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Abstract: 
 
With over forty publications on resting state connectivity in functional magnetic resonance 
imaging (fMRI) and over fifty years of invasive research in animals, the origin of various low 
frequency oscillatory states remains unresolved. Here the question will be answered: Is it 
possible to differentiate functional connectivity into two bandwidths, i.e. at very low and low 
frequencies? If it is possible to differentiate two bandwidths in fMRI resting state 
connectivity, then a connection to investigations from other modalities with well-defined 
physiological and pathological relevance can be established. A review of previous literature 
suggests that low frequency oscillations dominate in “very low frequencies” rather than in 
“low frequencies”, i.e. 0.04 Hz versus 0.08 Hz. Further, it is plausible that both bandwidths 
co-exist independent of each other, have a neural origin, and are independent of cerebral 
vasomotion as well as cardiac and respiratory cycles. We apply a hybrid fMRI approach to 
investigate the resting state with selectively filtered seed-voxels from the dominant primary 
motor cortex. We find, with both spectral and time-domain analyses, connectivity between 
segregated distant areas of the brain. We conclude that functional connectivity in the 
resting state can be defined for both bandwidths. We argue that spectral analyses might be 
better equipped for their identification and that very low frequencies are more closely 
related to cerebral autoregulatory effects as compared e.g. to investigations of intracranial 
pressure and blood volume fluctuations in physiological and pathological settings. 
 
Keywords:  
 
Connectivity, Low frequency oscillations, Autoregulation, Neuroimaging, Cranial Pressure, 
Cerebral Blood Flow 
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Abbreviation listing 
aBP arterial Blood Pressure 
BOLD Blood Oxygen Level Dependent 
CBV Cerebral Blood Volume 
CPP Cerebral Perfusion Pressure 
cpm cycles per minute 
DSP Digital Signal Processing 
EEG Electroencephalography 
fMRI Functional Magnetic Resonance Imaging 
HFO High Frequency Oscillations 
HHFO High High Frequency Oscillations 
ICP Intracranial Pressure 
LDF Laser Doppler Flowmetry 
LFFC Low Frequency Functional Connectivity 
LFO Low Frequency Oscillations 
M1 Primary motor cortex 
NIRS Near Infra-Red Spectroscopy 
P02 Partial Pressure of Oxygen 
ROI Region of Interest 
RTC ROI time course 
SPM Statistical Parametric Mapping 
TCD Transcranial Doppler Sonography 
VVLFO Very Very Low Frequency Oscillations 
VLFO Very Low Frequency Oscillations 
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1  Introduction 
 
 
The purpose of this dissertation is the investigation of low frequency cerebral oscillations in 

the healthy human adult brain as measured by functional resonance imaging (fMRI), a 

noninvasive tool to investigate cortical hemodynamics. The goal is to explore their 

functional connectivity in resting state data.  

 

1.1 LFO and VLFO 

Classically, low frequency oscillations of cerebral circulation have been defined below 0.1 

Hz. More recently, it has been suggested that these low frequency oscillations can be 

differentiated in a “low frequency” bandwidth (0.05-0.1 Hz, here defined as “LFO”) and a 

“very low frequency” bandwidth (0.015-0.05 Hz, here defined as “VLFO”). Their differential 

contribution to low frequency functional connectivity is unknown and has not been 

previously investigated. On the other hand, in the last years multiple fMRI Projects (see 

Table 3 and 4) have successfully investigated resting state connectivity in the human with 

fMRI in both healthy subjects and patients with various diseases. The origin of these 

fluctuations is uncertain and the bandwidths and terminology remain confusing. 

 

1.1.1 Low frequency oscillations in animal research 
Classic investigation of cerebral circulation began as early as the 1850’s with transparent 

windows inserted into the skulls of animals. Davies and Bronk first recorded spontaneous 

low frequency fluctuations in cerebral oxygen supply in 19571. They were confirmed in 

further investigations2-6, have been found in NADH7, cytochrome oxidase8, laser-Doppler 

flowmetry (LDF)9,10 and reflectance oximetry11 as well as in the human with LDF12,13, Near 

Infra-Red Spectroscopy (NIRS)14,15 and functional Magnetic Resonance Imaging (fMRI) 16. 

Their origin has been discussed in terms of cerebral autoregulation17,18, or of neurovascular 

origin in which fluctuations are part of a general arousal system19,20, of a complex system21 

or as a carrier for long-distance information processing of higher frequencies22. Although 

the etiology remains unclear the phenomena is beyond doubt: “A striking feature of these 

investigations in man is their fluctuation nature”23. 
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Cerebral autoregulation is defined as the orthostatic maintenance of cerebral blood flow 

(CBF= 50 milliliters (ml) of blood per 100 grams (g) of brain tissue per minute) in the face of 

changes of arterial pressure18. Or more explicitly, it reflects independence of the cerebral 

blood flow and circulatory-metabolic supply of cerebral activity from cerebral 

hemodynamics24. In general, it is thought to be directly linked to vasomotion25. Here, 

smooth muscle produces coherent waves over long distance of the vessel, possibly to 

reduce the resistance in CBF.  

Others argue that low frequency oscillations have a neural origin due to a tight 

neurovascular coupling. Low frequency oscillation arise when brain electric activity is 

depressed6,7. They appear independent of each other, even when they are measured only 

a few millimeters apart26,27. During stimulation their correlation can go from <50% to 80% 

within a short period of time28. They co-vary with electroencephalography (EEG) 

fluctuations29, are suspended by hyperemia, i.e. by hypercapnia and halothane in low 

doses and are produced by hypoxemia18,30, e.g. hypotension, hyperventilation, cerebral 

artery occlusion and vasoconstriction. These observations challenge the theory of 

vasomotor origin18. 
 
Modulation CBF O2 availability Fluctuations Vasomotion 
Hyperpnoea --1 --1   
Hypercapnia   cease (>2%)1,7  
Hypoxia -/+1 -- ++1, cease5,6,7   
Hyperoxia +/-1 ++1  --3 
Visual Stimulation +1 ++1   
Electric Stimulation ++1 ++1   
Posture Change --1 +/-1   
Anesthesia*    ++5  
Hypothermia   ++5,9  
Halothane/NO   cease7  
NO inhibitors   ++8  
Vascular-Occlusion   ipsi --, contra ++8  

 

Table 1: Modulations of physiological oscillations: In the first column, the type of 

modulation is described. The following columns depict positive or negative deflection of the 

relative parameter. CBF: cerebral blood flow131, 218, 332, 57, 7, 18, 33, 6. 
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1.1.2 Low frequency oscillations in human research 
 

Rhythmic oscillations in the human at low frequencies below the heart rate were first 

described during arterial blood pressure (ABP) monitoring by Hering, Traube, and Mayer 

as early as the 19th century. These phenomena have also been discussed in terms of 

Mayer, B- and C-waves as well as the V-signal.  

Traube-Hering-Mayer waves (Syn.: M-Waves) are defined as rhythmical variations in blood 

pressure, usually extending over several respiratory cycles, with a frequency varying from 

6 to 10 cpm, related to variations in vasomotor tone. Simultaneous recordings of 

sympathetic nerve activity and arterial blood pressure have shown that the M waves of the 

systemic arterial blood pressure correlate with discharges of sympathetic neurons, which in 

turn account for the cerebral blood flow volume (CBFV) variations in the cerebral 

vasculature. They are usually considered to be associated with vasomotion34.  

B-waves were first described by Lundberg35. They are defined as non–heart-beat–related,  

slow and rhythmic oscillations in the intracranial pressure (ICP), with 0.5 to 2 cpm with 

pressure amplitudes from near indiscernible up to 50 mm Hg36. The physiological 

mechanisms behind the B-waves are still obscure32,37,38,39. They are frequent in 

hydrocephalus40,41, but are also reported in healthy individuals42. They were first attributed 

to the Cheyne-Stokes respiration of nonintubated patients with concomitant CO2 partial 

pressure (PCO2) fluctuations35. Since then they were also observed in ventilated patients 

with a steady pCO2. Einhäupl and Venes postulated an autonomic (brain stem) rhythm as 

the pacemaker of intracranial pressure as well as cardiovascular fluctuations43. Magnæse 

postulated that B-waves were generated by changes in intracranial blood volume reflecting 

brain autoregulation44. In 1983, Rosner and Becker postulated an autoregulatory response 

of the cerebral vessels due to fluctuations of intracranial volume due to fluctuations of 

cerebral perfusion pressure (CPP) that evoked ICP oscillations45 . 

The distinction between B-waves with a frequency of 0.5–2 cpm and C-waves with a range 

of 4–8 cpm has been introduced by35, yet the significance is unclear46. 

M-, B- and C-waves must be differentiated from respiratory oscillations (R-Waves) with 9-

20 cpm. A clear correlation has been described for M-waves and R-waves between CBFV 

and arterial blood pressure (aBP). The results from these data were consistent with a high 
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pass filter model of cerebral autoregulation but also suggested that the principle of 

frequency-dependent vascular input impedances has to be considered in addition to 

autoregulatory feedback mechanisms. Further, unclear rhythmic slow fluctuations with 

various low frequency bandwidths have been observed in cerebral flow volume47,48, 

cerebral hemoglobin oxygenation in the jugular bulb49, in brain tissue PO2, as well as in 

cortical cytochrome oxidase and cortical blood volume (CBV).  

In summary, VLFO might be analogous to B- and/or C-waves and LFO to M-waves. Thus, 

LFO would have a stronger association with aBP oscillations and sympatic function, 

whereas the origin of VLFO could be argued to be more closely related to synchronized 

“low frequency oscillations” in functional cerebral systems, i.e. functional connectivity. 
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Physiological 
oscillations 

 [cpm] Definition Method Measure 

B-waves 0.5 to 2 Spontaneous rhythmic 
oscillations in the 
intracranial pressure 
(autonomic brain stem 
rhythm, brain 
autoregulation, 
autoregulation of 
cerebral vessels  

transcranial 
Doppler 
sonography, 
reflectance 
spectroscopy 

CBF, ICP 
 
Oxidase, pO2, CBV

C-waves 4 to 8    
V-signal 
(Vasomotion) 

~ 6 
 

spontaneous, 
rhythmical contractions 
generated in many 
different types of 
smooth muscle 

Optical 
imaging in the 
rat 

CBF 

Traube-Mayer 
Waves  

6 to 10  Spontaneous 
rhythmical variations in 
blood pressure related 
to variations in 
vasomotor tone 

 aBP 

M-Waves 
(Mayer 
Waves) 

3 to 9 Spontaneous 
oscillations of blood 
pressure, heart rate, 
and cerebral blood flow 
velocities 

transcranial 
Doppler 
sonography 
 
 

1. correlate with 
discharges of 
sympathetic 
neurons 
 
2. coherent with 
CBFV and aBP 

R-waves 
(Respiratory 
Waves) 

9 to 20  Spontaneous 
oscillations of blood 
pressure, heart rate, 
and cerebral blood flow 
velocities 

transcranial 
Doppler 
sonography 
 

Coherent with 
CBFV and aBP  
(thus cerebral 
autoregulation 
likely) 

 

Table 2: Physiological oscillations in humans: In the first column, the physiological 

oscillations are listed. The following columns depict relevant parameters investigated. CBV: 

Cerebral blood volume, CBFV: cerebral blood flow volume, aBP: arterial blood pressure. 

