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Zusammenfassung  
 
Insulin-like growth factor bindendes Protein-2 (IGFBP-2) ist das 

vorherrschende IGF-bindende Protein, das während der Adipogenese 

produziert wird und bekanntlich die Insulin-stimulierte Glukoseaufnahme (GA) 

in Muskelfasern erhöht. Wir untersuchten die IGFBP-2-induzierten 

Veränderungen der basalen und Insulin-stimulierten GA in Adipozyten und die 

zugrunde liegenden Mechanismen. Wir bestimmten ferner die Rolle von 

Insulin und IGF-1-Rezeptoren bei der Mediation von IGFBP-2 und der 

Auswirkung von IGFBP-2 auf die IGF-1-induzierte GA. Vollständig 

differenzierte 3T3-L1-Adipozyten wurden mit IGFBP-2 in Gegenwart und 

Abwesenheit von Insulin und IGF-1 behandelt. Insulin, IGF-1 und IGFBP-2 

induzierten eine dosisabhängige Zunahme der GA. IGFBP-2 erhöhte die 

Insulin-induzierte GA nach Langzeitinkubation. Die IGFBP-2-induzierte 

Wirkung auf die GA wurde weder durch Insulin- oder IGF-1-Rezeptorblockade 

noch durch Insulinrezeptor-Knockdown beeinflusst. IGFBP-2 erhöhte 

signifikant die Phosphorylierung von PI3K, Akt, AMPK, TBC1D1 und PKCζ/λ 

und induzierte die GLUT-4-Translokation. Darüber hinaus reduzierte die 

Hemmung von PI3K und AMPK die IGFBP-2-stimulierte GA signifikant. 

Zusammenfassend lässt sich sagen, dass IGFBP-2 die GA in 3T3-L1 

Adipozyten durch Aktivierung von PI3K / Akt, AMPK / TBC1D1 und PI3K / 

PKCζ/λ/GLUT-4 Signalwege stimuliert. Die stimulierende Wirkung von IGFBP-

2 auf die GA ist unabhängig von seiner Bindung an IGF-1 und wird 

möglicherweise nicht durch den Insulin- oder IGF-1-Rezeptor vermittelt. Diese 

Studie hebt eine mögliche Rolle von IGFBP-2 im Glukosestoffwechsel hervor. 

Schlüsselwörter: IGFBP-2; Glukoseaufnahme; AMPK; GLUT-4. 
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Abstract  
 

Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF 

binding protein produced during adipogenesis and is known to increase the 

insulin-stimulated glucose uptake (GU) in myotubes. We investigated the 

IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes 

and the underlying mechanisms. We further determined the role of insulin and 

IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the 

IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with 

IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1 and 

IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the 

insulin-induced GU after long-term incubation. The IGFBP-2-induced impact 

on GU was neither affected by insulin or IGF-1 receptor blockage nor by 

insulin receptor knockdown. IGFBP-2 significantly increased the 

phosphorylation of PI3K, Akt, AMPK, TBC1D1 and PKCζ/λ, and induced 

GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly 

reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 

3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1 and 

PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is 

independent of its binding to IGF-1 and is possibly not mediated through the 

insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in 

glucose metabolism.   

Key words: IGFBP-2; Glucose uptake; AMPK; GLUT-4. 
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Abstract  

Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein 

produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in 

myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in 

adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 

receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully 

differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin 

and IGF-1. Insulin, IGF-1 and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased 

the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither 

affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 

significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1 and PKCζ/λ, and induced 

GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-

stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of 

PI3K/Akt, AMPK/TBC1D1 and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 

on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-

1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism. 

Key words: IGFBP-2; Glucose uptake; AMPK; GLUT-4. 

1. Introduction 

Insulin-like growth factor-1 (IGF-1) bears structural homology with pro-insulin [1], and plays a key 

role in the proliferation and differentiation of adipocytes [2]. In vitro, it is known to exert mitogenic 

effects at nanomolar concentrations [3] and to induce insulin-like metabolic effects in both muscle and 

adipose tissue [4]. The production and secretion of IGF-1 is affected by age, nutritional status and 

other hormones [5]. Because of the ability of insulin to induce hepatic growth hormone (GH) receptor 

gene expression [6] and protein abundance [7], the GH-induced synthesis and release of IGF-1 is 

highly dependent on the hepatic insulin sensitivity. This interplay among GH, insulin and IGF-1 is of 

key importance for metabolic and growth regulation [8]. 
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The bioavailability of IGFs is regulated by a family of seven structurally conserved binding proteins 

(IGFBPs) [9-11]. These IGFBPs bind IGF-1 and IGF-2 but not insulin [12]. The IGF-1 independent 

role of IGFBPs in growth and metabolism has also been reported at least in vitro [13, 14]. IGFBP-2 is 

the predominant binding protein produced during adipogenesis of white preadipocytes [15]. Both 

inhibitory and stimulatory effects of IGFBP-2 on the cellular actions of IGF-1 and IGF-2 have been 

reported [16, 17]. IGFBP-2 is reported to be a key regulator of metabolic diseases, such as diabetes 

and obesity. Low IGFBP-2 has been shown to be associated with higher fasting glucose levels and 

reduced insulin sensitivity suggesting it as a biomarker for identification of insulin-resistant 

individuals [18]. Moreover, IGFBP-2 gene expression was down-regulated in visceral white adipose 

tissue of mice and its circulating levels were reduced in obese ob/ob, db/db and high fat-fed mice [19]. 

