 1, 2, 20, 50, 100).

Table 1.5 shows the means and standard deviations of the RMISE over 500 Monte-Carlo

replications. We observe that larger B and N values improve the results in particular as

the rounding error increases. Thus, the approach by Wang and Wertelecki (2013) which

is identical to the proposed method with burn-in iterations B = 0 and N = 1 or more

sampling steps is less efficient than the proposed GRSST estimator. The improvement

is only marginal, however, for B and N larger than 5 and 20 respectively.

For investigating the computing time needed for implementing the proposed esti-
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Table 1.5: Scenario B: Mean RMISE for different burn-in (B), sample steps (N). Cor-
responding standard errors of the RMISE in parentheses.

Estimators r = 0.75 r = 1.5 r = 2.25

Naive 0.172 (0.017) 0.380 (0.033) 0.679 (0.043)
GRSST (B=0, N=1) 0.176 (0.017) 0.216 (0.019) 0.300 (0.020)
GRSST (B=1, N=2) 0.172 (0.017) 0.193 (0.019) 0.274 (0.020)
GRSST (B=5, N=20) 0.170 (0.016) 0.183 (0.018) 0.256 (0.016)
GRSST (B=10, N=50) 0.170 (0.017) 0.181 (0.019) 0.254 (0.017)
GRSST (B=20, N=100) 0.170 (0.017) 0.181 (0.018) 0.254 (0.017)

Table 1.6: Scenario B: Average computing times (in seconds) for different burn-in (B),
sample steps (N) and sizes of the data (n).

Estimators n = 500 n = 1000 n = 2000 n = 5000

Naive 0.741 1.447 2.817 6.957
GRSST (B = 0, N = 1) 0.856 1.576 2.973 7.196
GRSST (B = 1, N = 2) 3.955 4.877 7.026 13.391
GRSST (B = 5, N = 20) 26.608 30.262 36.626 61.687
GRSST (B = 10, N = 50) 62.143 70.392 86.821 143.661
GRSST (B = 20, N = 100) 124.862 136.824 166.030 275.633

mator, in Table 1.6 we present average computing times for different burn-in iterations

(B), sample steps (N) and data size (n) under Scenario B. (Operating machine: 64-bit

windows system with an Intel Core i7-2600 CPU 3.40 GHz with 16 GB RAM, paral-

lel computing was not used). The computation time mainly depends on the number

of iterations B + N . For instance, the computing time for B + N = 25 iterations is

around 30 seconds for n = 1000 and around 60 seconds for n = 5000. In contrast, the

computing time increases to 136 seconds for n = 1000 and to 275 seconds for n = 5000

when B +N = 120 iterations. The setting B = 5 and N = 20 appears to be offering a

good compromise between RMISE and computing time.
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Figure 1.9: Scenario A: Contour plots of Naive estimator (upper panel) and GRSST
estimator (lower panel), for grid size r = 0.75, 1.5, 2.25 (left to right). The original data
scenario (r = 0) is used as the benchmark.
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Figure 1.10: Scenario C: Contour plots of Naive estimator (upper panel) and GRSST
estimator (lower panel), for grid size r = 0.75, 1.5, 2.25 (left to right). The original data
scenario (r = 0) is used as the benchmark.
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Kapitel 2

Kernel Density Estimation for

Heaped Data

2.1 Introduction

In survey data the researcher often encounters rounded values when the participants

are asked to state quantitative variables such as income (Hanisch 2007; Czajka and

Denmead 2008), household expenditures (Pudney 2008), body weight and height (Tay-

lor et al. 2006), blood pressure (De Lusignan et al. 2004) or working hours (Otterbach

and Sousa-Poza 2010). The rounding behaviour of self-reported data is usually mixed,

i.e. participants may round to multiples of 1, 2, 5, 10, 20, 50, 100..., or may report

only two leading digits (Hanisch 2007). This type of measurement error – when data

are collected with various degrees of coarseness – is called heaping. Heaping cannot

be ignored because it is a well known fact (Heitjan and Rubin 1991; Schneeweiß and

Komlos 2009), that if we naively use the self-reported values in the estimation of a

distribution, the estimates are biased. This is especially the case in (non-parametric)

kernel density estimation where we observe bumps und spikes at the multiples of the

rounding values. The standard methods of choosing the bandwidth are also not very

useful in this setting. The Sheather-Jones estimate (Sheather and Jones 1991), which is

mostly recommended in literature, often produces completely useless density estimates

from self-reported data. This is because a pilot estimate of the integral of the second

derivative is employed to estimate the bandwidth. Due to the extremely multimodal

nature of the heaped data, this plug-in estimate of the integrated second derivative

is very large, leading to very small bandwidths. Silverman’s rule of thumb behaves

better because it implicitly assumes a normal distribution for bandwidth selection, but

still gives not very satisfying results. Figure 2.1 shows two examples from a household

survey, the German Socio-Economic Panel –‘SOEP’– (Wagner et al. 2007) wave BA

(2010): body weight of the female participants and monthly food and drink expendi-

tures outside home.

Increasing the bandwidth until the density estimate is sufficiently smooth leads to

oversmoothing: the tails of the distribution get too heavy and important features of the

distribution may be lost. Additionally, participants may be more prone to round up or
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Figure 2.1: Kernel density estimator applied to self-reported female weight (left) and
food and drink expenditures (right) taken from the Socio-Economic Panel 2010. The
two popular bandwidth selectors (’Sheather-Jones’ and Silverman’s ’rule of thumb’)
show more or less severe spikes at the multiples of the rounding values.

down due to social desirability. For self-reported weight measurements with validation

data, for example, respondents typically underreport their weight, a finding that can

be partially explained by their tendency to round off (Rowland 1990; Shields et al.

2008; Merrill and Richardson 2009). This work proposes a method of non-parametric

density estimation for self-reported measures in the presence of heaping. The primary

goal is to provide a method that reduces the bias in kernel density estimation and

estimates the parameters of the heaping process as well. To the authors best knowl-

edge, this is the first general attempt to use a measurement error model to solve this

type of problem. In particular, a latent variable model is estimated by a Stochastic

Expectation-Maximization (SEM, Celeux et al. 1996) algorithm. We show that under

certain assumptions it is possible to identify and estimate a rounding direction bias

(unequal probability of rounding up and down). The work is organized as follows:

Section 2.2.1 provides a literature overview of existing modeling approaches for heaped

data. In Section 2.2.2 introduces a model for the heaping behaviour of the respondents.

After a short introduction to kernel density estimation the measurement error model

and its implementation are presented in Section 2.3. Section 2.4 provides a simula-

tion study and Section 2.5 demonstrates an application to self-reported data from the

SOEP. Further model extensions to overcome shortcomings of the proposed methods

are discussed in Section 2.6. A short summary concludes the article.

2.2 Modeling Heaping in Self-Reported Data

2.2.1 Heaping models in applications

Heaping occurs frequently in a variety of applications in quite different fields. Almost

all analytical approaches a parametric probability model for the variable subject to

heaping. Heitjan and Rubin (1990) modeled the heaping process as rounding with

different interval length and used a complex imputation model to estimate the age

distribution of Tanzanian children. A similar approach was followed by Battistin et al.
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(2003) in household food expenditures. Wang and Heitjan (2008) proposed a model

for heaped cigarette counts which was subsequently extended in Wang et al. (2012) to

account for ‘recall’ error. Crawford et al. (2015) formulated a general model for count

data involving birth-death processes and applied this to the self-reported counts of the

number of sex-partners. Bar and Lillard (2012) developed an approach for event time

data by modeling the density by a mixture of two parametric distributions. In a very

recent publication of self-reported data from the SOEP (Marcus et al. 2013), a model

of the heaping process was discarded on the grounds that it was based on arbitrary

assumptions and a parametric density was fitted without any correction for the heaping

process. We disagree with this assessment, because although we might not be able to

reproduce the heaping pattern perfectly by the heaping model assumptions, the bias in

the parameter estimates may be greatly reduced.

The existing approaches to heaping correction rely primarily on smoothing tech-

niques, but do not impose a model for the heaping process and thus lack interpretabil-

ity. Camarda et al. (2008) deals with estimating age-at-death as well as body weight

by assuming a smooth underlying density function modeled by B-splines. However, it

was assumed that the true unobserved value was the reported value itself or one of the

two immediate neighbouring integers, which is clearly not suitable for other data such

as monthly income. Golyandina et al. (2012) smooths the nonparametric density so

that it has less than a predefined number of modes. In contrast, this article aims to

develop a model for the heaping behaviour and pursues a general strategy applicable

to a wide variety of data.

2.2.2 A model for heaping

In this article the heaping process is modeled as follows: Let Wi (i = 1, .., n) be the re-

ported values which are rounded by a value Ri ∈ {r1, r2, .., rm}, where r = (r1, r2, .., rm)

denotes a vector of rounding parameters. We assume that the rounding is done cor-

rectly such that the true value Xi lies within the interval (Wi−1/2Ri,Wi+ 1/2Ri). As

Ri is not uniform over the individuals, we have a heteroscedastic measurement error

here. The choice of rounding parameters r is crucial and has to be made beforehand by

taking descriptive statistics or theoretical considerations into account. When looking at

the SOEP female body weight example, for instance, we observe that the most frequent

end digit was 0 with 22.1% of the reported cases followed by 5 with 16.5%. Moreover,

the respondents seem to prefer even over odd numbers. The end digits 2,4,6,8 are

reported in 35.5% of the total cases while the end digits 1,3,7,9 only sum up to 26.0%

(see Table 2.1 for details).

Table 2.1: End digits of SOEP female body weight in kg.

end digit 0 1 2 3 4 5 6 7 8 9

count 1929 399 912 712 664 1440 576 577 953 574
% 22.1 4.6 10.5 8.2 7.6 16.5 6.5 6.6 10.9 6.6
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Therefore, we may choose the rounding values r = (1, 2, 5, 10). In general, suit-

able potential rounding parameters are r = (.., 0.5, 1, 2, 5, 10, 20, ..) for variables with

decimal numeral system (e.g. blood pressure, body weight,..), r = (1, 2, 3, 6, 12) for

variables with duodecimal system (e.g. time in months, length in inches,..) and

r = (1, 5, 10, 15, 30, 60) for the sexagesimal system (e.g. time in minutes). A probabil-

ity vector p = (p1, .., pm) is assigned to the rounding values r denoting the probability

of the respondent to round by a certain value Ri ∈ {r1, r2, .., rm}. In some applications

one may observe unrounded values or values that are given with a very high precision.

Therefore, we allow for Ri = 0 with rounding value r1 = 0 as well 1. For the moment p

is assumed equal for all respondents and independent from the true, unobserved value

Xi. This is a key assumption which is not always met and will be relaxed later on. The

model implies that each combination of Xi and Ri is feasible while this is not true for

the all the combinations of Wi and Ri. In the upper example a respondent with end

digit 0 may have rounded by the values Ri = 1, 2, 5 or 10, while for end digit 3 only

Ri = 1 is feasible. However, this makes it possible to identify the parameter vector p

in the first place.

The model for the heaping process described above may not fit very well to all kinds

of data. Thus, we consider two extensions. As already mentioned the respondents may

more likely round down than round up or vice versa. A first suggestion is to define

a parameter a ∈ (0, 1) allocating the probability of rounding down. However, when

imposing the restriction Xi ∈ (Wi− 1/2Ri,Wi + 1/2Ri) (rounding mathematically cor-

rect) it is not possible to choose the rounding direction independently from Ri and Xi.

Consider the true value Xi = 77.8, rounding values r = (1, 10) and assume mathemati-

cally correct rounding behaviour the respondent has to round up in any case regardless

of his chosen rounding value Ri. We therefore introduce an alternative concept. We

extend Ri such that it includes the rounding direction: Ri ∈ {−r1, ..,−rm,+r1, ..,+rm}
whereby negative values indicate a rounding up and positive values a rounding down.

The rounding probabilities p are multiplied by a when rounding down (Ri > 0) and

by (1 − a) when rounding up (Ri < 0) if the combination of Ri and Xi is compliant

with the assumption of correct rounding (i.e. Xi ∈ (Wi,Wi + 1/2Ri) for Ri > 0 and

Xi ∈ (Wi + 1/2Ri,Wi) for Ri < 0) and are set to 0 else. They are scaled afterwards

such that the probabilities for all Ri sum up to 1. We give a numerical example how

the conditional probability distribution π(Ri|Xi,p, a) denoted as π(Ri|·) is modeled:

• Let r = (1, 2, 5, 10), p = (0.4, 0.3, 0.2, 0.1) and a = 0.15. For Xi = 23.4, possible

reported values are Wi = 23 (rounding down by Ri = 1), Wi = 24 (rounding up

by Ri = 2), Wi = 25 (rounding up by Ri = 5) and Wi = 20 (rounding down

by Ri = 10). The conditional probabilities (π(Ri = −1|·), π(Ri = −2|·), π(Ri =

−5|·), π(Ri = −10|·), π(Ri = 1|·), π(Ri = 2|·), π(Ri = 5|·), π(Ri = 10|·)) are

proportional to (0, 0.3 · (1 − 0.15), 0.2 · (1 − 0.15), 0, 0.4 · 0.15, 0, 0, 0.1 · 0.15) =

1Truly continuous variables are always rounded to some degree, at least to machine precision. How-
ever, there are many examples for quasi-continuous variables such as monthly income and therefore we
define an unrounded or exact value as a value which is not dividable by the smallest rounding value
larger than 0.
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(0, 0.255, 0.17, 0, 0.06, 0, 0, 0.015). Thus, P (Wi = 23|·) = 0.12, P (Wi = 24|·) =

0.51, P (Wi = 25|·) = 0.34 and P (Wi = 20|·) = 0.03.

In general, with direction parameter a ∈ (0, 1) the conditional probability distribution

of Ri given Xi, p and a is proportional to the following expression:

π(Ri = ±rj |Xi,p, a) ∝ aI(Ri>0) × (1− a)I(Ri<0) × pI(Ri=−r1)1 × ..× pI(Ri=+rm)
m

× I[sgn{Xi mod (|Ri|)−
1

2
|Ri|} = −sgn(Ri)]

The second line serves as a check whether the combination of Xi and Ri is compat-

ible with the restriction of mathematically correct rounding.

The value a can be interpreted as the tendency to round down (a > 0.5) or to

round up (a < 0.5). The reason to restrict to mathematically correct rounding is that

it allows us identify the rounding direction parameter a solely by the end digit pattern.

In the simple example of a flat density, a > 0.5 and rounding values r = (1, 10) one

would observe the end digits 1 to 4 less often than 6 to 9 (or the other way around for

a < 0.5). This is because the respondent is only able to round down by Ri = 10 if Xi

mod 10 ∈ (0, 5) and round up by r = 10 if Xi mod 10 ∈ (5, 10) with the result that for

a > 0.5 most reported values Wi with end digit 0 correspond to a true value Xi with

Xi mod 10 ∈ (0, 5). In the SOEP female body weight example, the left neighbours (9,

4) of end digits 0 and 5; show significantly higher counts (574 to 399 and 664 to 576)

than their right counterparts (1, 6), indicating a tendency to round off.

A second extension allows for non-constant rounding probabilities. For example,

the probability of a respondent with a true income of Xi = 1600 to choose Ri = 1000

(and round up to Wi = 2000) might be much lower than for someone earning 8600

(and report 9000). A natural choice would be to implement an ordered probit (or logit)

model for the rounding probabilities p (as already done in Heitjan and Rubin 1990)

with the logarithm of the true value as independent variable:

gi = log(Xi)β + εi , εi ∼ N(0, 1)

g denotes the latent continuous variable and we define τ = (τ0, τ1, .., τm) as thresh-

old parameters with τ0 = −∞ and τm = +∞. The rounding probability for rounding

value rj (j = 1, ..,m) for respondent i is then defined as:

pij = P (τj−1 < gi ≤ τj)

= Φ(τj − log(Xi)β)− Φ(τj−1 − log(Xi)β)

The rounding probabilities p may also depend on other characteristics of the re-

spondents which can be integrated into the ordered probit regression formula as well.

For a = 0.5 and β = 0 the extended model reduces to the standard rounding model.

The presented model considers heaping as rounding to different degrees of coarse-

ness. However, when evaluation data is available the discrepancies between true and

reported values are typically not exclusively explainable by rounding. Wang et al.
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(2012) and Crawford et al. (2015) argue that a so-called ‘recall’ error is involved in

the heaping process as well. In Section 2.6 we discuss how the model can be further

extended to incorporate this and other extensions.

2.3 Methods

2.3.1 Kernel density estimation

Kernel density estimation as a non-parametric approach for density estimation is an

important tool in exploratory data analysis. Let X = (X1, X2, .., Xn) denote a sample

of size n from a random variable with density f . The univariate kernel density estimate

at point x is given by:

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.1)

where K(·) is kernel function and h denotes a bandwidth, which governs the smooth-

ness of the density estimate. The kernel K(·) satisfies regularity conditions such as (a)∫
K(x)dx = 1, (b)

∫
xK(x)dx = 0 and (c)

∫
x2K(x)dx <∞ (Scott 2009). The perfor-

mance of a kernel density estimator is mainly affected by the choice of h (cf. Izenman

1991). Popular strategies to choose h are by minimizing the AMISE (Asymptotic Mean

Integrated Squared Error) through plug-in or cross-validation methods (cf. Izenman

1991 or Silverman 1986). Sheather (2004) gives a short overview in kernel density es-

timation, kernels and bandwidth choice methods. For self-reported data from surveys

one might consider two modifications of the standard kernel density estimator. First,

a sampling weight adjustment should be carried out. Second, most self-reported data

are non-negative and therefore a boundary correction is favourable. Both modifications

are shortly described in Jann (2007). Unfortunately, the utilization of kernel density

estimation methods with heaped data leads to severely biased estimates, as already

demonstrated in the introduction.

2.3.2 Model

As discussed in Section 2.2.2, the true values X = (X1, X2, .., Xn) are assumed un-

observable and only the reported heaped values W = (W1,W2, ..,Wn) are available.

However, we still aim to estimate the density f from which our sample X is drawn,

by using the heaped values Wi. One approach to measurement error problems is to

treat the unknown true values Xi as latent variables (Carroll et al. 2006). Then the

likelihood can be split into two parts. We specify the following models: First, a mea-

surement error model and second a model for the latent variables. The distribution of

X can be modeled by a parametric distribution (e.g. by a Gaussian with parameter

vector θ = (µ, σ)) or non-parametrically either by a mixture of parametric distribu-

tions (Escobar and West 1995) or by using kernel density estimation with θ = h as

introduced in the previous subsection. Applying the heaping process of Section 2.2.2

with rounding values R = (R1, R2, .., Rn), we formulate a measurement error model

for W as well. We start with the heaping model without extensions. As Wi does only
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depend on Xi and Ri, the distribution π(W |X,R) is defined by a product of Dirac

distributions, π(W |X,R) =
∏n
i=1 π(Wi|Xi, Ri), with

π(Wi|Xi, Ri) =

1 for Xi ∈ (Wi − 1
2Ri,Wi + 1

2Ri)

0 else.
,

By the definition of our heaping model without extensions in Section 2.2.2, the Ri do

only depend on p, and π(R|p) follows a multinomial distribution. Now a likelihood for

W can be formulated:

L(W |X,R,p,θ) = π(W |X,R)× π(R,p)︸ ︷︷ ︸
Measurement error model

× π(X|θ)︸ ︷︷ ︸
Observation model

(2.2)

=

n∏
i=1

π(Wi|Xi, Ri)× π(Ri|p)× f(Xi|θ) (2.3)

In order to implement the two extensions proposed in Section 2.2.2 we have to

introduce the parameters a, τ (as threshold values for p) as well as β into our likelihood.

Again, the measurement error model consists of two parts, with

π(Wi|Xi, Ri) =


1 for Ri > 0 and Xi ∈ [Wi,Wi + 1

2Ri)

1 for Ri < 0 and Xi ∈ (Wi + 1
2Ri,Wi)

0 else

,

and (cf. Section 2.2.2):

π(Ri = ±rj |Xi, τ , a, β) ∝ aI(Ri<0) × (1− a)I(Ri>0)

× [Φ{τ1 − log(Xi)β} − Φ{τ0 − log(Xi)β}]I(Ri=−r1)

× ..

× [Φ{τm − log(Xi)β} − Φ{τm−1 − log(Xi)β}]I(Ri=+rm)

× I[sgn{Xi mod |Ri| −
1

2
|Ri|} = −sgn(Ri)]

The likelihood for the extended model is therefore:

L(W |X,R, τ , a, β,θ) =
n∏
i=1

π(Wi|Xi, Ri)× π(Ri|Xi, τ , a, β)× f(Xi|θ) (2.4)

The Expectation-Maximization (EM) algorithm (Dempster et al. 1977) is a natural

algorithm for maximum-likelihood estimation for models with latent data. The E step of

this iterative algorithm, the latent values – the Xi – and potentially other parameters

not exclusively associated with the latent values such as R and p), are replaced by

their conditional expectations given the observed data and the current estimate of θ.

The M step re-estimates θ through maximization of the observed likelihood based on

the imputed values of the latent values. However, this approach would clearly not
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work for kernel density estimation with heaped data observed, because all the reported

observations on a heaping value would still be concentrated at a single point (namely

the expectation of the conditional distribution of Xi computed in the E-Step) in each

iteration and thus not preventing spiky estimates of the density. A way out of this

dilemma is to use the so-called Stochastic Expectation-Maximization (SEM) algorithm

(Celeux et al. 1996), which draws samples of the conditional distribution of X – called

S-step – in replacement of the E-Step to create a pseudo sample of X in each iteration.

This algorithm is strongly related to the Gibbs-sampler but usually converges much

faster (Diebolt and Ip 1996). As a consequence, the proposed estimator is a partly

Bayesian method in the sense that the Xi as well as p, a, β and τ are treated as random

variables but not θ. As this work deals with kernel density estimation, f is specified by

f̂h, the kernel density ‘estimator’ presented in (2.1) 2, with θ = h. Unfortunately, with

direct maximization of π(X|h) =
∏n
i=1 f̂h(x) with respect to h, the bandwidth h would

yield a degenerate solution. We therefore utilize a generalization of the (S)EM algorithm

for the use of surrogates of the likelihood in the M-step (McLachlan and Krishnan

2007) such that the objective of maximization is replaced by e.g. the minimization of

the asymptotic mean integrated square error (AMISE) of the kernel density estimate.

In the context of non-parametric kernel density estimation, this approach enables us

to use any bandwidth selection method from the rich variety available in literature,

e.g. Silverman’s rule of thumb or the Sheather-Jones selector. As discussed in the next

section, Gibbs-sampler and Metropolis-Hastings steps are introduced into the S-step

of the algorithm (cf. Diebolt and Ip 1996). The proposed algorithm can be seen as

an extension to the method introduced in Groß et al. (2016) dealing with rounded

data in context of bivariate kernel density estimation. Further details about the exact

implementation of the algorithm are given in the next subsection.

2.3.3 Computational details

We first consider the case without extensions for the distribution of Xi and Ri given

the rounded values Wi, the rounding parameters p, and bandwidth h:

π (Xi, Ri|Wi, h,p) ∝ I(Wi −
1

2
Ri ≤ Xi ≤Wi +

1

2
Ri)× pj × f̂h(Xi),

The full conditional distribution of (Xi, Ri) is the product of a uniform distribution

on the interval with length Ri around Wi, the probability pj of rounding to a certain

degree of coarseness rj and the kernel density ‘estimator’ f̂h(Xi) (2.1). The conditional

distribution of p given R is the Dirichet distribution Dir(α):

π(p|R) ∼ Dir(#(R = r1), ..,#(R = rm))

Next we consider the case of the two extensions of the heaping model. We were able

2Note that the expression ‘kernel density estimator’ is ambiguous here as in this context it should
be merely called ‘kernel density’. However, as we think that a second definition of a kernel density fh
which would be equal to f̂h could be even more confusing we quote the word ‘estimator’ when actually
referring to a ‘kernel density’.

43



KAPITEL 2. KERNEL DENSITY ESTIMATION FOR HEAPED DATA

to find a modified expression for the conditional distribution of (Xi,Ri) given Wi but

no established distribution was found for the conditional distribution of (τ ,a,β) given

X and R. A Metropolis-Hastings step turned out to be computational cumbersome

because of very slow convergence with the result that a Laplace normal approximation

of the joint full conditional distribution π(τ , a∗, β|·) was utilized instead, where the

parametrization a∗ = Φ−1(a) was used for the reason of computational convenience.

As a consequence a generalized SEM algorithm is proposed, sampling iteratively

from the full conditional distributions of (Xi, Ri) as well as from (an approximation of)

the full conditional distributions of (τ , a, β) in the S-step (which replaces the E-step

in the EM-algorithm) and computing f̂h combined with re-estimation of h in the M-

step. Our simulations show that the proposed algorithm works very well in terms of

RMSE (Root Mean Square Error) and coverage intervals. The steps of the algorithm

are described below:

1. Get an initial estimate f̂h of f using the heaped data W and setting h to a

sufficiently large value such that no rounding spikes occur (e.g. h = 2 ·max(r)).

Set starting values for τ to Φ−1(0, 1/m, 2/m, .., (m− 1)/m, 1) and for a∗, β to 0.

2. Evaluate and save density estimate f̂h on an equally-spaced fine grid G with grid

width δG = min(r)
k , whereby 1 < k ∈ N. In particular,

G =
{

min(Wi)− 1
2rm,min(Wi)− 1

2rm + δG, ..,max(Wi) + 1
2rm

}
; i = 1, .., n.

3. Sample from π(Xi, Ri|·) by computing it for every combination of Ri and values

Xi ∈ G; i = 1, .., n.

4. Sample from π(p|R) in case of the model without extensions or the joint full

conditional π(τ , a∗, β|X,R) using a Laplace normal approximation (model with

extensions).