 

 

 

 



 12

1.1.3 Low frequency oscillations in human research (fMRI) 
 

Functional magnetic resonance (fMRI) allows for the simultaneous quantification of 

changes of blood oxygen dependent (BOLD) metabolic activity in local as well as distant 

regions of the brain. If multiple circumscribed regions of the brain show significant 

concurrent change in metabolic activity, then one can investigate not only these regions 

individually (segregated effects) but also the spatial and temporal characteristics of 

concurrent change for all regions in unison (integrated effects). If these changes are 

confined to functional networks of the brain, then they must be of neural origin. Thus, the 

question arises if low frequency fluctuations are functionally integrated phenomena? If so, 

then their neuro-vascular coupling must have a neural origin. If not, e.g. they are purely an 

effect of vasomotion than one would expect segregation related to cerebral vasculature. 

This is not the case. More than 30 fMRI studies show that various functional networks can 

be differentiated by LFO’s. Most importantly, blind source separation allowed for the 

simultaneous identification of five functional systems50. In addition, asymmetrical 

connectivity in the Language Network ascertains that connectivity is not merely a spurious 

correlation of symmetrical effects of cerebral vascularization. Strong evidence exists that 

low frequency spatial modes can be differentiated cerebral systems, which implies some 

form of vascular-neural connection (see Table 3 and 4).  

No previous investigations have discussed the differentiation of VLFO and LFO bandwidths 

in terms of functional connectivity. In the human, since Biswal and his colleague’s first 

investigations in BOLD-fMRI, it has been generally accepted that the oscillations are 

defined in bandwidths below 0.1 Hz, and probably dominantly around 0.08 Hz51. However, 

most of the publications provide evidence that the dominant bandwidth is in the VLFO 

domain52-60. Of these, some deserve special mention61,62,55. They discuss the spectral 

characteristics of the fMRI signal. The first publication that addressed bandwidths of 

spectral information in functional connectivity decomposed the seed voxels correlation 

coefficient into spatial maps of specific bandwidths (0 - 0.1, 0.1 – 0.5 and 0.6 – 1.1 Hz), 

compared these with a localizer tasks and introduced null statistics via phase 

randomization. They found that the cross-correlation values of functional systems were 

highest for frequencies below 0.1 Hz. In contrast, the bandwidths of the ventricles were 
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non-specific; the arteries were dominated by “high-frequencies” (0.6 – 1.1 Hz) and the 

venous system by mid and to lesser extent low frequencies. Aliasing, found in CSF, was 

not present in the functional systems63. Strik et al. discussed the correlates of C- and B-

waves, as well as respiratory and cardiac cycles in fMRI. Their results focused on cerebral 

fluid fluctuations, e.g. ventricle fluctuations. They found the ventricles dominated by all four 

factors, the basal artery by cardiac and respiratory frequencies, the sagittal venous system 

by C- and B-waves and functional parenchyma as relatively equipotent64. Beckmann and 

colleagues utilized a blind-source separation algorithm (probabilistic Independent 

Component Analysis, pICA), sampled at an adequate frequency (TR 124 ms) to avoid 

effects of aliasing. Their results provide evidence that at an adequate sampling rate the 

multiple functional systems with a dominant bandwidth of about 0.08 Hz can be found. 

Interestingly, in a later publication the dominant bandwidth was also 0.03 Hz65,66. 

In summary, independent statistical maps of low frequency connectivity can be found in 

VLFO and LFO bandwidths of resting state fMRI. These can be clearly differentiated from 

CSF as well as cardiac and respiratory fluctuations. Multiple functional systems can be 

differentiated. This is not due to aliasing. Thus, we suggest that these two forms of 

connectivity co-exist independently. They have a neurovascular correlate, which is 

reflected in well-known oscillatory phenomena found in TCD and ICP studies.  
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Authors  Ref.  Species  Technique  Parameter VLFO 
[s-1] 

LFO 
[s-1]  

HFO 
[s-1] 

Magn. Modulation  Remarks 

Kleinfeldt  1995  rat  2-Photon microsc.  RBCv   ~0.1     Cohere for <0.1 Hz 

Biswal  1996  rat  Video-microscopy  RBCv   0.07–0.2    L-NAME   
Dirnagl  1993  rat  LDF  CBFv   0.1–0.18   18%  NOS-inhibitor   
Golanov  1996  rat  LDF  CBFv   ~0.1   20%  Spontaneous   
Golanov  1994  rat  LDF  CBFv  ~0.1   20%  Anesthesia  evoked by 

identified 
neurons 

Synchron. across 
brain  

Hudetz  1995  rat  LDF  CBFv   0.11–0.13   10%  L-NAME, 
CO2,  

 

         anaesth.   
Hudetz  1992  rat  LDF  CBFv   0.07–0.18   14–30%  RR, CO2   
Morita  1992  rat  LDF  CBFv   0.08–0.17   5–10%  RR, U-shaped 

depencence 
Frequency shifts by 
RR  

Dora  1981  cat  Fluororeflectometer  NAD/H, 
CBV  

0.03–
0.05  

0.08–0.17     Lag of NADH  

Mayevsky  1991  rat  Fluororeflect./LDF  NAD/H, 
CBV, 
CBFV 

 0.1–0.15    CO2,O2  Ischemia related  

Vern  1988  cat  Reflect.-spectrosc.  CYT, CBV   ~0.15    No by sleep  Indep. metab./ vasc. 
           
Vern 
Mayhew  

1997 
1999  

rabbit 
rat  

Reflect.-spectrosc. 
Spectrosc. imaging  

CYT, CBV 
HbO2, Cyt  

 <0.5 ~0.1   2–5%*3 5� 
stim.*1*3  

Stimulation?  Connectivity Phase 
shift HbO2-Cyt 

           
Mayhew  1996  rat/cat  Spectrosc. imaging  Intrinsic 

signal 
 ~0.1   1–2%  Stimulation?  Temp/spat 

inhomogen. 
           
Cooper  1966  human  Polarogr. electr.  Invasive: 

pO2  
 ~0.1   220%  Hypercapnia  Spatial inhomogen. 

Livera  1992  neonate  NIRS  tot-Hb   0.05–0.08   (~3 mM)  Pathology?   
Chance 
Ebwell  

1993 
1996  

human 
human  

NIRS NIRS  Absorption 
oxy-, 
deoxy- & 
tot-Hb 

 0.1–5  ~0.2  0.4 mM*2*3  Stimulation?   

Ebwell  1999  human  NIRS  oxy-, 
deoxy-& 
tot-Hb 

 0.08  0.22  0.6 mM*2*3    

Hoshi  1998/7  human  NIRS  oxy-, 
deoxy-& 
tot-Hb 

0.01 0.08      

Diehl  1991/5  human  TCD  MCA-Fv  0.007 0.15   230%  Phase by ICA 
occlusion 

Phase shift RR- LFO 

Giller  1999  human  TCD  MCA-FI  0.006–
0.037  

  7.5%    

Hu  1999  human  TCD  MCA-Fv  0.016–
0.04  

0.04–0.15  0.15–
0.4  

 Phase/magn. 
by ICA 
occlusion 

C test orr. with CO2- 

Kuo  1998  human  TCD  MCA-Fv  0.016–
0.04  

0.04–0.15  0.15–
0.4  

  Phase aBP-Fv  

Zhang  1998  human  TCD  MCA-Fv  <0.07  ~0.1  ~0.2   Cerbral 
vasculature 

 

Zhang  1998  human  TCD  MCA-Fv  0.02–
0.07  

0.07–0.2  0.2–
0.3  

Orthostatic 
stress 

functions as 
high pass filter 

Indicator of autoreg. 

Ba¨ zner  1995  human  TCD  MCA-Fv  0.01–
0.05  

0.05–0.15  0.15–
0.5  

 Large/small 
artery disease 

 

Blaber  1997  human  TCD  MCA-Fv  ~0.03  ~0.1  ~0.2   Orthostatic 
stress 

Autoreg. high pass 
filter 

Mitra  1997  human  BOLD-fMRI  BOLD- 
contrast 

 ~0.1     Temp/spat 
inhomogen. 

Biswal  1997  human  BOLD-fMRI  BOLD- 
contrast 

~0.02  (~0.14)    Hypercapnia  Connectivity  

Biswal  1995  human  BOLD-fMRI  BOLD- 
contrast 

 <0.08     Connectivity  

Lowe  1998  human  BOLD-fMRI  BOLD- 
contrast 

 <0.08     Connectivity  

Li  2000  human  BOLD-fMRI  contrast ~0.04  (~0.1)  ~0.23   Cocaine  Connectivity  

 
Table 3: Selection of Articles on Spontaneous Low Frequency Oscillations of Cerebral 
Blood Flow and Metabolism. The relevant parameters are listed in the column headings. 
The rows depict the publication. Table 3 reproduced with kind permission of the authors67. 
Table 4 with an emphasis on newer fMRI publications. 
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Authors  Year Techn  Modulation  System VLFO [s-1] LFO [s-1] 

Biswal  1995 fMRI  
 

Motor,? aud. Vis? 0.02 (lt beckmann) <0.08  

Biswal  1997 fMRI  
Hypercapnia  

Motor ~0.02 (~0.14)  

Mitra  1997 fMRI  
 

 ~0.02 ~0.1  

Lowe 1998 fMRI 
 

Vis, Amygdal, Motor n.A <0.08 

Xiong 1999 fMRI 
 

motor < 0.1 Hz < 0.1 Hz 

Obrig 2000 NIRS 
Hypercapnia  

vis 0.02 0.1 

Arfanakis 2000 fMRI 
 

motor, vis, aud 0.03! 0.09 

Cordes 2000 fMRI 
 Motor, Visual, Auditory, 

Prefrontal 0.03! 0.06 (1/f) 

Kiviniemi 2000 fMRI 
anaesthesie 

   

Li 2000 fMRI 
cocain 

? n.A n.a. 