Low levels of circulating IGFBP-2 have also been reported in obese adults [20] and children [21]. 

Wheatcroft and colleagues demonstrated that IGFBP-2–overexpression conferring protection against 

age-associated decline in insulin sensitivity in mice [22]. Moreover, the leptin-induced overexpression 

of IGFBP2 has been shown to reverse diabetes in insulin-resistant obese mice and hyperinsulinemic 

clamp studies showed a 3-fold improvement in hepatic insulin sensitivity following IGFBP-2 

treatment of ob/ob mice [23]. However, only few information exists to date regarding the mechanisms 

underlying the positive IGFBP-2-induced impact on glucose metabolism. Indeed, IGFBP-2 has been 

shown to increase the insulin-stimulated glucose uptake in myotubes [24] but nothing is known about 

its impact on glucose uptake in adipocytes with respect to the insulin or IGF-1 induced effects. We, 

therefore, aimed to investigate the IGFBP-2-induced changes in both basal and insulin-stimulated 

glucose uptake in 3T3-L1 adipocytes and the underlying mechanisms. We further investigated the role 

of insulin and IGF-1 receptors in mediating the IGFBP-2 and even the impact of IGFBP-2 on the IGF-

1 induced improvement in glucose uptake.  

2. Materials and methods 

2.1. Reagents, hormones and antibodies 
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IGF-1 and IGF-1 Long R3 (IGF-1 LR3) were purchased from BioVision Inc. (Milpitas, CA, USA). 

IGFBP-2, Dulbecco's Modified Eagle Medium (DMEM), penicillin/streptomycin and fetal bovine 

serum (FBS) were purchased from Biochrom AG (Berlin, Germany). Insulin, dexamethasone, 

LY294002 and picropodophyllin (PPP) were supplied by Sigma Aldrich (Darmstadt, Germany). 

3‐isobutyl‐1‐methylxanthine (IBMX), S961, wortmannin and Compound C were purchased from 

Biomol GmbH (Hamburg, Germany), Phoenix Biotech (Beijing, China), Merck Chemicals 

(Darmstadt, Germany) and BIOZOL Diagnostica Vertrieb (Eching, Germany), respectively. RevertAid 

First Strand cDNA Synthesis Kit, SYBR Green master mix, Bicinchoninic Acid (BCA) protein assay 

kit and ECL reagent were supplied by Thermo Fisher Scientific (Dreieich, Germany). DNA primers 

were purchased from Eurogentec Deutschland GmbH (Köln, Germany). All other chemicals were 

supplied by Sigma Aldrich (Darmstadt, Germany). 

2.2. Cell culture 

The murine fibroblast cell line 3T3-L1 (ATCC, Manassas, VA, USA) was cultured in DMEM 

supplemented with 4.5 g/L glucose, 10% fetal bovine serum (FBS), 4 mM glutamine, 50 U/ml 

penicillin and 50 µg/ml streptomycin until confluence. The cells were incubated to differentiate into 

adipocytes following the method of Woody et al [25] with slight modifications. Briefly, 2 days post-

confluence, cells were treated with 0.5 mM IBMX, 1 µM dexamethasone and 1µM insulin 

supplemented DMEM for 2 days. The cells were then maintained in 1µM insulin supplemented 

growth medium for 3 days and in growth medium for 4 days prior to experiments. 

2.3. Transfection of insulin receptor (INSR) siRNAs 

Differentiated 3T3-L1 adipocytes were transfected with control or INSR specific siRNA (validated 

siRNA from Dharmacon) using LipofectamineRNAiMAX (Invitrogen) for 72 h. The efficiency of 

transfection was assessed by using qPCR and western blot. 

2.4. Measurement of glucose uptake 

Glucose uptake was assayed using the method described by Yamamoto et al [26]. Briefly, 

differentiated 3T3-L1 adipocytes were serum starved for 4 h followed by incubation in D-glucose free 
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DMEM for 1 h. The adipocytes were washed with PBS (pH 7.4) and then incubated for 30 min in 

Krebs-Ringer bicarbonate buffer (KRBP) with different concentrations of insulin, IGF-1, IGF-1 LR3 

and/or IGFBP-2. IGF1 LR3 is an analogue of IGF-1 in which the glutamic acid at carbon 3 (Glu3) is 

replaced by arginine and contains 13 extra amino acids to the N-terminus.  It has a very low affinity 

towards IGFBPs as compared to IGF-1 [27]. The rationale for using IGF1-LR3 was to investigate 

whether IGFBP-2 is able to impact the IGF-1 induced increase in glucose uptake regardless of its 

binding to IGF-1 itself. Had IGFBP-2 exerted additive effect on the IGF-1 induced glucose uptake, it 

would be imperative to scrutinize the observed effect as due to binding or other means. In some 

experiments, the adipocytes were incubated with 100 nM S961 (INSR blocker) for 2 h, 60 nM PPP 

(IGF-1 receptor blocker) for 4 h, 100 µM LY294002 (PI3K inhibitor) for 1 h, 200 nM wortmannin 

(PI3K inhibitor) for 30 min or 200 µM Compound C (AMPK inhibitor) for 20 min before the 

treatment. The adipocytes were treated with [3H] 2-Deoxy-D-glucose (0.5 µCi/ml in HEPES) for 10 

min at room temperature (RT) and then washed with PBS. Thereafter, the cells were lysed in 50 mM 

NaOH/1% Triton X-100 for scintillation counting using a liquid scintillation counter (PerkinElmer 

Wallac GmbH, Freiburg, Germany). Each experiment was performed with three technical replicates 

and total number of experiments was three. 

