Chapter 6

Derivative Calculation

In the previous Chapter 5 we have introduced various iterative approaches to the
nonlinear inverse transport problem. These methods were based on minimizing an objective
function, which described the discrepancy between the measured and predicted data. All
methods require for this minimization the first derivative of the objective function with
respect to the unknown optical parameters. However, calculating this derivative is a quite
difficult task itself, because the objective function depends on a large number of unknown
optical parameters. Thus, the challenge is to find a fast and computationally efficient way
of calculating this derivative.

A straightforward approach would be to approximate the derivative with divided

differences:

AP P(u+Ap) — 2(u)

1
N Ap (6.1)

Vu® =~

If p is a vector of N unknown optical properties one has to run N 4 1 forward problems to
obtain the gradient. Given that in OT the number of unknowns is typically 10% — 10°, this

requirement results in an unacceptable computational burden !.

'An example with N = 2 x I x J = 2 x 60 x 60 = 7,200 unknown optical parameters requires 7,201
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Instead of perturbing each component of the vector p using Equation 6.1, we
have developed an adjoint differentiation scheme to calculate the derivative of the objective
function. This approach needs approximately as many numerical operations for calculating
the derivative as the forward model needs for solving one forward problem. The adjoint
differentiation technique is N times faster than the method of divided differences, and is
therefore a very powerful tool for evaluating derivatives of functions with many unknown

variables.

6.1 Adjoint Model

The adjoint differentiation technique originates from the concept of adjoint models.
An adjoint model is a tool developed for inverse modeling of physical systems. It deter-
mines the derivative of some quantity of the physical system with respect to given input
parameters. The adjoint model is increasingly used in meteorology and oceanography for
sensitivity studies, data assimilation, and parameter estimation [Hall82] [Hall86] [Navon97]
[Giering00]. Errico gave a concise overview of adjoint models in atmospherical sciences for
sensitivity studies [Errico97].

To understand the concept of the adjoint model it is necessary to introduce the
tangent linear model that can be understood in the following manner. A forward model B,
for example an ocean circulation model or climate model, maps a vector of input parameters

a onto a vector of output parameters b with
b = B(a). (6.2)

The input parameters a are usually the unknown model parameters, whereas the output

function evaluations ®(u) for calculating the gradient with divided differences. Assuming that each function
evaluation requires 1 minute using a PENTIUM III XEON® processor, we need approximately 5 days for
calculating the derivative.
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parameters b are the model predictions. Furthermore, the linearization of the forward model

B maps variations da of the input variables onto variations db of the model predictions

OB

Equation 6.3 is also called the tangent linear model. It obtains information about the model
predictions b from the input parameters a.

The transition from the tangent linear model to the adjoint model is made by
introducing the forecast error or residual R. The forecast error R measures the difference

between the model predictions b and the measured data. Variations d R of the forecast error

are derived from variations db of the model predictions:

OR
= —db. A4
0R % 0b (6.4)

The adjoint model, in turn, provides the sensitivity OR/0Ja of the forecast error R with
respect to the unknown model parameters a [Talagrand9la). In contrast to the tangent
linear model, which maps variations da of the input parameters onto variations db of the
model predictions, the adjoint model infers information about the input variables a from
the model predictions b.

The derivative 9R/da can be derived in the following way. Using the inner product
notation (-, ), the first-order variation §R (see Equation 6.4) resulting from a perturbation

0b can also be written as

R = <%—1:, 6b>. (6.5)

By using the tangent linear model (see Equation 6.3) we replace 6b and get

OR 8B6 >

=5 a0
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We obtain from Equation 6.6 by using the definition (g, Ar) = (A*q, r) for adjoint matrices

A* and vectors g and 7:

R = <(g—§>* Z—?,éa>. (6.7)

Comparing Equation 6.7 with the identity

R = <g—f, 5a>, (6.8)

the first term within the brackets of Equation 6.7 constitutes the gradient 0R/0a:

(6.9)

OR _ (0BY" R
da \0da) 0Ob’

Equation 6.9 represents the adjoint model. Further details can be found in [Talagrand91a).