5. Estimate the bandwidth h by Silverman’s rule of thumb (or another bandwidth

selection method) and recompute f̂h.

6. Repeat steps 2 - 5 B (burn-in iterations) + N (additional iterations) times.

7. Discard the burn-in samples and get final estimate of f by averaging over the

remaining samples. The samples of the measurement error parameters p or τ , a∗

and β can be used to compute a point estimate by averaging as well as uncertainty

intervals.

2.3.4 Computational implementation in R

All computations were performed with R version 3.1.2 (R Core Team 2014). A package

called Kernelheaping (Groß 2016a) was made available on CRAN by the authors. It

includes the full functionality as presented in this article and an additional example

dataset concerning the hours per week of learning reported by students (taken from Utts

and Heckard 2014). Kernel density and bandwidth estimation is done via the density
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function coming with the default installation of R. For non-negative data the boundary

correction method introduced in Jones (1993) is utilized which is implemented in the

evmix package (Scarrott and Hu 2014). Sampling weights in kernel density estimation

are not supported by the evmix package yet. Hence, a kernel density estimation with

design weights is currently only performed when no boundary correction is required by

the user. For a sample size of n = 5000 and 1000 iterations the computation of the

extended model with four rounding parameters takes about 5 minutes (15 minutes with

boundary correction) on an Intel Core i7 3.4 Ghz system with 16 GB ram. The pack-

age also provides functions to perform convergence diagnostics and other convenience

functions as well as functions to perform Monte-Carlo simulation studies.

2.4 Simulation Study

In this section we present results from a Monte-Carlo simulation study to evaluate the

performance of the proposed kernel density estimator for heaped data. The properties of

the estimator are investigated and its performance is compared to a simple Naive kernel

density estimator, which ignores the heaping process. The data are generated under

different univariate distributions. Four scenarios, denoted by A-D, are considered. The

sample size is always n = 1000. Under Scenario A we consider the heaping model

without extensions. The data are generated as a normal distribution,

XA ∼ N(0, 100),

with rounding values r = (1, 10, 100) and rounding probabilities p = (0.3, 0.4, 0.3). This

scenario also deals with rounding of negative numbers, which is rare but can occur, as

for example with self-reported yearly profits from stocks of private investors.

In Scenario B we introduce a rounding bias with a = 0.8. Following the motivation

example of a weight distribution, the data are generated by a gamma distribution with

shape α and scale θ with offset:

XB ∼ Ga(α = 4, θ = 8) + 45

The rounding values are r = (1, 2, 5, 10) with arbitrarily chosen corresponding proba-

bilities p = (0.1, 0.15, 0.4, 0.35).

In the third scenario the data follow a log-normal distribution with unequal rounding

probabilities (β = −1) to model an income-like distribution,

XC ∼ logN(7, 0.6),

with rounding values r = (10, 20, 50, 100, 200, 500, 1000) and threshold values

τ = (−∞, 6.33, 6.66, 7, 7.33, 7.66, 8,∞). These threshold values coincide for rounding

probabilities of p = (0.28, 0.12, 0.13, 0.13, 0.11, 0.09, 0.14) for x = 1000 or

p = (0.01, 0.02, 0.03, 0.05, 0.08, 0.11, 0.70) for x = 5000.

A bimodal mixture of two normal distributions is considered in scenario D. With
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XD1 ∼ N(40, 4) and XD2 ∼ N(55, 6),

and mixture probabilities 0.4 (XD1) and 0.6 (XD2), an underlying heaping model with

rounding bias a = 0.2 and unequal rounding probabilities (β = −0.5) with threshold

values τ = (−∞, 1.84, 2.64, 3.05,∞) is utilized in this case.

For each scenario we performed nSim = 500 simulation runs with B=100 burn-in

iterations and N=500 additional iterations. We compare the following three estimators:

a) The Naive estimator, which naively applies the kernel density estimator to the

heaped data

b) The Corrected estimator, that uses the algorithm presented in Section 2.3.4 for

kernel density estimation for heaped data

c) The Oracle estimator, that uses the original data (which are only available in

simulations) for density estimation.

Silverman’s rule of thumb was used for bandwidth selection in each case. Figure

2.2 shows these three kernel density estimators as well as the true density from which

the data are generated for a single simulation run of each scenario.

While the Naive estimator is very spiky and shows large deviations from the true

density at the heaping points, the proposed Corrected density estimator is very close

to the oracle estimator and represents the true density pretty well. In Scenario D, we

are able to recover the bimodal structure of the distribution, whereas with the Naive

estimator this feature of the data gets lost.

Tables 2 shows the RMISE (Root Mean Integrated Square Error) of of the three

estimators for each scenario. While the Naive estimator exhibits a rather poor per-

formance with a RMISE up to almost 3 times as high as with the non-feasible Oracle

estimator, the Corrected estimator leads to a negligible loss of some percent in RMISE.

This slightly worse performance of the proposed estimator can be most likely assigned

to the information loss induced by rounding.

Table 2.2: Root Mean Integrated Square Error (RMISE) for scenarios A-D for each
estimator. Standard errors are given in parenthesis.

Scenario RMISE
Naive Corrected Oracle

A 0.0089 (0.0008) 0.0033 (0.0009) 0.0032 (0.0009)
B 0.0132 (0.0018) 0.0098 (0.0024) 0.0093 (0.0023)
C 0.0036 (0.0008) 0.0020 (0.0006) 0.0018 (0.0005)
D 0.0452 (0.0040) 0.0169 (0.0031) 0.0155 (0.0026)

Besides trying to recover the true distribution one might be also interested in esti-

mating the rounding parameters. We investigate some (frequentist) properties, namely

the bias, standard deviation, RMSE and the coverage rate of the 90% uncertainty in-
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Figure 2.2: Graphical presentation of single simulation runs of scenarios A-D. The plots
show kernel density estimators applied to heaped data (Naive, black solid line), applied
to rounded data with correction algorithm (Corrected, red point-dotted line), applied
to original data (Oracle, blue short-dashed line) and the true density function (True,
green long-dotted line)
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tervals of the estimates computed by the introduced algorithm. The results are shown

in Tables 3 - 6.

Table 2.3: Scenario A: Bias, standard deviation, Root Mean Square Error and coverage
rate of 90% uncertainty intervals for rounding parameters.

Parameter
p1 p2 p3

True value 0.3 0.4 0.3
Bias -0.0007 0.0013 -0.0006
SD 0.0156 0.0184 0.0156
RMSE 0.0157 0.0185 0.0156
Coverage in % 90.0 92.6 89.8

Table 2.4: Scenario B: Bias, standard deviation, Root Mean Square Error and coverage
rate of 90% uncertainty intervals for rounding parameters.

Parameter
p1 p2 p3 p4 a

True value 0.1 0.15 0.4 0.35 0.8
Bias 0.0019 -0.0008 0.0010 -0.0020 -0.0193
SD 0.0177 0.0187 0.0338 0.0342 0.0572
RMSE 0.0178 0.0187 0.0339 0.0343 0.0603
Coverage in % 87.2 88.8 84.8 90.2 85.8

Table 2.5: Scenario C: Bias, standard deviation, Root Mean Square Error and coverage
rate of 90% uncertainty intervals for rounding parameters.

Parameter
τ1 τ2 τ3 τ4 τ5 τ6 β

True value 6.33 6.66 7 7.33 7.66 8 -1
Bias -0.0117 0.0279 0.0167 0.0502 -0.0411 0.0200 -0.0360
SD 0.6289 0.6576 0.6993 0.7603 0.7084 0.6743 0.1876
RMSE 0.6290 0.6581 0.6994 0.7619 0.7095 0.6745 0.1841
Coverage in % 88.4 82.8 87.4 90.2 90.0 85.4 87.2

Apparently, the algorithm is able to identify the rounding parameters very well

and the coverage rates of the 90% uncertainty intervals are near to the nominal value.

One may note that the threshold values have a rather large standard deviation, but

this is due to the high correlation with β. The resulting rounding probabilities are

pretty stable, though. The results for the Sheather-Jones bandwidth selector were

essentially equivalent for the proposed algorithm. As expected from the examples in the

introduction, the RMISE for the Naive estimator is much higher. The corresponding

figures and tables can be found in the supplementary material.

In general, the algorithm was very stable for the proposed starting values and

exhibited a very good and fast convergence behaviour. Depending on the application

and heaping model B = 5 to B = 500 burn-in iterations were sufficient, but one should
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Table 2.6: Scenario D: Bias, standard deviation, Root Mean Square Error and coverage
rate of 90% uncertainty intervals for rounding parameters.

Parameter
τ1 τ2 τ3 a β

True value 1.84 2.64 3.05 0.2 -0.5
Bias -0.0674 -0.0643 0.0681 -0.0039 -0.0052
SD 1.2912 1.2957 1.301 0.0769 0.1518
RMSE 1.2929 1.2972 1.3028 0.0770 0.1519
Coverage in % 86.2 86.2 87.6 84.6 86.8

always consider trace plots of the MCMC-chains to ensure convergence. Trace plots for

both application examples can be found in supplementary material.

2.5 Application

We examine the two self-reported data examples of the SOEP 2010 already presented

in the introduction. The first example is body weight data of n = 8727 German

women. The weighted sample mean is 69.99 kg and the weighted standard deviation

is 13.97 kg. We expect different probabilities for the rounding values depending on

the actual weight. In particular, 48.6% of the respondents with reported weight above

90 kg report an end-digit of 0 or 5 while this is only the case for 36.3% of the group

with reported weight lower than 90 kg. To investigate possible rounding bias, the

heaping model with both extensions is utilized. For bandwidth estimation we used the

Sheather-Jones estimate as well as Silverman’s rule of thumb. The SOEP survey weights

were utilized to adjust for unequal sampling probabilities for both the Naive and the

Corrected method. The algorithm was executed with B = 500 burn-in samples and

N = 2000 additional samples and with rounding values r = (1, 2, 5, 10). The resulting

densities of both the Corrected and the Naive estimator are shown in Figure 2.3.

For the Sheather-Jones bandwidth selector as well as for Silverman’s rule of thumb,

the algorithm produces smoother and more realistic density estimates than the Naive

method.

Table 2.7 shows rounding parameter estimates. The threshold values τ and the

slope parameter of the ordered probit β suggest rounding probabilities of

p = (0.733, 0.080, 0.167, 0.020) for the rounding values r = (1, 2, 5, 10) at the sample

mean. The point estimate of the rounding bias a is 0.83, indicating as expected that

the survey respondents are much more likely to round off than to round up. As a

consequence, the mean of the imputed weights Xi is more than 200 g higher now

(cf. Table 2.8 for comparison of Naive and Corrected sample means and standard

deviations). The lower border of the 95% uncertainty interval for a is considerably

above 0.5. However, to further validate this result we ran the algorithm on a different

survey data sample including a self-reported body weight variable, namely the German

General Social Survey 2008 (‘ALLBUS’, Wasmer et al. 2007). In this survey n = 1451

women reported their body weight and the rounding bias was estimated to a = 0.694
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Figure 2.3: Kernel density estimation of self-reported female body weight for Naive
(upper panel) and Corrected (lower panel) method for different bandwidth choices.

(with 95% uncertainty interval [0.503,0.853]), which conforms with the estimate on the

SOEP data. Men, as a remark, were less prone to biased rounding with point estimation

values of a = 0.591 for SOEP and a = 0.569 for ALLBUS.

Table 2.7: SOEP female body weight: Mean, standard deviation and 95% coverage
intervals for rounding parameters. Bandwidth selector: Silverman’s rule of thumb.

Parameter Mean SD 95% uncertainty interval

τ1 10.485 0.594 [8.952, 12.273]
τ2 10.751 0.588 [9.236, 12.494]
τ3 11.910 0.585 [10.398, 13.624]
a 0.834 0.026 [0.773, 0.918]
β -2.322 0.134 [-2.704, -1.981]

In the second SOEP example, households were asked to state their monthly food

and drink expenditure outside home. The n = 6096 respondents stated a mean expen-

diture of 92.42e with a standard deviation of 78.07e . The algorithm was applied with

rounding values r = (1, 2, 5, 10, 20, 50, 100). The heaping model with the ordinal probit

model extension for non-constant rounding probabilities was utilized here, as the data

suggest strong dependence of rounding behaviour on the magnitude of the expenditures.

All reported values above 180e are divisible by 10, while at least 6.7% of the reported

values below 100e are not. The rounding direction bias extension was spared here,

because the authors believe that a biased response behaviour is rather unlikely in this

application (the estimate of a in the full model was very close to 0.5 anyways). Con-

trary to the body weight example we could not account for sampling weights, because a

boundary-corrected kernel density estimator was needed here (cf. Section 2.3.4). Figure
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Table 2.8: Comparison of Naive and Corrected sample means and standard deviations.
Application 1: Body weight Mean SD

Naive 69.99 13.97
Corrected 70.22 14.04

Application 2: Expenditures outside home

Naive 92.42 78.07
Corrected 92.07 77.22

2.4 displays the resulting density estimates for different bandwidth choices. Again, for

the Sheather-Jones bandwidth selector, the algorithm produces a markedly improved,

though still quite rough, density estimate. For Silverman’s rule of thumb, the estimate

is smooth but shows a bimodal structure that may not apply to the underlying true

expenditures. To produce a sufficiently smooth estimate, the authors suggest manu-

ally tuning the bandwidth. A bandwidth of 1.5 times the rule of thumb generates a

smooth unimodal density estimate, while the Naive approach is still very spiky. Fur-

ther increasing the bandwidth to 4 times the rule of thumb was necessary to create

a comparably smooth estimate for the Naive method. However, the resulting density

was considerably flatter and quite different for values less than 100 e (cf. Figure 2.4).

Figure 2.4: Kernel density estimation of food and drink expenditures outside home in
e for Naive (upper panel) and Corrected (lower panel) method for the following band-
width selection methods: Sheather-Jones (left), Silverman’s rule of thumb (middle), 4
(Naive) and 1.5 (Corrected) times Silverman’s rule of thumb (right).

The summary statistics for the rounding parameters τ and β can be found in Table

2.9. The negative value of β indicates that higher rounding values (r = (1, 2, 5, 10, 20, 50, 100))

are utilized for higher monthly expenditures. Specifically, for expenditures of 25e the

model suggests rounding probabilities p = (0.8, 0.4, 19.4, 48.4, 11.9, 18.9, 0.1), while p

equals (0.0, 0.0, 0.2, 5.6, 5.9, 73.8, 14.5) for monthly expenditures of 150e.
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Table 2.9: Food and drink expenditures outside home: Mean, standard deviation and
95% coverage intervals for rounding parameters. Bandwidth selector: Silverman’s rule
of thumb.

Parameter Mean SD 95% uncertainty interval

τ1 1.322 0.183 [0.951, 1.662]
τ2 1.479 0.129 [1.223, 1.738]
τ3 2.896 0.124 [2.656, 3.138]
τ4 4.213 0.137 [3.952, 4.484]
τ5 4.592 0.135 [4.333, 4.854]
τ6 6.840 0.172 [6.508, 7.189]
β -1.154 0.0316 [-1.215, -1.093]

The algorithm converged to the same parameter values under multiple runs and

different starting values for both examples (and the simulation scenarios). Trace plots

for rounding parameters of the SOEP data are shown in the supplementary material.

Convergence is achieved after a burn-in period of about 50 iterations. The density

estimates and the rounding parameters a and β were relatively robust to different

choices of rounding values (for example r = (1, 5, 10) or r = (1, 2, 5, 10, 20) in the

body weight example). However, in general, for rounding values which are not or very

weakly supported by the data, the estimates (especially the threshold values as well as

β) can be unstable. The user should always consult the trace plots and eliminate the

questionable rounding values if necessary.

2.6 Further Model Extensions

The heaping model introduced in Section 2.2 is interpretable and identifiable without

evaluation data. However, although the developed algorithm can greatly reduce the

bias in kernel density estimation for self-reported data, the second application indicates

that the modeling assumptions may not be completely fulfilled in real-world data. As

Crawford et al. (2015) remarks, the assumption that, for example, a reported value of

Wi = 100 with rounding value Ri = 10 means that the true unobserved value Xi lies

inside the interval (95,105) is rather strong. Wang et al. (2012), for example, found

that given exact evaluation data fewer than half of the observations are explainable by

rounding. A possible solution would be to decompose the reporting process into an

recall error (i.e. the person does not know its true value exactly) and a rounding error

as already mentioned at the end of Section 2.2.2. This could be achieved by introducing

a latent intermediate variable Vi (i = 1, .., n), which can be interpreted as the value

the participant is recalling. A classical Gaussian error model for Vi given Xi, the recall

error model, could be imposed:

π(Vi|Xi) = N(Xi + µV , σ
2
V )

It is not clear how to estimate the recall error model parameters without validation data,

which are rarely ever available. However, one can presume that they are associated with
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the parameters of the rounding model. The authors suggest that µV could be chosen

such that P (Vi −Xi < 0) = a and σV = νRi + η
∑m

j=1 pijRj . For ν, η = 1/3, a quite

similar pattern as in Wang et al. (2012) – with recall error slightly larger than rounding

error – is produced and the model likelihood of (2.4) becomes:

L(W |V ,X,R, τ , a, β,θ) =

n∏
i=1

π(Wi|Vi, Ri)× π(Vi|Xi, Ri, τ , a, β)×

π(Ri|Xi, τ , a, β)× π(Xi|θ)

The accordingly modified algorithm produces considerably smoother – but not flatter –

density estimates. However, although the authors choice of the recall error parameters

may appear reasonable, this non-data driven proceeding is of rather speculative nature

and the parameters may vary for different applications as well. Additional research on

applications with evaluation data is advisable to find appropriate recall error models

and associated parameters, but this is future work.

Another issue is that the preference for some heaped values may not be fully cap-

tured by the model, i.e. some numbers are more popular than predicted by the model.

A recent publication of Zinn and Wuerbach (2015) relies on user-specified heaping val-

ues detected by empirical analysis. An alternative approach followed by the authors is

to introduce a random effect γl in the ordered probit model for the rounding probabil-

ities for each observed value. Specifically, a grouping structure which assigns every Xi

to the nearest possible rounded value is introduced (represented by design matrix U

with rows ui):

gi = log(Xi)β + u′iγ + εi , εi ∼ N(0, 1),γ ∼ N(0, τ )

This extension produces smooth density estimates regardless of the chosen bandwidth

selector for the price of higher computational cost, slower convergence (a Metropolis-

Hastings step is necessary) and somewhat reduced numerical stability. Both extensions

are straightforward to implement and are integrated into the R-package. For both

extensions, density estimates for the second application example can be found in the

supplementary material. A further extension could introduce a non-constant rounding

bias as well. Respondents with overweight, for example, are possibly more inclined to

round off than normal or underweight surveyed persons. Additionally, the estimation

of parametric distributions is straightforward to integrate into this approach and with

some minor modifications of the algorithm density estimation for classified data should

be possible as well.

2.7 Conclusion

In this work, a novel approach for kernel density estimation for heaped data was intro-

duced. A Stochastic Expectation-Maximization algorithm was presented, that gener-

ates smoother and more realistic non-parametric density estimates and gives additional
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insights into the rounding process. More specifically, the rounding probabilities as well

as a rounding bias is estimated within the proposed algorithm. This can be very helpful

in assessing and validating self-reported data. In the presented example of self-reported

body weight the approach was able to discover a biased response behaviour without

validation data solely on the basis of reported values. Concerning the improved but still

spiky density estimates under the Sheather-Jones bandwidth selector, the authors rec-

ommend to use the Silverman’s rule of thumb instead and tune the bandwidth manually

if necessary, or cautiously apply the extensions presented in the previous subsection.

The algorithm is easy to implement and is provided by the authors in a R-package.

The algorithm exhibited very good statistical properties in the simulations. In sum,

the algorithm presented in this work delivers a powerful and easy to use tool for users

concerned with heaped data.

2.8 Supplementary Material

Figures and Tables for Simulations with Sheather-Jones

bandwidth selector
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Figure 2.5: Graphical presentation of single simulation runs of scenarios A-D. The plots
show kernel density estimators applied to heaped data (Naive, black solid line), applied
to rounded data with correction algorithm (Corrected, red point-dotted line), applied
to original data (Oracle, blue short-dashed line) and the true density function (True,
green long-dotted line)
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Table 2.10: Root Mean Integrated Square Error (RMISE) for scenarios A-D for each
estimator. Standard errors are given in parenthesis.

Scenario RMISE
Naive Corrected Oracle

A 0.0330 (0.0041) 0.0032 (0.0010) 0.0031 (0.0010)
B 0.1622 (0.0726) 0.0101 (0.0032) 0.0100 (0.0026)
C 0.0133 (0.0022) 0.0018 (0.0006) 0.0017 (0.0006)
D 0.2196 (0.0085) 0.0159 (0.0029) 0.0145 (0.0023)

Table 2.11: Scenario A: Bias, standard deviation, Root Mean Square Error and coverage
rate of 90% uncertainty intervals for rounding parameters.

Parameter
p1 p2 p3

True value 0.3 0.4 0.3
Bias -0.0030 0.0018 0.0013
SD 0.0143 0.0168 0.0144
RMSE 0.0147 0.0169 0.0144
Coverage in % 88.6 87.0 93.8

Table 2.12: Scenario B: Bias, standard deviation, Root Mean Square Error and coverage
rate of 90% uncertainty intervals for rounding parameters.

Parameter
p1 p2 p3 p4 a

True value 0.1 0.15 0.4 0.35 0.8
Bias 0.0012 0.0029 -0.0046 -0.0005 -0.0079
SD 0.0164 0.0188 0.0344 0.0339 0.0501
RMSE 0.0165 0.0191 0.0348 0.0339 0.0507
Coverage in % 89.0 86.2 93.4 91.2 89.2

Table 2.13: Scenario C: Bias, standard deviation, Root Mean Square Error and coverage
rate of 90% uncertainty intervals for rounding parameters.

Parameter
τ1 τ2 τ3 τ4 τ5 τ6 β

True value 6.33 6.66 7 7.33 7.66 8 -1
Bias -0.0493 -0.0327 0.0165 0.0415 0.0410 -0.0307 -0.0353
SD 0.7564 0.8167 0.9243 0.8342 0.5915 0.6281 0.2412
RMSE 0.7580 0.8174 0.9244 0.8352 0.5929 0.6288 0.2431
Coverage in % 87.8 85.6 92.2 94.6 90.4 87.2 88.6
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Table 2.14: Scenario D: Bias, standard deviation, Root Mean Square Error and coverage
rate of 90% uncertainty intervals for rounding parameters.

Parameter
τ1 τ2 τ3 a β

True value 1.84 2.64 3.05 0.2 -0.5
Bias -0.0545 -0.0561 0.0562 -0.0059 -0.0093
SD 1.1705 1.1532 1.1601 0.0524 0.1323
RMSE 1.1717 1.1545 1.1615 0.0527 0.1326
Coverage in % 89.0 92.8 87.0 91.4 90.8

Trace plots for application examples

τ τ τ

Figure 2.6: Trace plots for τ (SOEP female body weight).

β

Figure 2.7: Trace plots for a and β (SOEP female body weight).
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τ τ τ

τ τ τ

Figure 2.8: Trace plots for τ (SOEP monthly expenditures outside home).

β

Figure 2.9: Trace plot for β (SOEP monthly expenditures outside home).
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Density estimates for monthly expenditures outside home

example

Figure 2.10: Kernel density estimation of food and drink expenditures outside home
in e for the recall error (lower panel) and random effects extensions (upper panel) for
the following bandwidth selection methods: Sheather-Jones (left), Silverman’s rule of
thumb (right).
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Kapitel 3

Back to Good Shape: Biological

Standard of Living in the Copper

and Bronze Ages and the

Possible Role of Food

3.1 Introduction: Anthropological Indicators of Nutrition

While archaeobotanical and archaeozoological remains (e.g. Röpke et al. in this vol-

ume; van Amerongen in this volume) as well as food-related artefacts inform us on the

gross input of nutrients, anthropological data partially related to consumption prac-

tices can be used to assess alimentary practices and thus test our assumptions about

food supply in a community in general or for various subgroups like women or men,

age groups or social strata. Important parameters include demographic data, such

as infant mortality and life expectancy, which were often linked to malnutrition (e.g.

Martorell and Ho 1984) in pre-modern times. Other crucial proxies for nutritional

practises can be present, such as individual physical signs of systemic stress, i.e. nu-

trient deficiency-related pathological markers, including tooth enamel hypoplasia or

Harris Lines in the long bones, as well as the body height of the respective individuals

(e.g. Haidle 2014). Additionally, dental caries and calculus as well as tooth wear are

directly connected to the consumption of different food types (Lieverse Angela, 1999;

Zero et al., 2009). Inferences regarding diet and subsistence can also be drawn from

isotope analysis: isotopic data on δ15N retrieved from skeletal collagen can provide

information on the trophic level of an individual on the vegan to carnivore scale as well

as on the provenance of the protein from either marine or terrestrial sources. Addi-

tionally, δ13C values can provide estimates for the proportion of C4 and C3 plants (for

details see Scheibner in this volume). Evidence ranging from isotopes (Salazar-Garćıa

et al., 2014; Scott and Poulson, 2012) to actual food tissue remains (Henry and Piperno,

2008; Hardy et al., 2009) can even be extracted from dental calculus, a feature forming

an intermediate class of source information between anthropological, archaeobotanical,
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and archaeozoological material, much the same way as food crusts and lipid remains

relate to the vessels in which they are found. While retrieving demographic data from

archaeological/anthropological data is notoriously difficult, as selective burial customs

as well as preservation conditions often turn cemeteries into unrepresentative samples,

individual data, especially body height data, is easier to handle for early time periods

and is the proxy used here. The first part of this work summarizes methodological

problems arising when skeletal data is operationalized for body height studies and out-

lines the current state of research on the development of body height in Southwestern

Asia and Europe in the Copper Age and the Bronze Age, i.e. what is commonly called

Later Prehistory, starting with the global Old World appearance of cast copper tech-

nology at ca. 5000 cal BC. Since diet and especially protein intake in nutrition is the

most important determinant for body height (see below), the second part examines the

various protein sources available to prehistoric people in terms of protein content and

quality, before changes in the food spectrum and composition are compared between

the Neolithic and the Copper and the Bronze Ages and discussed as influential factors

in net nutrition and thus body height. We thus recommend reading this work on some

of our preliminary results after lunch or dinner, as we set the Bronze Age table not so

much with speculations on the age of some traditional dishes, but mainly with amino

acids and bioactive proteins. As a conclusion, we try to bring together body height

and food development between the Neolithic and the Bronze Age in Southwestern Asia

and Europe.

