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Summary and Outlook
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In the last part of this work we provide a summary of our main results. The major
contributions of this work to the field of OT in general, and the importance of our findings
for imaging of joints in particular, are discussed. We conclude this work, in Chapter 11,
with an outlook towards possible extension of the presented studies. We describe a time-
dependent forward model based on the ERT and a stochastic optimization method to

reconstruct the optical parameters within the context of the MOBIIR scheme.






Chapter 10

Summary

In this work we presented and experimentally validated the first image reconstruc-
tion scheme in OT that is based on the ERT. This scheme overcomes limitations typically
encountered by image reconstruction methods based on the diffusion equation. Diffusion-
theory-based techniques have shown to be inadequate for imaging tissue that contains low-
scattering regions [Dehghani99] [Riley00]. Important examples for such media are the brain,
which contains and is surrounded by almost non-scattering CSF, and joints that are lubri-
cated by the clear synovial fluid. As an example, we presented the first two-dimensional

reconstruction of optical properties of a human PIP joint.

We approached the imaging problem in OT within a MOBIIR scheme. A MOBIIR
scheme consists of two major parts. First, a forward model describes the light propagation
in tissue for a given set of optical parameters inside the tissue and source positions on the
tissue surface. Second, an inverse model reconstructs the spatial distribution of the optical

parameters within the medium given the detector readings on the tissue boundary.

As forward model we employed a finite-difference discrete-ordinates method based

on the ERT (see Chapter 2). The angular variable was replaced by discrete ordinates and
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the spatial derivatives were approximated by finite differences. We found that the number
of ordinates had to be at least K = 8 for tissue-like media. Further refinement of the angular
discretization did not lead to a significant change in the numerical result (see Figures 3.2 and
3.3). However, the radiance 1 strongly depended on the spatial discretization. Therefore,
the step size (Az, Ay) between adjacent grid points had to be at least 1/(5u)) for an
isotropically scattering medium (see Figure 3.4) and 1/4 for an anisotropically scattering

medium (see Figure 3.5).

We estimated the accuracy of the numerical results obtained by our forward model.
Calculated fluence profiles along the boundaries of tissue phantoms were compared with
experimentally obtained data. The experimental data revealed good agreement with the
calculated fluence ¢ (see Figure 4.4). We showed that different combinations of the param-
eters us and g, which yield the same reduced scattering coefficient p!, = (1 — g)us, produced
different fluence profiles on the boundaries. However, fluence profiles, which are solutions
to the diffusion equation, are only functions of ! and do not consider different values of
s and g. This example underscores further the need for a forward model based on the
ERT. In addition, the forward model based on the ERT was also evaluated by using exper-
imental data from a scattering phantom that contained a void-like ring. Good agreement
between the experimental and numerical data was found (see Figure 4.8). Previous studies
by Hielscher et al [Hielscher98] showed that diffusion-theory-based forward models do not

correctly predict the fluence of scattering media containing void-like regions.

A major requirement for a clinical application, besides the correct modeling of
light propagation in tissue, is a small processing time of the forward model to calculate the
detector readings. A large number of repeated forward runs within the MOBIIR scheme
is necessary for iteratively updating the optical parameters. Our forward model needed

approximately 20-60 seconds of calculation time for tissue-like media on a 61 x 61 or 81 x 81
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grid (see Section 2.4), because a computationally efficient successive overrelaxation method
was used. Hence, the calculation time was sufficiently small and promised to generate

cross-sectional images of the optical parameters within 30 - 300 minutes'.

So far we discussed the major results of the forward model. Now, we summarize
the results of the inverse problem, which introduced some unique features in OT, such as QN
methods and the adjoint differentiation technique. In this work we viewed the inverse prob-
lem as an optimization problem. An objective function was defined as difference between
predicted and measured detector readings. We implemented numerical optimization tech-
niques to minimize the objective function, as described in Chapter 5. These optimization
techniques employed the gradient of the objective function with respect to the optical pa-
rameters. The objective function depended approximately on 103 -103 variables, which leads
to a severe computational burden in calculating the gradient by using divided differences
(see page 83). Therefore, a computationally efficient gradient calculation was necessary.
We employed the adjoint differentiation technique to our forward model to calculate the

derivative of the objective function (see Chapter 6).

The adjoint differentiation technique is a particular numerical implementation of
an adjoint model (see Equation 6.15). We described the differences and similarities of
various numerical implementations of the adjoint model in OT, and showed how they are
interconnected (see Figure 6.1). The adjoint differentiation technique was directly applied
to the numerical code of the forward model. This technique had the advantage compared to
other implementations of the adjoint model, that it did not need to solve the adjoint ERT.
Instead, the adjoint differentiation approach computed the gradient of the objective function
approximately in the same time as the forward model calculated the detector predictions.

The small amount of computational operations was essential for subsequent use within the

LAll estimates of processing time are based on the use of a single PENTIUM III XEON®processor.
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optimization techniques to obtain cross-sectional images of the optical parameters in an

acceptable amount of time.