There are three important differences between the tangent linear model (Equa-
tion 6.3) and the adjoint model (Equation 6.9). First, Equation 6.3 relates perturbations
but Equation 6.9 relates derivatives. Second, Equation 6.3 takes perturbations of the input
parameters to determine perturbations of the output parameters, but in Equation 6.9 the
roles of input and output are reversed. Third, in Equation 6.3 input and output parameters

are connected by the Jacobian g—g but in Equation 6.9 they are connected by its adjoint

OB *
da

Now we will derive the corresponding formulation of the adjoint model for OT by
using the modalities, just described, from meteorology and oceanography. In OT the input
variable of the forward model is the N-dimensional vector p of optical parameters. Using
this input parameter the transport forward model calculates the model predictions p at

the specified source-detector positions. A linearization of the transport forward model F
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around a point pg is represented by the Jacobian matrix J(uo):

OF1 OF

Opr O

J = 6—F =\| onn 9F
ou duz  dua

The tangent linear model maps variations du in the optical parameters onto variations dp

of the predictions at specified source-detector pairs by using the Jacobian matrix:
op=Jép. (6.10)

At this point it is interesting to note that the perturbation technique in OT with Am =
JAp (see Chapter 1.2.2), is equivalent to the tangent linear model. Differences Am in the
measurements are connected to differences Ap in the optical parameters by the Jacobian
matrix J. This matrix is very large ? and leads to a huge computational burden when J
is inverted to determine an update Au of the optical parameters.

In contrast to the tangent linear model in OT, the adjoint model associates the
influence of the optical parameters pu on a given disparity of the measurements m and
detector predictions p. This residual is represented by the derivative V,® ~ (p — m) (see
Equation 5.1), whereas the influence of the optical parameters on the objective function is
the gradient V,®. The derivation of the adjoint model can be performed in the following
manner. The variation of the objective function, given the variations dp of the predicted

detector readings, is
0@ = (Vp®,0p). (6.11)
Substituting Equation 6.10 into Equation 6.11 yields

50 = (Vpd, Top). (6.12)

2For example, a problem with N = 2 x I x J = 2 x 60 x 60 = 7,200 unknown optical parameters and
D = 10 source-detector pairs leads to a matrix 7 with 7.2 - 10% entries.
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Using the definition (v, Tu) = (T*v,w) of the adjoint operator T* we obtain:
00 = (T*Vp®,dp). (6.13)
Comparing Equation 6.13 with the identity
00 = (V,9,6p), (6.14)
the gradient V,® of the objective function is calculated as:
Vu®=JT"Vyd. (6.15)

Equation 6.15 represents the adjoint model in OT.

6.2 Numerical Implementation of the Adjoint Model

The adjoint model is represented by a system of differential equations (see Equa-
tion 6.15). In general, a system of equations can be solved numerically in three steps. First,
the continuous differential equations are formulated. Second, a discretization scheme is
chosen and the discrete difference equations are constructed. The last step is to implement
an algorithm that solves the discretized equations. The adjoint model can be constructed
after completion of any one of these three steps [Kaminski99].

In the first approach one obtains the gradient by using the solution of the adjoint
ERT. The challenge in this approach is to derive the adjoint equation from a given forward
model and to solve it. A general overview on the theory of adjoint equations of dynam-
ical systems has been given for example by Marchuk [Marchuk95] [Marchuk96]. Specific
examples of the adjoint model can be found in many different fields. Cacuci uses the ad-
joint sensitivity formalism to evaluate the partial derivatives of certain system responses

with respect to thousands of input parameters [Cacuci8la] [Cacuci81b]. Talagrand gave an
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example of how this approach can be used for sensitivity calculation in meteorological appli-
cations [Talagrand91b]. Ustinov performed a sensitivity analysis based on the adjoint ERT
applied to the case of atmospheric remote sensing in the thermal spectral region [Ustinov01].
Norton utilized the adjoint model for calculating the Frechet derivative of inverse scattering

problems in neutron transport [Norton97] [Norton99].

In OT no group has implemented the adjoint transport equation in the calculation
of the gradient within a MOBIIR scheme. However, Dorn used the time-dependent adjoint
transport equation to determine the Frechet derivative of a residual that is proportional
to the difference between predicted and measured data [Dorn98] [Dorn00]. The resulting
nonlinear system of equations was solved by a nonlinear generalization of the ART, where
the optical parameters are iteratively updated. He presented numerical results for scattering

media with non-reentry boundary conditions.