3.2 Body Height as a Proxy of Welfare

3.2.1 Genetic and environmental determination of human body height

The adult body height of an individual is the result of both the individual’s genetic

endowment and certain environmental factors prevalent during its growth period (Sil-

ventoinen, 2003). There is a consensus in auxology that the maximum height an indi-

vidual can reach is determined genetically and that several genes are responsible in a

polygenic process. While some responsible genes are located on the X and Y chromo-

somes and explain why women are in the mean shorter than men, other possible genes

have been located on other chromosomes (Silventoinen, 2003; Weedon and Frayling,

2008), and it is still a matter of debate if there are genetic differences between African,

European and Asian populations. Gene-driven timing of the adolescent growth spurt

reacting to hormone-regulated growth factors, like IFG 1, is discussed as one possible

reason (Silventoinen, 2003), which is corroborated by findings in the African ‘pygmies’

who miss the adolescent growth spurt altogether (Bozzola et al., 2009). Notoriously

hard to quantify, studies into the hereditability of body height resulted in proportions

varying between 40% and 90%, with most of them around 80%, thus leaving ca. 20%

to environmental factors (Silventoinen, 2003). Moreover, there are indications that the

proportion of the variation due to environmental factors is more important when envi-

ronmental stress is strong (Silventoinen, 2003). Here, nutrition and disease appear to
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be the most influential factors. In addition to macro-nutrients, such as carbohydrates,

lipids and proteins, as well as various micro-nutrients, such as minerals and vitamins

which are needed to maintain good nutritional health Biesalski (2010), protein appears

to play the most important role for growth according to various studies (Silventoinen,

2003). While carbohydrates and fat account for most of our basal energy rate, only ca.

15% of that is met by proteins. Rather, nutritional protein is mainly used in the human

body to synthesize functional proteins, e.g. hormones and structure proteins. Ca. 1/5

of our body mass, including the collagen in bones, is formed by means of amino acids,

the components of proteins of which some are essential and cannot be synthesized by

the body itself. In times of starvation, when the full energy intake is not sufficient,

our body resorts to protein catabolism. A sufficient net supply in carbohydrates and

fats beyond the necessary caloric requirements to keep the body temperature stable,

move the body and fight diseases is thus a prerequisite for the adequate use of the

ingested protein for tissue production (Vaupel and Biesalski, 2010). Evidently, growing

individuals, like children and juveniles, need better protein quality, i.e. a few more

amino acids than the essential amino acids needed by older people, which are conse-

quently called semi-essential (Vaupel and Biesalski, 2010). Improving net nutrition in

protein through an increased amount of highly bioavailable protein in the diet, better

general calorie supply, a decreased workload and better medical support is thus to be

regarded as the main reason for the increase in body height during the late nineteenth

and the twentieth century in western industrialized nations (Cole, 2003), although a

direct stunting influence of physical workload on growth is also debated (Ambadekar

et al., 1999). Body height can thus be viewed as a proxy for the ‘biological standard

of living’ and has been used in econometry since John Komlos’ initial work (1989) on

the economics of the Habsburg monarchy as an alternative economic key figure for

times when and regions where other indicators, such as the gross national product or

per capita income, are unreliable or not available, or as a controlling feature for those

figures. Studies across populations have to check for population differences as a pos-

sible disruptive factor. Due to the uncertainties of the genetic component, at least a

four-figure sample of body heights is needed to cancel out the influence of individuals

when comparing different populations.

3.2.2 Operationalizing skeletal data for prehistoric body height stud-

ies

The transfer of the approach to skeletal material poses one advantage and a number

of difficulties, which have to be overcome using statistical methods. While individuals

who are already mature must be excluded from studies on living heights because of

the shrinking of the inter-vertebral discs, all grown-up skeletons with fused long bone

epiphyses (Szilvássy, 1988) can be included: the spine is not used in the formulae,

and as long as the joints do not show excessive loss of tissue due to arthritic diseases,

the long bones of even a senile individual whose back is bent by old age can inform

us about the original adult body height Trotter and Gleser (1952). The stature (S),
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as defined by Knußmann (1988), however, cannot be assessed directly as can be done

on a living human or a dead body, but has to be inferred from bones. Due to the

usually incomplete preservation of a skeleton, the method developed by Fully (1956)

cannot be applied and body height has to be calculated from long bone lengths, e.g.

from the maximum lengths of the femur (F1). A variety of methods have been de-

veloped in physical anthropology during the past one hundred years (for an overview

cf. Krogman 1962; Wurm 1986; Rösing 1988; Formicola 1993; Siegmund 2010). As

they were all generated using different reference populations, ranging from Mesolithic

and Neolithic European skeletons that could be reconstructed using the Fully (1956)

method (Formicola and Franceschi, 1996) to late nineteenth century anatomy corpses

in Lyon (Manouvrier, 1892; Pearson, 1899; Mollison, 1910) and living women of the

1960s in the German Democratic Republic (Bach, 1965), reconstructed body height

has to be regarded as an apparent value, which the individual would have had under

the assumption that she or he had belonged to the reference population (Röhrer-Ertl,

1978; Rösing, 1988) – which is, of course, never the case. It is thus neither feasible

to directly compare body heights that are reconstructed using different methods, nor

to compare reconstructed body heights with body heights measured on living or dead

bodies: comparability can only be achieved if all body heights are calculated using the

same formula and the same reference population, the approach taken in this work. For

Figure 3.1: Distribution of archaeological sites over time categories (with small random
error added to the latitude and longitude). For a list of sites and references see Table
3.1)

the present study, a preliminary dataset of 3052 skeletons from 219 sites (Fig. 3.1;

for a list of sites and the respective references see Table 3.1), partially taken and up-

dated with regard to chronology from the ‘Mainzer Lochkartenarchiv für postcraniales
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Skelettmaterial’ (Perscheid, 1974) and partially collected from other printed sources,

was used to calculate body height. Due to standardized long bone measures defined by

Martin (1928), the inter-rater reliability should be sufficiently high, leading to negligi-

ble differences between the measures taken from different observers compared to the

population variance. We are using the formulae of Pearson (1899), because they yield

good approximations for both males and females in general (Formicola, 1993). The

data was weighed according to a reliability category, reflecting the varying quality of

literature references and the state of preservation of skeletons’ long bones (number of

skeletons with reliability category given in parentheses):

• Category 1: femur or humerus length available (1183)

• Category 2: other long bone measures available (460)

• Category 3: body height available with known formula applied to unknown long

bone (1330)

• Category 4: body height available with unknown formula applied to unknown

long bone (79)

Sex is an important characteristic not only because of the genetic height dimorphism

(see above) but also because the reconstruction formulae are sex-specific. While the

determination of an individual’s sex is, in most cases, straightforward in living persons,

it can only be assessed with some amount of uncertainty for skeletal remains unless

DNA analyses are performed, depending on whether the pelvis is preserved or not

(Sjøvold, 1988). If the skull is used for sexing (Acsadi, 1970; Graw et al., 1997, 2005),

it has to be considered that some criteria are partly dependent upon the strength of the

muscles attached, which, however, react to workload and thus environmental factors

and render them less reliable. Such cases and cases in which sex is determined by the

degree of muscle traces or the length of the long bones (as in e.g.Angel 1971; Çiner

1964) must be carefully controlled statistically. In our sample, the sex variable has five

categories according to (Acsadi, 1970):

• Category 1: female (1074)

• Category 2: likely female (79)

• Category 3: uncertain (147)

• Category 4: likely male (145)

• Category 5: male (1607)

Another uncertainty concerns the usually broad archaeological dating spans: while

in living individuals or historical height data, the birth date of a person is usually known

or at least ratable, skeletons can often only be dated with a precision of centuries or

more. While solutions tackling the problem at the stage of data input have been

proposed (Nakoinz, 2012), here a Bayesian Errors-in-Variables model (Carroll et al.,
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2006) was utilized to correctly account for these uncertainties in the estimation process

(Groß (2016b) for details). Last but not least, as stable isotope studies have only

yielded evidence for migration in a few cases Bentley (2004), the only proxy we have

for the place or region where an individual has lived is the location of the burial of its

skeleton.

Table 3.1: List of sites used in the data analyses.

Name Country References

Acemhöyük Turkey Güleç 1989

Afalou-Bou-Rhummel Algeria Vallois 1952

Ahlatlibel Turkey Güleç 1989

Ain Mallaha, Eynan Israel/Palestine Asmus 1973; Belfer-Cohen et al. 1991

Akkermen Ukraine Konduktorova 1956

Alaca Höyük Turkey Güleç 1989; Tunakan 1965; Şenyürek 1951

Alepotrypa Cave Greece Papathanasiou 2001

Altıntepe Turkey Çiner 1965

Arad Israel/Palestine Haas 1970

Arene Candide Italy Parenti and Messeri 1962

Argos Greece Charles 1958

Argusgrunden Denmark Bennicke 1987

Arma dell’Aquila Italy Parenti and Messeri 1962

Ascott-under-Wychwood Great Britain Galer 2007

Aşıklı Höyük Turkey Özbek 1991

Bab edh-Dhra Jordan Ortner and Fröhlich 2008

Babaköy Turkey Angel 1941; Angel 1953

Ballenstedt Germany Gerhardt 1953

Balmazújváros-Árkusmajor
Hungary Marcsik 1979

(Hortobágy)-Kettözshalom

Battonya Hungary Szalai 1999

Bebertal Germany Bach 1978

Benzingerode Germany Berthold et al. 2008

Bernburg - Neu-Borna Germany Gerhardt 1953

Biebrich Germany Gerhardt 1953

Birsmatten Switzerland Asmus 1973

Bischleben Germany Bach 1978

Brachwitz Germany Bach 1978

Brackenheim Germany Orschiedt 1998

Bruchstedt Germany Bach 1978

Budakalász Hungary Köhler 2009

Butzbach Germany Preuschoft 1962

Büyük Güllücek Turkey Güleç 1989; Şenyürek 1950

Byblos Lebanon Vallois 1937

Cabeço Da Amoreira Portugal Cunha and Cardoso 2001

Çatalhöyük Turkey Ferembach 1982

Çayönü Turkey Özbek 1988

Columnata Algeria Chamla et al. 1970

Combe-Capelle France Asmus 1973

Darmstadt Germany Gerhardt 1953

Dévaványa-Barcéhalom Hungary Marcsik 1979

Dillingen/Steinheim Germany Haidle 2014

Dirmil Turkey Tunakan 1964

Durankulak Bulgaria Yordanov and Dimitrova 2002

Dürrenberg Germany Asmus 1973

Efringen Germany Gerhardt 1953

Eisleben Germany Bach 1978

El-Argar Spain Kunter 1990

Engen-Welschingen Germany Hald and Wahl 2009

Erfurt Germany Bach 1978

Erfurt-Löberkaserne Germany Gerhardt 1953

Erstein France Knussmann and Knussmann 1978

Evdi Tepesi Turkey Çiner 1964

Fulda ”Schulzenberg” Germany Sangmeister and Gerhardt 1965; Gerhardt 1953

Gemeinlebarn Austria Neugebauer 1991

Gerlingen Germany Orschiedt 1998

Girikihaciyan Turkey Watson and LeBlanc 1990

Großbrembach Germany Ullrich 1961

Großkorbetha Germany Bach 1978

Großörner Germany Bach 1978

Großschwabhausen Germany Bach 1978

Grushkeva Ukraine Konduktorova 1974

Hagias Kosmas Greece Angel 1945

Haid Austria Jungwirth and Kloiber 1973

Kloiber and Kneidinger 1970

Hakkâri Turkey Gözlük et al. 2002

Halawa Syria Orthmann 1981

Halle-Trotha Germany Bach 1978; Gerhardt 1953

Hanaytepe, Hanai Tepe Turkey Angel 1951

Hankenfeld Austria Jungwirth and Kloiber 1973
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Hauslabjoch Italy Hopfel et al. 1992

Hayonim Cave Israel/Palestine Belfer-Cohen et al. 1991

Heddesheim Germany Sangmeister and Gerhardt 1965

Heidesheim Germany Gerhardt 1953

Hisarlık/Troia Turkey Wittwer-Backofen and Kiesewetter 1997; Angel 1951

Hochstätt Germany Sangmeister and Gerhardt 1965

Hoëdic und Téviec France Asmus 1973

Hohlstedt Germany Gerhardt 1953

Hoiersdorf Germany Gerhardt 1953

İkiztepe Turkey Wittwer-Backofen 1985; Becker 1988

Ilıca Turkey Güleç 1989; Helmuth 1967

Ilıpınar Turkey Alpaslan-Roodenberg 2002

Ilvesheim Germany Gerhardt 1953

Jebel Buhais Oman Kiesewetter 2003

Jericho Israel/Palestine Röhrer-Ertl 1978

Kafer edj-Djarra, Kfar Jarra Lebanon Vallois and Ferembach 1962

Karataş Turkey Güleç 1989

Kebara Israel/Palestine Belfer-Cohen et al. 1991

Kétégyháza Hungary Marcsik 1979

Khirokitia Cyprus Angel 1953

Klein Hadersdorf Austria Tiefenböck 2010;Jungwirth and Kloiber 1973

Klingenberg Germany Orschiedt 1998

Koelbjerg Denmark Asmus 1973

Königsaue Germany Bach 1978

Korbetha Germany Bach 1978

Korsør Denmark Asmus 1973

Köthen Germany Gerhardt 1953

Kreuznach-Martinsberg Germany Knussmann and Knussmann 1978

Kültepe Turkey Angel 1951; Şenyürek 1949

Kumtepe Turkey Angel 1951; Şenyürek 1949

Kusura Turkey Güleç 1989; Kansu and Atasayan 1939

Kut Ukraine Konduktorova 1974

La Pollera Finale Lige Italy Parenti and Messeri 1962

La Trache Chaâteaubernard France Riquet 1962

Langendorf Germany Gerhardt 1953

Lauda-Königshofen Germany Menninger 2008

Lebendorf Germany Bach 1978

Lepenski Vir Serbia Schwidetzky 1973

Lerna Greece Angel 1971

Leuna-Daspig Germany Bach 1978

Lichtensteinhöhle Germany Schilz 2006

Lidar, Kamus Tepe Turkey Güleç 1989; Wittwer-Backofen 1987

Lingolsheim France Knussmann and Knussmann 1978

Lomovatoe Ukraine Konduktorova 1974

Ludwigshafen Germany Gerhardt 1953

Mangolding Germany Gerhardt 1968

Mannheim-Vogelstang ”Am Schultheißenberg” Germany Orschiedt 1998

Mansfeld Germany Gerhardt 1953

Meckelstedt Germany Asmus 1939

Menteşe Höyük Turkey Alpaslan-Roodenberg 2001

Alpaslan-Roodenberg and Maat 1999

Mierzanowice Poland Galasizska-Pomykol and Szewko-Szwaykowska 1967

Minsleben Germany Bach 1978

Molenaarsgraaf Netherlands Knip 1974

Montigny-Esbly Lesches France Anthony and Manouvrier 1907

Mugem-Gruppe Portugal Asmus 1973

Mugharet El-Wad Israel/Palestine Belfer-Cohen et al. 1991

Mulhouse-Est (Rixheim) France Gerhardt and Gerhardt-Pfannenstiel 1985

Müskebi, Müsgebi Turkey Güleç 1989

Mykene Greece Angel 1973b

Mýtna Nová Ves Slovakia Jakab 1999

Nahal Mishmar Caves Israel/Palestine Haas and Nathan 1973

Naumburg Germany Bach 1978; Schafberg 1999

Nea Nikomedeia Greece Angel 1973a

Neckarsulm Germany Knöpke and Wahl 2010

Neudorf Germany Gerhardt 1953

Nohra Germany Gerhardt 1953

Novo Filippovka Ukraine Konduktorova 1956

Novo-Grigoryevka Ukraine Konduktorova 1974

Nürnberg Germany Knussmann and Knussmann 1978

Öküzini Turkey Özbek 2000; Şenyürek 1958

Ostorf Germany Schuldt 1961

Padina Serbia Živanović 1975

Pantano de los Bermejales Spain Palau and Palma 1997/Ferrer Palma 1997

Räpitz Germany Grimm 1960

R’as al Hamra, bei Maskat Oman Kunter 1990

Ras Shamra, Ugarit Syria Charles 1962

Roßleben Germany Bach 1978

Rothenschirmbach Germany Bach 1978

Roussolakkos (Crete) Greece Charles 1965

Rutzing Austria Jungwirth and Kloiber 1973

Kloiber and Kneidinger 1970
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Safadi Israel/Palestine Ferembach 1958

Sarata Monteoru Romania Maximilian and Romı̂ne 1962

Schafstädt Germany Grimm 1958

Schipluiden Netherlands Smits and Kooijmans 2006

Schmöckwitz Germany Asmus 1973; Bach 1978

Seehausen Germany Bach 1978

Şeyh Höyük Turkey Güleç 1989; Senyurek and Tunakan 1951

Sijbekarspel Netherlands Pasveer and Uytterschaut 1992

Singen Germany Haidle 2014

Skateholm Sweden Persson and Persson 1988

Skrystrup Denmark Bröste et al. 1956

Sondershausen Germany Bach 1978

Spergau Germany Bach 1978

Spiennes Belgium Knussmann and Knussmann 1978

St̊angenäs Sweden Asmus 1973

Staré Mĕsto Czech Republic Asmus 1973

Steudnitz Germany Gerhardt 1953

Stillfried Austria Szilvássy and Kritscher 1991

Stuttgart-Mühlhausen “Viesenhäuser Hof” Germany Burger-Heinrich Burger-Heinrich

Taforalt Morocco Ferembach 1965

Tápé Hungary Farkas and Lipták 1975

Tauberbischofsheim Germany Sangmeister and Gerhardt 1965; Haidle 2014

Tell Chuera Syria Wahl 2010

Tilkitepe Turkey Güleç 1989

Trebur Germany Jacobshagen and Kunter 1999

Unseburg Germany Bach and Bruchhaus 1988

Ur Iraq Keith 1934

Varna Bulgaria Marinov 1978

Vasilevka Ukraine Gochman 1966; Asmus 1973

Veckenstedt Germany Gerhardt 1953

Velim Czech Republic Knüsel 2007

Villánykövesd Hungary Zoffmann 1968

Vovnigi Ukraine Konduktorova 1960

Wandersleben Germany Gerhardt 1953

Wassenaar Netherlands Smits and Maat 1996

Wechmar Germany Sangmeister and Gerhardt 1965

Wehrstedt Germany Gerhardt 1953

Weingarten Germany Knussmann and Knussmann 1978

Wiederstedt Germany Meyer et al. 2004

Worms Germany Gerhardt 1953

Würben Poland Gerhardt 1953

Yortan Turkey Angel 1951

Zawi Chemi Shanidar Iraq Ferembach 1970

3.2.3 The Copper and Bronze Age body height resurgence and pos-

sible reasons

A non-parametric, spatio-temporal analysis of the data was performed, which does not

rely on the usual rather arbitrary factorization of time and space by using latitude, lon-

gitude and years cal BC. More specifically, a Tensor Product P-Spline (Eilers and Marx,

1996; Wood, 2006) was used to model the smooth spatio-temporal function. Addition-

ally, as the data is structured hierarchically (level 1: archaeological site/occupation

period of a site, level 2: skeletons/individuals), a population specific effect for cap-

turing dependencies, such as similar genetic make-ups due to kinship or local cultural

and environmental factors, should be introduced in the statistical model as well. Thus,

an appropriate model class would be a semiparametric mixed model (Ruppert et al.,

2003). A Berkson error model (cf. Buonaccorsi 2010) was used for sex and birth date

and a Bayesian semiparametric mixed model with errors-in-variables was estimated

using Markov Chain Monte Carlo Methods (MCMC) (Diaconis 2009; see Groß 2016b

for further details). It becomes evident that after an initial drop in overall stature at

the end of the Paleolithic, there is no significant height difference between Northern

Europe and Southeastern Europe during the Mesolithic and Neolithic (Fig. 3.2).

Rather, a rise in body height is first observable in NW Central Europe after the 5th
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Figure 3.2: Estimated spatial mean body height in millimeters for different points in
time. Upper: females, Lower: males. For a list of sites and references see Table 3.1
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Figure 3.3: Body height in Europe over the last two to three millennia (Koepke and
Baten, 2008).

millennium cal BC, while in the Near East, a slighter increase in body height establishes

a NW-SE gradient of taller northerners and shorter Mediterranean and Near Eastern

people from at least the 2nd millennium cal BC onwards, though it has to be kept in

mind that skeletal material from Mesopotamia and its surroundings in later prehistory

is either insufficient or the measurements relevant to our method were not published

(d’Anna et al., 2014). Several regional studies, partially drawing on the same data (as

e.g. Bennicke (1985) for modern Denmark, Jaeger et al. (1998) and (Siegmund, 2010)

for Central Europe as well as Angel 1984 for Greece) confirm – despite their very rough

chronological scales – the tendency towards increasing body height in later prehistory.

The study by Koepke and Baten (2005) suggests that the NW-SE gradient continues

throughout the 1st millennium into the historic period (Fig. 3.3; Table 3.1) and up to

present times (Fig. 3.4).

In a pilot study (Rosenstock 2014), multivariate statistical analysis has shown that

within the abandonment of the hunter-gatherer mode of subsistence for the Neolithic

lifestyle, the adoption of plant cultivation had a significant negative effect on body

height that was only slightly alleviated by the adoption of animal husbandry. These

findings support, in accordance with the idea of the ‘original affluent society’ of the

hunter-gatherers (Sahlins, 1968, 1972), that besides a heavy workload in cultivation, a

shift to a diet dominated by plant products lowered the biological standard of living

considerably during the Neolithic. Based on modern ethnographical data, it is assumed

that prehistoric hunter-gatherer-fishers consumed between 19–35 % of proteins, whereas

the diet of early farmers was mainly carbohydrate-plant-based (Cordain et al., 2000;

Eaton and Konner, 1985). After this major change in diet, the Copper and Bronze Ages

based their economy largely on the Neolithic package of domesticates, but there were

few, yet important innovations in both production techniques and domesticates, as well

as shifts in the relative importance of different foodstuffs that could have the potential

to explain the improved biological standard of living in later prehistory. The effects

of technical innovations are difficult to quantify, as the appearance of cattle traction

at the end of the 4th millennium BC illustrates. This innovation was well-suited to
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Figure 3.4: Male body height in Europe and the near East, 1970s birth cohort. For
jemen und belarus the 1980s cohorts, for Greece and Poland the arithmetic mean of
the 1960s and 1980s cohorts were used instead (data: Baten and Blum 2014

reduce the workload of prehistoric people, while the introduction of the ard probably

further increased agricultural productivity (Kerig, 2007). Thus, cattle traction, on

the one hand, appeared to be a benefit for prehistoric net nutrition. On the other

hand, training traction animals and working with them requires that humans and

animals live together in close proximity, a need that was probably facilitated by stabling

and penning animals close to the settlements. Evidence of this increases at least in

Central Europe from the 4th millennium onwards (Masson and Rosenstock, 2011). This

development was accompanied by a higher risk of contracting diseases that can affect

both animals and humans and which are transmitted by smear infections or via airborne

pathogens, such as tuberculosis (Horwitz and Smith, 2000) – a circumstance which

might have been apt to counteract positive effects. It is thus feasible for the present

study to focus on protein-containing foodstuffs which can also be evaluated taking a

qualitative and descriptive approach only: after all, they figure as the main factor in

net nutrition (see above). This section thus complements models of subsistence, which

are usually carbohydrate (e.g. Korfmann 1983) and caloriebased, ranging from 2000

kcal/person/day for Mesolithic hunter-gatherers in Denmark to 2500 kcal/person/day

for Late Bronze Age Central European farmers and up to 7000 – 10,000 kcal/person/day

for late-glacial/early Holocene hunter-gatherers in Poland or North America (Dennell,

1979; Jacomet and Karg, 1996).
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3.3 Food as the Main Determinant for Body Height

3.3.1 Protein content of food

Two aspects are relevant for the assessment of the value of different foodstuffs in terms of

protein supply: the overall proportion of protein in relation to the energy content (Table

3.2) and the quality of the protein. For the latter, several estimation methods and

figures are currently used in nutritional medicine and ecotrophology: for the popular

scale of the Biological Value (BV) of protein sources, eggs serve as the reference value.

The Protein Digestibility Corrected Amino Acid Score (PDCAAS), however, is regarded

as more reliable than the BV, but is less popular. As we are talking of rough ranges

and tendencies here, both values are – as far as they are available for the foods used in

prehistory – also provided in Table 3.2. Plant products oft en lack suffi cient quantities

of one or more essential amino acids, which are termed limiting amino acids and are also

provided in Table 3.2. As the total protein content of plant food highly depends on the

growing conditions – especially on the availability of nitrogen – these figures can only

give rough ranges for estimation: modern values in textbooks on nutrition derive from

well-manured crops. It should be kept in mind, however, that not all essential amino

acids in plant crops are increased equally by manuring, so that the bioavailability and

thus the quality of the protein for human nutrition might be reduced while the overall

content is increased: the relative content of lysine, the limiting amino acid in wheat

protein, for instance, is lowered by nitrogen fertilizers (Crista et al., 2013). As some of

the pulses attested in prehistory were marginalized by Phaseolus beans after 1492 and

have thus not been a matter of scientific attention (Bermejo and León, 1994), values

for some crops, such as Vicia faba and V. ervilia, are hard to find in the literature.