2.5. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis 

Total RNA was isolated from 3T3-L1 adipocytes using TRizol reagent and was treated with DNase I. 

RNA was quantified at 260 nm using a Nanodrop (Peqlab Biotechnologie, Erlangen, Germany) and 

samples with A260/A280 ratios < 1.8 were discarded. One µg RNA was reverse transcribed into 

cDNA using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Dreieich, 

Germany). cDNA was amplified using SYBR Green master mix (Thermo Fisher Scientific, Dreieich, 

Germany) with the primers set outlined in Table 1 and the following conditions; initial denaturation 

step at 95°C for 10 min, followed by 40 cycles of 15 sec at 95°C, 60 sec at annealing temperature of 

respective primer, and 60 sec at 72°C for extension. Melting curve analysis was used to assess the 

quality of PCR products and the cycle threshold (CT) values were analyzed using the 2-ΔΔCt method. 

Data were normalized to 36B4 and presented as % of control. 
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2.6. Preparation of a plasma membrane fraction for glucose transporter (GLUT)-4 translocation 

assay 

The amount of GLUT-4 in the cell membranes was determined using subcellular fractionation [28] 

followed by western blotting analysis. Adipocytes were washed 3 times with ice cold HEPES-EDTA-

sucrose (HES) buffer (pH 7.4) containing proteinase inhibitors. The cell suspension was homogenized 

by passing through 22-gauge needle 10 times on ice. The homogenate was centrifuged at 16000 g for 

30 min at 4°C and pellet was suspended in HES buffer followed by centrifugation at 16000 g for 30 

min at 4°C. The pellet was resuspended in HES buffer, layered on the top of sucrose cushion (38.5% 

sucrose, 20 mM HEPES and 1 mM EDTA, pH 7) in 1:1 volume ratio and centrifuged at 100000 g for 

1 h at 4°C. The plasma membrane fraction (middle layer) was carefully collected and centrifuged at 

40000 g for 20 min at 4°C. The pellet was used to determine amount of GLUT-4 using Western 

blotting. 

2.7. Western blot analysis 

Treated 3T3-L1 adipocytes were lysed in RIPA buffer supplemented with inhibitors for proteinases 

and phosphatases. For the GLUT-4 translocation experiments, the samples were lysed in a specific 

buffer (10 mM Tris-HCl [pH 7.2], 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1% sodium 

deoxycholate and 0.1% SDS) supplemented with proteinase and phosphatase inhibitors. The protein 

content in the samples was measured by BCA assay kit.  Proteins (30-50 µg) were denatured and 

resolved in 10% SDS/PAGE and transferred to nitrocellulose membranes. For GLUT-4, 8% 

SDS/PAGE was used. Blots were blocked for 1 h and probed with 1:1000 diluted primary antibodies 

for phosphoinositide 3-kinase (PI3K) p85, phospho-(Tyr) PI3K p85, protein kinase B (Akt), phospho-

Akt (Ser473), AMP-activated protein kinase alpha (AMPKα), phospho-AMPKα (Thr172), atypical 

protein kinase (PKCζ), phospho-PKCζ/λ (Thr410/403), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain 

family member 1), phospho-TBC1D1 (Ser237) and GAPDH over night at 4°C, and with GLUT-4 

antibody and Na+/K+ ATPase for 1 h at RT. The blots were washed and incubated with 1:2000 diluted 

corresponding horseradish peroxidase (HRP)-labeled secondary antibodies. Details of the used 

antibodies are listed in Table 2. After washing, the membranes were developed with ECL reagents, 
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visualized and densitometry analysis using Image Lab™ Software (Bio-Rad Laboratories GmbH, 

Munich, Germany) was used to quantify protein signal. 

2.8. Statistical analysis 

Data were analyzed for statistical significance by one-way analysis of variance (ANOVA) with 

Tukey’s post-hoc test using GraphPad Prism 5 (La Jolla, CA, USA). The results were presented as 

means ± standard error of the mean (SEM) with values of P<0.05 were considered significant. 

3. Results 

3.1. Effect of IGFBP-2 on basal as well as insulin and IGF-1 induced increase in glucose uptake 

in 3T3-L1 adipocytes 

To study the effect of insulin, IGF-1, IGF-1 LR3 and IGFBP-2 on glucose uptake in 3T3-L1 

adipocytes, the cells were incubated with different concentrations of all tested agents for 30 min and 

[3H] 2-Deoxy-D-glucose uptake was assayed. Insulin and IGF-1 were able to exert statistically 

significant effects on glucose uptake. As represented in Figure 1A, different concentrations of insulin 

(10, 20, 50 and 100 nM) were able to exert a significant (P<0.001) increase in glucose uptake. IGF-1 

as well produced a significant increase in glucose uptake at either 10 nM (P<0.05) or higher 

concentrations (P<0.001) as depicted in Figure 1B. 