A similar approach in OT was applied by Arridge et al to the diffusion equation
[Arridge98]. Arridge derived the gradient V,® from the solution of the diffusion equation
for a given source and from the solution of the adjoint diffusion equation for the boundary
residual. The boundary residual is a function of the difference between the measured and
predicted data. Since numerically solving the adjoint diffusion equation requires approxi-
mately the same amount of time as solving the diffusion equation itself, Arridge obtained

the gradient in a time comparable to one forward calculation.

Several authors [Griewank89] [Sirkes97] [Kaminski99] have pointed out that the
appropriate discretization scheme for the adjoint equation is in general different from the
appropriate discretization scheme necessary for the forward equation. Therefore it is a priori
not clear whether the gradient obtained with a discretized version of the adjoint equation
truly equals the gradient of the discretized version of the forward equation. Therefore Shah

[Shah91] and Talagrand et al [Talagrand87] have argued it is favorable to derive the adjoint
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model from the discretized form of the forward equation. This is the second way one can
use adjoint schemes for calculating the gradient. This approach has been mainly applied to
weather forecast models [Courtier87] and to ocean circulation models [Thacker88], but has

not been pursued in OT.

The third approach for calculating the gradient by means of the adjoint model
does not require the formulation of either a continuous or a discretized adjoint equation of
the forward model. It is often referred to as computational differentiation in the adjoint or
reverse mode, reverse differentiation, or adjoint differentiation [Rall81] [Rall91]. Here, the
numerical code of the forward model, which is a sequence of arithmetic operations, is directly
differentiated to compute the gradient. The procedure to find the derivatives of arbitrary
algebraic functions, such as the gradient of an objective function, was first introduced by
Wengert [Wengert64]. Over the last 15 years, Griewank [Griewank(00] has generalized and
refined the initial ideas in many publications on automatic differentiation [Rall91] [Beck94]
[Coleman00], where the derivative is obtained by differentiating the forward code using an
adjoint code compiler. Again, the main applications, so far, lie outside the field of OT as

for example in geoscience [Talagrand91la] [Thacker91] [Kaminski99].

The key to this method is the decomposition of a given function, here the objective
function containing the forward model, into a series of elementary differentiable functional
steps. Then applying, systematically, the chain rule of differentiation to every single step of
the forward code in the reverse direction, a numerical value for the gradient is obtained. The
main advantage of this approach is that, at the level of the single steps in the forward model
code, the gradient can be reconstructed according to simple rules [Kaminski99]. Thus the

task can be handled without any explicit knowledge of the nature of the original problem.

Figure 6.1 depicts the relationships among the three different approaches to the

gradient calculation using the adjoint model. All methods start from the forward model,
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Figure 6.1: Three different ways of implementing the adjoint model to calculate the gradient
of the objective function. The forward model can either be based on the diffusion equation
or the ERT. Method III is represented by the adjoint differentiation technique.
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which in OT is based on the diffusion equation or the ERT. In method I, one first derives
the adjoint equation of the forward model, which is then discretized and numerically solved.
Employing method II one first discretizes the equations used in the forward model, then
derives the adjoint discretized model and solves it. Using method III, one first discretizes
the forward model and solves it numerically. After that, the adjoint model is derived from
the solution of the forward model. In the last case, the gradient is directly determined from
the forward solution without any explicit knowledge of the adjoint equation.

In OT only the groups of Davis et al [Davies97], Roy et al [Roy99] and Hielscher et
al [Hielscher99] have made use of the concept of adjoint differentiation. Davis and Roy have
applied the adjoint differentiation technique to the time-independent diffusion equation and
diffusion fluorescent problems in the frequency domain. Hielscher et al described an adjoint
scheme for the time-dependent diffusion equation. In this work we have applied for the
first time the adjoint differentiation technique to the ERT for deriving the gradient of the

objective function.

6.3 Differentiation of Algorithms

The adjoint differentiation technique is part of a more general concept that is
called differentiation of algorithms [Giering98] [Kaminski99]. This technique calculates the
gradient of a function by applying the chain rule of differentiation. It can operate in the
forward mode or in the reverse mode. We will explain this approach on the following
example.

