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Abstract

Optical tomography is a non-invasive medical imaging modality that utilizes measurements
of transmitted near-infrared light to reconstruct the distribution of optical properties inside
the human body. Clinical studies are currently being conducted that use this imaging
technique for the determination of blood oxygenation, functional imaging of brain activities,
and early diagnosis of rheumatoid arthritis in finger joints. These studies incorporate the
fact that optical properties are closely related to physiological and pathological differences
between healthy and diseased human tissue types. The instrumentation for highly precise
measurements of light intensities is nowadays widely available. However, the development
of algorithms that efficiently transform these measurements into accurate cross-sectional
images of optical parameters remains a major challenge.

The majority of currently applied image reconstruction schemes rely on the valid-
ity of the diffusion equation for the description of light propagation in tissue. Unfortunately,
the diffusion equation does not accurately describe light propagation in media that contain
low-scattering regions, such as the cerebrospinal fluid that cushions the brain or the syn-
ovial fluid that lubricates joints. Therefore, the usefulness of diffusion-theory-based image
reconstruction algorithms is questionable.

This work addresses these shortcomings by developing a novel model-based iter-
ative image reconstruction scheme for optical tomography. It consists of two major parts:
(1) a forward model for light propagation and (2) an inverse model. The forward model
predicts the detector readings on the tissue boundary given a source and distribution of
optical parameters inside the medium. The equation of radiative transfer, unlike the dif-

fusion equation, describes correctly as a forward model the photon propagation in turbid
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media containing low-scattering areas. In contrast, the inverse model determines the op-
tical parameters inside tissue, given a set of detector readings on the boundary of tissue.
The inverse model is viewed as a nonlinear optimization problem. The measured fluence
on the boundary is compared to the predicted detector readings by defining an objective
function. The objective function is iteratively minimized by a nonlinear conjugate gra-
dient technique, or by quasi-Newton methods. These techniques use the first derivative
of the objective function with respect to the optical parameters for calculating search di-
rections towards the minimum. Forward and inverse model are iteratively employed until
self-consistency is reached.

A major obstacle is the computationally efficient calculation of the first derivative
of the objective function within the inverse model. We calculate the derivative by utilizing
an adjoint differentiation technique that is a particular numerical implementation of an
adjoint model. We apply the adjoint differentiation technique for the first time to the
equation of radiative transfer.

Two-dimensional images of the scattering and absorption coeflicients are recon-
structed by using experimental data. Never before executed, cross-sectional images of scat-
tering phantoms with water-containing areas are reconstructed. Furthermore, we show
reconstructed sagittal images of optical parameters of a human finger joint. We empha-
size the potential application for the early diagnosis of rheumatoid arthritis in a numerical

study.
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