Treatment of the cells with the lengthened analogue of IGF-1, IGF-1 LR3, induced significant increase 

in glucose uptake first at higher concentrations (20, 50 and 100 nM) (Fig. 1C). Similarly, IGFBP-2 

was able to significantly (P<0.01) increase glucose uptake in adipocytes first at concentration of 100 

nM as compared to control cells (Fig. 1D). 

Next, we determined both the short and long-term impact of IGFBP-2 on insulin, IGF-1 and IGF-1 

LR3 induced glucose uptake in adipocytes. 

Short-term incubation of the cells with 1:1 stoichiometric ratio of IGFBP-2 and either insulin, IGF-1, 

or IGF-1 LR3 for 30 min resulted in no additive increase in glucose uptake when compared to insulin, 

IGF-1 or IGF-1 LR3 alone (Fig. 1E).  
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Long-term incubation (24 h) of the cells with IGFBP-2 significantly (P<0.05) increased basal glucose 

uptake and exerted an additive effect (P<0.01) on insulin-stimulated glucose uptake. However, 

adipocytes treated with IGFBP-2 for 24 h showed non-significant changes in either IGF-1 or IGF-1 

LR3 induced glucose uptake (Fig. 1F).  

3.2. The IGFBP-2 induced impact on glucose uptake is not mediated through the activation of 

insulin or IGF-1 receptor 

To investigate whether the stimulatory effect of IGFBP-2 on glucose uptake is mediated through its 

binding to insulin or IGF-1 receptors, we incubated 3T3-L1 adipocytes with either insulin receptor 

blocker (S961) or IGF-1 receptor blocker (PPP). 

3T3-L1 adipocytes incubated for 2 h with S961 showed a significant (P<0.05) decrease in basal 

glucose uptake when compared with the control cells (Fig. 2A). The insulin receptor blocker S961 

significantly reduced insulin (P<0.001), IGF-1 (P<0.001) and IGF-1 LR3 (P<0.01) stimulated glucose 

uptake, whereas no impact (P>0.05) of such treatment on IGFBP-2 stimulated glucose uptake was 

seen. 

When compared with S961, the IGF-1 receptor blocker PPP was not able to induce any significant 

(P>0.05) effect on glucose uptake in adipocytes neither under basal conditions nor following 

stimulation with IGF-1, IGF-1 LR3 or IGFBP-2 (Fig. 2B).  

In 3T3-L1 adipocytes transfected with control or INSR specific siRNA (Fig. 2C and 2D), insulin (Fig. 

2E) and IGF-1 stimulated glucose uptake (Fig. 2F) was significantly (P<0.05) reduced, whereas INSR 

knockdown potentiated the effect of IGFBP-2 on glucose uptake when compared with the control cells 

(P<0.01) (Fig. 2G). 

3.3. IGFBP-2 stimulates glucose uptake in a PI3K-dependent manner 

Adipocytes treated with insulin and IGF-1 for 30 min exhibited significant (P<0.001) increase in PI3K 

phosphorylation when compared with the control cells. Similarly, IGFBP-2 induced a significant 

increase in PI3K phosphorylation in 3T3-L1 adipocytes treated for either 30 min (P<0.01) or 24 hr 

(P<0.001) (Fig. 3A). 
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The effect of PI3K inhibitors (LY294002 and wortmannin) on glucose uptake was investigated to 

further determine the role of PI3K in mediating the IGFBP-2 stimulated glucose uptake in 3T3-L1 

adipocytes. Treatment of the adipocytes with either LY294002 (Fig. 3B) or wortmannin (Fig. 3C) 

induced a significant decline in basal as well as insulin-, IGF-1- and IGFBP-2- stimulated glucose 

uptake (P<0.001).  

3.4. IGFBP-2 induces Akt- and AMPK-phosphorylation and the subsequent increase in GLUT-4 

translocation in a PI3K-dependent manner 

 

We further investigated the impact of IGFBP-2 on Akt and AMPK phosphorylation as well as on 

GLUT-4 translocation. As expected, insulin and IGF-1 significantly (P<0.001) up-regulated Akt 

phosphorylation in treated 3T3-L1 adipocytes. Similarly, IGFBP-2 induced a noticeable increase in 

Akt phosphorylation in 3T3-L1 adipocytes treated for either 30 min (P<0.05) or 24 h (P<0.01) (Figure 

4A). 

IGF-1 significantly (P<0.001) increased, whereas insulin failed to induce (P>0.05) AMPK 

phosphorylation in 3T3-L1 adipocytes (Fig. 4B). Similarly, treatment of adipocytes with IGFBP-2 for 

either 30 min or 24 h induced a significant (P<0.001) increase in AMPK phosphorylation. 

To further confirm the involvement of AMPK phosphorylation in IGFBP-2 stimulated glucose uptake, 

adipocytes were treated with IGFBP-2 with or without previous incubation with the AMPK inhibitor 

Compound C. Treatment of the 3T3-L1 adipocytes with IGFBP-2 significantly (P<0.01) increased 

glucose uptake, an effect that was significantly (P<0.001) abolished by Compound C (Fig. 3C). 