Stein 2000 fMRI 
n.a. 

thalamus, hippocampus <0.08 < 0.08 

Quigley 2001 fMRI 
Lesion 

Speech, Aud. Motor <0.1 <0.1 

Cordes 2001 fMRI 
n.a. 

  <0.1 

Lowe 2002 fMRI 
MS 

motor < 0.08 < 0.08 

Li 2002 fMRI 
 

Hippocampus n.a. n.a. 

Koch 2002 fMRI 
 

U-fasern < 0.8 < 0.8 

Cordes 2002 fMRI 
 

visu,aud.motor.frontal.fusiform 0.03-0.1 0.03-0.1 

Strik 2002 fMRI 
n.a. 

 0.008 – 0.05 (0.05-0.15) 

Hampson 2002 fMRI 
 

Language (asymmetric) < 0.1 < 0.1 

Quigley 2003 fMRI 
agenisis corpus 
callosum auditory, motor n.a. n.a. 

Young 2003 PET 
 

3a,3b,1,2 n.a. n.a. 

Peltier 2003 fMRI 
 

motor < 0.1 < 0.1 

Kiviniemi 2003 fMRI 
anaesthesie 

vis, motor, aud n.a. n.a. 

Greicius 2003 fMRI 
 

default mode 0.0083 - 0.15 0.0083 - 0.15 

Rombouts 2003 fMRI 
n.a. 

Hippocampus 0.03 n.a. 

Sun 2004 fMRI 
 

motor 0-0.15 0-0.15 

Greicius 2004 fMRI 
alzheimer 

default mode n.a. n.a. 

Van den Ven 2004 fMRI 
 

sensorimotor, auditor, frontal ~0.04 0.08 

Hampson 2004 fMRI 
motiion 

V5, visual system n.a. n.a. 

Sun 2005 fMRI 
fingertap 

motor 0 - 0.15 0 - 0.15 

Anand 2005 fMRI 
antidepressant(?), 
happy faces (?) depression, mood < 0.08 < 0.08 

Beckmann 2005 fMRI 
 

Sensorimotor 0.02 ( 0.08  

Salvador 2005 fMRI 
 

 0.0004, 0.1518  0.0004, 0.1518 

DeLuca 2006 fMRI 
 

RSN 1-5 0.02 0.08 

Nir  2006 fMRI 
 

PPA,IPC (visual system) 0.03 0.06 

Sun 2006 fMRI 
learning 

motor learning s.o. s.o. 

Thirion 2006 fMRI  
 

occip., parietal, parietofrontal 0.02-0.04 0,06 

 
Table 4: Selection of Articles on Spontaneous Low Frequency Oscillations of Cerebral 
Blood Flow and Metabolism. The relevant parameters are listed in the column headings. 
The rows depict the publication. This table emphasizes recent publications in fMRI. It is not 
exhaustive, but aims to give an insight into the multiple bandwidths found in various 
systems and pathologies 
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1.2 Problem definition / State of research:  

Slow oscillations of cerebral hemodynamics and metabolism have been studied by different 

techniques and in various species. Their origin is unclear; their frequency spectrum is ill 

defined. In addition, the terminology is confusing. Vasomotion or V-signal, Traube-Mayer, 

Mayer- or M-waves, B-waves, C-waves as well as spontaneous oscillations, and low 

frequency waves are used interchangeably and often synonymously (see Tables 2, 3 and 

4). In addition, the following features are common to the phenomena described. They occur 

without overt stimulus (spontaneity). They can be differentiated form other respiratory and 

cardiac cycles (slowness). Moreover, they are altered by pharmacological and pathological 

conditions (modulatability). 

These oscillations raise interest for three reasons: (1) Functional connectivity maps have 

been reported on their basis; (2) transcranial doppler (TCD) studies have shown that their 

phase relation to arterial blood pressure oscillations may reveal autoregulatory 

mechanisms of the brain vasculature; (3) alterations due to pathological conditions have 

been shown in human pathologies as well as a rat stroke model.  

Little is known about their origin, yet it is important to elucidate their spatial and frequency 

characteristics for both normal physiological conditions and in those that may reflect brain 

injury or pathologies of diagnostic or prognostic value18.   

 

This work is not directly aimed at revealing the mechanisms underlying low frequency 

oscillations. They might be of vasomotor origin or reflect auto-regulation in physiological as 

well as in pathological settings. Indirect evidence will be presented that supports the notion 

of neurovascular coupling of neural origin; in contrast to vasomotion. Second, that in line 

with previous investigations from other modalities that oscillations can be found in two 

different distinct phase-locked bandwidths; e.g. VLFO and LFO in line with previous 

invasive animal and TCD or intracranial human investigations.  

. 

 

1.3 Direction of the argumentation 

Recent findings in blood oxygen contrast dependent (BOLD) functional magnetic 

resonance imaging (fMRI) have generated interest in functionally segregated connectivity 
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maps derived from low frequency oscillations of cerebral hemodynamics at rest68. This is a 

simple measure for example in clinical practice. Yet the frequency range analyzed in fMRI 

connectivity studies is often not in agreement with the typical range reported in non-fMRI 

literature (see Tables 3, 4 and69 for discussion). This is of interest because specific 

bandwidths reflect differential neurophysiologic processes. Further, it is unclear if the 

spatiotemporal characteristics for these processes are comparable or depict sub 

processes. It is also unclear which role phase locking or phase shifts might play.  Here, for 

example, in the human low frequency oscillations in sampling volumes of a centimeter 

have been identified in two bandwidths below 0.1 Hz with a functionally relevant phase-

shift70.  Thus, it is important to re-inspect and further differentiate the spectral information of 

possible sub-processes of baseline functional connectivity. The perspective being that the 

simple acquisition of resting state fMRI might offer a novel non-invasive window to further 

or understanding of neuropathology in the light of autoregulation or baseline cerebral 

dynamics.  

 

 
 

1.4 Previous work of the research group 

Previous investigations from our group with Near-Infrared Spectroscopy (NIRS) showed 

strong cerebral fluctuations of metabolic parameters in two distinct bandwidths (~ 0.04 and 

~0.08 Hz)71. FMRI has a high spatial resolution and NIRS a high temporal resolution. 

These two methods offer complementary advantages to investigate mechanisms of 

cerebral autoregulation in physiological and pathological settings in the brain.  
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2 Methods and materials  

 

This chapter discusses basic prerequisites for understanding themes pertinent to this 

dissertation: fundamentals of fMRI and linear and spectral digital signal analysis. 

 

 

2.1 Fundamentals of Magnetic Resonance Imaging (MRI) 

MRI is used to measure proton- and time-dependent changes in brain metabolism with 

high spatial resolution.  

2.1.1 Longitudinal magnetization; the static 

magnetic field 

An atom encompasses a shell and a core. The shell 

consists of electrons. The core consists of protons and 

neutrons. Protons have a positive electrical charge that 

spins around the atoms internal axis. This induces a 

magnetic field. In a B0 magnetic field of magnetic 

resonance imaging (MRI) a larger portion of the 

protons, align parallel versus anti- parallel to the B0 

field. This induces a magnetic vector parallel to the 

external static magnetic field (“longitudinal 

magnetization”). This vector precesses with a specific 

speed around its internal axis (“Larmor frequency”). The precession frequency is directly 

proportional to the strength of the external magnetic field defined by the Larmor-Equation: 

 

ω0 = γВ0 

ω0 = precession frequency  

γ  = gyromagnetic ratio 

В0 = strength of the external Magnetic field in Tesla (T) 

 



 19

2.1.2 Transverse magnetization; the radio wave impulse  

The irradiation of a high frequency impulse (“HF- impulse”), frequency locked1 to the 

precession frequency, causes transfer of energy and two changes:  

• Some protons flip into an anti-parallel alignment, thereby reducing longitudinal and 

producing transversal magnetization. 

• The phase of the protons precession synchronizes. This also contributes to transversal 

magnetization – the measurable MR-Signal. 

The subsequent gyrating decay of longitudinal and transversal magnetization is termed 

“relaxation”.  

 

2.1.3 T1 and T2 relaxation times 

Due to resonance effects, the protons lose thermal energy to the surrounding matter (“spin-

lattice”). The speed of this process is a function of time described by the time constant T1 

(“longitudinal relaxation time”). Concurrently, the transversal subsystem reverts to its initial 

state of null magnetization (“transversal relaxation”) and concurrent proton precession 

dephases due to minute magnetic inhomogenities in surrounding matter (“spin-spin 

effects”). This is described as a function of time by the time constant T2 (“transversal 

relaxation time”). Relaxation times are tissue specific and the basis for tissue contrast and 

signal strength. 

 

2.1.4 FMRI; T2* and BOLD 

The basis of hemodynamic response to neural functions of the brain was established as 

long ago as 189072. Many of these metabolic and oxygenation processes can be measured 

because of their magnetic and paramagnetic characteristics. The most common technique 

uses the blood oxygen level dependent contrast (BOLD)33,73-76.  

Blood oxygen has, like all substances, characteristic T1 and T2 relaxation times. Cortical 

activation can be identified because deoxyhemoglobin is paramagnetic and 

oxyhaemoglobin is diamagnetic. In other words, the signal is blood oxygen – or better 
                                                 
1 Frequency locked HF-impulse: To transfer energy to the protons the frequency of the HF-Impulse has to match,  
or resonate, with the precession frequency of the protons. This explains the “R” (resonance) in the acronym MRT.  
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deoxyhemoglobin - level dependent. BOLD fMRI is based on the idea “that neural 

activation increases regional cerebral blood flow and concomitantly increases venous-

blood oxygenation”77, i.e. decreases ferromagnetic deoxyhemoglobin and precession 

dephasing. T2 relaxation is based on dephasing that is intrinsic to the molecular 

environment of the spin (“spin-spin effects”). Chemical shift and local field inhomogenities 

cause dephasing termed T2’ (prime). The combination of T2 and T2’ yield T2* (star). The 

rapid dephasing caused by T2* effects is enhanced in areas where there are marked 

changes in magnetic susceptibility, such as BOLD cortical activity, and is the basis of fast 

imaging techniques. 

 

 

2.2 Fundamentals of functional Magnetic Resonance Imaging (fMRI) 

Human brain mapping aims to map functional properties to neural correlates of the brain, 

which results in maps of functional anatomy. Within brain mapping, Neuroimaging defines 

functional neuroimaging (e.g. with fMRI) with statistical tests for regionally specific effects. 

 

2.2.1 Statistics 

Parametric statistics are based on the general linear model that is used in fMRI to make 

statistical inferences by performing univariate tests at every voxel. This is also known as 

statistical parametric mapping78. 

The general linear model is derived from analysis of variance. Covariance is the square 

root of one variable’s variance multiplied by the square root of another variables variance. 