The gradient of the objective function was employed within gradient-based opti-
mization techniques. We utilized QN methods, such as the BFGS and Im-BFGS methods,
to minimize the objective function. The BFGS method employed an approximation to the
inverse Hessian matrix for calculating the search direction. The Im-BFGS method, which
was derived from the BFGS method by replacing the approximated inverse Hessian with
the identity matrix, overcame the need for storing the huge inverse Hessian matrix from
the previous iteration step. Employing inexact line searches along the search direction we
found the minimum of the objective function in less basic operations than the commonly
applied CG method in OT. A basic operation accounts for either a forward calculation, e.g.

determination of a value ¢ of the objective function or a derivative calculation V,®.

When optimization techniques were applied to practical situations in OT, we had
to deal with noise-corrupted measurement data that altered the shape of the objective
function. Furthermore, an initial guess of the optical parameters might be far from the
solution and diminished the minimization process. Therefore, we studied the impact of
noise and different initial guesses to the image reconstructions by using the BFGS, lm-
BFGS, and CG methods (see Section 7.1). In general, the reconstruction results showed
that the QN methods were superior to the CG technique in terms of calculation time. When
no noise was present in the measurement data the BFGS and lm-BFGS needed fewer basic
operations and found a smaller value ¢ of the objective function than the CG method.
The image accuracy, determined by the correlation coefficient and the deviation factor, was
always higher in QN methods than that obtained by the CG method (see Table 7.1). At the
presence of noise these advantages were partly diminished. For SNR smaller than 45 dB, the

final value @ of the objective function and the image accuracy were not significantly different
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for all three methods. Furthermore, when starting the reconstruction process from initial
guess that was different than the optical parameters of the bulk medium, we found that the
BFGS and lm-BFGS methods were approximately two times faster and yielded a smaller
value ¢ than the CG method. When we added noise to the measurement data and started
from an initial guess of optical parameters different than the bulk medium, as encountered
in a typical experimental situation, the QN methods still outperformed the CG method in
computational speed (see Subsection 7.1.5). The QN methods were approximately 10 times
faster than the CG method. However, the image accuracy of all three methods was not

significantly different.

The QN methods sometimes failed at calculating a descent search direction, if the
initial guess of the optical parameters was too far from the solution (see Subsection 5.2.5
and Figure 7.10). In those cases the approximated inverse Hessian was not positive definite.
We enforced positive-definiteness by replacing the approximated inverse Hessian with the

identity matrix.

The impact of different numbers D of source-detector pairs was studied in Sec-
tion 7.2. We found that the image accuracy was increased when increasing the number D
of sources and detectors until a certain limit (D > 400 in Table 7.2) beyond which no en-
hancement was achieved. Therefore, the highest amount of sources and detectors available
did not always achieve the highest image accuracy. Considering that the computational
time for basic operations is directly proportional to the number of sources but independent
of the number of detectors, we suggest using more detectors than sources for the image

reconstruction.

So far we had performed numerical studies on the MOBIIR scheme based on the
ERT. One of the specific aims of this work was to apply the MOBIIR scheme to biomedical

problems that are connected to tissues with low-scattering regions. Therefore, we carried
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out experiments on tissue phantoms that contained void-like areas (see Section 8.2). One
phantom contained a thin ring filled with clear water. This situation roughly mimics the
CSF layer in the brain or the synovial fluid in a finger joint. Based on measurement data
we performed reconstructions of the scattering coefficient and the absorption coefficient.
The void-like ring could be clearly reconstructed. Previously, it was not possible to recon-
struct low-scattering areas in tissue-like media, and thus these results account for the first

reconstructions of void regions in OT.

As a first biomedical application of the transport-theory-based MOBIIR scheme we
focused on the imaging of human finger joints for early diagnosis and monitoring of RA. RA
is a severe inflammation of joints that has no cure. An early diagnosis has the potential to
slow down the progression of the disease. Until now, no routine imaging technique existed
for early diagnosis and monitoring of RA. OT is a potential candidate for imaging PIP
joints, as RA changes the optical properties of joints. This has already been supported by

earlier studies [Prapavat97].

In Section 9.2, we performed a numerical study on a finger joint model that con-
stituted the optical parameters of the healthy or rheumatoid conditions of a PIP joint.
We altered the optical parameters of the synovial fluid and the synovium according to
ex vivo measurements of the optical parameters carried out previously by Prapavat et al
[Prapavat97]. Reconstructed sagittal images of the optical parameters show that changes
in the synovium and the synovial fluid can be detected. We took the ratio of the recon-
structed images of the healthy and the rheumatoid conditions as a means of differentiating

the inflamed from a healthy stage.

The final goal of this thesis was to provide a MOBIIR scheme that reconstructs the
optical parameters of a human finger joint by using experimental data. A joint contains the

almost non-scattering synovial fluid and requires a transport-theory-based forward model
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for light propagation. Until now, it was not possible to reconstruct the optical parameters of
a joint, because existing forward models within a MOBIIR scheme failed to predict correctly
the light propagation in void-like areas. Therefore, we carried out image reconstructions on
a human finger joint. We provided for the first time sagittal images of the scattering and

absorption coefficients that show the synovial fluid.