Insulin and IGF-1 stimulation increased TBC1D1 phosphorylation significantly (P<0.05) when 

compared with the control adipocytes (Fig. 4D). Similarly, treatment of the 3T3-L1 adipocytes with 

IGFBP-2 for either 30 min or 24 h induced a significant (P<0.05) increase in TBC1D1 

phosphorylation (Fig. 4D). 

GLUT-4 translocation was assessed by subcellular fractionation followed by western blotting. 

Treatment of the adipocytes with insulin significantly (P<0.01) stimulated GLUT-4 translocation from 
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the cytoplasm to plasma membrane. IGF-1 was also able to significantly (P<0.05) stimulate GLUT-4 

translocation. Similarly, IGFBP-2 induced a significant (P<0.05) increase in GLUT-4 translocation in 

treated 3T3-L1 adipocytes (Fig. 4E). 

3.5. IGFBP-2 stimulates PKCζ/λ Thr410/403 phosphorylation in 3T3-L1 adipocytes 

A significant increase in the phosphorylated levels of the PKCζ/λ isoform was seen after stimulation 

with rather insulin (P<0.05) or IGF-1 (P<0.01) (Fig. 5). Similarly, treatment of the cells with IGFBP-2 

induced a significant increase in PKCζ/λ phosphorylation after either 30 min (P<0.01) or 24 h 

(P<0.001) (Fig. 5). 

 

4. Discussion 

Previous studies have indicated the role of IGFBP-2 in adipogenesis and lipogenesis, but its effects on 

basal glucose uptake and the underlying mechanistic pathways have not yet been addressed. We, 

herein, provide the first evidence for insulin and IGF-1 independent positive impact of IGFBP-2 on 

glucose uptake in adipocytes. We further show that the effect of IGFBP-2 on glucose uptake is 

mediated through the activation of PI3K/Akt- and AMPK-pathways. Finally, we show that IGF-1 

receptor is neither involved in the IGF-1 induced nor in the IGFBP-2 induced increase in glucose 

uptake. 

Insulin and IGF-1 exerted significant dose-dependent effects on glucose uptake in 3T3-L1 adipocytes. 

These findings are in agreement with the reports from different previous studies [29-33]. Multiple in 

vivo studies reported the role of IGF-1 in enhancing insulin sensitivity and glucose metabolism.  A low 

serum level of IGF-1 has been associated with insulin resistance and treatment with recombinant IGF-

1 has been shown to improve insulin sensitivity and glucose metabolism [34, 35]. A study by Arafat et 

al [36] revealed that long term treatment of GH deficient patients with low dose GH results in 

improved insulin sensitivity and enhanced glucose metabolism. This improvement in insulin 

sensitivity is believed to be mediated by IGF-1, which is secreted as a result of GH stimulation. In 

another clinical study, IGF-1 combined with IGFBP-3 has been shown to improve insulin sensitivity 
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and to reduce complications associated with insulin resistance in HIV/AIDS patients on anti-retroviral 

therapy [37]. Blocking the insulin receptor with S961 or knocking down the INSR using siRNA 

significantly reduced basal and insulin-stimulated glucose uptake. The mechanisms behind the effect 

of S961 on basal glucose uptake in 3T3-L1 are not known so far. However, our results were 

concordant with previously reported impact of S961 on insulin-stimulated glucose uptake in 3T3-L1 

adipocytes [38, 39]. Despite the fact that insulin and IGF-1 have different affinities to INSR and IGF-

1R, they are able to stimulate both receptors [40]. However, blocking the IGF-1 receptor using PPP 

[41] in our present study did not affect the impact of IGF-1 on glucose uptake, whereas blocking or 

even knocking down the INSR did, pointing to the role of INSR in mediating these IGF-1 effects. In 

the study of Girnita et al. [41], PPP efficiently blocked IGF-1R activity, and reduced phosphorylation 

of Akt and extracellular signal regulated kinase 1 and 2 (Erk1/2) in cultured IGF-1R-positive tumor 

cells. In an in vitro kinase assay, PPP did not affect the INSR or compete with ATP [41]. Our findings 

are also supported by various reports that demonstrated dramatic increase in INSR and a decrease in 

IGF-1R during the transition from preadipocytes to adipocytes in the 3T3-L1 cell line [42-45]. 

IGF-1-dependent and -independent effects of IGFBPs on metabolism represent a rapidly growing field 

of research. IGFBP-1 was reported to inhibit IGF-1-stimulated glucose uptake but not insulin-

stimulated glucose uptake in 3T3-L1 adipocytes [31]. IGFBP-3 can lead to insulin resistance in 3T3-

L1 adipocytes as reported by Chan et al [46]. There is increasing evidence for the role of IGFBP-2 in 

regulating normal metabolism [47]. Low serum levels of IGFBP-2 are correlated with obesity [22], 

metabolic syndrome [18] and type 2 diabetes [48], whereas overexpression of IGFBP-2 protects 

against diabetes and obesity [22, 23]. Roles of IGFBP-2 on metabolism such as inhibition of 

adipogenesis and lipogenesis [49], enhancing insulin-stimulated glucose uptake in skeletal myotubes 