A function G maps the input variable & onto the output variable y = G(z) with :

G:R" - R"

z—y=G(x). (6.16)
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Assuming the function G is for example a solution to a boundary-value problem and an
analytical solution does not exist, the problem has to be solved numerically. A numerical
implementation is represented by an algorithm, which maps the input variables onto the
output variables. These algorithms usually consist of several sub-routines, which are exe-
cuted in an iterative order. Therefore the function G is decomposed into Z differentiable

sub-functions G*:

G? : Rl 5 R

Pl e = GO(r Y, (6.17)
and we obtain
y=Gx) =(G?0G? 1 oG*20..0G? 0 G (). (6.18)
An intermediate result 7%, also called a dependent variable, is
r* =(G*o...0 G? o GY) (). (6.19)

Subsequently, the intermediate result r” becomes an input variable for the next opera-

Gl G2 GZ—2 GZ—I GZ

x —>=prl —= 2 . rZ_3—>rZ_2—>rZ_1—>y

Figure 6.2: Computational graph of the function evaluation by stepping through all sub-
functions from left to right.

tion G**1(r?). The final result for the forward problem is calculated by stepping forward

through all intermediate steps. The intermediate dependent variables r” are a result of the
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decomposition of the function. The decomposition can also be displayed by a computa-
tional graph (see Figure 6.2). It shows in which order the solution is evaluated by stepping
through the graph.

The derivative of the function G is computed using the chain rule of differentia-
tion for a composite function from the individual derivatives of the sub-functions G*. These
derivatives are in general Jacobian matrices G. The resulting product of Jacobian matrices
can be evaluated in any order, since matrix multiplication is an associative operation. Op-
erating in the forward mode, the intermediate derivatives are evaluated in the same order

(see Figure 6.3) as the forward model computes the intermediate variables:

_ 0G(z)  9G%(r* 1) . 0G3(r?) 0G?(r') 0G'(x)

= o... o o 6.20
g oz ort—1 or? orl oz (6:20)
At the z-th step of the forward mode we get the intermediate derivative:
IG%o..0oGN)(z) OG*(r* 1) 9(G* o..0G")(x) (6.21)
oz - Orel oz ' )
9G? 2G® 9GZ~2 9GZ~! oG”
orl or? or?-3 or?—2 orz-1
Gt 3G 3G® OGET3 9GP, 9GPT! 5 9G _ 9G*
ox ox oz ' Oz ox ox dx — Oz

Figure 6.3: Computational graph of the forward mode of differentiation of algorithms. The

derivative g—g is evaluated by stepping from left to right.

In the reverse mode the operations are computed from right to left (see Figure 6.4).

For real-valued elements of the matrix G the adjoint matrix G* is just the transposed matrix
g

1 2/ 1 2 Z(pz—1\T
r_96@T_o¢'@" ocr)" o) ecrer T (6.22)

g oz oz or! or? © orZ-1
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Corresponding to the z-th step, the composition of the intermediate transposed Jacobian

matrix is evaluated by multiplying the intermediate transpose Jacobian matrix from the

Z z2+1y(pz) T z T .
(z + 1)-th step oG °"'§fz )™)” 1y the transpose ;%r and we obtain:
\T _I\T T
O(G%o...0G?)(r* )" 0G*(r*7')" 8(G%o...0 G**1)(r?) (6.23)
orz—1 ~ Orzl or? )
actT ac2T agz—2T o671 T agz T
ox or! orZ-3 ort-2 ors-1
0GTq — 0G1e  0GT 06 T o 06 T o 06 Tq
ox or! orz " ors=3 ort—2 orZ-1

Figure 6.4: Computational graph of the reverse or adjoint mode of differentiation of algo-

rithms. The derivative g—gT is evaluated by stepping backwards from right to left.

Depending on the size of the Jacobian matrices one mode is more computationally
efficient than the other. If the number of output variables exceeds the number of input
variables the forward mode needs less computational operations than the reverse mode.
If the number of input variables exceeds the number of output variables then the reverse
mode of differentiation is computationally more efficient. An example of differentiation of
algorithms in the forward and reverse mode is given in Appendix B.