The figures illustrate that among the cereals used in the Old World, oat ranks highest

in both protein and energy content. Wheat has moderate values, while barley, millet

and rye are poorer in both energy and protein. Yet, the lower protein content of barley

and wheat is compensated by their relatively higher protein quality among the cereals.

Most Old World pulses exhibit very similar energy levels, protein contents and biological

values. As an exception to this, however, chickpeas (Cicer arietinum) are rather low in

protein, although it is possible that their protein is of better quality than that of the

other pulses: some researchers have argued that chickpeas have no limiting essential

amino acid (Suárez López et al., 2006), while others claim that methionine and cystine

are limiting factors (Iqbal et al., 2006). Before turning to animal products, a note on

mushrooms seems appropriate, as, taxonomically, they are not considered as plants

anymore, but as a kingdom of their own. Mushrooms contain considerable amounts of

high-quality protein (Table 3.2), which, however, is trapped in chitin, and studies of the

effects of different processing techniques, including grinding, chewing and cooking, are

lacking so far (Kalač, 2009). Consequently, despite the fact that mushrooms in pieces

commonly serve today as a meat substitute in Asian dishes due to their fleshy taste

and texture, it has to be argued that mycoprotein can better be utilized by the human

body if the mushrooms are heavily processed by grinding, pureeing or mashing. This is
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yet another possible use of grinding stones that still awaits archaeological investigation

(for an ethnographic sample see Jones 2011) before the protein benefit of edible fungi in

prehistory can be assessed. The energy and protein content values of animal products

given in Table 3.2 are derived from various sources, including modern high-performance

breeds, so they should only serve as rough guidelines. Most animal products contain

all essential amino acids in sufficient quantity for human needs, but there are some

exceptions when it comes to invertebrates. The Burgundy snail (Helix pomatia), for

instance, regarded as a delicacy in some regions of the Old World, lacks methionine, in

this respect functioning more like pulses than meat in human nutrition (Miletic et al.,

1991). All tissues that a bird fledgling or mammal cub consists of are synthesised

from egg white and yolk or milk, so it comes as no surprise that, in terms of protein

quality, eggs and milk rank even higher than meat, even for humans. Special attention

has to be drawn to sheep’s milk, as its protein content is the highest of all milked

domesticates. Since ovicaprids only yield a quarter of the amount of milk of a cow

(Table 3.3), the overall resulting protein output per animal and year is approximately

20 kg and thus about half of that of cattle. One cow, however, equals five goats or

sheep in terms of fodder demand. Hence, the protein output calculated per livestock

unit is the relevant figure: one livestock unit of sheep produces about twice as much

milk protein as one livestock unit of cows. The fact that these amounts of protein can

be gained for a number of years during the lifetime of an animal, in addition to the

meat of the animals which can still be eaten afterwards, illustrates the importance of

dairy farming for the net protein nutrition in human societies. Given that lysine is the

limiting essential amino acid in all cereals, an entirely cereal-based diet would eventually

lead to severe malnutrition. Cereals, however, contain enough methionine, cystine and

tryptophane, the limiting amino acids in pulses, so combining cereals and pulses in a

meal or at least over the course of a day (Young and Pellett, 1994) efficiently enhances

the nutritious quality of a diet. Maize (Zea mais) tortillas eaten with a stew made

from common beans (Phaseolus sp.) in roughly a 50:50 proportion is the classical New

World example (Duranti and Gius, 1997) and reach a BV of 99 instead of only ca. 72

and 73 respectively for the separate ingredients (Vaupel and Biesalski, 2010). Similar

traditional vegan Old World meals like wheat bread combined with hummus paste

made from chickpeas (Cicer arietinum) or ful made from broad beans (Vicia faba), for

which protein quality figures are not published, can thus be understood as an effective

means of cultural adaptation to the amino acid problem in human diet if meat is scarce.

Moreover, tahini is currently often mixed into hummus: it is made from the seeds of

sesame (Sesamum indicum), an oil seed. Besides adding fat to the dish, it complements

hummus with a high content of methionine in its protein fraction (Faris and Takruri,

2003). This might be true of other oil seeds as well (Sosulski and Sarwar, 1973): while

the limiting amino acid in the protein fraction of flax seed (Linum usitatissimum) is

lysine, and can thus be complemented by pulses, it is lysine and methionine in poppy

seeds (Papaver somniferum). Hence, it is not surprising that both sesame and poppy

seeds are the most common toppings on small breads like the German Mohnbrötchen
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and Turkish pide, as the seeds or oils pressed from them complement cereal and pulse

dishes in terms of amino acids. Even adding very small amounts of animal products to a

plant-based diet enhances the diet’s amino acid profile considerably (Young and Pellett,

1994) and is a common strategy if we look at classic dishes like the New World’s chili con

carne made from common beans (Phaseolus sp.) and meat, as well as most pulsebased

stews in the Old World, such as lentils, which are for this reason traditionally eaten

with sausages in Central Europe. Moreover, Spätzle-type pasta complements this dish

in Southwestern Germany, illustrating that eggs and wheat mixtures add up to a BV of

118 (Vaupel and Biesalski, 2010). Pasta, but also pancakes and pastries made from egg

and wheat are thus much more nutritious than egg with a BV of 100 and wheat with a

BV of ca. 70 (see Table 3.2) eaten separately. The next best combination that can be

found in the literature pertaining to the nutritional value of Old World foodstuffs is the

combination of milk and egg with ca. 119, but the very best is milk and wheat: porridge

made from ca. 3/4 milk and 1/4 wheat has a BV of 125 (Vaupel and Biesalski, 2010)

instead of a BV of 85 and ca. 70 in the separate ingredients. Milk-wheat dishes are

only topped by recipes like the Spanish tortilla and the German Bauernfrühstück : these

post-1492 innovations, combining eggs with potatoes, if prepared in a proportion of ca.

1/3 egg and 2/3 potatoes, reach a BV of 136. They are therefore the recommended

diet for persons with kidney problems who should eat a minimum amount of protein

but still need to get all essential amino acids (Vaupel and Biesalski, 2010). It still

remains to be investigated whether the introduction of potatoes into the Early Modern

European societies led to different impacts in terms of net nutrition and protein supply,

according to the amount and frequency that eggs were eaten in the respective regions

and social classes. But we have to leave this question to economic history dealing with

later periods. Nonetheless, the above example illustrates that, although a plant does

not necessarily have to contain a lot of protein (the potato has only 2 % of protein),

it can still contribute considerably to the overall protein supply if it contains essential

amino acids apt to supplement the existing foodstuffs.
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Table 3.2: Energy, protein content, protein bioavailability – expressed as biological value (BV ) and Protein Digestibility Corrected Amino Acid Score (PDCAAS) – and
limiting amino acids of selected cereals (wholemeal), pulses (podded, dry), oil seeds, mushrooms (dried), shellfish, snails, crustaceans and meats (carcass) and animal products
(Sources: United States Department of Agriculture 2012 (1); BMVEL/MRI BMVEL/MRI (2); Schuster et al. 2000 (3); Abdullah et al. 2010 (4); Schaafsma 2000 (5);
Suárez López et al. 2006 (6); Food and of the United Nations (FAO) 1995 (7); Iqbal et al. 2006 (8); Jaworska and Bernaś 2013 (9); Food and of the United Nations (FAO)
2012 (10); Lentner and Diem 1973 (11); Kallweit et al. 1988 (12); Horwitz and Rosen 2005 (13), Babiker et al. 1990 (14); Miletic et al. 1991 (15); Usydus et al. 2009 (16);
Williams 2007 (17); Vaupel and Biesalski 2010 (18); Eklund and Ågren 1975 (19); Sosulski and Sarwar 1973 (20); Razavi et al. 2008 (21)).

Energy (kcal/100g) Protein (g/100g) BV PDCAAS Limiting AA (if age-specific, for children)

Cereals
Oat (Avena sativa) 350 – 390 (1,2) 12 – 17 (1,2) 60 (2) 56 (6) Lysine (6)
Barley (Hordeum vulgare) 320 – 345 (1,2) 10 – 11 (1,2) 74 (2) 66 (6) Lysine (6)
Millet (Panicum miliaceum) 350 – 370 (1,2) 10 – 11 (1,2) 47 (2) n.a. Lysine (7)
Rye (Secale cereale) 340 (1) 9 – 10 (1,2) 67 (2) 65 (6) Lysine (6)
Wheat (Triticum sp.) 310 – 342 (1,2) 11 – 14 (1) 59 – 77 (2,18) 42 – 48 (5,6) Lysine (6)
Pulses
Chickpea (Cicer arietinum) 325 – 360 (1,2) 18 – 24 (1,2,8) 45 (2) 78 (6) None (6), Methionine and Cystine (8)
Lentil (Lens culinaria) 310 – 340 (1,2) 24 – 26 (1,2,8) 33 – 45 (2,3) 63 (6) Methionine and Cystine (6), Tryptophane (8)
Pea (Pisum sativum) 290 – 340 (1,2) 24 – 25 (1,2,8) 50 – 60 (2,3) 43 (6) Methionine and Cystine (6), Tryptophane (8)
Bean (Vicia faba) 230 – 340 (1) 26 (1,2) 32 (2) 51 (6) Methionine and Cystine (6), Tryptophane (8)
Bitter vetch (Vicia ervilia) 360 (4) 22 – 29 (4) n.a. n.a. n.a.
Oil seeds and fruits
Sesame (Sesamum indicum) 590 (1) 18 (1) n.a. n.a. n.a.
Flax (Linum usitatissimum) 534 (1) 18 (1) n.a. n.a. Lysine (20)
Olive (Olea europaea) 81 – 145 (1) 1 (1) n.a. n.a.
Poppy (Papaver somniferum) 525 (1) 18 (1) 58 (19) n.a. Lysine, Methionine (19)
lallemantia (lallemantia sp.) n.a. 26 (21) n.a. n.a. n.a.
Mushrooms
Agaric (Agaricus bisporus) n.a. 30 (9) n.a. n.a. None (9)
Yellow boletus (Boletus edulis) n.a. 23 (9) n.a. n.a. Lysine, Leucine (9)
Shellfish, crustaceans, poultry, meat
Mediterranean mussel (Mytilus galloprovincialis) 86 (1) 10 – 12 (1,15) 81 (15) 94 (6) None (6), Isoleucine (15)
Burgundy snail (Helix pomatia) 90 (1) 13 – 16 (1,15) 68 (15) n.a. Methionine (15)
Crayfish (Astacidae, Cambaridae) 77 (1) 16 (1) n.a. 94 (6) None (6)
Lobster (Homarus sp.) 77 (1) 17 (1) n.a. 94 (6) None (6)
Brown trout (Salmo trutta) 148 (1) 21 (1) n.a. 94 (6) None (6)
Atlantic herring (Clupea harengus) 158 (1) 18 (1) n.a. 94 (6) None (6)
Chicken (Gallus gallus), flesh 105 – 116 (1,10) 20 – 23 (1,10) n.a. 94 (6) n.a.
Chicken (Gallus gallus), egg 38 (10) 12 (10) n.a. 97 – 118 (5,6) None (6)
Goat (Capra hircus), flesh 109 (1) 21 (1,14) n.a. n.a. n.a.
Goat (Capra hircus), milk 63 – 71 (11,12,13) 2.6 – 3.6 (11,12,13) n.a. n.a. n.a.
Sheep (Ovis ammon), flesh 282 – 514 (1) 17 – 22 (1,7,14,17) n.a. 94 (6) None (6)
Sheep (Ovis ammon), intestines n.a. 17 (17) n.a. 94 (6) None (6)
Sheep (Ovis ammon), milk 88 – 110 (1,11,12,13) 3.9 – 5.9 (1,11,12,13) n.a. n.a. n.a.
Cattle (Bos taurus), flesh 323 – 498 (10,17) 17 – 23 (10,17) 87 (18) 92 – 94 (5,6) None (6)
Cattle (Bos taurus), intestines n.a. 17 (17) n.a. 94 (6) None (6)
Cattle (Bos taurus), milk 64 – 85 (11,12,13) 2.6 – 3.8 (11,12,13) 85 (18) 95 – 121 (5,6) None (6)
Pig (Sus scrofa), flesh 472 (10) 11 (10) n.a. n.a. None (6)
Horse (Equus caballus), milk 44 – 53 (11,12,13) 1.3 – 2.5 (11,12,13) n.a. n.a. n.a.
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3.3.2 Other food-related factors

Before the Neolithic amino acid spectra can be outlined and compared to the Copper

Age and the Bronze Age spectra, however, a few other constituents of food as well

as certain metabolic issues in humans should be discussed. The ability of the human

organism to split starch into sugars, for instance, is not uniform in all current societies.

Societies with a long tradition of a high starch intake in their diet, such as cereal-based

agriculturalists like the American Europeans, the Japanese, or the African Hadza, who

collect high proportions of starch rich tubers, have more copies of the AMY1 gene

coding salivary alpha-amylase than societies with diets poor in starch, such as African

rain-forest hunters of the Biaka and Mbuti, pastoralists like the African Datog, or

pastoralist-fishermen of the Siberian Yakut. The former have a higher ability to split

starch in the mouth, which is to be interpreted as an evolutionary adaptation to diet

(Perry et al., 2007). Favism or G6PD deficiency, i.e. the lack of the ability to synthesize

the enzyme glucose-6-phosphate dehydrogenase, is another example. Via changes in the

sugar metabolism, this condition can lead to haemolytic processes if the organism is

under oxidative stress. As the condition is most frequent among populations in regions

where malaria is endemic, it is probably an evolutionary adaptation to this disease,

similar to sickle cell anaemia (Mehta et al., 2000). The most important trigger of ox-

idative stress is the intake of pulses, especially broad or fava beans (Vicia faba) with

their high content of the oxidative alkaloid glycosides vicine and covicine. Even though

the term for the condition is derived from the fava bean, it has to be noted that most

pulses contain toxins and alkaloids, so that their consumption requires – in comparison

to cereals – extensive pre-treatment, such as soaking in water and cooking for long

hours. People with favism should avoid the consumption of pulses and especially fava

beans altogether, although interestingly they are a common type of food in those re-

gions where G6PD deficiency is common. Although favism is the most frequent enzyme

variation in the modern world population, lactose maldigestion has received much more

attention so far. While in most people in the world the enzyme lactase ceases to be

synthetized in later childhood, i.e. after weaning when the organism is no longer depen-

dent on breast milk and thus lactose, certain populations in eastern and western Africa

and especially in Central and Northern Europe are characterized by a high incidence of

life-long persistence of lactase production, a trait thought to be genetically determined

as an evolutionary adaptation to the consumption of animal milk as a foodstuff (Ingram

et al., 2009). Lactose tolerant people can digest milk in unprocessed, i.e. unfermented

form, whereas lactose intolerant people can to some extent only consume milk products

like yoğurt, sour milk and their derivatives, such as cheese or kefir and koumiss, in which

most of the original lactose has been split into lactate or alcohol due to the action of

lactic acid bacteria or yeasts or both (Hertzler and Clancy, 2003). Despite the fact that

the amino acid profile of the milk remains unaltered by these fermentation processes,

and while the loss of a few grams of carbohydrates per kg milk appears negligible when

dealing with protein supply, consuming fermented versus unfermented milk might still

make a difference when it comes to hormone-like substances contained in milk such as
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the insulin-like growth factor I (IGF-I). IGF-I is the most powerful growth factor and is

regulated by the growth hormone (GH), but can also stimulate growth independently

(Laron, 2001; Bernstein, 2010). IGF-I controls cell division and cell proliferation, plays

– differing from IFG-II which mainly regulates fetal growth – an important role in

postnatal and especially pubertal growth Bernstein (2010) and has a positive effect on

growth rate and skeleton length according to most (e.g. Liu and LeRoith 1999; White

et al. 1999; Laron 1993; Laron et al. 1980; Laron 2001; Ong et al. 2002 but not all studies

(e.g. Beckett et al. 1998). IGF-I is found in the milk of all mammals, albeit in differ-

ent concentrations (Donovan and Odle, 1994), and is particularly highly concentrated

in colostrum (Klagsburn, 1978; Bernstein, 2010; Donovan and Odle, 1994). Elevated

levels of IGF-I have been reported after the consumption of cow’s milk, although it is

not clear whether IGF-I is transmitted from the milk via the gastrointestinal tract into

the human bloodstream, or whether milk consumption stimulates the production of

human IGF-I (Wiley, 2009). The fact that the IGF-I concentration in humans is lowest

in postnatal infants (Hammond, 2007), although the neonate period experiences the

most intensive growth Bogin and Smith (1996), affirms the significance of growth hor-

mone intake at least via the colostrum. Acid production in the gastrointestinal tract of

neonates is still low (Speer and Gahr, 2009) and might thus prevent the denaturization

of the IGF-I so it can unfold its full potential in the body of the growing consumer,

whereas IGF-I is, like all other proteins, believed to be denatured due to the stomach

acid and digestive enzymes in older individuals (Hammond, 2007): after all, in medical

treatment of growth disorders, protein hormones are administered by injections (Laron

and Kopchick, 2011; Rosenbloom, 2008). According to Gardner (1988), however, in-

tact proteins can cross the gastrointestinal tract in adults, too, probably in interplay

with binding proteins (Bernstein, 2010; Ottesen et al., 2001; Laron, 2001; Loui et al.,

2004; Rechler and Clemmons, 1998; Blum and Baumrucker, 2008). 80–90 % of these

proteins are bound to a ternary complex with an IGF-bounding protein (IGFBP 3)

and an acid labile subunit (ALS) (Ottesen et al., 2001; Laron, 2001; Klagsburn, 1978).

Nevertheless, it can be argued that compared to the IGF-I pool in the human body

the IGF-I amount in cow’s milk is low. Thus, it is assumed that even if all IGFs from

consumed cow’s milk would reach the blood stream undigested, they would not ex-

ert any noteworthy influence (Hammond, 2007). Experiments on rats, however, have

shown that casein, which is the most common protein in milk, if administered orally

together with IGF-I, can significantly increase the bioavailability of IGF-I (Kimura

et al., 1997). Furthermore, mammalian milk also contains ‘truncated’ IGFs in small

quantities, which increase their potency up to tenfold (RoPHA, 1999). Despite these

open questions, we can conclude that the current state of research does not preclude

the possibility that IGF-I ingested with animal milk can at least in some quantities

pass the intestinal tract and enter the human organism or alternatively trigger its own

IGF-I production without passing the intestinal tract and eventually affect the postna-

tal longitudinal growth of the milk consumer: a positive effect of milk consumption on

body height that is not related to the protein content, but probably mediated via IGF-I
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with or without calcium, casein or another milk constituent, has been demonstrated in

prospective studies (Wiley, 2009). While IGF-I in bovine milk was not destroyed when

pasteurized at 79◦ C for 45 seconds (Collier et al., 1991), fermentation processes seem

to lower the amount of IGF in milk products significantly (Kang et al., 2006). This is in

accordance with findings that fermented dairy product consumption was not positively

associated with height (Wiley, 2009). It is therefore arguable that the body height of

individuals with lactase persistence who consume animal milk during childhood and

youth do not only benefit from the milk proteins as they would with fermented milk

products but also from a higher level of IGF-I additionally triggering growth if all other

factors relevant for growth like other hormones, minerals and nutrients are available.

Such a mechanism might lie behind the correlation found between lactase persistence

and body mass index (Kettunen et al., 2010), and if this holds true, the concept of

body height as a proxy for net nutrition would be biased whenever lactose-intolerant

individuals are compared with lactose-tolerant individuals who consumed unfermented

milk during their growth period.

Table 3.3: Mean milk and protein yield per year for several domesticates, relating to
one animal and one livestock unit, respectively (after Horwitz and Rosen 2005; Ruhr-
Stickstoff 1988 data from modern high-output production were omitted).

Species Milk yield Protein yield Protein yield
kg/a (animal) in kg/a (animal) in kg/a (animal)

Goat 200 – 900 17 80
Sheep 200 – 900 26 130
Cattle 1000 – 2500 56 56
Horse 390 – 750 7 10
Camel 800 – 3600 60 60

3.3.3 The Neolithic versus the Copper and the Bronze Age food spec-

trum

The low trophic levels inferred from stable isotope studies of human skeletal material

dating to the Near Eastern PPN B and C (ca. 9000–7000 cal BC) (Pearson et al., 2013)

suggest that, despite the initial domestication of animals during that time period, their

contribution to the diet was probably low. Cereals, already used in the Epipaleolithic,

were cultivated from the PPN A onwards (Weiss et al., 2006), and it would be an

interesting task to trace the AMY1 gene’s (see above) history and its interplay between

the Near Eastern Paleolithic, Epipaleolithic and Neolithic populations and their wild

and then domestic cereal consumption as well as the gene’s role in the Secondary

Neolithization of Europe. It is not unlikely that early cereals, like wild einkorn (Triticum

urartu) and emmer (T. dicoccum) as well as domestic einkorn (T. monococcum) and

emmer (T. turgidum ssp. Dicoccum), did not contain enough gluten, a protein of low

nutritional value but good binding qualities to allow for the baking of fluffy leavened

bread, probably leaving early Neolithic eaters with gruel, flatbread and maybe beer

(Braidwood et al., 1953). Closed ovens apt for baking bread are rarely found in the
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archaeological record of the 9th and 8th millennia, with only one specimen found,

for example, in Abu Hureyra (Moore et al., 2000). In contrast, they are found as a

constant feature of Neolithic houses from the 7th millennium onwards as documented

for Çatalhöyük East (Hodder, 2005), Karanovo (Hiller and Nikolov, 1997) and Djeitun

(Müller-Karpe, 1984). Though one could argue that until the 7th millennium ovens were

installations located outside the settlements and thus not detected by archaeologists,

the coincidence seems striking that the first spelt and bread wheats containing the DD

allele responsible for good baking qualities appear in the 7th millennium (Jacomet and

Karg, 1996; Nesbitt, 2001). The DD- allele was inbred into wheats from the goatgrass

Aegilops tauschii (also named A. squarrosa) and codes types of gluten that lead to

coeliac disease, another genetic trait with an evolutionary history worth examining in

the context of archaeology and archaeobotany (Molberg et al., 2005). Moreover, gluten

contains exorphins, i.e. opiod-like substances, targeting the activity of grazing animals

for the benefit of the surviving wheat plants, which can exert similar calming effects

on humans, too: the borderline between drug and food has always been a matter of

quantity (Zioudrou et al., 1979; Fukudome and Yoshikawa, 1992). Pulses, which were

also already used in the Near East and the Mediterranean region in the Epipaleolithic,

were first cultivated during the PPN B or even earlier (Weiss and Zohary, 2011), so

wheat (flat-)bread with hummus as a dish could indeed be as old as the PPN B or

older. The protein from pulses might have complemented the protein from the cereals,

thus securing amino acid supply despite animal protein scarcity in the PPN B (Lösch

et al., 2006). We could thus think of the few hunted and domesticated animals in the

Early Primary Neolithic of the Near East as the providers of that little bit of meat

that pushed the BV and PDCAAS of the cereal-pulse combination to ca. 100. Among

the pulses in the PPN B and through the Neolithic and Chalcolithic of the Near East,

Vicia faba appears to be present but usually in very small quantities (Jacomet and

Karg, 1996). This may be due to the fact that broad beans are more fragile and more

prone to disintegration in the archaeological record than small pulses such as lentils,

bitter vetch and peas, but chickpeas are also quite large and more frequent (Tanno and

Willcox, 2006). It could be that the high tryptophane content of chickpeas, an essential

amino acid that positively affects the serotonine metabolisms and thus has a filling

and calming effect on humans (Kerem et al., 2007), is the reason for the preference of

chickpeas. But it is also not completely absurd to speculate on whether the infrequency

of Vicia faba in the archaeological record of the Neolithic and Chalcolithic is a reaction

to a long-term genetic history of favism in the Near East (Jacomet and Karg, 1996).

Near Eastern lowlands are today infested by malaria and this situation could date back

to at least the beginning of the Holocene, ca. 10,000 to 9000 cal BC, given the current

state of research into the paleogenetics of the malaria agents Plasmodium falciparum

and P. vivax (Schlagenhauf, 2004; Morgan-Forster, 2010). This is also supported by the

occasionally high rate of porotic diseases in the Near East and the Mediterranean in the

Holocene (Iezzi, 2009; Rathbun, 1984), which is often thought to be related to anemia

– caused directly by favism and sickle cell disease – and/or malaria (Angel, 1970;
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Wapler et al., 2004). Given the scarcity of Vicia faba cultivation, paleopathological

evidence for anemia and the presence of malaria, it is not impossible that Near Eastern

Neolithic people were often G6PD deficient and had to avoid the consumption of large

quantities of pulses and especially broad beans. Although we have no clue as to what

extent malaria posed a problem in temperate Europe during the Holocene climatic

optimum, it does not seem unlikely that favism belonged to the genetic endowment of

the founder populations bringing the Secondary Neolithization to Europe, thus causing

them to consume limited amounts of pulses, too. Consequently, it might be worthwhile

for future research to also take a closer look at the paleogenetics of G6PD deficiency.