[50] and inhibition of preadipocyte differentiation in vitro [14] have been reported.  However, the 

effects of IGFBP-2 on basal glucose uptake and the mechanisms underlying its IGF-1-independent 

role on glucose uptake are not well studied. Here, we reported significantly increased glucose uptake 

in 3T3-L1 adipocytes treated with 100 nM IGFBP-2. To our knowledge, this is the first report to show 

the stimulatory effects of IGFBP-2 on basal glucose uptake in adipocytes. In addition, our data showed 

non-significant effect for short and long-term treatment with IGFBP-2 on IGF-1 and IGF-1 LR3 
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stimulated glucose uptake. Adipocytes treated with IGFBP-2 for 24 h followed by 30 min stimulation 

with IGF-1 showed a trend increase in glucose uptake. Increased basal glucose uptake in control cells 

incubated with IGFBP-2 for 24 h may explain this increase. However, incubation with IGFBP-2 for 24 

h exerted a significant additive effect on the insulin-stimulated glucose uptake which coincides with 

the study of Yau et al [50] who reported similar effect for IGFBP-2 in human skeletal muscle cells in 

vitro. It can be postulated that the additive increase in the acute insulin-induced stimulation of glucose 

uptake after long-term treatment with IGFBP-2 is due to the impact of IGFBP-2 on basal glucose 

uptake that is likely also mediated through different signaling pathways other than the PI3K/Akt 

pathway. Moreover, these findings provide a notion that IGFBP-2 binding to IGF-1 doesn’t inhibit 

IGF-1 from exerting its biological role, at least on glucose uptake in vitro. 

In addition to its ability to bind and modulate the activity of IGFs, IGFBP-2 can bind to proteoglycans 

[51] through two heparin-binding domains (HBDs) as well as to integrins through its integrin bonding  

motif, Gly-Arg-Asp (RGD) [51, 52]. This may explain, at least in part, the IGFR-independent IGFBP-

2 activities [49]. 

 

Interestingly, neither S961 nor PPP blocked the stimulatory effect of IGFBP-2 on glucose uptake. 

Moreover, INSR knockdown even increased IGFBP-2 induced increase in glucose uptake.  These 

findings indicate the involvement of other receptors or pathways in IGFBP-2 stimulated glucose 

uptake in 3T3-L1 adipocytes. This is concordant with the findings of Xi et al [53], who reported that 

IGFBP-2 stimulates AMPK via its own receptor. 

 

Signaling via INSR and IGF-1R share many common signaling pathways at target cells. One of the 

common pathways in mediating glucose uptake and metabolism is the PI3K pathway [40, 54]. Insulin 

and IGF-1 are known to stimulate the activity of PI3K by triggering its phosphorylation at specific 

tyrosine residues by upstream components of the INSR and IGF-1R signaling pathways [55]. In the 

present study, the PI3K inhibitors, LY294002 and wortmannin reduced basal and, insulin, IGF-1 and 

even IGFBP-2 stimulated glucose uptake in adipocytes, pointing to the role of PI3K pathway in 

mediating the IGFBP-2 effect on glucose uptake. We, therefore, investigated the impact of short and 
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long-term treatment with IGFBP-2 on PI3K phosphorylation in 3T3-L1 adipocytes, using insulin and 

IGF-1 as controls. As expected, treatment of the adipocytes with either insulin or IGF-1 significantly 

increased PI3K phosphorylation. Similarly, IGFBP-2 induced marked increase in PI3K 

phosphorylation after both short and long-term treatment, confirming the involvement of PI3K 

activation in mediating IGFBP-2 effects. 

 

Given that IGFBP-2 activates PI3K, we tested its effect on the downstream signaling molecules Akt 

and AMPK, and GLUT-4 translocation. As a result of PI3K activation, insulin and IGF-1 stimulated 

the phosphorylation of Akt. These findings are in agreement with the studies of Karlsson et al [56] and 

Zhang et al [57]. Moreover, IGF-1 significantly increased AMPK phosphorylation. IGF-1 has been 

previously shown to stimulate the phosphorylation of AMPK at its alpha subunit [58]. On the other 

hand, insulin didn’t affect the level of p-AMPK indicating that insulin mainly uses the PI3K pathway 

to exert its effects on glucose metabolism. Our findings are in agreement with Shen et al [59] who 

clearly showed that insulin doesn’t stimulate AMPK. In the same context, pharmacological activation 

of AMPK increases glucose uptake in skeletal muscles of subjects with type 2 diabetes [60] by an 

insulin-independent mechanism [61]. 