We apply the differentiation of algorithms to the objective function ®(u) in OT,
which will result in the gradient of the objective function. Here, the number of input vari-
ables, given by the vector p with N = 2 x I x J entities, exceeds the number of output vari-
ables, which is just a single value ¢ of the objective function ®(u) (see also Definitions 5.1
and 5.2). The reverse mode of differentiation is therefore more suitable for deriving the

gradient. This will be subject of the next section.
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6.4 Adjoint Differentiation of the Objective Function

After the general overview of the adjoint model and its numerical implementation
just presented, we are ready to apply the adjoint differentiation technique to the objective
function in OT. First, we decompose the objective function into a series of elementary
differentiable functional steps. These functional steps are given by the forward model based
on the ERT. Then by systematically applying the chain rule of differentiation to every single
step of the forward code in the reverse direction, the gradient of the objective function is

obtained.

6.4.1 Decomposition of the Forward Model

The objective function @ is a composite function of the optical parameters p with
®(p) = @(p(p)). It can be decomposed into sub-functions according to Equation 6.18 in

the following way:

() = (F* (FEL (F72 (.. (F? (F* (p), ) ), 1) s 1)) (6.24)

= (&) oFZ(/.L) oFZfl(p,) o FZ*2(;1,) o..0oF?(u)o Fl) (p) .-

Each sub-function is an explicit function of g again, which makes it different from Equa-
tion 6.18. The sub-functions F* are given by the successive iteration steps in the SOR
method, which is used to solve the forward model. The SOR method is an iterative ap-
proach and the z-th iteration yields the intermediate result zpfdj. The radiance vector
consists of M = I x J x K elements with i € [1,I], j € [1,]], and k € [1,K]. The detector
readings p are the angular-dependent radiances ¢fij at the last iteration step 7 at detector
positions (i,j) on the boundary. The computational graph of the transport forward model
is depicted in Figure 6.5.

A value ¢ of the objective function is evaluated by stepping through the computa-
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F? F Fz1 FZ P
Yl —= g2 = g gt gl gl —— 5= 3(y)
Fl F2 F3 sz2 FZ—I FZ

Figure 6.5: Computational graph of the transport forward model. The objective function
® is calculated by stepping through all sub-functions from left to right. The sub-functions
are given by the SOR method for solving the discretized ERT.

tional graph. Starting with the optical parameters p as the input variables, the sub-function

F! produces the intermediate result and output variable t'.
FU:RY - RM
B (6.25)

and we have for example for the ordinates with & > 0,7, > 0

1 Siij + %wii—lj + Z_lqupliij—l
/l/)kij =p & " . (626)
25+ Ay + [palig + [ws]ij

The sub-functions F? map the intermediate variables 9! and input variables p onto the

intermediate result 1? = F?(p* ! for all iteration steps of the transport forward model:
» p

F* . RM x RN - RM

(’/’;1) . (6.27)

This mapping is shown explicitly for the ordinates with & > 0,7 > O:

= -1 z z
z z—1 S + [1slij Do ak’pkk"/’i'ij + é_kapki—lj + Z—Ziﬁkijq
by = (L =Pl +p e . (6.28)
Az T Ay + [Ma]ij + [Ns]ij
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The last step FZ calculates the predictions p, which become the input to the final step
of &, which is the calculation of the scalar @. Equations 6.26 and 6.28 are the smallest

computational units in the transport forward model.

6.4.2 Adjoint Differentiation

To obtain the gradient of the objective function we start differentiating 6.24 with
respect to the optical parameters u. We derived the following expression for the gradient

(see Appendix C):

r ot o \T  oy?" (oo \T o’ [ 9o \T
=G (o) “ow (o) o () - )

The terms %—’li can be calculated from Equation 6.28 of the forward model. For the deriva-

tives with respect to [usli; and [pgli; we obtain

[81/%] _, P pSkij + ()i T @B + Ry + AvEi
sy ™" B 2+ i+ ol (854 2 + el + )
(6.30)
and
[(w] S sl Koo awBoe i + R+ Ay (6.31)
Otta L i (g—‘; + A+ el + [Ms]ij>2