However, the probable limited consumption of pulses in comparison to cereals might

not only be due to favism, but might also be the result of the low crop yield: wild

pulse plants grow very patchy and the seeds do not ripen at the same time (Abbo

et al., 2009). Furthermore, initial largescale consumption of pulses was also probably

hindered due to even more alkaloids contained in the plants, especially at the beginning

of the domestication process, or due to the necessary intensive pre-treatment (Valamoti

et al., 2011): enhanced digestibility through the reduction of anti-nutritive substances

was one effect of the domestication process probably only reached in later prehistory

(Hopf and Zohary, 2001). The low PPN B trophic levels might also indicate that

animal milk had not yet entered the diet to a significant amount, thus making it likely

that the first milk fat remains detected in pottery (e.g. Evershed et al. 2008) from

the second half of the 7th millennium cal BC onwards do indeed mark the time of

initial animal milk use and not the invention of ceramic containers that also make

their appearance in the 7th millennium cal BC. A general decline of the importance

of pulses in the diet of the Near East during the later phases of the Neolithic (Miller,

Miller) – maybe in part driven by the pathogen Didymella rabiei infesting chickpeas,

a problem which was probably solved by the shift from summer to winter cropping

by the Bronze Age (Abbo et al., 2003) – might therefore have been compensated by

the possibility to eat cereal-cum-milk porridges. Such mixtures do not only have an

even better BV than the cereal-pulse combination (Lösch et al., 2006) but they are

additionally very rich in opioid-like substances, as they do not only contain gluten

exorphins (see above), but also caso-morphin occurring in milk and milk products

meant to sedate the suckling young animal for the benefit of the mother animal, also

functioning in humans (Zioudrou et al., 1979; Sienkiewicz-Sz lapka et al., 2009). This

calming effect is still used today when milk-cereal porridge is recommended for children

as an evening meal leading to better sleep. Until animal milk was available, the milk-

cereal combination rich in amino acids was at best only accessible to still breastfed

infants if cereal meals were used as complementary dishes during the weaning years.

While evidence for a pastoral and milkor blood-based rather than a soil-tilling lifestyle

exists in Europe from the Copper Age onwards, as, e.g., in the Beaker populations

(e.g. Menninger 2008; Kolář et al. 2012), we note a higher visibility of dairying in

the archaeological record in the Near East, e.g., the specialized churning vessels from

the 4th millennium cal BC in Anatolia (Sauter et al. 2003; for the date Schoop 2009;
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Figure 3.5: Milking frieze from el-Obed, 3rd millennium cal BC (after Orthmann 1975

Schoop et al. 2009) or the Early Dynastic milking frieze from el-Obeid showing dairy

procedures (Gouin, 1993). It has to be noted that in the Neolithic of the Near East

and Europe and with some probability also in the later prehistory of the Near East,

milk was most likely consumed only as fermented milk products after childhood. As

hunter-gatherers have no benefit from the ability to digest lactose beyond childhood,

and as the ability is relatively rare in the Near East today while it is common in

Northern Europe (Itan et al., 2009, 2010), the responsible genetic change most likely

took place in Europe sometime during the Post-Palaeolithic. Alleles responsible for

the ability to digest lactose could not be detected in several skeletons sampled from

the Linear Pottery Culture (LBK) of the second half of the 6th millennium cal BC

(Burger et al. 2007) despite a highly positive selection once the mutation has occurred,

so the simulation by Itan et al. (2009) locating the allele in the preceding Starčevo

culture of northern Southeast Europe seems unconvincing, leaving us with the LBK as

a terminus post quem and the 1st millennium AD, in which the allele has been detected

in Europe (Krüttli et al., 2014), as a terminus ante quem. In the 4th millennium cal

BC, arboriculture of olives as an oil fruit started in the Levant and spread throughout

the Mediterranean basin during the Bronze Age (Kaniewski et al., 2012). Although

their protein has a balanced amino acid spectrum (Manoukas et al., 1973), the total

protein content of only 1 g per 100 g renders their domestication rather unimportant in

terms of amino acid supply, in contrast to poppy (Papaver somniferum), a component

in the diet of the LBK in Central Europe and currently thought to be one of the rare

examples of domesticates with Western European origin (Coward et al., 2008; Zohary

et al., 2012). Wild poppy seeds, however, have been recently reported from a Levantine

PPN C context, and after all, modern poppy production is centred in the Near East

and Central Asia. Thus, taphonomy and archaeological sampling strategies might have

biased its detection in earlier contexts in the Southeast of the Old World so far (Hnila,

2002). Thus, we cannot decide at this stage whether poppy indeed belongs to the spread

of new foodstuffs around the Old World that starts in the Late Copper and the Early

Bronze Age around ca. 3000 cal BC or had already been part of the Neolithic package.

Poppy is found in Southeastern Europe, the Mediterranean, Egypt and Anatolia from

the Early Bronze Age onwards, but interestingly not in Mesopotamia and other parts

of the Near East (Jones and Valamoti, 2005; Hnila, 2002). Here, however, sesame

(Sesamum indicum), a native from India, was first cultivated from ca. 3000 cal BC

onwards (Bedigian and Harlan, 1986). Hummus with tahini can thus be viewed as
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a typical Bronze Age innovation in the protein supply of the Near East. Lallemantia

(Lallemantia iberica, L. canescens, L. peltata and L. roylenana) is another introduction

into the food economy in the Early Bronze Age Mediterranean, probably stemming

from the Near East (Jones and Valamoti, 2005), but nutritional data on the oil plant is

hardly available because it is today at best used for the production of animal fodder or

technical oils. New cereals such as millet (Panicum miliaceum) spreading from Eastern

Asia into the Near East and Europe in the Bronze Age (Lightfoot et al., 2013; Spengler

et al., 2014; Tafuri et al., 2009), and oat (Avena sativa) (Hubbard, 1980) were not major

innovations in terms of protein content and quality, and probably mainly led to greater

diversity and thus greater economic stability during bad years. The same appears to be

true for rye (Secale cereale) (Behre, 1992; Abbo et al., 2013), already cultivated in the

Neolithic of the Near East and either adopted or newly domesticated in the Late Bronze

Age of Europe (Abbo et al., 2013; Weiss et al., 2006). Pulses, however, as a stable yet

usually small component of the diet during the Neolithic and the Copper Age experience

a general decline in the Bronze Age compared to the Neolithic in many settlements

in Europe (Hopf and Zohary, 2001), though in some regions they gain considerable

importance in the Late Bronze Age (LBA), i.e. in the circumalpine regions in the

middle of the 2nd millennium cal BC. Especially broad beans (Vicia faba) are found

there in large quantities in the LBA and most likely constituted a major component of

the diet (Jacomet and Karg, 1996). It is worth noting in this context that in all three

houses of the LBA settlement of Zug-Sumpf the storage finds of cereals and beans

(Vicia faba) were counted in a proportion of approximately 2:1 (Jacomet and Karg,

1996), which cannot be explained by cultivation, harvesting or processing techniques,

but equals the optimal proportion between cereals and pulses in terms of amino acid

complementation (see above). If this is not just chance, but rather if such a proportion

could be found regularly in storage finds, it would strengthen our assumption that not

only contemporary traditional cuisine but also prehistoric people knew how a nutritious

dish is prepared. Moreover, the regular consumption in the order of a hundredweight

of broad beans per person and year calculated for LBA Zug-Sumpf (Jacomet and Karg,

1996) requires that LBA Central European people were not severely deficient in G6PD.

Such an assumption could well be in line with evidence for increased genetic diversity

in Central Europe from the 4th millennium onwards, when a decrease of the genetic

influence of the genetic makeup of the Early Neolithic founder population goes with

the reappearance of the hunter-gatherer component and the emergence of what has

been termed the Late Neolithic-Early Bronze Age component (Brandt et al., 2013).

Additionally, the latter group would be an interesting starting point to look for the

origins of lactase persistence in Europe, which so far could not be dated (see above). If

paleogenetic research could reveal that lactase persistence appeared during or shortly

after the 4th millennium BC, mean body height data from the respective regions would

have to be regarded as the result of both net nutrition and additional IGF-I intake.
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3.4 Discussion: Bringing Food and Body Height Changes

Together

The efficiency of the PPN B diet based on cereals and pulses and complemented with a

bit of meat is corroborated, e.g., by the increased body heights in the PPN B of Jericho

after a PPN A low (Röhrer-Ertl, 1978). Despite the additional introduction of animal

milk products in the 7th millennium cal BC at the latest, mean body height, however,

was not brought back to Paleolithic levels, although the amino acid package completed

in the wake of the ‘Second Neolithic Revolution’ (Düring, 2010) enabled cultivators and

livestock keepers to efficiently migrate into and settle temperate Europe. As a possible

explanation, we could speculate that animal milk – probably in combination with cereals

– did not complement, but at least partially replaced breast milk, an idea well in

line with the population growth to be inferred for the Neolithic, as earlier weaning

might have led to shorter intervals between births by means of a shortened lactational

amenorrhea and thus more births (Armelagos et al., 1991; Sellen and Smay, 2001).

Another possible reason we could think of is lowered per capita protein supply during

Neolithic population growth (e.g. for the early to middle LBK growth cf. Zimmermann

et al. 2009): if more mouths have to be fed, there is less for the individual, a similar

mechanism to what has been termed the Malthusian check in economic history. It

can be argued that the recovery of body heights starting in the Copper Age of both

the Near East and Europe is merely the result of the in-migration of genetically taller

people, if one wants to connect the genetic Late Neolithic- Early Bronze Age component

with evidence about migrations during the Beaker cultures (Price et al., 2004). As the

only region where body heights have been above the mean Neolithic values during the

Early Holocene is Eastern Europe, a likely homeland for some of the Central European

cultures of the 4th millennium cal BC from an archaeological point of view (Woidich,

2002), this explanation cannot completely be ruled out with regard to body height.

However, we can equally think of the emergence of more pastoral ways of life based

on milk and milk products during later prehistory as a possible reason. If that holds

true, the general body height increase from the Copper Age onwards would be the

result of the consumption of milk and milk products as an additional protein source,

while the even more pronounced body height gain in Europe would additionally be

due to a metabolic effect with the IGF-I contained in milk. By that time, the food

spectrum of both Europe and the Near East had widened considerably in the course

of the 3rd and 2nd millennia. Not only do the Near East and the Mediterranean

now cultivate exotic new foodstuffs, such as sesame and lallemantia, which are apt to

complement the amino acid supply in this region, but Europe and the Mediterranean

region also base their diets on a wider range of cereals by the cultivation of millet

and oat. Moreover, in some regions of Europe considerable quantities of pulse protein

are added to the diet by the Late Bronze Age. It can, therefore, be argued that the

sheer widening of the food spectrum in the Bronze Age may have led to an improved

net nutrition and therefore a higher mean body height. It has to be kept in mind,
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though, that the emergence of a deeper social differentiation in Later Prehistory might

bias the skeletal evidence towards higher-ranked individuals who might have received

inhumations that were more likely to enter the archaeological record. Higher rank as

approximated in the grave goods has been associated with both taller body height (e.g.

Teschler-Nicola 1986; Wason 2004) and higher trophic levels (Triantaphyllou et al.,

2008). As an outlook, both zooarchaeological and archaeobotanical data have to be

operationalized as variables that are as comparable through time and space as are

body heights. Subsequently, multivariate statistical analysis (as in Rosenstock 2014)

will be necessary to test whether wider food spectra, on the one hand, and the co-

occurrence of certain amino acids on the other, are indeed correlated with taller mean

height. Moreover, statistics has the potential to model the possible effects of metabolic

factors, like AMY1 gene frequency and lactase persistence, in order to simulate the

growth outcome of nutrition intake. Body heights can only be conclusively used as

the ‘rating agency’ assessing the outcome of Neolithic vs. Copper and Bronze Age

subsistence strategies if such analyses have been applied in advance.
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Kapitel 4

Modeling Body Height in

Prehistory Using a

Spatio-Temporal Bayesian

Errors-in-Variables Model

4.1 Introduction

The LiVES project (‘Lebensbedingungen und biologischer Lebensstandard in der Vor-

geschichte Europas und Südwestasiens’; Rosenstock 2014) examines the biological stan-

dard of living and living conditions during prehistory, i.e. the period from the appear-

ance of first modern humans in the Upper Paleolithic ca. 50000 to 40000 BC until the

end of the Bronze Age ca. 1000 BC, in Southwest Asia and Europe. The measure used

for approximating the biological standard of living is the body height, a key figure used

in economics since the late 1980s (Komlos, 1989) as an alternative measure for wel-

fare for times and regions where other economic indicators such as the gross domestic

product per capita are unreliable or not available. Body height reflects the nutritional

situation during childhood and youth, i.e. the human growth period. The genetically

determined body height (Weedon and Frayling, 2008) can only be reached by opti-

mal nutrition of the individual during childhood (Silventoinen, 2003). Subsistence was

subject to several changes in prehistory, among which the transition from the mobile

hunter-gathering way of life in the Paleolithic to a sedentary life based on plant culti-

vation and animal husbandry in the Neolithic starting in the Near East about 10000

BC and reaching Northern Europe by about 3000 BC was probably the most radical.

But also Copper and Bronze Age innovations such as the cattle-drawn around 4000

BC might have had an impact. With the aim to connect environmental and cultural

data as potential explaining variables with the body height variation, one of the central

research questions of the project is: How did the body height, or respectively living

standard, develop spatio-temporally in prehistory? The aim of this work is to develop

a statistical model to answer this question.
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To the author’s best knowledge this is the first attempt to model long term trends in

prehistoric living standards with respect to geographic differences. There are extensive

reviews for the ancient and medieval period (Koepke and Baten, 2005, 2008) as well

as modern history (e.g. Floud et al. 2011; Komlos 1989, 1995; Steckel 1995), while for

prehistory a picture beyond regional level is missing. The Global History of Health

Projects (Steckel, 2003) is aiming at a global picture, but has not yet come up with

analysis. Larsen (1995) gives a review and states that the shift from foraging to farming

led to a reduction in health status, increased physiological stress and led to a decline in

nutrition and living standard. This was done using various skeletal and dental patho-

logical condition measures whereas stature estimates showed no general trend. This

finding is not surprising, as Larsen’s paper does neither differentiate between different

Neolithizations in the world, such as that of the Old World with a broad range of well

suited plants and animals vs. the New world with only a limited spectrum of species,

nor between the different modes of Neolithization in one Neolithization process, i.e.

Primary Neolithization with local new domestication and Secondary or even Tertiary

Neolithization by import of domesticates. The Near Eastern to European Neolithization

trajectory (Schier, 2009), after all, displays a marked decrease in body height compared

to the Paleolithic (Rosenstock, 2014). A recent publication of Mummert et al. (2011)

provides additional evidence for a stature decline with the adaptation of agriculture.

Nevertheless, several regional studies as e.g. Bennicke (1985) for modern Denmark,

Jaeger et al. (1998) and Siegmund (2010) for Central Europe as well as Angel (1984)

for Greece indicate a recovery of body height in the Copper and Bronze Ages. It is the

intention of this article to combine anthropological measures from different prehistoric

time periods and geographic locations and provide therefore a valuable retrospective

picture of prehistoric living standards.

Body height, our variable of interest, is not directly observable for prehistoric indi-

viduals but has to be reconstructed from long bone measurements taken from skeletons

preserved in excavations. There are several formulas typically based on linear regres-

sion found among the literature to compute body height by single or combinations

of longbone measures. The most commonly used and most accurate formulas are the

ones by Pearson (1899), Breitinger (1937)/Bach (1965) and Trotter and Gleser (1952).

Moreover, the prehistoric archeological sites from which the long bone data is obtained

are usually irregularly distributed over space and time. A division into categories of

time or space as mostly done in archeological publications for the sake of convenience

is very hard to justify. For that reason a model with a nonparametric spatio-temporal

trend pattern is proposed here.

Specifically, we suggest an additive regression model, which is a common approach

for spatio-temporal smoothing (see e.g., Currie et al. 2004; Lee and Durbán 2011). In

the present case, the following model, with Y = body height, s = space and t = time,

is proposed:

Y = gmale(s, t) + gfemale(s, t) + ε, , ε ∼ N(0,Σ)

A 3-dimensional smoother g(s, t) is considered here to account for a space-time in-
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teraction effect and is modeled separately for males and females. Additionally, as the

data is structured hierarchically – with the archaeological site/occupation period of a

site on the higher level and skeletons/individuals at lower level – a population specific

effect for capturing dependencies such as similar genetic make-ups due to kinship or

local cultural and environmental factors should be introduced in the statistical model

as well. Thus, a promising model candidate would be a semiparametric mixed model

(Ruppert et al., 2003). In fact, a similar model has been proposed for estimation of

trends in physical stature of Americans in the 19th century (Lang and Sunder, 2003).

In our case, the upper formula is complemented by a random site-specific effect γ to

account for this.

Unfortunately, one cannot observe the true values of time of birth and sex, but

only estimate with some uncertainty. In general, ignoring such measurement error

may lead to severely biased estimates and a loss of power and therefore measurement

error should be accounted for in the statistical model (Carroll et al., 2006). More

specifically, the individual date of birth is given only by a certain time interval, which

is the same for all skeletons of an occupation period of a site. When radiocarbon data

is available, the interval width can sometimes as short as a few dozen years, whereby

in other cases it can be as large as two thousand years due to a rough resolution

in archaeological dating. Additionally, sex is given on an ordinal 5-category scale

(‘female’, ‘likely female’, ‘uncertain’, ‘likely male’, ‘male’), so one has also to deal with

misclassification. However, if we could estimate the proportion of males in the middle

three categories from the data, potential underrepresentation of females caused by sex

determination of anthropologists could be uncovered, e.g. if the data suggests that the

proportion of males in the category ‘likely female’ exceeds 50%. This could provide

an important hint for solving the mystery of low percentages of female individuals

frequently observed in prehistoric findspots (Kemkes-Grottenthaler, 1997).

In this article a statistical model that is able to cope with measurement error in

spatio-temporal data is introduced. Furthermore, this model is applied to a dataset

with prehistoric long bone measurements. After some more specific information on the

available dataset in Section 4.2, a short overview on (Bayesian) smoothing methods

and errors-in-variables models is given in Section 4.3. Thereafter, the statistical model

is presented in detail. Computational details and results are presented in Section 4.4,

followed by a short discussion.

4.2 Data

One goal of the LiVES project is to collect a broad sample of prehistoric long bone

measurements on the basis of a large skeleton database, the ‘Mainzer Lochkartenarchiv

für postkraniales Skelettmaterial’ (Perscheid, 1974). Originally, this data was stored on

punch cards, but has been digitized and converted to a MySQL database. All entries

from the database have to be carefully examined and corrected since the chronological

classification is mostly outdated. Additionally, we have searched for additional publica-

tions, where anthropological measurements of the excavated skeletons from prehistoric
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sites are available. The corrected entries from the Mainz database and the ones col-

lected from the literature were then merged into a new database. The extracted dataset

contains long bone measurements of 3052 skeletons from 219 sites.

Figure 4.1: Assumed time intervals for the durations of individual sites for six regions.
To demonstrate densities by overlapping intervals, an alpha (transparency) factor is
introduced in plotting

Specifically, the dataset consists of the following variables: the reconstructed body

height in mm Y , latitude and longitude in degrees for the site s = (lat, long), the

‘observed’ time of birth interval tobs = (t−, t+), where t−, t+ denote the lower and

upper interval borders determined by an expert archeologist or radiocarbon dating, the

identification number of the site id, the reliability category of the height measures rel

(see below) and the observed sex category sexobs.

The sites are distributed across Europe, Western Asia and Northern Africa, from

approximately 12000 BC to 200 BC, with a focus on the Neolithic as well as Copper

and Bronze ages covering the time period from about 8000 BC to 1000 BC. Figures 4.1

and 4.2 show the distribution of archeological sites over time.

In the vast majority of cases, the prehistoric skeletons are only partially preserved.

Thus, we have to rely on reconstruction formulas computed with an evaluation sample

of recent individuals. The body height is calculated by the linear regression formulas

of Pearson (1899), because in general they yield good approximations for both males

and females (Formicola, 1993). The reliability category rel reflects the varying quality

of literary references and the state of preservation of the skeletons’ long bones:

• Category 1: femur or humerus length available (n = 1183)

• Category 2: other long bone measures available (n = 460)

• Category 3: body height available with known formula applied to unknown long

bone (n = 1330)

87



KAPITEL 4. MODELING BODY HEIGHT IN PREHISTORY

Figure 4.2: Distribution of archaeological sites over time categories (with small random
error added to the latitude and longitude)

• Category 4: body height available with unknown formula applied to unknown

long bone. (n = 79)

The femur and humerus are considered to be the most reliable long bones for body

height reconstruction. Therefore, one would expect that reconstructed height values of

individuals from category 1 should have a lower error variance than those from cate-

gories 2-4. Category 4 should be the least reliable, whereas it is hard to say whether

category 2 or 3 is more reliable. In category 3 the long bone is unknown and there-

fore decreasing reliability, while it can contain body height reconstructed by femur or

humerus measurements, which should lead to increased reliability compared to category

2.

The observed sex variable has 5 categories (‘female’, ‘likely female’, ‘uncertain’,

‘likely male’, ‘male’), whereby it is assumed that the first and the last contain no

misclassification, although this can occur sometimes but is very hard to quantify. The

categories are determined by an expert using criteria independent of the long bone

lengths and the body height. Table 4.1 illustrates frequency distribution of the observed

sex category and their mean body height. We have only about 40% females in our

sample which is common for prehistoric skeleton data as pointed out in Section 4.1.
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Table 4.1: Body height means, standard deviations and frequencies of observed sex
categories

Sex category Mean SD n %

1 (female) 1.568 m 6.787 1074 35.2
2 (likely female) 1.598 m 7.387 79 2.6
3 (uncertain) 1.658 m 6.817 147 4.8
4 (likely male) 1.682 m 6.209 145 4.8
5 (male) 1.683 m 5.837 1607 52.6

4.3 Methods

4.3.1 Spatio-temporal modeling

In general, spatio-temporal modeling considers a random process {Y (s, t) : s ∈ Ds, t ∈
Dt} for a variable Y on the spatio-temporal index set Ds × Dt (Cressie and Wikle,

2011). Typically, Y (s, t) is decomposed into a smooth spatio-temporal surface g(s, t)

and some white noise ε. There exist many approaches for spatio-temporal smoothing

as a special case of multivariate smoothing, which can be roughly divided into methods

based on autocovariance functions (Gelfand et al., 2010), local smoothing methods and

basis function methods (Fahrmeir et al., 2013). One popular approach of the latter class,

which is pursued in this work, is the penalized B-Spline smoothing (‘P-Spline’, Eilers

and Marx 1996), because of its low computational costs as a low-rank smoother and the

ease of incorporation into the generalized linear mixed model framework. Instead of

placing knots or basis functions at each covariate location, a sufficiently high number of

knots evenly spread throughout the covariate space is chosen. The interesting function,

the spatio-temporal surface, g(s, t) is written as a weighted sum of B-spline basis

functions g(s, t) = Zβ, where Z is a design matrix of B-Splines with dimension n ×
p. To balance between roughness and smoothness (‘bias-variance tradeoff’) a penalty

is introduced. In the case of a single covariate, the penalty consists of the squared

regression parameters β weighted by the p × p penalty matrix K combined with a

smoothing parameter λ, which controls the degree of smoothness. Typically, the second

differences of the B-Spline functions are penalized to construct the penalty matrix

K (see Eilers and Marx 1996 for specifics). For a linear model, β is estimated by

minimizing the penalized residual sum of squares:

argminβ(Y −Zβ)′(Y −Zβ) + λβ′Kβ

For a multivariate version (Wood, 2006) a Kronecker Product of the marginal basis

or design matrices Z1,Z2,Z3, .. is applied to construct the multivariate basis-functions.

The multivariate penalty matrixK∗ can be constructed in a similar way by the marginal

penalty matrices K1,K2,K3, .. and their smoothing parameters λ1, λ2, λ3, .. . This

strategy is not restricted to P-Splines only. Any other appropriate smoothing basis is

suitable as well. Additionally, the so-called (approximate) thin plate regression splines

are a popular alternative in multivariate smoothing (Wood, 2003). They penalize the
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integral of the m-th derivatives of the smooth function and have some desirable prop-

erties such as being rotation-invariant. However, the covariates are assumed to be on

the same scale, i.e. they are not invariant to rescaling, since they are handled isotrop-

ically. This is not the case for spatio-temporal data as space and times are measured

on completely different scales. A covariate rescaling is sometimes performed, but this

is a rather ad-hoc workaround. Therfore, the author favors a tensor product P-Spline

as introduced above. By having a unique penalty for each covariate, scale-invariance

– but not rotation-invariance – is guaranteed. There is no real justification for this

approach, such as being optimal in some sense, but it has been proven very useful in

practical applications. The components of λ are generally estimated by searching on

a grid of possible values and selecting the combination which minimizes the AIC or

some cross-validation criterion, which can be computationally prohibitive for multiple

smoothing parameters. Another possibility is to estimate λ within a mixed model by

assuming a Gaussian distribution for β (Ruppert et al., 2003). In a Bayesian approach

(Lang and Brezger, 2004), which is used here, the penalty parameter λ is considered

as a random variable determining the precision of the (random) regression parameters

β.

4.3.2 Errors-in-variables models

Measurement error concepts

In practice, variables are often contaminated with measurement error. Mismeasured

independent variables in regression models, for example, lead to biased estimates, a

loss of power and tend to mask or smooth out features in the data (Carroll et al.,

2006). The two most common types of measurement error are the so called ‘classical’

measurement error and the ‘Berkson’ (Berkson, 1950) measurement error.

Let Wi be the observed, mismeasured variable value and Xi be the unobserved, true

value. The classical error model has the following form:

Wi = Xi + Ui , i = 1, .., n

with Ui and Xi independent, E(Ui|Xi) = 0. The errors Ui are often assumed to be

i.i.d. normal, but other distributions, non-additive forms, heteroscedastic errors or even

correlated errors are also conceivable.