A more direct indication of how two components co-vary is correlation, i.e. covariance 

scaled by the product of the respective standard deviations. Linear multiple regression of 

multiple components is based on partial correlation and defined by the equation: 

 

y(i) = a + b*x(i) + error 

y = is the dependent variable,  

x = independent variable,   

b = is the slope, or regression coefficient  

a = is the intercept 
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Thus, linear regression defines the relationship between multiple variables and adds a 

measure of residual variance as the basis for statistical testing. If the e.g. two variables are 

related, then when one changes by a certain amount the other changes correspondingly. 

The parameter b (the regression coefficient) signifies the amount by which change in x 

must be multiplied to give the corresponding average change in y2. 

 

The only notable limitations are that multiple linear regression (1) cannot provide a solution 

for the regression coefficients when the X variables are not linearly independent and (2) the 

inverse of X'X therefore does not exist. These restrictions, however, can be overcome, and 

in doing so, the multivariate regression model is transformed into the general linear model. 

The general linear model allows for linear transformations or linear combinations of multiple 

dependent variables (“y”); e.g., it allows for multivariate testing, multivariate testing of 

independent linear combination of multiple dependent variables and analysis effects of 

repeated measure factors with either univariate or multivariate methods.  

 

2.2.2 Statistical Parametric Mapping 

Statistical Parametric Mapping (SPM) is a common method for time-domain based analysis 

of functional connectivity79. Generally, the data from each subject is analyzed separately as 

a series of case studies that are tested subsequently for second level effects. The regions 

showing e.g. finger-tapping-sensitive responses can be identified in statistical parametric 

mapping by means of a general linear model. The time-series can be corrected for 

movement related and/or slice acquisition delay as well as magnetic inhomogenity effects, 

smoothed in space and time and coregistered or normalized into secondary spaces; e.g. 

warping of data with 12 degrees of freedom onto an international-standard brain template. 

Condition-specific effects are assessed by using multiple regression for serially correlated 

data. Each condition is modeled as a boxcar or stick function and convolved (is there such 

a word?) with a canonical hemodynamics response function. The statistical model includes 

global and low frequency confounds. Comparisons amongst conditions are effected with 
                                                 
2 y(i) = a + b*x(i) + b2*x2(i) … bn*xn(i) 
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the appropriate contrast of the condition-specific parameter estimates to give statistical 

parametric maps (SPMs) of regionally specific effects.  

 

 

2.3 Fundamentals of linear signal analysis 

Digital signal processing is the study of signals in a digital representation. In most cases, its 

goal is to measure or filter continuous real-world analog signals.  

 

2.3.1 Time domain versus frequency domain 

Information represented in the time domain describes the “when” and “how much” of an 

occurrence. Information represented in the frequency domain describes “how often”.  For 

example, a heart rate of 60 beats per minute will peak every second in the time domain 

and peak exactly once at 1 Hz in the frequency domain. To identify oscillations below 0.1 

Hz in a noisy physiological system, the time domain signal is preprocessed and low-pass 

filtered. The frequency domain offers the advantage that, a peak (i.e. < 0.1 Hz) is identified 

directly. A common use of Fourier Transform is to find the components of a signal buried in 

a noisy time domain signal80. 

 

2.3.2 Time domain analysis  

The most straightforward way to implement a digital filter is by convolving the input signal 

with the digital filter's impulse response. Any signal, x[n], can be decomposed into a group 

of additive components. Passing these components through a linear system (i.e. 

convolution) will produce the new signals, y1[n], y2[n] and y3[n]. The synthesis of these 

output signals is y[n].  To understand how complicated signals are changed by a system, 

all digital signal processing needs to know is how simple signals (e.g. one single non-zero 

point) can be shifted and scaled to represent the output of any input. This impulse 

response is the output of the system when the input is standardized; e.g., the 

hemodynamic response function is the vascular impulse response of a neural event.  
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The characteristics, as well as the adverse effects, of every (linear) filter are defined not 

only by its impulse response, but also by the frequency and step response. These are the 

Fourier transform and discrete integration of the impulse response, respectively. They are 

the basis for evaluating a filter’s prospective performance. They define the alteration of the 

frequencies passing through the filter and the strength with which the stop-band 

frequencies are attenuated. It is important to note that due to e.g. pass-band ripple the 

processed signal will contain inconsistencies. In contradistinction, the subtraction of one 

time-domain signal from another will offer a filtered result, which is void, these systematic 

inconsistencies. 

 

2.3.3 Comparison of filter methods, FIR and IIR  

There are two important filter implementation algorithms, FIR and IIR3. Both have been 

used to investigate resting state connectivity. The Butterworth filter was the first and 

common method81.. Is one better then the other? A Butterworth filter is a maximally flat 

(pass-band ripple) Chebyshev. Both the Chebyshev and the windowed-sinc FIR filters are 

designed to separate one band of frequencies from another. In comparison, both filters 

generally achieve pass-band flatness and have an ugly step response4. Yet, the 

performance for the windowed-sinc filter is much better than that for the Chebyshev. Thus, 

“the windowed-sinc is the powerhouse, while the Chebyshev is quick and agile (…). Even if 

the recursive filter were improved, it is still no match for the FIR performance”5. It is like 

comparing a Ferrari with a go-cart80. 

 

  

                                                 
3 Finite impulse response (FIR): An impulse response that has a finite number of nonzero values. Often used to indicate 
that a filter is carried out by using convolution, rather than recursion. Infinite impulse response (IIR): An impulse 
response that has an infinite number of nonzero values, such as a decaying exponential. Often used to indicate that a 
filter is carried out by using recursion, rather than convolution. 
4 Which is forgivable for frequency domain filters? 
5 Biswal and colleagues initially used a Butterworth filter and then later suggested that a window-sinc filter is best 82,83. 
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2.4 Fundamentals of spectral analysis 

Spectral analysis allows for the phase independent investigation of and synchronization of 

phenomena. In other words, “a common use of Fourier Transforms is to find the 

components of a signal buried in a noisy time domain signal”80,84. 

 

2.4.1 Major terms defining spectral analysis: 

Spectral domain analysis is the frequency-domain representation of a signal as a complex-

valued function, characterized by amplitude and a phase function. The representation is 

computed using a FT (Fourier Transform). The FT can be understood as a degree of 

correlation of the input signal with cosines and sinus basis functions as a function of 

frequency. The Power Spectral Density (PSD) is the FT of auto covariance. Thus, the PSD 

describes the amount of power per unit (= density) of frequency (= spectral) as a function 

of the frequency. The PSD is calculated in units of power per bandwidth. Power P is 

defined as the energy per unit of time. If x(k) is the kth value of a time series of N samples 

with sampling period, its energy E is defined as the sum of the x(k)2 over a predefined time 

period. Spectral density describes how much signal (energy) is present per unit of 

bandwidth. The CSD (cross-spectral density) is the FT of cross variance. Coherence has 

its time domain counterpart in correlation. It is a degree of linear correlation between two 

signals as a function of the frequency. Coherence and phase are closely connected 

spectral parameters. Coherence may also be understood as a measure of phase stability 

that describes the amount of common information of oscillations within certain bandwidths. 

Two waves are said to be in phase if their crests and troughs meet at the same place at the 

same time. The waves are out of phase if the crests of one meet the troughs of another. 

The waves are incoherent if the crests and troughs meet randomly. Thus, correlation is 

dependent on phase delay. Coherence is dependent on phase stability over time. 

 

2.4.2 Spectral analysis and oscillatory activity 

In contradistinction to the time domain, spectral analyses allow us to investigate 

connectivity of two signals under relative phase shift. This infers connectivity with zero 

phase-shift, i.e. identical to a correlation analysis, as well as phase stable signals with 

some amount of phase shift. Thus, spectral analyses should have many possibly 
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interesting advantages. They are especially equipped to find oscillatory activities and to 

identify their phase relationship even if these are not phase-locked. In comparison to 

multivariate spectral methods, the inherently univariate FT-analyses has the drawback of 

lower resolution and leakage85. Yet, in the analysis of oscillatory activity, the disadvantages 

of transforming the data into the frequency domain should be minor in comparison to time-

domain analyses86. 

 

 

 

3 Experimental setup and analysis 

 

The experiment in this study was performed to investigate the bandwidths of resting state 

connectivity from a set of BOLD-contrast fMRI time-sequences, acquired while the subject 

did not perform any specific task. In order to compare connectivity within well-defined 

regions of the brain a functional task localized the primary motor cortex prior to resting 

state investigations.  

 

3.1 Hypothesis 

Classically defined low frequency oscillations (0-0.1 Hz) can be subdivided into “very low 

frequency oscillations” (VLFO, ~0.01-0.5 Hz) and “low frequency oscillations” (LFO, ~0.5-

0.1 Hz). We suggest that the motor system will show independent connectivity in both 

bandwidths. Time domain analyses of functional connectivity have been well investigated, 

although the LFO and VLFO bandwidth specific analysis is novel. Here in contrast, we 

argue that frequency domain analyses might be better equipped to identify oscillations in 

noisy systems.  

 

 

3.2 Experimental setup 

Six subjects (4 male, 2 female, age range 22 through 46 years) performed both 

experiments. The subjects had no history of neurological or vascular disease, gave 
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informed consent on participation in the study, which the local Ethics Committee approved, 

and were financially refunded for their participation.  

In experiment 1, the goal was to localize the right and left primary motor cortex (M1). These 

regions of interest (ROIs) were assessed in the subjects by motor hand stimulation (finger 

tapping) and the prior knowledge of anatomical landmarks (hand knob of the precentral 

gyrus).  

In experiment 2, the goal was to analyze the functional connectivity of these regions by 

spontaneous vascular fluctuations, i.e. to demonstrate independent connectivity for the 

VLFO (Very Low Frequency Oscillations) and LFO (Low Frequency Oscillations) 

bandwidths.  

Each of the subjects underwent the same series of scans performed with 1.5 Tesla 

Magnetic Resonance Tomograph (Magnetom Vision; Siemens, Erlangen, Germany) 

equipped with a standard birdcage head coil. The head coil was centered on the nasion. 

Two way contact between the human test subject and the experimenter was possible due 

to earphones and a communication system integrated into the MR-scanner. All subjects 

received a safety ball. Head stabilization with a vacuum pillow as well as the instruction to 

avoid overt movement for the duration of the experiments attenuated movement artifacts.  

High-resolution structural images were acquired using a 1 mm3 T1-weighted sagittal 

magnetization prepared – rapid gradient-echo (MPRAGE) sequence (TR: 10 ms; TE: 4 ms; 

flip angle: 12°; inversion time: 100 ms; 256 x 256 matrix; 170 sagittal slices). Functional 

images were acquired subsequently with a gradient echoplanar imaging sequence 

(repetition time (TR): 1000ms, echo time (TE) 60 ms; flip angle: 90°; in-plane resolution: 

4x4 mm). Deletion of the first five volumes accounted for T1-saturation effects. Slice 

orientation was aligned to a diagonal running through the anterior and posterior 

commissure. 