 

Similarly, IGFBP-2 produced a significant increase in Akt phosphorylation which is attributed to its 

stimulatory effect on PI3K. Concordant data were reported by Yau et al [50] in human skeletal muscle 

cells. The surface proteoglycan receptor-type protein tyrosine phosphatase β (RPTPβ) has been 

identified as a functionally active cell surface receptor that links IGFBP-2 and the activation of Akt 

[62]. IGFBP-2 binds RPTPβ through its HBD, resulting in inhibition of RPTPβ phosphatase activity 

and subsequently phosphatase and tensin homolog (PTEN) suppression [62]. PTEN is known to 

prevent Akt activation by dephosphorylating phosphatidylinositol-3,4,5-triphosphate (PIP3). The 

study of Shen et al [62] showed that IGFBP-2−/− mice had increased RPTPβ activity and impaired Akt 

activation, changes that were reversed by administration of IGFBP-2.  
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In addition, both short and long-term treatment of the adipocytes with IGFBP-2 induced significant 

increase in AMPK phosphorylation. IGFBP-2 and IGF-1 have been recently reported by Xi et al [53] 

to induce stimulatory effects on AMPK in osteoblasts. Our results were further confirmed through 

testing the effect of AMPK inhibitor, Compound C, on IGFBP-2 stimulated glucose uptake. 

Incubation of the adipocytes with Compound C significantly abolished IGFBP-2 induced glucose 

uptake. Taken together, AMPK activation plays potential role in mediating IGFBP-2 stimulated 

glucose uptake in 3T3-L1 adipocytes. 

 

One of the major metabolic changes elicited by AMPK activation is the promotion of glucose uptake 

[63]. AMPK induces glucose uptake either acutely through GLUT-4 translocation or in the longer 

term via up-regulation of GLUT-4 expression [63]. Here, we show that treatment of the 3T3-L1 

adipocytes with IGFBP-2 for 30 min stimulates GLUT-4 translocation to the plasma membrane. This 

effect is attributed to the ability of IGFBP-2 to activate AMPK. In addition, we show a significant 

increase in the phosphorylation of the Rab-GAP protein TBC1D1 by IGFBP-2. Therefore, the 

mechanism underlying the IGFBP-2 impact on GLUT-4 translocation and the subsequent promotion 

of glucose uptake involves the phosphorylation of TBC1D1 at least partly through AMPK-pathway 

activation. This effect is similar to the complementary regulation of TBC1D1 by insulin and AMPK 

activators [64, 65]. Increased TBC1D1 phosphorylation and GLUT-4 translocation by IGFBP-2 could 

also be directly mediated by Akt activation. In skeletal muscle of rodents, Akt phosphorylates 

TBC1D1 [66] which promote the hydrolysis of guanosine-5’-triphosphate on GLUT-4-containing 

vesicles [67]. 

 

The atypical protein kinase PKCζ/λ/GLUT-4 is another signaling pathway we thought to have a role in 

mediating the positive effect of IGFBP-2 on glucose uptake in adipocytes. In our study, insulin, IGF-1 

and IGFBP-2 induced a significant increase in PKCζ/λ phosphorylation. Since, PKCζ/λ is dependent 

on PI3K activation [29, 68], it was expected to be activated in adipocytes treated with insulin, IGF-1 

and IGFBP-2 because of their ability to activate PI3K. Following activation, PI3K signaling diverges 

into Akt-dependent and PKCζ/λ-mediated pathways [69]. PKCζ/λ is known to play little or no role in 
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mediating insulin effects on glucose uptake in 3T3-L1 adipocytes [70], which may explain the IGFBP-

2 induced additive increase in the insulin-induced glucose uptake after long-term treatment in our 

present study. However, further studies using inhibitors or gene silencing are needed to explore the 

precise involvement of PKCζ/λ in mediating the IGFBP-2 induced increase in glucose uptake and 

GLUT-4 translocation. One of the limitations of our study was the IGFBP-2 concentrations used to 

elicit a significant impact on glucose uptake. IGFBP-2 increased glucose uptake at concentrations 7-

10-fold higher than those described in humans. Therefore, further in vivo studies are needed to explore 

the precise impact of physiological concentrations of IGFBP-2 on glucose utilization in humans. 

 

In summary, this study shows that IGFBP-2 stimulates glucose uptake in 3T3-L1 adipocytes and that 

synergistic activation of Akt and AMPK mediates the modulatory effect of IGFBP-2. The 

PI3K/PKCζ/λ/GLUT-4 signaling is here shown to mediate the IGFBP-2 induced increase in glucose 

uptake. Furthermore, we showed that IGFBP-2 induced glucose uptake is independent of its binding to 

IGF-1, INSR and IGF-1R. Our findings highly strength the potential and novel role for IGFBP-2 in 

glucose metabolism. 
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Tables: 

Table 1. Primers used for qRT-PCR. 

Gene Sequence (5'-3') 

INSR 
F: GTACTGGGAGAGGCAAGCAG 

R: ACTGGCCGAGTCGTCATACT 

36B4 
F: TCATCCAGCAGGTGTTTGACA 

R: GGCACCGAGGCAACAGTT 
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Table 2. List of antibodies used. 