Contrary to the classical measurement model, the errors Ui in the Berkson type

error structure are assumed independent of the observed value Wi: E(Ui|Wi) = 0.

Xi = Wi + Ui , i = 1, .., n

Both formulas may seem quite similar at first glance so it is important to understand the

differences and the implications of both error types. The classical measurement error

model is suitable for an instrument, which can measure the true value Xi only with a

limited precision or if we have to replace a population mean with a single measurement
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Wi. The Berkson error model is in contrast appropriate when we have population

means instead of individual exposures. Buonaccorsi (2010) introduces many practical

examples of both error types.

In our case we have the information that an individual was born in a certain interval

that is derived from knowledge about the related culture. Thus, we have information

about the population respectively of the archaeological site or settlement but not about

the skeleton itself, which can be translated into a Berkson measurement error as ex-

plained above.

In the special case of linear regression with a single mismeasured covariate with

classical i.i.d errors, a naive estimation of the regression coefficient leads to attenuation,

i.e. the slope parameter is biased towards zero. If the measurement error variance or

the ratio of measurement error and residual error is known, one can correct for this

attenuation (Frost and Thompson, 2000). In the case of Berkson type measurement

error the estimator is still unbiased. However, in more complex models with more

covariates and/or in nonlinear models, the effects of both classical and Berkson errors

are not that obvious (Carroll et al., 2006). In general, the error distribution parameters

have to be known, e.g. mean and variance for normally distributed error, or multiple

measurements have to be available. Otherwise, the problem can be non-identifiable.

For discrete covariates, measurement error is equivalent to misclassification. Again,

in our application we have Berkson type misclassification, because we are only interested

in the probability of being male for the skeletons of a certain sex category and not

the other way around. By knowing the misclassification probabilities one is able to

construct the misclassification matrix Π with entries πxw:

πxw = P (Xi = x|Wi = w)

There exist a variety of approaches to correct for measurement errors such as re-

gression calibration (Spiegelman et al., 1997), SIMEX (Simulation-Extrapolation; Cook

and Stefanski 1994), method of moments estimators (Fuller, 2009), maximum-likelihood

methods (Higdon and Schafer, 2001) or Bayesian methods (see e.g. Richardson and

Gilks 1993; Gustafson 2003). Carroll et al. (2006) gives a thorough overview on these

methods.

Bayesian errors-in-variables-models

The Bayesian approach to errors-in-variables models is to select an observation model as

if all variables were observed without measurement error, then form an error model for

the observed variables with measurement error and – only for classical errors – model

the distribution of the true unobservable variables (‘structural model’; see, for exam-

ple, Carroll et al. 2006). The observations of the mismeasured variable are treated as

additional parameters in the procedure. Furthermore, appropriate prior distributions

have to be chosen. The Bayesian approach to EIV models has several advantages. Its

modularity allows us to implement and compute relatively complex models in a straight-

forward manner. In this context we can specify the measurement error model and the
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observation model seperately. They are easily combined to a complete likelihood be-

cause of their hierarchical structure afterwards. Furthermore, in combination with

Markov Chain Monte Carlo (MCMC) we are able to perform inference on the model

parameters (even on the unobserved, true parameters!) without resampling methods

required for regression calibration or SIMEX. It is also notable that the Bayesian ap-

proach uses all information when imputing the true unobserved covariates contrary

to regression calibration as Carroll et al. (2006) points out. Another advantage is

that available prior information on parameters can be incorporated as well. Gustafson

(2005) states that putting prior information on usually non-identified parameters such

as measurement error variances is advantageous compared to using best-guess values.

A disadvantage shared with maximum likelihood estimation is the high computational

cost.

For a simple linear regression, with formula Y = βX + ε, ε ∼ N
(
0, σ2ε

)
, normally

distributed Berkson errors and their known error variance σ2u, the posterior equals the

following expression, whereby [·]/[·|·] denote the unconditional/conditional distribution

f(·)/f(·|·):

[β,X, σ2ε |Y ,W ] ∝ [Y |β,X, σ2ε ][X|W ][β|σ2ε ][σ2ε ]

∝ exp

(
− 1

2σ2ε

n∑
i=1

(Yi −Xiβ)2 − 1

2σ2u

n∑
i=1

(Xi −Wi)
2

)
× [β|σ2ε ][σ2ε ]

This can be extended straightforwardly to heteroscedastic measurement errors or

non-Gaussian distributions. For a linear model with a mismeasured categorical covari-

ate (Berkson error), the posterior equals

[β,X, σ2ε |Y ,W ] ∝ [Y |β,X, σ2ε ][X|W ][β|σ2ε ][σ2ε ]

∝
n∏
i=1

exp

(
− 1

2σ2ε
(Yi − z′iβ)2

)
× πxw × [β|σ2ε ][σ2ε ]

with Z as design matrix constructed from X and known transition probabilities πxw =

P (Xi = x|Wi = w). If the entries πxw of the misclassification matrix Π are not

exactly known one can place a suitable conjugate prior distribution on πxw, the beta

distribution Be(Axw, Bxw):

[β,X, σ2ε ,Π|Y ,W ] ∝ [Y |β,X, σ2ε ][X|W ,Π][Π][β|σ2ε ][σ2ε ]

∝
n∏
i=1

exp

(
− 1

2σ2ε
(Yi − z′iβ)2

)
× πxw × πAxw−1xw (1− πxw)Bxw−1

× [β|σ2ε ][σ2ε ]

It is easy to see, that if only some values of a discrete (or continuous) covari-

ate inherit some measurement error, as for sex in the application data, the transition

probabilities πxw (or measurement error variance) for the mismeasured values are iden-

tifiable.
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In general, the posterior marginal distributions cannot be computed analytically.

However, a MCMC sampler can be utilized to sample from these distributions. MCMC

gives accurate results but is sometimes hard to implement and rather time consum-

ing. Thus, alternative approximate estimation approaches such as the variational

Bayes method (Bishop, 2006) or the integrated nested Laplace approximation algo-

rithm (INLA; Rue and Held 2005) became popular recently. Variational Bayes was

implemented by Pham et al. (2013) for linear models with classical measurement error,

while Muff et al. (2015) applied INLA to parametric regression models with classical as

well as Berkson measurement error. However, in this application there arose no serious

problems when implementing the MCMC-method (see also Section 4.4).

4.3.3 Nonparametric regression in presence of measurement error

Several approaches have been introduced lately to combine nonparametric regression

and measurement error models. Schafer (2001) developed an EM algorithm for semi-

parametric likelihood analysis in linear and nonlinear regression models. A kernel

estimator and its convergence rates are derived by Fan and Truong (1993). This work

is generalized from local constant estimators to local polynomial estimators by Delaigle

et al. (2009). An approach using a modified least squares criterion is introduced in

Taupin (2001). A fully Bayesian model using P-splines in the nonparametric part is

proposed by Berry et al. (2002), while an estimator for heteroscedastic measurement

errors using kernel methods is developed by Delaigle and Meister (2007). Carroll et al.

(1999) proposed two estimators based on a SIMEX approach using kernel regression or

penalized splines methods and an approach assuming a mixture of normals distribution

for the unobserved covariates combined with regression splines. The case of Berkson

errors is considered in Delaigle et al. (2006), while Carroll et al. (2007) is concerned

with data contaminated with both Berkson and classical errors. However, little work

was done for the error-in-variables problem in multivariate smoothing, which is relevant

to answer the research question formulated in the introduction. A Bayesian approach

is pursued in this work, since such complex models required for the research problem

are relatively easy to handle within the Bayesian framework because of its modularity

and other advantages stated in the previous subsection.

4.3.4 Statistical model for prehistoric anthropological data

To model the spatio-temporal trends in body height we introduce a Bayesian additive

mixed model with errors-in-variables. Following Carroll et al. (2006) we begin with

formulating our additive mixed model as if time (t) and sex (sexi = 1 for males and

0 for females) were observed:

Yi = gmale(si, ti)× sexi + gfemale(si, ti)× (1− sexi) + u′iγ + εi ; for i = 1, .., n

gfemale(s, t), gmale(s, t) are the global spatio-temporal trend functions for males and

females, which are modeled seperately to account for varying sexual dimorphism. A

tensor product B-Spline, which was chosen here, or any other type of multidimensional
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smoother constructing on penalized basis functions can implement this smooth func-

tion. γm ∼ N(0, τ), m = 1, ..,M , reflects the random population-specific effect of

settlement or archaeological site containing local cultural, economic and environmental

factors or genetic dependencies, with random effects design matrix U with rows ui

constructed from the site identification number id. The residual error εi is assumed

Gaussian and can be internally decomposed into the population specific variability and

body height reconstruction uncertainty, wheareas the latter depends on the reliability

category reli ∈ {1, 2, 3, 4}. Therefore, the error is assumed to be independent and het-

eroscedastically normally distributed, εi ∼ N(0, σ2reli), ε ∼ N(0,Σ). As a consequence,

the height Y is multivariate normally distributed with mean Zβ+Uγ and covariance

Σ. Z = (Zmale|Zfemale) and β = (βmale,βfemale) denote the corresponding design

matrix and parameter vector of the B-Spline basis.

Again, according to Carroll et al. (2006), the measurement error models have to

be specified in a second step. We have Berkson errors for time (t) and sex. The

distribution of the true time of birth given the observed time interval tobs,i = (t−i , t
+
i )

is translated into an uniform distribution: [ti|tobs,i] ∼ U(t−i , t
+
i ). The misclassification

model for sex given the observed category and the associated transition probability

is a simple Bernoulli distribution: [sexi|sexobs,i = j, πj ] ∼ Ber(πj). The likelihood

functions of the additive mixed model and the measurement error model can be easily

combined into a complete likelihood because of their hierarchical structure. Together

with prior distributions on the model parameters θ = {β, t, sex,λ,Σ,γ, τ,π}, the

posterior can be formally written as:

[θ|Y , s, tobs, sexobs, id, rel] ∝ [Y |β, s, t, sex,Σ,γ, id]

× [t|tobs][sex|sexobs,π]

× [β|λ][λ][Σ][γ|τ ][τ ][π]

On the left the first line represents the posterior, and observed on the right, the likeli-

hood of the model as if the covariates were measured without error. In the second line,

a Berkson measurement error model for time (t) and sex is introduced, while the third

line contains the priors of the parameters. In general, weakly informative conjugate

prior distributions were chosen except for the male proportion parameters. Specifi-

cally, for [β|λ], with λ = (λ1, λ2, λ3), a Gaussian prior was used: β ∼ N(0,K−1).

The same B-Spline basis was employed for both males and females leading to equal

penalty matrices such that K has a block diagonal structure, K = blockdiag(K∗,K∗).

The multivariate penalty matrix K∗ is constructed from the marginal penalty matrices

K1,K2,K3 as described in Wood (2006): K∗ = λ1K
∗
1 + λ2K

∗
2 + λ3K

∗
3, K

∗
1 = K1 ⊗

Ip2⊗Ip3 , K∗2 = Ip1⊗K2⊗Ip3 , K∗3 = Ip1⊗Ip2⊗K3. Appropriate independent conju-

gate prior distributions were chosen for the smoothing parameters: λ1,2,3 ∼ GA(aλ, bλ),

scale parameters: σ21,..,4 ∼ IG(aσ, bσ), τ ∼ IG(aτ , bτ ), random effects γ ∼ N(0, diag(τ))

and the proportion of males in the observed sex categories: π2,3,4 ∼ Be(A,B). As men-

tioned in the previous subsection, the probabilities are fixed to 0 and 1 for the first and

last observed sex category: π = (0, π2, π3, π4, 1). Vague but proper prior parameters

were chosen for the inverse gamma (aσ, aτ = 0.0001, bσ, bτ = 0.0001) distributions. For

the gamma distributions of the smoothing parameters λ1,2,3 the values aλ = 1 and
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bλ = 0.0001 were selected (see also Lang and Brezger 2004). For the beta distribu-

tions of πj , Jeffreys’ prior (Kass and Wasserman, 1996) with A = 0.5 and B = 0.5

or alternatively an informative prior with (A2, B2) = (5, 20), (A3, B3) = (12.5, 12.5)

and (A4, B4) = (20, 5) are candidates. An informative prior was chosen here, since

statements as ‘likely male’, ‘uncertain’ and ‘likely female’ actually contain some valu-

able information about the sex variable. These priors correspond to distributions with

mean proportions of 25%, 50% and 75% of males in the observed sex category, which

seems reasonable. Figure 4.3 shows the informative prior distributions. After having

specified the prior distributions, the complete posterior is proportional to the following

expression presented in the same order as above, with ki = reli and ji = sexobs,i for

simpler annotation:

∝
n∏
i=1

σ−1/2ki
exp

(
− 1

2σ2
ki

(Yi − z′iβ − u′iγ)2

)
× I(t+i < ti < t−i )

t−i − t
+
i

× πsexiji
(1− πji)1−sexi︸ ︷︷ ︸

only for sexobs,i∈{2,3,4}


×

3∏
l=1

(
exp

(
−1

2
(β′λlK

∗
l β)

)
×

λaλ−1l

baλλ Γ(aλ)
exp

(
−λl
bλ

))
×

4∏
k=1

baσσ
Γ(aσ)

σ
−2(aσ+1)
k exp

(
− bσ
σ2
k

)

× exp

(
−1

2
γ′τ−1γ

)
× baττ

Γ(aτ )
τ−2(aτ+1) ×

4∏
j=2

(
π
Aj−1
j (1− πj)Bj−1

)
Following some algebra the complete conditionals, i.e. the posterior distributions given

all other parameters, for the model parameters are:

β|. ∼ N((Z ′Σ−1Z +K)−1Z ′Σ−1(Y −Uγ), (Z ′Σ−1Z +K)−1)

ti|. ∝ exp

(
(Yi − z′iβ − u′iγ)2

−2σ2k

)
× U(t−i , t

+
i )

sexi|. ∝ exp

(
(Yi − z′iβ − u′iγ)2

−2σ2k

)
×Ber(πj)

πj |. ∼ Be

Aj +
∑

i:sexobs=j

sexi, Bj +
∑

i:sexobs=j

(sexi − 1)+


γ|. ∼ N

(
(U ′Σ−1U + diag(1/τ))−1U ′Σ−1(Y −Zβ), (U ′Σ−1U + diag(1/τ))−1

)
σ2k|. ∼ IG

aσ + nk/2, bσ + 0.5
∑

i:reli=k

(
Yi − z′iβ − u′iγ

)2

τ |. ∼ IG

(
aτ +M/2, bτ + 0.5

M∑
m=1

γ2m

)

λl|. ∼ GA
(
aλ + rank(K∗l )/2, (bλ + 0.5β′K∗l β)−1

)
The computation is realized via MCMC. Gibbs sampling for drawing observations

from the posteriors is performed using the complete conditionals in the order presented
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Figure 4.3: Beta priors for male proportions in observed sex categories

above. A Metropolis-Hastings step is necessary for ti and sexi, because the conditional

distributions are not available for sampling directly as the design matrix Z is a highly

complex function of t and sex. Candidate observations for ti are generated by a

U(t−i , t
+
i ) distribution, while sexi is drawn from a Ber(0.5) distribution. The algorithm

is quite slow, because the values of the design matrix Z are changed by iteration, which

require computationally intensive matrix inversion steps for each one.

4.4 Computation and Application

All computations are done via R (R Development Core Team, 2008). To construct

the spline basis functions and penalty matrices, the mgcv package was used (Wood,

2011). The R-code of the entire program is available on request from the author. For

the MCMC algorithm, four different chains were started from widely varied starting

values with a total size of 20000 samples each. Specifically, starting values in chains

1 to 4 were set to: (0.1,1,10,100) for scale paramaters; (0.2,0.4,0.6,0.8) for proportion

parameters and (-1,0,1,10) for others. The computation took about 40 hours on an

Intel Core i7 3.4 GHz processor with 16 GB RAM.

4.4.1 Convergence diagnostics

Convergence checks have been made visually by trace and running mean plots and by

comparing the results of the four chains using the Gelman-Rubin statistic (Gelman and

Rubin, 1992). The mixing was quite fast and all chains converged to the same parameter

values. A burn-in period of 7500 burn-in samples was considered to be sufficient. With

a thinning of m = 5 this results in a sample size of 2500 for each chain. Figure 4.4 is

exemplary at displaying the running means for τ , π2, σ
2
1 and λ1 for the four MCMC

chains. The Gelman-Rubin statistics exhibited potential scale reduction factors well

below 1.1 for all parameters (e.g. 1.0003, 1.00002, 1.0002, 1.002 for τ , π2, σ
2
1 and λ1).
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Results were virtually the same for moderate changes in the prior parameters of the

Figure 4.4: Running means for τ , π2, σ
2
1 and λ1

gamma and inverse gamma distributions (with aσ, aτ = 1; bσ, bτ = 1).

4.4.2 Model fit and comparison

To evaluate the benefit of our errors-in-variables model, three different models were esti-

mated. Model 1 ignores the uncertainty in both sex and time of birth. This was done by

setting the sex categories ‘likely female’ and ‘likely male’ to ‘female’ and ‘male’ respec-

tively, assigning sex randomly with probability 0.5 for the ‘uncertain’ sex category and

utilizing the center of the observed time interval as time of birth. Model 2 accounts for

sex misclassification, while Model 3 considers the time of birth uncertainty, as described

in the previous section. The fourth model combines both types of measurement errors.

The performance of different models is evaluated by a modified version of the Deviance

Information Criterion (DIC, Spiegelhalter et al. 2002), the DIC4, introduced in Celeux

et al. (2006), because the parameter focus lies on the spatio-temporal time trend and

not on the true, mismeasured covariate values. The DIC4 integrates over these latent

variables and does not count them as model parameters. The corresponding number of

effective parameters pD4 are utilized as a measure for model complexity. The original

motivation for the use of DIC4 was missing data models, but it is also applicable in

this case because mismeasured values can be viewed as a milder case of missing ones

(Blackwell et al., 2014). Table 4.2 compares the fit of the models. Accounting for sex

misclassification in Model 2 results in a decent improvement in DIC4 and adjusted R2,

while this is rather marginal for uncertainty in time of birth in Model 3. However, the
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combination of both in Model 4 leads to the best model fit. 512 (83) knots were chosen

for tensor product P-Spline basis functions. Testing showed that a larger number of

knots (103 or 123) did improve the model fit only marginally for an exceedingly high

computational cost.

Table 4.2: Model comparison by adjusted R2, DIC4 and effective number of parameters
pD4

Model Adj. R2 DIC4 pD4

1 (no uncertainty controlled) 0.462 33868 146.38
2 (sex uncertainty controlled) 0.481 33691 120.42
3 (time uncertainty controlled) 0.467 33793 129.93
4 (sex + time uncertainty controlled) 0.488 33657 114.96

4.4.3 Results

In terms of R2 sex, time and location are able to explain almost 50% of the variance

in the estimated individual body height. Posterior means and credible intervals for

variance components and other parameters of Model 4 are shown in Table 4.3. As

Table 4.3: Posterior means, standard errors and credible intervals of model parameters
(Model 4)

Parameter Posterior Posterior 95% HPD
mean sd interval

σ21 3055 141.35 [2792.59, 3347.44]
σ22 4432 333.29 [3825.29, 5126.51]
σ23 3845 308.93 [3273.09, 4506.51]
σ24 3576 678.35 [2505.47, 5068.91]
π2 0.22 0.07 [0.10, 0.37]
π3 0.54 0.08 [0.40, 0.70]
π4 0.84 0.06 [0.71, 0.94]
τ 879.58 199.75 [539.85, 1319.42]
λ1 1.99e-6 1.32e-6 [6.94e-7, 5.05e-6]
λ2 1.98e-6 1.64e-6 [5.30e-7, 7.74e-6]
λ3 5.04e-6 3.31e-6 [1.53e-6, 1.37e-5]

expected in the previous section, the reliability category 1 has the lowest residual

variance. The estimated proportions of males in the sex categories are 22%, 54%

and 84%. These proportions are shifted even more towards male when using Jeffreys’

prior with mean posterior proportions of π2,3,4 = (0.28, 0.70, 0.94). Hence, the model

estimates do not give any evidence that the sex determination by the archaeologists is

generally biased towards a higher proportion of males. The smooth functions gfemale()

and gmale() are visualized in Figure 4.5 (females) and 4.6 (males) for Model 4.

Most noticeable is that from about 5000 to 1000 BC a heavy increase of mean body

height of about 10 cm can be observed in North Western Europe for females and to

a lesser extent for males as well, whereas the body height elsewhere rather seems to
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Figure 4.5: Estimated spatial mean body height in millimeters for females for different
points in time (Model 4)
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Figure 4.6: Estimated spatial mean body height in millimeters for males for different
points in time (Model 4)
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stay stagnant. Thus, an alternative illustration is given in Figure 4.8 for eight different

locations shown in Figure 4.7. Most curves exhibit a U-shaped development pattern

Figure 4.7: Positions of chosen locations for posterior inference

of body height in the considered time period with minima lying generally between 7000

to 4000 BC. The body height pattern at the end of the considered time span is quite

similar to the one observed today (see e.g. Rosenstock et al. 2015 for a map of mean

body heights by country). However, one should be careful in interpreting the results

regarding the rather broad credible intervals. Additionally, the reader may ask what is

gained by using advanced statistical methods and if the maps and other results from the

complex Model 4 substantially differ from the results from simple Model 1. As it turned

out the estimated spatio-temporal trends can differ quite considerably. Generally, the

estimated trend functions for males and females were slightly more wiggly, which also

explains why the effective number of parameters is higher for Model 1 than for Model

4. Moreover, they sometimes did even cross each other, which is somewhat unrealistic.

Figure 4.9 shows this behaviour exemplary for two locations.

4.5 Discussion

Motivated by the anthropological long bone dataset a fully Bayesian additive mixed

errors-in-variables model, allowing for both Berkson-type mismeasurement and mis-

classification, is proposed in this work. Accounting for measurement error leads to

different and somewhat more reasonable results. Though the number of skeletons and

settlements are not very high for a non-additive 3-dimensional smoother, this approach

revealed some interesting spatio-temporal trends in body height or standard of living
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Figure 4.8: Estimated mean body height in millimeters through time for eight different
locations (A-H) with 90% pointwise credible intervals for males (upper blue curve) and
females (lower red curve) (Model 4)

Figure 4.9: Estimated mean body height in millimeters through time for locations A
and B with 90% pointwise credible intervals for males (upper blue curve) and females
(lower red curve) (Model 1)
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in the long-term perspective. The model results suggest that no negative effects on

body height are notable during the primary neolithization in the Near East ca. 10000

BC, whereas the contemporary onset of the European Mesolithic and the spread of the

Neolithic into Anatolia and temperate Europe by way of migration or acculturation in

the 8th to 6th millennia (see Schier 2009 for a comprehensive map) witnessed a decrease

in living standard. As discussed in more detail elsewhere (Rosenstock, 2014; Scheib-

ner, 2015) this could be possibly explained by the diet shift leading to a lower protein

consumption of the agricultural societies in the Neolithic Age. The subsequent body

height recovery from ca. 5000 or 4000 BC onwards coincides with the neolithization

of Northern Europe, the stabilization of the Neolithic way of life elsewhere and certain

innovations such as cattle traction apt to reduce work load during the Later Neolithic,

Chalcolithic and Bronze Ages. Moreover, the emergence of lactase-persistent human

genotypes (Burger et al., 2007; Krüttli et al., 2014) and therefore the intake of unfer-

mented animal milk with possible implications with growth factors has to be considered

for Northwestern Europe during this time (Rosenstock, 2014). However, one must be

very careful not to overemphasize the findings with respect to the rather low sample

size and the resulting estimation uncertainty. Furthermore, it should be noted that a

significant height increase or decrease can also be attributable to selection bias in the

sample and confounding variables like climate changes or the burial practices/customs,

because some cultures may have only buried individuals with a high social status. As

a side result the data do not indicate that potentially biased sex determination of the

experts is responsible for the mystery of low percentage of female individuals among

prehistoric human skeletal remains.

Data correction and collection is an ongoing process of the project and we estimate

that at least 10000 more skeletons can be added by literature research in the future.

The LiVES project plans to make the data publicly available in 2018. As an extension

of the model it is planned to incorporate additional variables such as domestication

of animals or dairy farming to provide further insights about the association between

cultural developments and living standards. Also non-uniform measurement errors for

time of birth are conceivable and straightforward to include into the model. This is

relevant because it is often not possible to give a single time period rather than multiple

suggestions with different probabilities. This happens when the associated finds in the

graves, which help to date the skeletons, may be assigned to different periods in time.

The data are not available in such detail yet, but it is planned to incorporate this

information later into the database.
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Kapitel 5

Reconstruction of Body Height

from Long Bones for Prehistoric

Individuals: New Methodological

Concepts

5.1 Introduction

Among the variety of formulas available for the reconstruction of stature from long bone

lengths (for an overview of all available formulas see e.g. Rösing 1988; Wurm 1985;

Formicola 1993; Reichelt et al. 2003), those by Pearson (1899), Breitinger (1937)/Bach

(1965) or Trotter and Gleser 1952 are most often used in Paleoanthropology, Prehistoric

and Historic Anthropology. They all include the lengths of the humerus and radius

as well as the femur and the tibia, and some additionally use the lengths of ulna and

fibula (e.g. Telkkä 1950; Trotter and Gleser 1952, 1958; Bhavna and Nath 2009; Prasad

et al. 2012), because it has been demonstrated that ulna and fibula have some minor

importance for height development (Kurth et al., 1954; Siegmund, 2012). Correlations

between individual long bone lengths and the corresponding stature are always given,

and some authors additionally provide formulas for combinations of long bones, such

as femur and humerus (e.g. Trotter and Gleser 1952, 1958; Olivier et al. 1978).