 

3.2.1 Experiment 1 (“task activation”) 

A functional localizer task was used to identify the regions of interest, i.e. the primary motor 

areas. The subjects executed blocks of 20s unilateral random finger tapping alternating 

between left and right hand. They received auditory instructions controlled by a stop clock. 

Resting periods of 40s in duration followed each tapping period (see Figure 4). Thus, 400 
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volumes of functional magnetic resonance data were acquired, with six axial slices 

covering the cortical motor areas.  
 
 

Right 

(20s.) 

   Right 

(20s.) 

    

(…) 

 Rest 

(40s.) 

 Rest 

(40s.) 

 Rest 

(40s.) 

 Rest 

(40s.) 

 

(…) 

  Left 

(20s.) 

   Left 

(20s.) 

  

(…) 

 

Figure 4: Localizer task. Finger tapping was evaluated for alternating finger tapping, first 

RIGHT (Top row) then LEFT (bottom row). Each finger-tapping period lasted 20s. The 

REST period (middle row) was 40s. Data was acquired over 8 minutes. Each session had 

six trials (RIGHT – REST – LEFT).  

 

3.2.2 Experiment 2 (“resting state connectivity”);  

The six subjects performed no specific task. Both hands were at rest. The subjects were 

informed to close their eyes, stay awake, and let their thoughts meander (“resting state”). 

600 volumes of functional magnetic resonance data were acquired, with six axial slices 

covering the cortical motor areas.  

 
 

Rest Rest Rest Rest Rest Rest Rest Rest (…) 

        (…) 

Rest Rest Rest Rest Rest Rest Rest Rest (…) 

 

Figure 5: Resting state analysis. In contradistinction to the previous task, both hands were 

continuously at rest (top and bottom row).  
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3.3 Analysis 

 

3.3.1 Structural identification of the motor areas (Analysis 1) 
 
The primary motor cortex was identified utilizing the algorithm described by Yousry and 

colleagues87. Although for a number of regions there is a difference between purely 

anatomical landmarks and the results of functional localization, the primary motor areas 

can be reliably localized by anatomical landmarks: “the results from fMRI data and surgical 

validation with intraoperative cortical mapping indicated good correlation of these two 

methods and that there are no significant differences in the localization of the motor hand 

area”88.  This method defines the identification of the primary motor areas, derived from the 

identification of the omega, or “hand knob” in the axial plane in comparison with the “hand 

hook” in the sagittal plane in high-resolution structural MRI data. The accuracy of this 

method is larger than 98%. 
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Figure 6: Schematic drawing of the omega shaped motor hand areas collated with maximal 

activation (intrasulcal activations were discarded) as determined by fMRI in 14 

hemispheres from 10 Subjects (see 89)). 

 

3.3.1.1 Functional identification of the motor areas (experiment 1): 

Apart from anatomical localization, we performed a motor localizer task. The data from 

each subject were analyzed separately as a series of case studies. The regions showing 

finger-tapping-sensitive responses were identified in statistical parametric mapping (SPM, 

Wellcome Department of Cognitive Neurology, London). The time-series were corrected for 

movement related effects, smoothed in space (4-mm isotropic Gaussian kernel) and time 
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(convolution with the canonical hemodynamic response function, Hrf). Condition-specific 

effects were assessed by using multiple regression analysis for serially correlated data. 

Each condition was modeled as a box-car function and convolved with the Hemodynamic 

response function. The statistical model included global and low frequency confounds. 

Comparisons amongst conditions were effected with the appropriate contrast of the 

condition-specific parameter estimates to give statistical parametric maps (SPMs) of 

regionally specific effects correlated with left or right finger tapping.  

In all subjects analyzed, the M1-ROI was defined as the region of overlap from the results 

of the structural and functional analyses. 

 

3.3.2 The analysis of low frequency functional connectivity 

The analysis of low frequency functional connectivity is subdivided into two parts: The 

comparison of VLFO and LFO bandwidths and the comparison of correlation versus 

coherence as measures of functional connectivity. To investigate these questions it is 

necessary to define the seed-voxel for a region of interest, e.g. the left M1-ROI. The 

subsequent analyses measure either the correlation or the coherence of this seed-voxel 

with all of the other voxel time series in the brain. 

 

3.3.2.1 Extracting resting state VLFO and LFO bandwidths from M1. 

The resting state time-series extracted from either M1-ROI were filtered to define five 

bandwidths. When necessary, digital filter algorithms utilized a forward and backward 

phase to yield a result with zero phase distortion. The first filter extracted data below 0.015 

Hz (VVLFO) as a correlate of machine noise and movement90, the second below 0.05 Hz, 

the third above 0.10 Hz. The fourth filter removed high-frequency noise above 0.15 Hz 

(VHFO) from the analysis that should account for respiratory fluctuations. When possible 

signals were subtracted from each other to avoid unnecessary artifacts, inherent to digital 

filters (see methods). Thus, the other frequency bands of interest were extracted in a novel 

manner as follows: 
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• The VLFO bandwidth was the result of filtering the raw seed-voxel time series with 

the second filter and subtraction of the VVLFO time-series. The result was a VLFO 

time-series in the bandwidth from 0.015 through 0.05 Hz.  

• The LFO bandwidth was acquired by subtracting the results of filter 2 (<0.05 Hz) 

from the raw time-series, and the results of filter 3 (>0.10 Hz) from this time-series. 

The result was a LFO time-series in the bandwidth from 0.05 through to 0.10 Hz.  

• The HFO bandwidth involved subtraction of the result of filter 4 on raw time-series 

from the result of filter 3 on the raw time-series. Some previous investigations of low 

frequency functional connectivity included bandwidths below 0.15 Hz. 

  
 

 
 

Filter 1 
< 0.015 Hz 

Filter 2  
< 0.05 Hz 

 Filter 3  
> 0.10 Hz 

Filter 4  
> 0.15 Hz 

VVLFO  
 

seed 
< 0.015 Hz 

    

VLFO  
 

 seed 
0.015-0.05 Hz 

   

LFO  
 

  seed 
0.05-0.1 Hz 

  

HFO  
 

   seed 
0.1-0.15 Hz 

 

VHFO  
 

    seed 
> 0.15 Hz 

 

Table 5: Illustration of seed-voxel filtering algorithm for various bandwidths. The signals 

and their bandwidths are noted in the first column. The first row depicts the filters and their 

bandwidths. Signal processing was in accordance to the color scheme: Yellow background 

indicates row for row the raw signal after first high or lowpass filtering, respective to filters 

1-4. The speckled background depicts the bandwidths that were discarded from the initial 

raw time-series by subtraction. “Seed” indicates the bandwidths that were acquired for 

further analysis. VVLFO: very very low frequency oscillations, VLFO: very low frequency 

oscillations, LFO: low frequency oscillations, HFO: high frequency oscillations, VHFO: very 

high frequency oscillations6. 
 
 
 
                                                 
6 LFO and VLFO are inline with previous literature. The other abbreviations are only loosely associated and 
are descriptive in nature. The use of subtraction avoids unnecessary artefacts induced by digital filtering. 
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Filter 1 
(< 0.015 Hz) 

Filter 2  
(< 0.05 Hz) 

Filter 3  
(> 0.10 Hz) 

Filter 4  
(> 0.15 Hz) 

Fpass [Hz] 0.001 0.04 0.09 0.13 

Fstop [Hz] 0.015 0.06 0.11 0.15 

Astop [dB] 40 40 60 60 

Apass [dB] 0.01 0.01 0.01 0.01 

 

Table 6: The four filters utilized in the filtering algorithm: All filters were Window-sinc type 

filters with a Kaiser window, direct form II Transposed. Fpass: Pass band, Fstop: 

Stopband, Apass: Passband attenuation, Astop: Stopband attenuation. 

 

3.3.2.2 Low frequency functional connectivity analysis in the time domain 

In the resting state, distant areas of the brain that correlated with VLFO and LFO baseline 

fluctuations of the M1-ROIs were identified. Thus, we were able to generate maps of 

bandwidth-specific functional connectivity. These bandwidth-specific effects were assessed 

by using multiple regression analysis for serially correlated data. Thus instead of using a 

predictor of a functional activation task (see Analysis 1) in the second Analysis we used the 

filtered time courses of the respective M1-ROI to identify areas, which correlate in their 

vascular dynamics. In other words, if a pixel showed a similar spontaneous time course as 

the time course in the M1-ROI this area can be considered ‘connective’ based on the 

respective spontaneous vascular oscillation. The statistical model included global as well 

as high and low frequency confounds. Comparisons amongst conditions were effected with 

the appropriate contrast of the condition-specific parameter estimates to give statistical 

parametric maps (SPMs) of regionally and bandwidth specific effects.  

At this point, it is essential to understand the meanings of “seed-voxel” and “Hybrid Model”. 

In the previous passage, the descriptive term “reference area” and “low-frequency 

fluctuations” (from the reference area M1-ROI) were used descriptively. The term seed-

voxel is misleading. It is commonly understood to depict the first principle component or 

mean from a certain number of time-series extracted from a region of interest. Importantly, 
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one can state, that these time-series represent the best estimate of the vascular signal in a 

specific region. This is in contradistinction to a boxcar model of hypothesized neural activity 

derived from the experimental task that is then transformed into a vascular model by 

means of convolution with a hemodynamic response model. The term “Hybrid Model” 

denotes a vascular signal (e.g. the “seed-voxel”) extracted from a specific region (e.g. M1-

ROI), which is regressed on a voxel by voxel basis against the functional images it was 

extracted from.  

The VLFO or LFO seed-voxels were contrasted against a complex baseline. This included 

the VVLFO, HFO and VHFO bandwidths, or low frequency noise, respiratory and higher 

frequency noise, respectively. Further, both the general mean time course and the 

realignment parameters were entered as covariates of no interest. Please see Figure 7. 

Prior to analysis, the data had been corrected for movement related effects and smoothed 

in space (6-mm isotropic Gaussian kernel).  

 

 
 

Figure 7: Design matrix of fMRI analysis.  

Ordinate: fMRI volume number. 

Abscissa: 1: VVLFO, 2: VLFO, 3: LFO,  

4: HFO, 5: VHFO,  

6: general mean timecourse,  

7-12 realignment parameters  

(x-translation, y-translation, z-translation, 

x-roll, y-roll, z-roll) 

13: constant 
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A fixed effects second level analysis was applied to the results from the single subject case 

studies to identify the average functional connectivity. This was effected within the SPM 

framework, a multisubject design in normalized data space and for the left and right M1-

ROI individually.   