At this point we have not yet used the adjoint differentiation technique, since we

have not stepped backward through the forward code. This procedure comes into play in

T
the calculation of the terms ( gg’z) in Equation 6.29 by using Equation 6.23 of the adjoint

mode of differentiation. This can be best understood while looking at the computational
graph of the reverse mode of differentiation in Figure 6.6. Starting with the last step of the
forward code, which is the calculation of the objective function (see Equation 5.1) given

the predictions p = %, we differentiate ® with respect to %. The result is the difference
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o2 T oy3T opz—1T oyp? T op T
—ra,w _81/)2 3,¢,Z72 a,‘/,Z—l 81/;Z
09 T o9 T o2 T 90 Te 00 Tq  o0Tg 1
3,4,1 3,4,2 31/,3 e 6¢Z_2 3'(/JZ*1 awz
oyt " op2 T i op?=2T | oyt T | gyt
o o o o o op
a2 7 o
dp

Figure 6.6: Computational graph of the adjoint differentiation technique applied to the

transport forward model. The derivative %T is calculated by stepping backwards through

the computational graph of the forward model (see Figure 6.5).

between the measured and predicted data for all D source-detector pairs:
oo \T 1

Equation 6.32 is the input parameter V,® to the adjoint model, which will even-
tually provide the output parameter V,® (see Equation 6.15). More specifically, continuing

T
to step backward through the forward code we calculate (%) , which is given by

o0 \" [ op? \" (92"
(fw“) :(8@;/;1) (6¢Z) | 039

T
The remaining derivatives ( gg’z) of all intermediate steps in Equation 6.29 are com-

T
puted recursively using the previously calculated derivatives (ag—?ﬂ) . This step, in which

T T

( 591/?2) is calculated from (ag—fﬂrr) , constitutes the adjoint differentiation step. The ma-
i\ T

trix (%‘b—f) is obtained by differentiating the (z + 1)-th SOR-iteration step, given in

Equation 6.28, with respect to ¥*. We get, for example in the case of the ordinates with

& >0 and e > 0:
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_ YL oytl
v lslione a0 + R, + By,
By (I —p)oxij +p T J J (6.34)
Ky s+ A+ [usliy + [1alij
with
1 ifad=a
Okij = 0kd;d; with d, =
0 ifa #a.
e OgES L, . : . . L :
The derivatives 57— and 3 wz” in Equation 6.34 are obtained by differentiating Equation
k’i'j’ k’i’j,

6.28 again. However, we made the approximations

z+1
& Og_y; &k
Sk = Sk s 6.35
Az awlz{’iljl Az ki—1j ( )

and

+1
me Midj1 s

A—y 6¢1z(liljl T Ay

5kij—1 (6.36)

for the relevant terms on the right-hand side of Equation 6.34, because zpf{;rjlj and wlz{;jril
are slowly varying functions of qplzdj.

As can be seen, the gradient of the objective function is calculated stepping back-
wards through all previously calculated iteration steps of the forward model without solving
an entirely new numerical problem of the adjoint ERT. Furthermore, the particular underly-
ing physical system does not have to be known, because the derivative is computed directly
from the code of the forward model (Equations 6.26 and 6.28). A disadvantage of the re-

verse mode of differentiation is that all intermediate results zpfdj of the forward model had

to be stored for subsequent use in the reverse mode 3.

3Example: AnIxJ =60 x 60 grid with K=16 ordinates, and Z=300 iteration steps of the SOR method,
requires approximately 132 MByte storage space for all elements 15; with 8 Byte each element.
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6.5 Scaling Factor

The gradient V,,® is used within an optimization technique as discussed in Chapter
5 for calculating the search direction wug. The minimum is found by employing a line
search technique. The line search technique determines a step length oy for updating the
optical parameters along the search direction (see Equation 5.4). However, the length of
the gradient (||V,®||) can vary between 10~® and 103 depending on the particular optical
parameters of the medium and the initial guess pg. Not having a unit length, the gradient
will severely influence the determination of the step length within the line search. This can
lead to a premature convergence of the optimization technique, because the line search fails
to find the proper step length. Consequently, the gradient V,® has to be scaled in such
a way that the line search proceeds independently of the gradient length. We have found
that we obtained significant better updates of the optical parameters when using a scaled
gradient vector Vutbscaled. Both components, V, ® and V,, ®, of the gradient vector were

scaled independently by using the scaling factors xs and x, with

V,, &%l — vV, & (6.37)