Consequently, when aiming to estimate the stature of skeletal finds, anthropolo-

gists have to carefully select not only which formula set they wish to use, but also

which measurements or even combinations of measurements to include in the recon-

struction. Different formula sets, i.e. the population-specific publications beginning

with Pearson (1899), as well as different individual formulas, i.e. the formulas within

a set which are specific to a certain long bone or their combinations, can yield vastly

different results (see the example given in the results section). In individual cases of

single skeletons, these decisions are usually determined by some degree of convention

when it comes to the selection of the formula set, such as the Breitinger/Bach formulas

being the preferred formula set for skeletons dating to the late Antiquity or early Mid-
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dle Ages of Central Europe (Siegmund, 2010; Haberstroh and Harbeck, 2013). Also,

the selection of long bone lengths to be included depends on the state of preservation

of the skeleton: often a set is chosen that includes as many measurements as possi-

ble. Dealing with a population in which various combinations of preserved bones are

possible, however, can be tricky, since there is no agreement on whether body heights

calculated e.g. from upper limbs can really be compared with body heights calculated

from lower limbs or even upper and lower limbs. In this methodological grey area,

researchers have either resorted to choose randomly and accept that the final results

do not represent real conditions in the past, regarding calculated body heights only

as body heights a prehistoric individual would have reached if it had belonged to the

actual reference population (Röhrer-Ertl, 1978; Rösing, 1988). Other authors, however,

who are not content with such an abstract concept which represents – at best– only

a mean of establishing comparability among populations, give recommendations based

on methodological reasoning (e.g. Rösing 1988; Wurm 1986), population fitting (e.g.

Rösing 1988; Formicola 1993) or mere compliance (Siegmund, 2012).

As especially the latter point does not hold up to empiric principles, we alternatively

introduce two statistical concepts – already well-known in other fields – to the problem

of stature estimation. First we propose a concept called “model averaging” applied

to the set of formulas for different long bones. Computing all feasible reconstruction

formulas according to the preservation of the individual skeleton has been proposed

before by e.g. Pearson (1899), Telkkä (1950) and Sjøvold (1990), but their approach

of simply averaging the resulting values is not ideal. Instead, we provide a statistically

optimal way to weight these formulas appropriately by the so-called AIC-weights. This

method is suitable for researchers who wish to utilize a formula set computed on a spe-

cific reference population. Second, to harmonize the published formulas from different

research studies we introduce meta-analysis to stature estimation to provide a com-

bined effect. As a result, new universal formulas for stature estimation are derived.

A potential application for these methods is the LiVES (‘Lebensbedingungen und bi-

ologischer Lebensstandard in der Vorgeschichte Europas und Südwestasiens’) project

(Rosenstock, 2014), which aims to model the body height in prehistory by collecting

data from thousands of prehistoric skeletons from the available literature. Both ap-

proaches proposed here are illustrated with a practical example: a small subsample of

a prehistoric population.

5.2 Statistical Methods for Stature Estimation from Long

Bones

The goal in stature estimation from long bones is to get the best possible prediction

for the body height of skeletal individuals with unknown body height. Since Rollet

Rollet (1888) - following earlier attempts by Orfila and Lesueur (1831) and Topinard

et al. (1885) - started to tackle the problem with a simple tabulation of long bone

lengths and corresponding body heights derived from anatomy corpses from Lyon,
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several statistical solutions have been proposed (Lorke et al., 1953).Manouvrier (1892)

made a first attempt to formalize the relationship between the two figures and expressed

stature (S) as a product of a long bone length, in this case the physiological length of

the femur, later to be codified as F2 by Martin (1928), and a factor:

SF1 = β1F2

However, Manouvrier realized that one factor is not enough to describe the full range

of relationships, so he defined a number of long bone length ranges and corresponding

equations. Pearson (1899) was the first to understand that by introducing an intercept

β0, a linear equation

SF1 = β0 + β1F1

is better suited for describing the relationship between long bone length – he now used

the maximum femur length later to be defined as F1 Martin (1928) – and stature. Af-

ter Pearson’s notion that his linear regression formula set is valid not only for modern

French material - but for all prehistoric, historic and modern populations - was ques-

tioned by the very different formula set for Chinese material published by Stevenson

(1929), a number of structurally identical formulas have been published in the follow-

ing century. They were based on different reference populations: Breitinger (1937)

and Bach (1965), for instance, measured a sample of German sportsmen and female

students and patients, Trotter and Gleser (1952) used data from corpses of white and

black American soldiers and women from an anatomical collection, and (Olivier et al.,

1978) measured a sample of deported young males, mostly French, from World War

II and a sample of French women. With (reduced) major axis (Sjøvold, 1990) and

piecewise linear regression (Duyar and Pelin, 2003), new methods were only applied in

recent decades.

From a statistical point of view linear regression (also called ordinary least squares ?

OLS) is preferable over the major axis method when performing prediction as Warton

et al. (2006) clearly point out. The reduced major method (RMA) line describes the

best bivariate fit between long bone and body height: the long bone lengths, after

all, are a given fact in prehistoric and historic anthropology. Several authors like

Formicola and Franceschi (1996) or Ruff et al. (2012) argue that very tall or very small

individuals are better predicted with the reduced major axis (RMA) method (or ‘line

of organic correlation’). This is certainly true, but the overall prediction performance is

overcompensated by a far worse prediction for individuals of average body height and

very large or small long bone dimensions. This effect is very easy to verify by fitting the

regression lines in a scatter plot or in a simulation. We performed such a simulation to

illustrate this behavior. The true regression line was chosen to yi = 700 + 3xi +εiwith

i = 1, .., n; where 100 samples of xi and εi were drawn from Gaussian distributions,

whose parameters were chosen in compliance with stature estimation: xi ∼ N(300, 20)

and εi ∼ N(0, 50). Figure 5.1 shows one simulation run and illustrates in which cases

OLS or RMA exhibit a superior prediction. Overall, OLS beats RMA by about 7% in
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Figure 5.1: Comparison of linear regression (OLS) and reduced major axis (RMA)
methods in a simulated example

terms of mean square error when repeating the simulation a large number of times. An

extensive study conducted by Konigsberg et al. (1998) confirms this finding: as long

as the reference sample is roughly representative for the individual case, OLS is the

preferable method for stature estimation. The piecewise linear regression method is also

not considered favorable by the authors, as it produces discontinuities in the estimates.

Moreover, Breitinger (1937) and Trotter and Gleser (1952, 1958) empirically explored

the shape of the association between long bone length and body height and could not

find noteworthy deviations from linearity. Thus, the authors consider linear regression

as the preferable method for stature estimation.

5.3 Weighting Long Bone Formulas via AIC

The AIC (Akaike, 1974) is a criterion for the selection of the best fitting model out of

a variety of models for a given set of data. It is an estimate of the Kullback-Leibler

divergence, a measure for the difference between two probability distributions. The AIC

is the criterion of choice when the goal is to optimize prediction performance (Burnham

and Anderson, 2004). It is defined as:

AIC = −2logL(θ̂) + 2p

where p denotes the number of parameters in the model, i.e. in our case the number

of long bones used in the formula + 1 (for the intercept β0), and θ̂ the model parameter

estimates. The second term penalizes the model complexity; hence following the parsi-

mony principle or Ockham’s razor, simpler models are preferred when their explanation
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or prediction performance is equal. The specific AIC value has no direct interpretation

but models with lower values indicate a better fit. For linear regression models the AIC

has the following explicit formula:

AIC = n log(σ̂∗
2
ε ) + 2p

σ̂∗
2
ε = 1

n

∑n
i=1 ε̂

2
i is the residual variance of the regression model. 1 The upper

expression is advantageous for our purpose: with a few exceptions – Rollet 1888 under-

lying Pearson 1899 – neither the original data with which the reconstruction formulas

were created nor the AIC is available. The residual variance or standard deviation,

however, has always been published and enables us to compute the AIC for existing

sets of reconstruction formulas in literature. As we usually have incomplete skeletons,

however, the long bone formulas of a particular publication were estimated on a differ-

ent sample size for each long bone. Therefore, we propose to set n in the upper AIC

formula to the minimum sample size of all fitted models as a simple workaround. There

arise two natural model selection strategies (Burnham and Anderson, 2004):

There arise two natural model selection strategies:

• Strategy 1: Select the model (long bone formula) with the lowest AIC.

• Strategy 2: Model-averaging: If several models have a comparable good prediction

power or AIC it might be better to compute an ensemble of all models. One can

do this by computing ‘probabilities’ from the AIC’s that a certain model has

the best prediction power and weight by them. Let M be the set of models and

∆AIC(Mi) = AIC(Mi)−minm∈M (AIC(m))

wi(Mi) =
exp(−1/2∆AIC(Mi))∑K
k=1 exp(−1/2∆AIC(Mi))

While the first strategy allows us to identify the best long bone formula (for a single

long bone or combinations of long bones) fitted on a sample, we are able to make use

of all available data of a skeleton to predict its stature using the second strategy by

optimally weighting the single predictions.

5.4 Meta-Analysis for Stature Estimation Formula Sets

Wurm (1986) states that searching for a universal formula applicable for every geo-

graphic region, time period, social strata et cetera may not be appropriate for stature

estimation due to different body proportions. He recommends developing formulas for

every thinkable population but warns of an outsized variety of formulas at the same

time. The authors think that meta-analysis can provide an elegant compromise between

these extremes. Meta-analysis is a well-established statistical concept usually employed

in psychology Schmidt (1992) or clinical trials (DerSimonian and Laird, 1986) to assess

1This is the estimator without bias correction. To compute it from the usual estimator σ̂2
ε , one has

to premultiply σ̂2
ε by n−p

n
. However, this difference is negligible for small values of p

n
as occurring in

stature estimation.
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Figure 5.2: 95% confidence and prediction bands for humerus formula of Pearson (1899),
males

the effect size of a certain treatment. It is used to aggregate evidence from multiple

related studies (Cooper et al., 2009) by synopsis to compute a combined effect. Rely-

ing on a single study or – in our case – formula set in stature estimation as currently

practiced by e.g. selecting the formula set with the best population fit, is not the

best choice. One reason is the large estimation uncertainty induced by a small sam-

ple size: many stature estimation formulas are estimated on a sample smaller than 50

individuals, which leads to rather broad confidence intervals for the parameters of the

linear regression formula. Figure 5.2 shows the confidence and prediction bands for the

humerus (H1) formula of Pearson (1899) for males. The confidence bands include the

uncertainty on the regression parameters, whereas the prediction bands additionally

include the residual error ε. For humerus lengths far away from the sample mean, the

95% confidence bands (of the regression line) can be as large as 50 mm. That would

mean that by the law of total variance the actual standard error of prediction would

be about 35 mm compared to the residual standard error of 33 mm. Moreover, our

estimates are certainly biased as the population sample, from which the regression line

is estimated, is clearly different from the population we like to predict for. Also, the

methods used to determine body height are subject to discussion and not perfectly

reliable (see below). By combining formula sets from different studies we might be able

to improve the prediction and get a realistic measure of the true estimation uncertainty

which is underestimated when using a single formula set.

In general, one can differentiate between methodological differences and sample

differences of the conducted studies. Some of the more frequent problems include the

use of different long bone measures, as various different lengths measurements, such

as in the case of the femur the maximum length (F1) or the natural or oblique length

(F2), or in the case of the tibia the lateral condyle-malleolar length (T1), the spino-
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malleolar length (T1a) and the medial condyle-malleolar length (T1b) etc. exist and –

despite being codified by Martin (1928) – are often confused (in e.g. Breitinger 1937;

for an overview see Siegmund 2010). , using long bones of the left or right side of the

body or an average of both sides, reconstruction of bone length from bone fragments

etc. Stature data can be gained as living stature (varying with posture, time of the

day and age of the subject), corpse length (hanging or lying), or skeletal length (here,

often various cartilage and soft tissues correction factors are applied). Differences in

the sample can concern the population or region of settlement, economical structural

change with altered dietary or physical exercise habits or certain demographic groups

or social strata, respectively.

Currently, the approach to find a formula can be denoted as ‘matching’, i.e. one

looks for a stature estimation formula which is estimated on a sample population which

is as close as possible to the individuals we like to estimate the stature for and suffices

certain quality criteria. Rösing (1988), for example, tried a categorization for some

cases of applications and listed some quality criteria (e.g. sample size n ≥ 50, separation

by sex, ‘normal’ social structure or no secular acceleration). Assessing ‘closeness’ to

prehistoric populations, however, is highly speculative. As first palaeogenetic insights

suggest, the genetic variability between populations might have been much higher than

today due to lower population density and lower mobility and therefore the dispersion

in body proportions could be even larger than in recent populations, especially in

certain time periods such as the glacial peaks and the early Holocene (Haak et al.,

2015; Mathieson et al., 2015).

Thus, as long as both a population specific formula as well as a universal formula

are prone to bias, a universal formula set derived from several formula sets is probably

preferable as it is the only way to correctly assess the uncertainty of the estimation

and is likely to have a smaller bias on an average prehistoric population. There are

no particular helpful validation studies either. Formicola and Franceschi (1996) and

Schmidt et al. (2007) evaluated some stature reconstruction formulas using prehistoric

individuals reconstructed by the Fully (1956) method, but the sample sizes used for

estimation were extremely low (n < 30). Additionally, even the Fully technique inherits

a considerable error when estimating the living stature (Raxter et al., 2006). Thus, the

authors propose a different strategy, i.e. to collect suitable publications (sufficing some

quality standards) on regression formulas and perform a statistical meta-analysis to

obtain a combined formula when trying to estimate the stature of certain (prehistoric)

individuals.

Two variants of meta-analysis can be distinguished: the fixed effects and the random

effects meta-analysis (Cooper et al., 2009). The fixed effect variant assumes that the

underlying true effects and regression parameters respectively are identical in each

study. The combined effect is then just the weighted average of the single effect where

the weights are proportional to sample size. This is a very unrealistic assumption for our

problem due to the differences in methodology and in the examined sample populations.

The random effects meta-analysis assumes that there is a common effect (i.e. common
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regression intercept and slope in stature estimation) which differs randomly from study

to study. Formally, the combined regression slope can be expressed as:

β1i = β1 + νi + εi ; i = 1, . . . ,m

, where β1i is the study-specific regression coefficient; β1 is the common regression

coefficient, νi ∼ N(0, σ2ν) denotes the deviation between the studies and εi ∼ N(0, σ2ε )

is the error within the study. We are therefore decomposing the observed variance into

its two components, the within-studies variation (expressed by σ2ε ) and the between-

studies variation (expressed by σ2ν). A meta-analysis is performed in the results section

to compute common regression coefficients β0 and β1 using four popular formulas from

literature on stature estimation.

5.5 Results

5.5.1 AIC-weighting for the formula set of Pearson (1899)

We computed the AIC for all formulas of Pearson (1899) using the data of Rollet (1888)

for males. These can be found in Table 5.1. Terms like F1 + T1b denote simple linear

regression with the sum of F1 and T1b as regressor while terms like F1, T1b denote

a multiple linear regression with two regressors. The abbreviations correspond to the

definitions of Martin (1928); see also Bräuer (1996).

Table 5.1: Summary AIC with data from Pearson (1899); males, n = 41− 50

Long bone σ̂ε AIC ∆AIC w in %

H1 33.0 104.5 4.6 3.2
T1b 35.7 110.7 11.0 0.13
F1 32.7 103.7 3.8 4.5
R1 41.0 122.3 22.4 4.3E-6
Fib1 32.6 103.5 3.6 5.3
F1+T1b 31.2 99.9 0 31.8
H1+R1 33.9 106.7 6.8 1.1
F1,T1b 31.5 102.6 2.7 7.8
H1,R1 31.0 101.3 1.4 15.0
H1,F1 30.6 100.3 0.4 26.0
H1,F1,T1b,R1 30.3 103.5 3.6 5.3

Among the formulas with only a single long bone, the one using the fibula (Fib1)

is estimated to have the best predictive power followed by the formula using the femur

(F1) and humerus (H1). It is equally well as the formula using all four long bones

considered by Pearson (1899) for long bone estimation due to the penalization term

in the AIC. If the second strategy shall be applied, the weighted average of stature

estimates by all formulas according to the AIC-weights (last column in Table 5.1)

has to be computed. Prehistoric skeletons are very often incomplete and the model

averaging strategy is still applicable for incomplete skeletons. We give an application
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example at the end of the results sections for illustration. Admittedly, this approach

requires more effort than just arbitrarily choosing the long bones formulas to use, but

a simple Excel or R script will do the work and is available from the corresponding

author. Additional AIC tables for females as well as for the formulas of Trotter and

Gleser (1952) and Olivier et al. (1978) can be found in the appendix. One has to

note that for increasing sample size a single formula is usually dominant and applying

strategy 2 does not give a big advantage in this case. Therefore, the proposed strategy

is rather advantageous for improving stature estimates using formulas computed on

small to mid-sized reference populations.

5.5.2 New universal formulas generated by combining existing formu-

las using statistical meta-analysis

First, we perform an exemplary meta-analysis for stature reconstruction by the maxi-

mum humerus length H1 in females. We used four formulas commonly used for stature

reconstruction of prehistoric individuals from Europe and the Near East, i.e. the for-

mulas of Pearson (1899), Trotter and Gleser (1952)2, Breitinger (1937) and Bach (1965)

and Olivier et al. (1978). The metafor package (Viechtbauer, 2010) for the statistical

Software R was utilized for the computation. Summary statistics for humerus (female)

can be found in Table 5.2.

Table 5.2: Linear regression formulas for stature estimation by H1, females

Author, year β̂0 β̂1 σ̂ε n

Pearson, 1899 703 2.75 35 50
Trotter/Gleser, 1952 580 3.36 45 63
Bach, 1965 984 2.12 39 500
Olivier et al., 1978 623 3.09 36 140

Bach (1965) might be considered as an outlier, but the random effects meta-analysis

is relatively robust to it. Additionally, even though it is estimated on a rather specific

population (sport students), we have no hint that populations in prehistory are less

extreme. Figure 5.3 shows the resulting regression line together with prediction bands

and the four original formulas.3

The resulting common regression coefficient estimates are β̂0 = 732 and β̂1 = 2.80.

Cochran’s Q-Test was significant (p < 0.001) for both coefficients. Thus, we have to

reject the null hypothesis of equal regression coefficients, confirming that a random

effects meta-analysis instead of a fixed effects one is the appropriate choice. The stan-

dard error of the meta-analysis regression line is now 22 mm (for H1 = 300 mm) which

accounts for the methodological as well as sample population differences. It has to be

added to the combined residual standard error of 38 mm resulting in a total prediction

2Based on the Terry collection.
3The standard errors of the regression coefficients are necessary for performing meta-analysis but

are commonly not available. We approximated them by rescaling the standard errors of the Pearson
(1899) data by the sample size which should work reasonably well.
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Figure 5.3: Stature estimation regression lines for H1, females: Pearson (1899), Trot-
ter/Gleser (1952), Bach (1965), Olivier et al. (1978) and random effects meta-analysis
line with 95 % prediction bands.

standard error of 44 mm. This is a considerably higher but more realistic estimate of

the prediction uncertainty compared to the usage of a single formula from literature.

Tables 3 (females) and 4 (males) show the results of the meta-analysis for six different

long bones for males and females using the same formulas.4

Table 5.3: Results for meta-analysis (intercept β̂0, slope β̂1, residual standard error σ̂ε
and prediction standard error for a typical long bone length in parenthesis) for diffferent
long bones (females). *: Less than 4 formulas available

Long bone β̂0 β̂1 σ̂ε Typical pred. error

H1 732.3 2.80 38.5 44.3 (300 mm)
F1 779.4 1.96 36.6 55.6 (430 mm)
T1 780.7 2.32 37.3 41.7 (340 mm)
R1 807.9 3.56 42.4 73.2 (220 mm)
Fib1* 672.6 2.66 35.8 40.8 (340 mm)
U1* 592.9 4.18 47.5 51.7 (240 mm)

Surprisingly, the formulas for tibia (T1) had the lowest typical prediction error for

both males and females (leaving aside Fib1, for which only two instead of four formulas

were available). This phenomenon can be assigned to the fact that the different formulas

using tibia are relatively similar whereas they vary more widely for the radius, for

example. The authors recommend estimating the stature by using the formula with

the typical lowest prediction error of the available long bones.

4T2, F2 and R1b were converted to T1, F1 and R1 by the mean differences given in Rösing (1988).
Formulas for the left and right body side were averaged.

114



KAPITEL 5. BODY HEIGHT FROM LONG BONES: NEW CONCEPTS

Table 5.4: Results for meta-analysis (intercept β̂0, slope β̂1, residual standard error σ̂ε
and prediction standard error for a typical long bone length in parenthesis) for diffferent
long bones (males). *: Less than 4 formulas available

Long bone β̂0 β̂1 σ̂ε Typical pred. error

H1 706.4 2.97 42.6 55.6 (330 mm)
F1 715.5 2.13 38.3 54.7 (460 mm)
T1 779.6 2.44 39.6 45.5 (360 mm)
R1 796.1 3.62 46.3 72.8 (240 mm)
Fib1* 708.2 2.67 36.8 43.8 (370 mm)
U1* 687.1 3.86 47.4 53.4 (260 mm)

5.5.3 Practical example

We illustrate the proposed methods for stature estimation on a small sample of prehis-

toric individuals from Stuttgart-Mühlhausen. The cemetery of Stuttgart-Mühlhausen

(‘Viesenhäuser Hof’) consists of two areas dating to the oldest and older Linear Pot-

tery Culture (LBK) ca. 5700-5400 cal BC (Area II) and middle to younger LBK ca.

5400-4900 cal BC (Area I) (Price et al., 2003; Kurz, 1993; Hujić, 2016), hence belong-

ing to the first Central Europeans practicing plant cultivation and animal husbandry.

Altogether 24 adult individuals, 12 (five females and seven males) from Area II and 12

(six females and six males) from Area I were chosen for this example. Table 5.5 shows

the long bone lengths F1, T1b, H1 and R1. Stature estimates of these individuals using

the formula sets of Pearson (1899) as well as estimates using the proposed methods -

denoted as the AIC-methods ‘Strategy 1’ and ‘Strategy 2’ and ‘Meta-Analysis’ - can be

found in Table 5.6. One remarkable skeleton is found in grave II-27. It has rather short

upper limbs compared to its lower ones resulting in stature estimates ranging from 1588

mm to 1701 mm depending on which formula is applied. The simple strategy 1 selects

the formula using the sum of F1 and T1b as regressor because it has the lowest AIC.

Strategy 2, favored here, however, gives a more balanced estimate of 1660 mm as it is

the weighted mean of all individual long bone formulas (with weights corresponding to

the AIC-weights computed in Section 5.3; cf. last column of Table 5.1). The universal

formula resulting from the meta-analysis (using T1 as it has the lowest prediction error

of the available long bones) yields 1715 mm. This larger estimate is not surprising

because the formulas of Pearson (1899) give rather low estimates compared to other

stature estimation formulas (Fig. 5.3). An Excel file for application and reproduction

is available from the corresponding author.
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Table 5.5: Long bone measurements from Stuttgart-Mühlhausen (in mm)

Area I

Grave Sex F1 Ti1b H1 R1
I-20 m 399 334 - 221
I-25 m 487 394 338 263
I-36 m 410 342 291 233
I-43 m - - - 231
I-47 m 439 367 311 247
I-48 m 423 339 308 228
I-21 f 376 - 272 245
I-33 f 415 334 292 226
I-34 f 377 300 269 -
I-37 f - - 288 214
I-55 f 405 - 284 -
I-61 f 424 340 304 227

Area II

II-21 m - - - 219
II-27 m 471 381 305 233
II-44 m - 357 - -
II-78 m 457 374 320 238
II-83 m - 378 335 253
II-107 m 465 403 329 264
II-111 m 450 380 - 246
II-42 f - - 275 197
II-43 f - - - 209
II-45 f 415 347 - -
II-58 f - - 251 -
II-133 f 387 - 272 -
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Table 5.6: Stature estimates in mm for individuals from Stuttgart-Mühlhausen (formulas of Pearson (1899). The last three columns denote the
stature estimates of the proposed methods: The AIC-methods ‘Strategy 1’ and ‘Strategy 2’ as introduced in Section 5.3 and ‘Meta-Analysis’ as
introduced in Section 5.4

Area I

Grave Sex H1 T1b F1 R1 F1+T1b F1,T1b H1+R1 H1,R1 H1,F1 H1,F1,T1b,R1 Strategy 1 Strategy 2 Meta-Analysis
I-20 m - 1580 1563 1582 1562 1562 - - - - 1562 1562 1600
I-25 m 1685 1723 1729 1720 1734 1734 1708 1685 1712 1716 1734 1717 1747
I-36 m 1549 1599 1584 1621 1584 1584 1575 1549 1559 1563 1584 1569 1620
I-43 m - - - 1615 - - - - - - 1615 1615 1632
I-47 m 1606 1659 1638 1667 1647 1646 1634 1607 1620 1626 1647 1630 1681
I-48 m 1598 1592 1608 1605 1596 1597 1596 1595 1599 1595 1596 1597 1613
I-21 f 1464 - 1460 1631 - - 1541 1477 1457 - 1457 1461 1494
I-33 f 1519 1533 1536 1568 1535 1535 1542 1523 1530 1518 1518 1528 1561
I-34 f 1456 1453 1462 - 1454 1454 - - 1455 - 1454 1454 1483
I-37 f 1508 - - 1528 - - 1516 1509 - - 1509 1509 1539
I-55 f 1497 - 1516 - - - - - 1508 - 1508 1511 1528
I-61 f 1552 1547 1553 1571 1552 1552 1564 1554 1554 1543 1543 1549 1575

Area II

II-21 m - - - 1576 - - - - - - 1576 1576 1589
II-27 m 1589 1692 1699 1621 1700 1701 1599 1588 1644 1659 1700 1660 1715
II-44 m - 1635 - - - - - - - - 1635 1635 1657
II-78 m 1632 1675 1672 1638 1676 1676 1634 1630 1653 1660 1676 1659 1698
II-83 m 1676 1685 - 1687 - - 1686 1675 - - 1675 1676 1708
II-107 m 1659 1744 1687 1723 1719 1717 1694 1660 1675 1690 1719 1692 1769
II-111 m - 1690 1659 1664 1675 1674 - - - - 1675 1673 1713
II-42 f 1472 - - 1471 - - 1468 1471 - - 1471 1471 1502
II-43 f - - - 1511 - - - - - - 1511 1511 1552
II-45 f - 1564 1536 - 1550 1550 - - - - 1550 1549 1592
II-58 f 1406 - - - - - - - - - 1406 1406 1435
II-133 f 1464 - 1481 - - - - - 1472 - 1472 1476 1494
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5.6 Discussion

This work introduced the statistical concepts of Akaike model weighting and random

effects meta-analysis to stature estimation. These methods – which are already well

known in other fields – help to improve prediction and – possibly more importantly –

assess the prediction uncertainty in more realistic way by accounting for methodological

and sample population differences. The concept of Akaike model weighting can be used

to obtain the best prediction performance using a set of formulas estimated on a single

reference population. When it is unclear whether the individuals one likes to estimate

the stature of and the reference population are reasonably similar, one might be better

off to use the universal formulas derived by meta-analysis in Section 5.4. The reader may

ask how to combine both presented methodological concepts. Unfortunately, combining

both the AIC weighting and the meta-analysis is a complicated problem in statistics

where only approximate solutions exist (it is related to the denominator degrees of

freedom in mixed models). This will be a subject of future research.