 

3.3.2.3 Low frequency functional connectivity analysis in the spectral domain:  

In contradistinction to time domain analyses, spectral analysis allows one to avoid filtering 

and to estimate the coherence as well as the phase-shift between time-series and is better 

suited to identify oscillations in noisy time-series.  In analogy to the temporal analysis, the 

data from each subject were analyzed separately as a series of case studies. Regions 

showing low-frequency fluctuations coherent (phase stabile) with the reference seed-voxel 

were identified. The reference time-series were corrected for movement related effects and 

smoothed in space (4-mm isotropic Gaussian kernel). The voxel by voxel analysis of 

coherence was implemented in the MATLAB 6.5 environment. The estimation used the 

Welch’s averaged periodogram method, to estimate values of coherence, as a function of 

frequency, with values between 0 and 1 that indicate how well a given voxel time-series 

(595 samples) is coherent with the “seed-voxel” time-series (595 samples). Prior to 

analysis the seed-voxel was divided into overlapping (127+1 samples) hanning windows 

(256 samples) and zero padded to the length of NFFT (1024). The voxel by voxel whole 

brain coherence analysis gave spatial maps of coherence for frequencies. The VLFO were 

encoded in the first 26 maps, LFO in the following 26 maps. The first map in VLFO was 

discarded to account for noise91. Thus, the spatial map of VLFO coherence was defined as 

the grand average of the first 26 maps and LFO by the average of the following 26 maps. 

An example of the coherence across the different frequencies is given in Figure 8.  
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Figure 8: Exemplary plot of coherence between the seed-voxel and a voxel in the 

contralateral primary motor cortex. The ordinate depicts coherence. The abscissa depicts 

the bandwidth. This plot gives one value at the position n for a spatial map of coherence at 

a given bandwidth (e.g. 0.0293 or 0.0566 Hz). The average value over multiple bandwidths 

give the value for either VLFO or LFO spatial maps of coherence at position n, e.g. in this 

case a contralateral M1 time-series. This method is considered to be stable across 

subjects with slight variations in their peak frequency power with in the respective 

bandwidth. 

 

The spatial maps of coherence for VLFO and LFO were thresholded for significance92. 

Essentially the degrees of freedom are given by the number of samples per window 

(595/256 + windows due to overlapping) plus ½ times a factor derived from the window 

type (Hanning = 2.5). The degrees of freedom can be plotted as a function of coherence. 

The threshold for e.g. p<0.05 can be read from this graph – in this case 0.73. 

 

Hz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

1
voxel xn-25 value in the spatial map of coherence for 0.0566 Hz 

voxel xn-13 value in the spatial map of coherence for 0.0293 Hz 

Mean value is voxel xn value in the VLFO spatial map of coherence  

Mean value is voxel xn value in the LFO spatial map of coherence 
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For the second level analysis, all coherence maps were transformed into a normalized 

space. To this effect, the individual T1-images were warped with 12 degrees of freedom to 

best fit a standardized template93. Then the individual coherence maps were coregistered 

to that subjects structural T1-image and the T1-transformation parameters were 

subsequently applied to the coregistered coherence maps. This transformation algorithm 

was applied after statistical inference.  

Within standardized space, the spatial maps of coherence, across all subjects, can be 

calculated for any given frequency. For example, six subjects’ coherence maps at the 

frequency of 0.34 Hz could be summed together and divided by 6. This approach would be 

with flaw because coherence is defined as CSD /PSD*PSD. We corrected for this 

interdependency between nominator and denominator, calculated the mean CSD over all 

subjects, and divided it by the product of the two mean PSDs over all subjects.  
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4 Results 

 
 
In the first experiment, “identification of the motor areas”, the goal was to identify the 

bilateral homologous primary motor cortices defined by structural landmarks (experiment 1, 

part 1) as well as by sequential finger tapping (experiment 1, part 2). In the second 

Analysis “interactions of baseline fluctuations”, the goal was to investigate the connectivity 

of these areas in non-activated data sets with both temporal and spectral domain analyses. 

Our hypotheses were that connectivity would be found in both the VLFO and LFO 

bandwidths, with both temporal and spectral analyses.  

  

4.1.1 Structural identification of the motor areas  

The identification of structural landmarks of the primary hand motor successfully utilized 

the algorithm suggested by Yousry and colleagues94, described in detail in the methods 

chapter. These anatomical results (M1-ROIstruct) defined the structural constraints for the 

identification of the M1 Region of Interest (M1-ROI).  

 

 

 
 

Image 1 Image 2
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Figure 9: This figure depicts the “hand-knob” in an exemplary subject as identified by the 

method described by Yousry and colleagues95. The cross hair indicates the hand knob. 

Image 1 shows the hand knob in the coronal, sagittal and axial orientation in T1-weighted 

MRI. Image 2 shows the zooms of the left and right hand knobs, relative to relevance in the 

identification algorithm, i.e. in axial, sagittal and coronal projections, from top down. Image 

2 will be the structural background for the functional results in the following chapters. 

 

4.1.2 Functional identification of the motor areas  

The motor areas were identified with the localizer algorithm from experiment one. As 

expected, both of the bilateral motor areas were easily identifiable for all single subjects. In 

general conservative thresholds were used (p corrected <0.05, cluster > 10 voxels) 

throughout this stage of analysis to facilitate the identification of a circumscribed and highly 

specific clusters. These results (M1-ROIfunct) defined the functional constraints for the 

identification of the M1-ROI. 

Thus, the M1-ROI was confined by the overlap of M1-ROItask and M1-ROIstruct. 

Exemplary results from one subject are rendered onto the extracted brain surface in Figure 

10 and quantified in Tabel 4.  
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Structural localization (M1-ROIstruct) Finger tapping (M1-ROIfunct)               Overlap ( M1 ROI) 

 mm3 COM mm3 COM mm3 % overlap 

Left:  2168 -42 -3 +63 2563 -42 -6 +70 1360 62,73% 

Right: 2160 +19 -6 +69 2322 +21 -8 +72 1192 55,19% 

Image 1

Image 2
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Figure 10: Image 1: The identification of the M1-ROI: structural localization (red and blue) 

and finger-tapping (yellow) in sagittal, axial and coronal orientation. Image 2: Zooms 

portray their overlap for left (blue & yellow = green) and right (red & yellow = orange).  

Table 7: Overlap of the structural ROI and the functional ROI, for left as well as right 

hemisphere. The volume of the ROIs are given in cubic mm. COM is the center of matter of 

the ROIs in mm. The percent overlap, is the percent overlap of structural ROI /overlap ROI.  
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4.2 Functional connectivity of the motor areas 

The aim is to quantify the VLFO and LFO connectivity in the temporal and spectral 

domains.  

 

4.2.1 Temporal connectivity 

The overlap between the contralateral M1-cluster (M1-ROIcorr) and the respective M1-ROI 

offer a measure of the functional connectivity between the bilateral M1-ROI’s96. 

Conservative thresholds (p corrected <0.05, cluster > 10 voxels) facilitated the identification 

of circumscribed and highly specific clusters in the bilateral primary motor cortices. The 

contralateral overlap was on average 44.71% (VLFO)  and 28.24% (LFO) for the left 

hemisphere (right hemispheric seed-voxel) and 56.38% (VLFO) and 21.76% (LFO) for the 

right hemisphere (left hemispheric seed-voxel), respectively (see Tables 8 and 9). The 

mean ipsilateral overlap was always larger than 90%. This high ipsilateral connectivity is 

due at least in part to the fact that the predictor is being correlated with the M1-ROI time 

courses it was extracted from (Hybrid-model, see Methods chapter). 

For all subjects the volume of the M1-ROI (average 7040 +/- 3003 mm3) defined by 

conjunction of finger-tapping induced activity and anatomical landmarks was always larger 

then the M1-ROIcorr (average 6486 +/- 3006 mm3). These two ROIs never overlapped 

completely (average 39.02% +/- 18.14%).  

There was no significant difference between the bandwidths. All subjects supplied 

evidence for contralateral connectivity to the contralateral primary motor area and in some 

cases the supplementary motor area (SMA).  
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Figure 12: VLFO connectivity. Overlap of M1-ROIvlfo (yellow or red) with the M1-ROIs (blue 

or cyan) for an exemplary subject. Left is left and right is right. The results for ipsilateral 

connectivity are not displayed. The first row is the axial, the second the sagittal and the 

third the coronal plane. The background image is a T1-MRI from the same subject shown in 

figure 11.  

Table 8: Overlap Ratio of M1-ROIvlfo and M1 ROIs. Overlap of the motor regions 

connected by correlated spontaneous vascular fluctuations of left and right M1-ROI. The 

volumes of the ROIs are given in cubic mm. The stats are the p-values, bonferonni and 

threshold corrected. The percent overlap, is the percent overlap of the M1-ROIvlfo mm3 per 

M1-ROI mm3.   

VLFO correlation (single subject)  
Overlap with  
finger tapping ROI               

Overlap with 
 M1 ROIs 

 mm3 stats mm3  mm3  

Left:-ROI  4244 p < 0.05 1952 45,99% 608 44.71% 

Right-ROI 2082 p < 0.05 1344 64.55% 672 56.38% 
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LFO correlation (single subject)  

Overlap with  
finger tapping ROI               

Overlap with 
 M1 ROIs 

 mm3 stats mm3  mm3  

Left:  1922 p < 0.05 552 21,54% 384 28.24% 

Right: 1201 p < 0.05 400 15.61% 296 21.76% 

 
Figure 13: M1-ROIlfo connectivity. Overlap of M1-ROIlfo connected regions (yellow or red) 

with the M1-ROIs (blue or cyan) for an exemplary subject. Left is left and right is right. 

Results for ipsilateral connectivity are not displayed. The first row is the axial, the second 

the sagittal and the third the coronal plane.  

Table 9: Overlap Ratio of M1-ROIlfo and M1-ROIs. Overlap of the motor regions connected 

by correlated spontaneous vascular fluctuations of left and right M1-ROIs. The volumes of 

the ROIs are given in cubic mm. The stats are p-values, bonferonni and threshold 

corrected. The percent overlap, is the percent overlap of the M1-ROIlfo mm3 per M1-ROI 

mm3.  
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4.2.2 Spectral connectivity 

The overlap between the contralateral coherence-connectivity M1-cluster (M1-ROIcoh) and 

the respective M1-ROI offer a measure of the coherence-based connectivity between the 

primary motor cortices. The contralateral-from-seedvoxel overlap was on average 62.35% 

(VLFO) and 25.29% (LFO) for the left hemisphere (right sided seed-voxel) and 55.70% 

(VLFO) and 71,14% (LFO) for the right hemisphere (left sided seed-voxel) for VLFO and 

LFO functional connectivity, respectively. Conservative thresholds (p <0.05, cluster >10 

voxels) facilitated the identification of circumscribed and highly specific clusters. The 

ipsilateral overlap was always larger than 90%.  