Antibody Species Supplier Catalog number 

Anti-Phospho-AMPKα (Thr172) Rabbit Cell Signaling Technology 2535 

Anti-AMPKα Rabbit Cell Signaling Technology 2532 

Anti-Phospho-Akt (Ser473) Rabbit Cell Signaling Technology 9271 

Anti-Akt  Rabbit Cell Signaling Technology 9272 

Anti-Phospho-(Tyr) p85 PI3K Rabbit Cell Signaling Technology 3821 

Anti-PI3K p85  Rabbit Cell Signaling Technology 4292 

Anti-Phospho-TBC1D1 (Ser237) Rabbit Millipore 07-2268 

Anti-TBC1D1  Rabbit Cell Signaling Technology 5929 

Anti-Phospho-PKCζ/λ (Thr410/403) Rabbit Cell Signaling Technology 9378 

Anti-PKCζ Mouse Santa Cruz Biotechnology SC-17781 

Anti-GLUT-4 Rabbit Sigma G4173 

Anti-Na+,K+-ATPase Rabbit Cell Signaling Technology 
3010 

Anti-GAPDH Rabbit Cell Signaling Technology 2118 

Goat anti-rabbit IgG HRP-linked Goat Cell Signaling Technology 4074 

Horse anti-mouse IgG HRP-linked Horse Cell Signaling Technology 4076 
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Figure legends 

Figure 1. Effects of IGFBP-2 on insulin and IGF-1 stimulated glucose uptake in 3T3-L1 

adipocytes. (A-D) Dose dependent effects of insulin, IGF-1, IGF-1 LR3 and IGFBP-2 on glucose 

uptake in 3T3-L1 adipocytes. *P<0.05, **P<0.01 and ***P<0.001 versus control. (E&F) effect of 

IGFBP-2 (100 nM) (black bars) on basal and insulin (20 nM), IGF-1 (20 nM) and IGF-1 LR3 (20 

nM)-induced glucose uptake (white bars) after short and long-term incubations. *P<0.05 and 

**P<0.01. Each experiment was performed with three technical replicates and total number of 

experiments was three. The glucose uptake values are percentage of the controls. The results are 

presented as mean ± SEM. 

Figure 2. IGFBP-2 stimulates glucose uptake in insulin receptor and IGF-1 receptor-

independent mechanism. (A) Effect of the insulin receptor (INSR) blocker S961 (black bars) on 

basal and insulin, IGF-1, IGF-1 LR3 and IGFBP-2 induced glucose uptake (white bars). (B) Effect of 

the IGF-1 receptor blocker PPP (black bars) on basal and insulin, IGF-1, IGF-1 LR3 and IGFBP-2 

induced glucose uptake (white bars). Differentiated 3T3-L1 adipocytes were incubated with 100 nM 

S961 for 2 h or 60 nM PPP for 4 h before treatment with insulin, IGF-1, IGF-1 LR3 or IGFBP-2 for 30 

min. (C-D) Relative mRNA expression, normalized to 36B4, and western blot analysis of INSR 

following siRNA transfection, respectively. (E-F) Effect of 30 min treatment with insulin, IGF-1 and 

IGFBP-2 on glucose uptake in control siRNA and INSR siRNA transfected 3T3-L1 adipocytes. Each 

experiment was performed with three technical replicates and total number of experiments was three. 

The glucose uptake values are percentage of the controls. The results are presented as mean ± SEM. 

*P<0.05, **P<0.01 and ***P<0.001. 

Figure 3. IGFBP-2 stimulates glucose uptake in a PI3K-dependent manner. (A) Insulin, IGF-1 

and IGFBP-2 increase the phosphorylation of PI3K. 3T3-L1 cells were cultured and differentiated in 

24-well plates for glucose uptake assay and in 6-well plates for western blotting analysis. The results 

are presented as mean ± SEM. *P<0.05, **P<0.01 and ***P<0.001 versus control. (B & C) The PI3K 

inhibitors, LY294002 and wortmannin (black bars), significantly reduce basal as well as insulin, IGF-1 
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and IGFBP-2-induced glucose uptake (white bars). Differentiated 3T3-L1 adipocytes were incubated 

with 100 µM LY294002 for 1 h or 200 nM wortmannin for 30 min before treatment with insulin, IGF-

1 or IGFBP-2 for 30 min. The results are presented as mean ± SEM. ***P<0.001. Each experiment 

was performed with three technical replicates and total number of experiments was three. 

Figure 4. IGFBP-2 stimulates Akt and AMPK activation and thus increased GLUT-4 

translocation. (A) Insulin, IGF-1 and IGFBP-2 significantly increase Akt Ser473 phosphorylation, 

(B) IGF-1 and IGFBP-2 but not insulin increase AMPK Thr172 phosphorylation. *P<0.05, **P<0.01 

and ***P<0.001 versus control. (C) The AMPK inhibitor, Compound C, abolishes IGFBP-2-induced 

glucose uptake in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were incubated with 200 µM 

Compound C for 20 min before treatment with IGFBP-2 for 30 min. *P<0.05 and ***P<0.001. 

Insulin, IGF-1 and IGFBP-2 significantly increase TBC1D1 Ser237 phosphorylation (D) and GLUT-4 

translocation (E). *P<0.05, **P<0.01 and ***P<0.001 versus control. Each experiment was performed 

with three technical replicates and total number of experiments was three. The glucose uptake values 

are percentage of the controls. The results are presented as mean ± SEM. 

Figure 5. IGFBP-2 stimulates PKCζ/λ Thr410/403 phosphorylation in 3T3-L1 adipocytes. 

Insulin, IGF-1 and IGFBP-2 increase the phosphorylation of PKCζ/λ. Each experiment was performed 

with three technical replicates and total number of experiments was three. The results are presented as 

mean ± SEM. *P<0.05, **P<0.01 and ***P<0.001 versus control. 
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