5.7 Appendix

Table 5.7: Summary AIC with data from Pearson (1899); females, n = 43− 50

Long bone σ̂ε AIC ∆AIC w in %

H1 34.8 113.7 10.3 0.2
T1b 34.4 112.8 9.3 0.3
F1 32.8 108.7 5.2 2.7
R1 40.9 127.6 24.2 2.0E-4
Fib1 33.5 110.5 7.0 1.1
F1+T1b 30.9 103.5 0.1 35.2
H1+R1 36.1 116.9 13.4 4.3E-2
F1,T1b 31.0 104.7 1.3 19.1
H1,R1 33.6 112.7 8.2 0.6
H1,F1 32.3 108.3 4.9 3.2
H1,F1,T1b,R1 30.2 103.5 0 37.3
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Table 5.8: Summary AIC with data from Trotter and Gleser (1952); males (living
stature), n = 545− 710

Long bone σ̂ε AIC ∆AIC w in %

H1 40.5 1533.2 330.8 9.5E-73
T1b 33.0 1310.0 107.6 2.8E-24
F1 32.7 1300.0 97.6 4.1E-22
R1 43.2 1603.5 401.1 5.1E-88
U1 43.2 1603.5 401.1 5.1E-88
Fib1 32.9 1306.7 104.3 1.4E-23
F1+T1b 29.9 1205.4 0 64.4
H1,R1 38.8 1488.5 286.1 4.8E-63
H1,T1b 32.6 1298.7 196.3 1.5E-43
F1,T1b 29.9 1204.4 2.0 23.7
H1,F1,T1b 29.9 1206.4 4.0 8.7
H1,R1,F1 31.5 1263.3 60.9 3.8E-14
H1,R1,F1,T1b 29.9 1208.4 6.0 3.2

Table 5.9: Summary AIC with data from Trotter and Gleser (1952); females (living
stature), n = 63

Long bone σ̂ε AIC ∆AIC w in %

H1 44.5 194.6 28.4 1.6E-5
T1b 36.6 170.0 3.8 3.7
F1 37.8 174.1 7.9 0.5
R1 42.4 188.5 22.4 3.5E-4
U1 43.0 190.4 24.2 1.5E-4
Fib1 35.7 166.9 0.7 17.9
F1+T1b 35.5 166.2 0 25.5
H1,R1 40.4 183.4 17.2 4.6E-3
H1,T1b 36.7 171.3 5.1 1.9
F1,T1b 35.5 167.1 0.9 15.8
H1,F1,T1b 35.1 166.6 0.4 20.2
H1,R1,F1 36.6 171.9 5.7 1.4
H1,R1,F1,T1b 35.1 167.5 1.4 12.7
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Table 5.10: Summary AIC with data from Olivier et al. (1978); males (living stature),
n = 140

Long bone σ̂ε AIC ∆AIC w in %

H1 (r) 39.8 393.3 71.6 2.1E-16
T1b (r) 35.8 363.7 41.9 5.9E-10
F2 (r) 35.6 362.1 40.4 1.3E-9
R1b (r) 40.4 397.5 75.8 2.6E-17
U1 (r) 44.8 426.5 104.7 1.4E-23
Fi1 (r) 34.5 353.3 31.6 1.0E-7
H1,R1b 36.8 371.4 50.6 7.6E-12
H1,U1 37.9 380.6 58.9 1.2E-13
H1,F2 33.4 341.9 20.1 3.2E-5
H1,T1b 32.7 339.3 17.6 0.12
H1,Fi1 32.1 334.1 12.4 1.5E-3
R1b,F2 32.9 341.0 19.3 4.9E-5
R1b,T1b 34.1 351.0 29.3 3.3E-7
R1b,Fi1 33.4 345.2 23.5 6.0E-6
U1,F2 33.4 345.2 23.5 6.0E-6
U1,T1b 34.4 353.5 31.8 9.6E-8
U1,Fi1 33.7 347.7 26.0 1.7E-6
F2,T1b 31.7 330.6 8.9 0.089
F2,Fi1 31.0 324.4 2.6 20.4
H1,F2,T1b 31.2 328.1 6.4 3.1
H1,F2,Fi1 30.5 321.7 0 75.4

Table 5.11: Summary AIC with data from Olivier et al. (1978); females (living stature),
n = 140

Long bone σ̂ε AIC ∆AIC w in %

H1 (l) 36.2 366.7 83.2 8.3E-17
R1b (l) 35.3 359.7 76.2 2.8E-15
U1 (l) 35.3 359.7 76.2 2.8E-15
F2 (l) 35.6 362.1 78.5 8.4E-16
T1b (l) 38.5 384.0 100.5 1.5E-20
H1,R1b 32.8 340.1 56.6 4.9E-11
H1,U1 32.3 335.8 52.3 4.2E-10
H1,F2 31.3 327.0 43.5 3.4E-8
R1b,F2 29.9 314.2 30.7 2.1E-5
R1b,T1b 33.9 349.4 65.9 4.8E-13
U1,F2 29.9 314.2 30.7 2.1E-5
U1,T1b 33.5 346.1 62.5 2.5E-14
F2,T1b 27.6 291.8 8.3 1.5
H1,F2,T1b 26.7 283.5 0 98.4
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Räpitz. Ausgrabungen und Funde 5(2), 74–77.

Groß, M. (2016a). Kernelheaping: Kernel Density Estimation for Heaped Data. Berlin:

Freie Universität. R package version 1.6.

Groß, M. (2016b). Modeling body height in prehistory using a spatio-temporal bayesian

errors-in variables model. AStA Advances in Statistical Analysis, forthcoming.

131



LITERATURVERZEICHNIS

Groß, M., U. Rendtel, T. Schmid, S. Schmon, and N. Tzavidis (2016). Estimating the

density of ethnic minorities and aged people in Berlin: Multivariate kernel densi-

ty estimation applied to sensitive geo-referenced administrative data protected via

measurement error. Journal of the Royal Statistical Society: Series A (Statistics in

Society), forthcoming.
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Gustafson, P. (2003). Measurement Error and Misclassification in Statistics and

Epidemiology: Impacts and Bayesian Adjustments. New York: CRC Press.

Gustafson, P. (2005). On model expansion, model contraction, identifiability and prior

information: Two illustrative scenarios involving mismeasured variables. Statistical

Science 20(2), 111–137.
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letlerininpaleoantropolojik açıdan incelenmesi. Arkeometri Sonucları Toplantısı 18,

31–40.

Haak, W., I. Lazaridis, N. Patterson, N. Rohland, S. Mallick, B. Llamas, G. Brandt,

S. Nordenfelt, E. Harney, K. Stewardson, et al. (2015). Massive migration from the

steppe was a source for Indo-European languages in Europe. Nature 522, 207–211.

Haas, N. (1970). Anthropological observations on the skeletal remains from Giv’at

ha-Mivtar. Israel Exploration Journal, 38–59.

Haas, N. and H. Nathan (1973). An attempt at a social interpretation of the Chalcolithic

burials in the Nahal Mishmar caves. In Y. Aharoni (Ed.), Excavations and Studies:

Essays in Honour of Professor Shemuel Yeivin. Tel-Aviv, pp. 143–153. University,

Institute of Archaeology, Tel-Aviv.

Haberstroh, J. and M. Harbeck (2013). Nekropolen des 5. Jahrhunderts n. Chr. in
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Hiller, S. and V. Nikolov (1997). Österreichisch-Bulgarische Ausgrabungen und

Forschungen in Karanovo. Die Ausgrabungen im Südsektor 1984-1992. Salzburg:
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Hnila, P. (2002). Some remarks on the opium poppy in ancient Anatolia. In R. Aslan,

S. Blum, G. Kastl, F. Schweizer, and D. Thumm (Eds.), Mauerschau. Festschrift für

Manfred Korfmann, pp. 315–328. Grunbach.
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der Universität Innsbruck. Universität Innsbruck.

Horwitz, L. K. and B. Rosen (2005). A review of camel milking in the southern Levant.

In J. Mulville and A. Outram (Eds.), The zooarchaeology of Milk and Fats, pp.

121–131. Oxford.

Horwitz, L. K. and P. Smith (2000). The contribution of animal domestication to the

spread of zoonoses: A case study from the southern Levant. Anthropozoologica 31,

77–84.

Hubbard, R. (1980). Development of agriculture in Europe and the Near East: evidence

from quantitative studies. Economic Botany 34(1), 51–67.
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Köhler, K. (2009). The anthropological remains from the Budakalász cemetery. In

B. M. and R. P. (Eds.), The Copper Age cemetery of Budakalász. Pytheas Kiadó,
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American Journal of Physical Anthropology 131(2), 181–193.

Loui, A., M. Elmlinger, F. Hochhaus, R. Grund, M. Obladen, and M. Ranke (2004).

Insulin-like-growth-Faktoren (IGF) und Bindungsproteine (IGFBP) in Muttermilch

von Früh-und Reifgeborenen. Zeitschrift für Geburtshilfe und Neonatologie 208(1),

208–235.

Manoukas, A. G., B. Mazomenos, and M. A. Patrinou (1973). Amino acid compositions

of three varieties of olive fruit. Journal of Agricultural and Food Chemistry 21(2),

215–217.
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Wienerwald. Römisch-Germanische Forschungen 49.

Olivier, G., C. Aaron, G. Fully, and G. Tissier (1978). New estimations of stature and

cranial capacity in modern man. Journal of Human Evolution 7(6), 513–518.

Ong, K., J. Kratzsch, W. Kiess, and D. Dunger (2002). Circulating IGF-I levels in

childhood are related to both current body composition and early postnatal growth

rate. The Journal of Clinical Endocrinology & Metabolism 87(3), 1041–1044.

Orfila, M. J. B. and O. Lesueur (1831). Traité des exhumations juridiques: et
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N. Benecke (Ed.), Beiträge zur Archäozoologie und Prähistorischen Anthropologie,

Volume 4, pp. 178–181. Konstanz.

Richardson, S. and W. R. Gilks (1993). A Bayesian approach to measurement error

problems in epidemiology using conditional independence models. American Journal

of Epidemiology 138(6), 430–442.

Riquet, R. (1962). Les ossements humains de la Grotte 2 de la Trache à Châteaubernard
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Studia Honoraria 36. Rahden/Westfalen: Verlag Maria Leidorf.
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Siegmund, F. (2010). Die Körpergröße der Menschen in der Ur- und Frühgeschichte

Mitteleuropas und ein Vergleich ihrer anthropologischen Schätzmethoden. Books on

Demand, Norderstedt 2010.
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Anhang

Kurzfassungen in englischer Sprache

Abstract: Estimating the Density of Ethnic Minorities and Aged Peo-

ple in Berlin: Multivariate Kernel Density Estimation Applied to Sen-

sitive Geo-Referenced Administrative Data Protected via Measure-

ment Error

Modern systems of official statistics require the timely estimation of area-specific den-

sities of sub-populations. Ideally estimates should be based on precise geo-coded in-

formation, which is not available due to confidentiality constraints. One approach for

ensuring confidentiality is by rounding the geo-coordinates. We propose multivariate

non-parametric kernel density estimation that reverses the rounding process by using

a measurement error model. The methodology is applied to the Berlin register of res-

idents for deriving density estimates of ethnic minorities and aged people. Estimates

are used for identifying areas with a need for new advisory centres for migrants and

infrastructure for older people.

Abstract: Kernel Density Estimation for Heaped Data

In self-reported data usually a phenomenon called ‘heaping’ occurs, i.e. survey partic-

ipants round the values of variables such as income, weight or height to some degree.

Additionally, respondents may be more prone to round off or up due to social desirabil-

ity. By ignoring the heaping process spurious spikes and bumps are introduced when

applying kernel density methods naively to the rounded data. A generalized Stochastic

Expectation-Maximization (SEM) approach accounting for heaping with potentially

asymmetric rounding behaviour in univariate kernel density estimation is presented in

this work. The introduced methods are applied to survey data of the German Socio-

Economic Panel and exhibit very good performance in simulations.

Abstract: Back to Good Shape: Biological Standard of Living in the

Copper and Bronze Ages and the Possible Role of Food

Body height has been put forward in the field of economics as a substitute measure of

welfare in times and regions when usual proxies, such as GDP, are not reliable or avail-

able. Using skeletal remains, this concept can also be applied to archaeology. Taking

earlier approaches (e.g. Jaeger et al. 1998; Koepke and Baten 2008; Siegmund 2010),
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a database of relevant long bone measurements is currently being compiled within the

framework of a research project entitled “Living conditions and biological standard of

living in the prehistory of Europe and Southwest Asia (LiVES)”, involving prehistoric

archaeology, prehistoric anthropology and statistics. In addition to general method-

ological problems arising from the estimation and comparison of archaeological body

height data as a proxy for the biological standard of living, research in later prehistory is

additionally hampered by the increasing occurrence of collective burials where, in many

cases, taphonomy and excavation techniques blur the skeletal contexts. Furthermore,

cremation has led to the destruction of relevant parts of the skeletons. When properly

circumvented using statistics, however, a preliminary sample shows specific diachronic

as well as regional trends in the Neolithic and the Bronze Age when comparing the

Near East and Europe. They suggest that the Old World body height pattern of tall

northerners and short southerners, known since the Roman Period, has not been a con-

stant phenomenon, but probably evolved during the Copper Age and the Bronze Age

after a general Neolithic body height decline. Looking for causalities, analyses have to

consider nutrition, work and disease load, as well as social status in multivariate mod-

els. They also have to overcome problems in the operationalization and interconnection

of independent and dependent data. Moreover, possible genetically encoded metabolic

changes in, for example, starch or lactose digestion in some prehistoric populations

have to be taken into consideration.

Abstract: Modeling Body Height in Prehistory Using a Spatio-Temporal

Bayesian Errors-in-Variables Model

Body height is commonly employed as a proxy variable for living standards among

human populations. In the following, the human standard of living in prehistory will

be examined using body height as reconstructed through long bone lengths. The aim

of this work is to model the spatial dispersion of body height over the course of time

for a large archeological long bone dataset. A major difficulty in the analysis is the

fact that some variables in the data are measured with uncertainty, like the date,

the sex and the individual age of the available skeletons. As the measurement error

processes are known in this study, it is possible to correct this using so-called errorsin-

variables models. Motivated by this dataset, a Bayesian additive mixed model with

errors-in-variables is proposed, which fits a global spatio-temporal trend using a tensor

product spline approach, a local random effect for the archeological sites and corrects

for mismeasurement and misclassification of covariates. In application to the data, the

model reveals long-term spatial trends in prehistoric living standards.

Abstract: Reconstruction of Body Height from Long Bones for Prehis-

toric Individuals: New Methodological Concepts

The variety of estimation formulas available in the physical anthropological literature

leads to vastly different results if stature is reconstructed from long bone lengths. De-

spite the existence of several overviews giving general guidelines on this topic, the

157



ANHANG

selection of a particular formula as well as the selection of the long bone measurement

or set of measurements to be used within this formula, is currently left to the individual

researcher’s judgement. A more formal perspective on this problem is therefore indi-

cated. The new approach presented here introduces two statistical concepts: Model

averaging by Akaike weights establishes a verifiable criterion for the selection of the best

combination of long bone measurements within a chosen formula set such as Pearson

(1899), whereas statistical meta-analysis can be used to create a new set of formulas

for stature estimation of prehistoric individuals from the multitude of formula sets that

have been published until now. An optimal weighting scheme for the formula set of

Pearson (1899) is computed using Akaike model averaging. Furthermore, new universal

formulas for stature estimation are derived by combining four frequently used stature

estimation formulas. As an example, the two strategies described here are applied to

a small subsample of skeletal finds from a Central European prehistoric population

(early Neolithic Linear Pottery Culture (LBK), ca. 5700-5000 cal BC). It is shown

that by such aggregation of information an improved and more reliable estimation of

stature can be obtained. Both concepts lead to more balanced stature estimates and

can provide a way out of the dilemma of the largely subjective applicant’s choice of

formula.

Kurzfassungen in deutscher Sprache

Zusammenfassung: Estimating the Density of Ethnic Minorities and

Aged People in Berlin: Multivariate Kernel Density Estimation Ap-

plied to Sensitive Geo-Referenced Administrative Data Protected via

Measurement Error

Moderne Systeme der amtlichen Statistik erfordern die zeitnahe Einschätzung flächen-

spezifischer Dichten von Teilpopulationen. Im Idealfall sollten sich Schätzungen auf

exakte, geocodierte Informationen stützen, die jedoch aufgrund Vertraulichkeit bzw.

datenschutzrechtlicher Bedenken nicht zur Verfügung stehen. Ein möglicher Ansatz für

die Wahrung der Vertraulichkeit ist das Runden der Geokoordinaten. Wir schlagen ei-

ne multivariate nichtparametrische Kerndichteschätzung vor, die den Rundungsprozess

mit Hilfe eines Messfehlermodells umkehrt. Die Methodik wird auf das Berliner Mel-

deregister angewandt um Dichteschätzungen von ethnischen Minderheiten und älteren

Menschen in Berlin zu erhalten. Diese Schätzungen werden für die Ermittlung von

Regionen mit einem Bedarf an neuen Beratungsstellen für Bewohner mit Migrations-

hintergrund sowie geeigneter Infrastruktur für ältere Menschen genutzt.

Zusammenfassung: Kernel Density Estimation for Heaped Data

In Umfragen mit Selbstangaben tritt der Regel ein Phänomen namens “Heaping”

auf, d.h. Umfrageteilnehmer runden die Werte ihres Einkommens, Gewichts oder ihrer

Körperhöhe zu einem gewissen Grad. Darüber hinaus können die Befragten aufgrund
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von sozialer Erwünschtheit anfälliger für Auf- oder Abrunden sein. Wenn das Ver-

fahren der Kerndichteschätzung naiv, d.h. unter Ignorierung des Rundungsprozesses,

auf die Daten angewandt wird, treten vermehrt Ausbuchtungen bzw. Modi an den

Häufungswerten auf. Ein verallgemeinerter stochastischer Expectation-Maximization-

Ansatz (SEM) zur Berücksichtigung von gehäuften Daten mit potenziell asymmetri-

schem Rundungsverhalten in univariater Kerndichteschätzung wird in dieser Arbeit

vorgestellt. Diese Methoden wird auf Daten des Sozio-Oekonomischen Panels (SOEP)

angewandt und zeigt sehr gute Ergebnisse in Simulationen.

Zusammenfassung: Back to Good Shape: Biological Standard of Living

in the Copper and Bronze Ages and the Possible Role of Food

Körperhöhe wird in den Wirtschaftswissenschaften in Zeiten und Regionen, in wel-

chen übliche Proxies wie das BIP, nicht zuverlässig oder verfügbar sind, zunehmend als

Ersatzmaß für den Lebensstandard genutzt. Unter Verwendung von Skelettüberresten

kann dieses Konzept auch auf die Archäologie übertragen werden. Unter Nutzung von

früheren Ansätzen (z.B. Jaeger et al. 1998; Koepke and Baten 2008; Siegmund 2010)

wird derzeit eine Datenbank mit relevanten Langknochenmessungen im Rahmen eines

Forschungsprojekts “Lebensbedingungen und biologischer Lebensstandard in der Vor-

geschichte Europas und Südwestasien (LiVES)”, welches prähistorische Archäologie,

prähistorische Anthropologie und Statistik miteinander verknüpft, zusammengestellt.

Zusätzlich zu den allgemeinen methodischen Problemen bei der Schätzung und dem Ver-

gleich archäologischer Körperhöhendaten als Proxy für den biologische Lebensstandard

wird die Forschung in der späteren Vorgeschichte durch das zunehmende Auftreten von

kollektiven Gräbern, wodurch in vielen Fällen die individuellen Skelettkontexte durch

Ausgrabungstechniken verwischt werden, zusätzlich behindert. Darüber hinaus hat die

Bestattungspraxis der Einäscherung oft relevante Teile der Skelette zerstört. Wenn dies

mit modernen statistischen Methoden an einem vorläufigen Datenssatz berücksichtigt

wird, zeigen sich jedoch diachrone sowie regionale Trends in der Jungsteinzeit und der

Bronzezeit beim Vergleich des Nahen Osten und Europa. Sie lassen vermuten, dass das

Verteilungsmuster der Körperhöhe, welches seit der römischen Zeit bekannt war – also

große Menschen im Norden und kleinere im Süden Europas – keine ständige Erschei-

nung war, sondern sich wahrscheinlich während der Kupferzeit und der Bronzezeit nach

einer allgemeinen Rückgang der Körperhöhe in der Jungsteinzeit entwickelte. Auf der

Suche nach Kausalitäten sollten Analysen die Ernährung, Arbeits- und Krankheits-

belastung sowie den sozialen Status in statistischen Modellen berücksichtigen. Diese

Modelle haben auch die Problemen bei der Operationalisierung und Assoziation von

unabhängigen und abhängigen Daten überwunden. Außerdem müssen genetisch ko-

dierte metabolischen Veränderungen z.B. bei der Verdauung von Lactose oder Stärke

in einigen prähistorischen Populationen berücksichtigt werden.
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Zusammenfassung: Modeling Body Height in Prehistory Using a Spatio-

Temporal Bayesian Errors-in-Variables Model

Körperhöhe wird häufig als Proxy-Variable für den Lebensstandard menschlicher Po-

pulationen verwendet. Im Folgenden wird der menschliche Lebensstandard in der Vor-

geschichte unter Verwendung von Körperhöhe, welche durch Lanknochen rekonstru-

iert wurde, untersucht. Das Ziel dieser Arbeit ist es, die räumliche Verteilung der

Körpergröße im Laufe der Zeit mithilfe eines großen archäologischen Langknochen-

Datensatzes zu modellieren. Eine Hauptschwierigkeit bei der Analyse ist die Tatsache,

dass einige Variablen wie die chronologische Einordnung, das Geschlecht oder das Al-

ter der Skelette nur mit einer gewissen Unsicherheit gemessen wurden. Da die Mess-

fehlerprozesse in dieser Untersuchung bekannt sind, ist es möglich dies mithilfe von

sogenannten Fehler-in-den-Variablen-Modellen zu korrigieren. Es wird ein Bayesiani-

sches additiv gemischtes Modell mit Fehler-in-den-Variablen vorgeschlagen, welches eine

globale räumlich-zeitliche Entwicklung unter Verwendung eines Tensor-Produkt-Spline

Ansatzes, eines lokalen Zufallseffektes für die archäologischen Fundstätten sowie auf

Messfehler und Missklassifikation von Kovariaten korrigiert. In der Anwendung auf die

Daten macht das Modell langfristige räumliche Trends bezüglich des prähistorischen

Lebensstandards sichtbar.

Zusammenfassung: Reconstruction of Body Height from Long Bones

for Prehistoric Individuals: New Methodological Concepts

Die große Vielfalt der Schätzformeln zur Körperhöhenbestimmung anhand von Lang-

knochen in der physisch-anthropologischen Literatur führt teilweise zu sehr unterschied-

lichen Ergebnissen. Für den Anwender stellt sich daher die Frage, welche Langknochen

und welche Formel für die Körperhöhenschätzung auszuwählen sind. Trotz der Existenz

von mehreren systematischen Übersichtsarbeiten, welche allgemeine Empfehlungen zu

diesem Thema geben, soll diese Arbeit das Problem aus statistischer Sicht und weniger

aus inhaltlicher betrachten. Zwei neue methodische Konzepte werden dabei eingeführt:

“model-averaging” durch AIC-Gewichte und statistische Meta-Analyse. Erstere eta-

bliert ein verifizierbares Gewichtungsschema für eine gegebene Menge von Formeln,

wie z.B. von Pearson (1899) publiziert, während die Meta-Analyse neue Universalfor-

meln aus gegebenen Formeln verschiedener Quellen zur Körperhöhenschätzung erzeugt.

Es wird gezeigt, dass durch eine solche Aggregation von Informationen eine verbesser-

te und zuverlässigere Abschätzung der Körperhöhe erreicht werden kann. Neue For-

meln für die Körperhöhenschätzung von prähistorischen Menschen werden in diesem

Zusammenhang vorgestellt und auf prähistorische Skelette einer zentraleuropäischen

Population (Linearbandkeramik, ca. 5700-5000 cal BC) angewandt.
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