For all subjects the contralateral M1-ROI (average 7040 +/- 3003 mm3) was always larger 

than the M1-ROIcoh (average 5293, 54 +/- 3172, 59 mm3). These two ROIs never 

overlapped completely (average 36.83% +/- 20.19%).  

In spectral analysis, the bilateral M1-ROI spontaneous fluctuations were highly coherent in 

both the VLFO and LFO bandwidths. All subjects supplied evidence for contralateral 

coherence-based connectivity of the primary motor area and in some cases in the SMA in 

both bandwidths. High ipsilateral coherent connectivity is at least in part due to the Hybrid-

model algorithm (see methods chapter). 
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VLFO coherence (single subject)  

Overlap with  
finger tapping ROI               

Overlap with 
 M1 ROIs 

 mm3 stats mm3  mm3  

Left:  3923 p < 0.05 2040 52,00% 848 62,35% 

Right: 1762 p < 0.05 664 37,68% 664 55,70% 

 
Figure 14: Bilateral M1-ROI VLFO-Coherence. The zooms portray the overlap of VLFO 

coherently connected regions (yellow or red) with the structure-task ROIs (blue or cyan) for 

an exemplary subject. Left is left and right is right. The first row is the axial, the second the 

sagittal and the third the coronal plane.  

Table 10: Overlap Ratio of VLFO-coherence and M1-ROIs. Overlap of the motor regions 

with coherent spontaneous vascular fluctuations of left and right M1-ROIs. The volumes of 

the ROIs are given in cubic mm. The percent overlap, is the percent overlap of the VLFO-

ROI mm3 per M1-ROI mm3. 
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Figure 15: Bilateral M1-ROI LFO-Coherence. The zooms portray the overlap of LFO 

coherently connected regions (yellow or red) with the structure-task ROIs (blue or cyan) for 

an exemplary subject. Left is left and right is right. The first row is the axial, the second the 

sagittal and the third the coronal plane.   

Table 11: Overlap Ratio of LFO-coherence and M1 ROIs. Overlap of the motor regions with 

coherent spontaneous vascular fluctuations of left and right M1-ROIs. The volumes of the 

ROIs are given in cubic mm. The percent overlap, is the percent overlap of the LFO-ROI 

mm3 per M1-ROI mm3.  

 

LFO coherence (single subject)  
Overlap with  
finger tapping ROI               

Overlap with 
 M1 ROIs 

 mm3 stats mm3  mm3  

Left:  1361 p < 0.05 592 43,50% 344 25,29% 

Right: 2723 p < 0.05 1360 49,94% 848 71,14% 
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5 Group results 

 

The single subject analysis offered evidence that the connection between the bilateral 

motor cortices can be visualized by analysis of both VLFO and LFO bandwidths. This could 

be observed in both temporal and spectral analyses. The aim of the group analysis was to 

investigate statistical tests on our hypotheses that connectivity will be found in both the 

VLFO and LFO bandwidths, with both temporal and spectral analyses. We find 

independent connectivity in both bandwidths. Further, we find that spectral analyses might 

be better equipped to depict low frequency connectivity and that there is no significant 

difference of connectivity strength for the LFO and VLFO bandwidths. 

 

5.1 Connectivity in the VLFO and LFO bandwidths 

The connectivity maps between the primary motor cortices for both VLFO and LFO 

bandwidths were confirmed in the group analysis. Interestingly strong connectivity to the 

SMA could also be found on the group level for both bandwidths and both analyses. 

Further, distant activations in the primary sensory cortices are clearly discernable on the 

postcentral sulcus (see Figure 16). 

 

Figure 16: Surface projections of the results from the VLFO and LFO correlation 

connectivity analysis. The first row displays maps of areas connected to the left (L) M1, the 

second row areas connected to the right (R) M1-ROI. The activations are overlaid 

semitransparent to accommodate recognition sulcal and gyral anatomy. Connectivity is 

seen in the primary and secondary sensorimotor areas bilaterally (i.e. M1, S1 and SMA) for 

both left and right seed-voxels as well as for VLFO and LFO bandwidths.  

Figure 17: Surface projections of the results from the VLFO and LFO coherence 

connectivity analysis. The first row displays maps of areas connected to the left (L) M1, the 

second row areas connected to the right (R) M1-ROI. The activations are overlaid 

semitransparent to accommodate recognition of sulcal and gyral anatomy. Connectivity is 

seen in the primary and secondary sensorimotor areas bilaterally (i.e. M1, S1 and the 
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mesial parietal wall, e.g. SMA) for both left and right seed-voxels as well as for VLFO and 

LFO bandwidths. 
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Table 12: M1-ROI Correlation and Coherence connectivity with respect to bandwidth. 

Overlap of the motor regions with correlated or coherent spontaneous vascular fluctuations 

of left and right M1-ROIs. This is defined as the measure of connectivity. The ROI volumes 

are given in cubic mm. The percent overlap, is the percent overlap of the VLFO-ROI mm3 

per M1-ROI mm3.  

 

 

5.1.1 VLFO versus LFO connectivity 

Two-sided paired T-test tested for significant differences in VLFO versus LFO and 

coherence versus correlation. No significant differences were found. Also, in factorial 

testing no significant interactions were found for any of the subgroups. 
  

 

Correlation/ 
Coherence (CC) 

Finger-Tapping 
(FT)   Structural (S)      M1-ROI (FT&S) CC & FT CC & M1-ROI 

mm3 mm3 mm3 mm3 mm3 mm3 

VLFO correlation (group)  

Left:  8208 +/- 2974 6808 +/- 3667 2099 +/- 199 1085 +/- 257 2686+/-1448 539+/-185  

Right: 6006 +/- 3052 7608 +/- 2232 2120 +/- 141 1069 +/- 312 2225+/-1231 439+/-365  

LFO correlation (group)  

Left:  5618 +/- 3600 6808 +/- 3667 2099 +/- 199 1085 +/- 257 1987+/-1201 439+/-392 

Right: 6111 +/- 2352 7608 +/- 2232 2120 +/- 141 1069 +/- 312 2227+/-1156 480+/-415 

VLFO coherence (group)             

Left:  5884 +/- 2822 6808 +/- 3667 2099 +/- 199 1085 +/- 257 2308+/-1077 461+/-282 

Right: 6056 +/- 4877 7608 +/- 2232 2120 +/- 141 1069 +/- 312 1380+/-1085 476+/-392 
 
LFO coherence (group)          

Left:  4617 +/- 2443 6808 +/- 3667 2099 +/- 199 1085 +/- 257 1643+/-1231 400+/-355 

Right: 4617 +/- 2523 7608 +/- 2232 2120 +/- 141 1069 +/- 312 1388+/-766 420+/-409 
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 Table 13: Paired t-Test on VLFO versus LFO results. 

  Variable 1 Variable 2 
Mean 0,4417608 0,36522563 
Variance 0,05672065 0,09375485 
Observations 24 24 
Pearson correlation 0,40013315  
Degrees of freedom(df) 23  
t-Statistic 1,23536738  
P(T<=t) one-sided 0,11458221  
Critical t-value for one-sided t-Test 1,71387152  
P(T<=t) two-sided 0,22916442  
Critical t-value for two-sided t-Test 2,0686576   

 
 

5.1.2 Coherence vs. correlation 

Two-sided paired T-test tested for possible differences in coherence versus correlation. No 

significant factorial interactions were found in any of the sub-analyses.  

 

Table 14: Paired t-Test on Correlation versus Coherence analysis results 

  Variable 1 Variable 2 
Mean 0,42418922 0,38279721 
Variance 0,07414601 0,07849175 
Observations 24 24 
Pearson correlation 0,78052444  
Degrees of freedom(df) 23  
t-Statistic 1,10709599  
P(T<=t) one-sided 0,13984857  
Critical t-value for one-sided t-Test 1,71387152  
P(T<=t) two-sided 0,27969713  
Critical t-value for two-sided t-Test 2,0686576   
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5.2 Summary  

Two analyses were performed on six subjects (4 male, 2 female, and age range 22 through 

46). We found that (i) the functional localizer task easily identified the functional anatomy 

that coincided well with the structural landmarks described by Yousry and colleagues, (ii) 

that functional connectivity was found in both the LFO and VLFO bandwidths by coherence 

as well as by correlation analysis, (iii) no approach proved to be superior. Further results 

suggested distant connectivity with sensory and secondary motor areas.  The box plot of 

the data might suggest a trend towards a more efficient analysis in the VLFO bandwidth 

with spectral analyses (Figure 18), which will be discussed in the next chapter. 
 

 
 
 

Figure 18: Box plot chart synopsis of group results of correlation versus coherence analysis 

and VLFO versus LFO analysis. The highest value is the maximum, the lower most the 

minimum value. The upper border of the box is the upper quartile (75%) and the lower 

border the lower quartile (25%). The midline mark is the median. All values are in 

percentage of overlap of the coherence or correlation ROI with the M1-ROI identified with 

structural and functional measures.   
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6 Discussion 

 

As described in the results section, with two simple and straightforward approaches, we 

found connectivity of low and very low frequency fluctuations of the BOLD signal change in 

fMRI of the human brain. These results confirm previous invasive and non-invasive studies 

- in animal and man - of low frequency fluctuations of hemodynamics. Initially seen as a 

derivative of vasomotion or autoregulation, recent evidence in fMRI suggests a 

neurovascular coupling due to spatial maps of functional relevance. We found that two 

bandwidths of low frequency functional connectivity can be differentiated, argue that 

spectral analyses might best situated to study functional connectivity and discuss how low 

frequency oscillations might confound fMRI studies.  

 

6.1 LFO and VLFO 

Low frequency oscillations of cerebral circulation have been defined below 0.1 Hz, but can 

be further differentiated in “low frequency” bandwidth (0.05-0.1 Hz, LFO) and a “very low 

frequency” bandwidths (0.015-0.05 Hz, VLFO). The relevance of this differentiation was 

unknown and uninvestigated. This is of interest, for one as in the last years multiple fMRI 

Projects (see Table 3 and 4) have successfully investigated resting state connectivity in the 

human with fMRI in both healthy subjects and patients with many types of diseases. In 

contrast, the origin is uncertain, the pathophysiology unclear and the bandwidths and 

terminology confusing. 