V,,%led = x V, . (6.38)

We have empirically chosen the scaling factor x; after the first iteration k=1 such that the
largest element of the scaled gradient vector Vusésc‘”ed equals 5% of the largest element of

the vector pg,:
(6.39)

The same holds for x,. The factors x; and x, were maintained constant throughout the

optimization process after the first iteration.
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6.6 Example of a Derivative Calculation Based on

Experimental Data

The gradient V,® can be displayed in a two-dimensional image. It tells us how
the location and strength of the spatially distributed optical parameters of a medium,
represented by the vector u, deviate from a given initial guess gy when measurements m
were taken on the boundary of the medium and the prediction p(pg) were calculated. As
an example we demonstrate how the derivative information was obtained by performing

measurements on the boundary of a scattering phantom.

A scattering phantom was designed as depicted in Figure 6.7. It had dimensions
of 3 cm x 3 cm x 14 cm and contained a cylindrical hole of a diameter of 0.5 cm. The
hole was filled with a scattering fluid (INTRALIPID®) with a p) = 23.24+ 5 cm ! and a
pa = 0.00675 £ 0.003 cm™'. These optical parameters were determined by a formula for
INTRALIPID® given by Flock et al [Flock89a] [Flock89b]. More details on the phantom

material and the experimental set-up were given in Chapter 4.

Three sources were placed on each side of the phantom. The movable detector was
located on the boundary of the side opposite to the source. We recorded 28 detector points
for each source point yielding a measurement vector m with a total of D = 12 x 28 source-
detector pairs. The scattering phantom with its source-detector configuration is given in

Figure 6.7.

The detector predictions p were calculated by the transport forward model as-
suming a homogeneous distribution of ys = 50 cm !, y, = 0.45 cm !, and g = 0.86. The
calculations were performed on a 61 x 61 grid with 16 discrete ordinates. In Figure 6.8,
we present an example of the predictions and actual experimental detector readings for

source A, as given in Figure 6.7. Due to the highly scattering cylindrical perturbation, more
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Figure 6.7: Schematic and source-detector configuration of the phantom that contained
a single scattering heterogeneity. The phantom was illuminated from all four sides. The
measurements were taken on the sides opposite the sources.

photons get scattered. Thus, fewer photons reach the detectors at positions x = 0.4 ¢m

through z = 1.3 cm (see Figure 6.8).

A value ¢ of the objective function @ is determined using Definition 5.1 given the
measurement vector m and the prediction vector p. The gradient V, @ of the objective
function ® with respect to the scattering coefficients ps is computed using the adjoint

differentiation technique as explained in Subsection 6.4.2.

The scaled gradient V,, ® is shown in Figure 6.9. It depicts the change of the
objective function to changes in the optical parameters of the initial guess p5,. The distance
between adjacent isolines is 0.005. Values V, ®; of the gradient vector are in the range
[-0.05 — 0.03]. The homogeneous medium is depicted by values V, ®; ~ 0, where the
assumed scattering coeflicients p,, of the forward model match the scattering coefficients p,

of the phantom. The scattering heterogeneity is visible in the lower left corner of Figure 6.9
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Figure 6.8: Comparison of predictions and measurements for source A. The predictions were
calculated by assuming a homogeneous medium, whereas measurements were performed on
the phantom containing a scattering heterogeneity (see Figure 6.7).

with values V,, ®; in the range [—0.05 — —0.02].
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Figure 6.9: Scaled gradient V, @ of the objective function with respect to the scattering
coefficient. Tt depicts alterations of the assumed homogeneous distribution of the scattering
coeflicient u4, to the scattering coefficients ps of the original medium.

Once the gradient V,® is calculated, it is subsequently used for determining the
search direction uy within the numerical optimization technique (Equations 5.16, 5.30, and
5.32). It is obvious that negative components of the gradient vector (uyx ~ —V,®, see
Equations 5.16, 5.30, and 5.32) lead to a positive update of the optical parameters by using

the update formula given by Equation 5.4.