In the present studies, we found that two independent bandwidths of functional connectivity 

coexist. This finding is in line with knowledge from previous research, concerning M- and 

B-waves. These are of cerebral vascular or neurovascular brainstem origin, respectively. 

On the other hand, we found no noticeable difference between temporal and spectral 

measures or also the amount of connectivity between homologous motor cortices. Thus, 

although we found two independent vascular signals confined to functionally related areas, 

we found no further evidence for a spatial or functional dissociation. One limitation of this 

study is the number of participants, leaving the possibility that the lack of dissociation is 

due to a lack of statistical power. These studies could confirm future fMRI studies of resting 

state connectivity might need to account for two bandwidths. This has pathophysiological 
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as well as statistical relevance. The presented results also support the notion that spectral 

approaches will prove to be better situated to investigate these systems and deserve 

further investigation. This is supported for one by the trend towards stronger results for 

spectral methods found in this study as well as, perhaps more importantly, the fact that 

univariate spectral analyses were unfairly compared with multivariate temporal analyses. 

This is because multivariate spectral approaches have only recently been introduced to the 

field of functional connectivity and were not readily available at the time of these 

investigations. Thus, overall it seems plausible to suggest that the event of easily 

accessible multivariate spectral analyses will prove to be advantageous for future analyses 

of resting state connectivity.  

The other bandwidths (VVLFO, HFO, and HHFO) did not show functional segregation. We 

found in line with previous results that the VVLFO were correlated to fluctuations at the 

edge of the parenchyma. This supports the notion that they are derived from movement, 

and possibly fluctuations found in the sinuus as well as mechanical noise97. 

 
 

6.2 Coherence and correlation 

We hypothesized that the primary motor cortex connectivity might be coherently related to 

other functional systems, i.e. non motor-regions of the brain at a phase shift unequal zero. 

We found that both coherence and correlation approaches were applicable. Neither was 

better than the other was. We found no strong evidence for a phase-lag differentiation of 

systems (results not depicted, see also Sun 2005). 

In 1995, Biswal and colleagues were the first to suggest the depiction of functional 

connectivity even in the resting brain of the human test subject and a method was 

introduced to research spontaneous low frequency fluctuations in fMRI. Thus, a long-

standing discussion of neurovascular coupling (vs. myogenic origin) was augmented by the 

description of positive correlation of low frequency fluctuations between functionally 

connected distant areas within the human brain. It was concluded that “correlation of low 

frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a 

manifestation of functional connectivity of the brain”98, which mandates a neurovascular 

origin with which multiple systems could be identified (see Table 4). If these oscillations 
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share a common originator, or even if they co-exist simultaneously, it is a question of how 

they might be differentiated. One possibility was that they share common phase stable 

bandwidths with different phase shifts. Our analysis did not identify further functional 

systems. This suggests that it is not “only” the phase shift but that further parameters 

determine the differentiation of functional systems (see also 99 and 100-102).   

It is also interesting to note that the univariate spectral analysis was equally effective as a 

traditional multivariate time domain analysis. This is in line with theoretical comparisons of 

spectral vs. temporal approaches in the analysis of oscillatory activity. On the other hand, 

there is no direct proof that LFO’s are a continuous oscillatory signal; although it seems 

plausible in the light of invasive measures in animal or transcranial Doppler and 

electroencephalographic measures of oscillatory activity in man (see Table 2). 

A quantitative measure of connectivity, e.g. for the comparison of the spectral versus the 

time domain methods, is derived from Biswal’s approach: the index of connectivity between 

the two primary motor cortices is defined by the ROI size and corrected relative to spurious 

correlations outside of the motor cortices. This algorithm has obvious shortcomings as 

functional connectivity must be expected in areas of the sensorimotor network outside of 

the primary motor areas103, if truly a measure of functional network “connectedness”. 

Further, there is a large intra- and interindividual variance in the size, as well as 

localization, in all areas except possibly the primary motor areas. In addition, the statistical 

threshold between methods might also need to be regarded critically104.  

 

6.3 Methods of analysis/ A gold standard/ Perspectives? 

Is there a gold standard for the analysis of functional connectivity? Most important for our 

approach and fundamental for the initial analysis of fMRI baseline fluctuations were 

analyses in the time domain. These were initiated by Biswal and colleagues. They filter a 

time course derived from a seed voxel. As discussed previously many factors are important 

for adequate digital filtering. Therefore, for example, we can only assume that the cut-off 

point (fc) of 0.08 was well chosen and know little about the other parameters (see 

Methods). Further research will help to define these filtering parameters. Especially in 

context of the Nyquist-Theorem, aliasing and harmonics105 as well as different bandwidths 
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of connectivity, it is interesting to note that such little interest has been shown in discussing 

types of filters and the data acquisition parameters that should be utilized.  

However, it is impressive to recognize how many different approaches have been 

established. The most successful are most likely the standard multivariate time domain 

analysis and possibly the blind source separation method suggested by Beckmann and 

colleagues.  

Following Biswal’s correlative approach in 1997, Biswal and colleagues showed that the 

independent component, but not principle component, analysis is capable of identifying 

functional connectivity. Xiong and colleagues suggested a covariance analysis (“clustered-

pixels analysis”)60.  In 2001 Lund introduced physiological noise reduction using vessel 

time-series (sagittal sinus) as covariates of no interest106. 2002, brought the introduction of 

Hierarchal Clustering, with correlations coefficients per frequency component 107  and a 

SOM (self organizing maps) algorithm108. It was argued that (i) the cross-correlation 

method is sensitive to drifts in the data, (ii) that the use of “seed clusters” is (1) user-

biased, and (2) not applicable in cases where pre-supposed ROIs are not known, (iii) that 

PCA finds principal components that are orthogonal, and contribute a large amount of 

variance to the data, but fMRI data can violate orthogonality assumptions (iv) and that 

fuzzy clustering is not necessary in fMRI since clustering which allows implementation of 

computationally faster algorithms (such as k-means clustering or self-organizing maps) is 

more efficient109. In 2003, Kiviniemi and colleagues modified the initial correlative approach 

to accommodate a spectral FT baseline detrending110. In 2004, Sun and colleagues 

introduced a multivariate partial coherence analysis 111. None of these methods has been 

formally compared. Further, most of these are in-house productions implemented in 

varying computer environments. Thus, in view of these facts it seems that like the mainstay 

of publications (see Table 3 and 4), and due to practical reasons, further investigations will 

remain in the time domain or via blind source algorithms. Alternatively, the author 

suggests, that from the results found in this dissertation a formal comparison of a 

multivariate spectral with a multivariate time-domain approach would be of interest. 
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6.4 Spurious connectivity and methodological considerations?  

In general slow variations (as well as the fast variations) of the fMRI signal can be either of 

physiological or physical origin. The physiological signal of interest and scanner noise are 

known to be quadratic or linear to the B0 field in high-field MRI, respectively {Parrish, 2000 

19 /id}. Thus, both physiological noise and signal are dependent on the field-strength and 

exceed thermal as well as scanner noise in grey matter. Low-frequency oscillations have 

been observed in cadavers112 and phantoms113. Yet, these oscillations below 0,0167 Hz 

are known to be due to scanner instabilities and not motion or physiological noise114. 

Physiological noise was suggested to reflect oscillations due to respiration, cardiac 

pulsation and residual movement not accounted for by post-hoc rigid body registration. It 

has been argued that most fMRI research is performed with a sampling rate of 0.3 Hz, 

which has lead to confusion in regards to effects of under sampled cardiac (~1 Hz) and 

respiratory cycles (~0.25 Hz). With this sampling rate, a peak around 0.13 Hz, and 

between 0.03 and 0.02 Hz has been suggested to be a derivative (aliasing) from cardiac 

and respiratory cycles, respectively115. Yet, others have argued that: “Contrary to what is 

sometimes stated, there is in general no single frequency band into which the aliasing 

happens”116. However, with respect to LFFC, there is a general agreement that aliasing 

does not substantially confound the analysis after adequate low pass filtering. The 

strongest argument commonly being the confinement to functionally associated cerebral 

regions 117-119. Here we found highly specific functional segregation for both the VLFO and 

LFO bandwidth, but not the other bandwidths. Thus, in line with previous literature our 

results do not support the notion of spurious connectivity.  

Physiological noise has been suggested to contaminate functional paradigms 120-122. It is 

well known that uncontrolled low frequency oscillations can induce temporal autocorrelation 

in the residual fMRI signal123. It has remained relatively unclear how spontaneous 

oscillations, that are independent of cardiac and respiratory cycles as well as aliasing, 

might contribute to the intrinsic measure of autocorrelation. The signal to noise will vary 

with imaging rate and thus the degree of correlation will vary. Therefore, the false positives 

will often be estimated either too high or likewise too low. For low frequencies, the variance 

of the difference in means tends to be underestimated. This results in more false positives 

than expected.  
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Thus, as we increase the paradigm frequency, the actual variance approaches and slides 

below the average value, so we will tend to detect fewer and fewer false positives, at some 

point detecting fewer false positives than expected124;125. This is also the case for typical 

retrospective methods of realignment and after temporal filtering126. Further, non-white 

noise is structured in space, which makes it difficult to study states of neural activity with 

BOLD fMRI if the state remains unchanged for more than a minute127. The inclusion of 

confounding physiological effects in a general linear model (GLM) as covariates of no 

interest, reduces first and higher order autocorrelation as well as non-normality in the 

residuals, and thereby improves the validity of the drawn inferences. This is especially 

important when utilizing high field scanners to increase signal to noise ratio128. Our results, 

suggest that physiological effects will not only globally induce higher order autocorrelation, 

but that these effects can be dependent on at least two specific and functionally relevant 

spatiotemporal patterns. 

 

 

7 Conclusions and open questions: 

 
 
We found independent VLFO and LFO bandwidth. These might correlate with functional 

measures of autoregulation (B- and C-waves). Here in both TCD and NIRS data the VLFO 

bandwidth might be a better measure of autoregulation. In our results, there was a 

tendency for stronger functional connectivity in this bandwidth. Spectral analyses will be 

interesting for further investigations of functional connectivity, but it will be important to 

discard oscillations below 0.167 Hz as they confound the results and are derived from 

unwanted mechanical or physiological noise. Further, in fMRI variations of autocorrelation 

due to low frequency oscillations need to be taken into account. More explicitly, it seems 

very likely that low frequency oscillations will also bias measures of connectivity, e.g. 

effective connectivity, structural equation modeling or dynamic causal modeling. Thus, the 

clinical relevance of low frequency connectivity in fMRI deserves further investigation as it 

is in general an easy and plausibly clinically relevant measure of cerebral function.  One 

next step in this direction might be simultaneous recordings with NIRS and fMRI. 
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