Microcalorimetric and Microbiological in vitro Investigations on the Acaricidal, Insecticidal, and Antimicrobial Effects of Propolis

Mikrokalorimetrische und mikrobiologische in vitro Untersuchungen auf akarizide, insektizide und antibiotische Wirkungen von Propolis

Inaugural-Dissertation
zur Erlangung des Doktorgrades
am Fachbereich Biologie, Chemie und Pharmazie
der Freien Universität Berlin

vorgelegt von
Assegid Garedew

Berlin 2003
Die vorliegende Arbeit wurde in der Zeit von April 2000 bis August 2003 an der Freien Universität Berlin, Fachbereich Biologie, Chemie, und Pharmazie, am Institut für Biologie/Zoologie unter der Anleitung von Prof. Dr. Ingolf Lamprecht, Dr. Erik Schmolz und Prof. Dr. Burkhard Schricker angefertigt.

1. Gutachter: Prof. Dr. I. Lamprecht
2. Gutachter: Prof. Dr. K. Hausmann / Prof. Dr. B. Schricker

Datum der Disputation 13.11.2003
To my son Lucas

It must be realized that empiricism has its limits, and we must face the fact that a deeper understanding of biology may require a more heuristic approach. The making of new theories is, however, a risky business and much stumbling can be anticipated along the way to successful, general, and fruitful results.

H.J. Morowitz (1968)
Table of Contents

1.0 General Introduction

1. **Varroa** mites as parasites of honeybees
 - 1.1 Biology of *Varroa destructor* mites
 - 1.2 Defence mechanisms of *Apis mellifera*
 - 1.3 Behavioural defence of *Apis mellifera* against *Varroa destructor*
 - 1.4 Control methods of *Varroa destructor*
 - 1.4.1 Biological methods
 - 1.4.2 Biotechnical methods
 - 1.4.3 Chemical methods

2. **Galleria mellonella** as pest of the honeybee

3. **Propolis**
 - 1.3.1 Botanical origin
 - 1.3.2 Collection
 - 1.3.3 Uses in the beehive
 - 1.3.4 Chemical composition

4. **Calorimetry in biological investigations**
 - 1.4.1 Types of calorimeters
 - 1.4.2 Isoperibolic heat conduction microcalorimeters
 - 1.4.3 Calibration of calorimeters
 - 1.4.4 Advantages and disadvantages of calorimetry in biological investigations

5. **Objectives and structure of the thesis**

2.0 Metabolic Physiology and the Energy and Nutritional Demands of the Parasitic Life of the Mite *Varroa destructor*

2.1 **Abstract**

2.2 **Introduction**

2.3 **Materials and methods**
 - 2.3.1 Evaluation of brood infestation level
 - 2.3.2 Calorimetric determination of the metabolic rate of capped worker brood
 - 2.3.3 Determination of weight change of brood during ontogenesis
 - 2.3.4 Survival of starvation and resource utilization by *Varroa destructor*
 - 2.3.5 Calorimetric experiments with *Varroa destructor*
2.3.6 Respirometric experiments with *Varroa destructor* 29
2.3.7 Statistical analysis 29

2.4 Results 30
2.4.1 Infestation level of brood 30
2.4.2 Metabolic rates and utilization of reserve food under starvation 31
2.4.3 Computation of the brood hemolymph robbed by a foundress mite and its offsprings 33

2.5 Discussion 37

3.0 The Antivarroa Action of Propolis: a Laboratory Assay 42
3.1 Abstract 42
3.2 Introduction 42
3.3 Materials and methods 43
3.3.1 Propolis extraction and preparation 43
3.3.2 Mite collection 44
3.3.3 Bioassay 44
3.3.4 Calorimetric experiments 45
3.4 Results 45
3.5 Discussion 50

4.0 Microcalorimetric and Respirometric Investigations of the Effect of Temperature on the Antivarroa Action of Propolis 54
4.1 Abstract 54
4.2 Introduction 54
4.3 Materials and methods 55
4.3.1 Animal material 55
4.3.2 Calorimetric experiments 56
4.3.3 Treatment of mites with propolis 57
4.3.4 Respirometric experiments 57
4.3.5 Statistical analysis 58
4.4 Results 58
4.5 Discussion 62

5.0 Comparative Investigations of the Antivarroa Actions of Propolis of Different Geographic Origins 66
5.1 Abstract 66
5.2 Introduction 66
5.3 Materials and methods
 5.3.1 Propolis sources
 5.3.2 Preparation of propolis extracts
 5.3.3 Biological material
 5.3.4 Petridish bioassay
 5.3.5 Calorimetric assay
 5.3.6 Scanning electron microscopy of propolis-treated Varroa mites
 5.3.7 Statistical analysis
5.4 Results
5.5 Discussion

6.0 The Effect of Propolis on the Metabolic Rate and Metamorphosis of the Greater Wax Moth *Galleria mellonella*
6.1 Abstract
6.2 Introduction
6.3 Materials and methods
 6.3.1 Animal and culture conditions
 6.3.2 Calorimetric experiments
 6.3.2.1 Short period experiments
 6.3.2.2 Long period experiments
 6.3.3 Propolis preparation and larval treatment
6.4 Results
 6.4.1 Metabolism and growth of untreated larvae
 6.4.2 Short period experiments
 6.4.3. Long period experiments
6.5 Discussion

7.0 Microbiological and Calorimetric Investigations on the Antimicrobial Actions of Different Propolis Extracts: An *in vitro* Approach
7.1 Abstract
7.2 Introduction
7.3 Materials and methods
 7.3.1 Propolis acquisition and preparation of ethanol extracted propolis (EEP)
 7.3.2 Extraction of propolis volatiles (PV)
 7.3.3 Water extracted propolis (WEP)
 7.3.4 Biological material
7.3.5 Growth media

7.3.6. Petridish bioassay

7.3.6.1 Agar well diffusion pour plate technique

7.3.6.1.1 Bacteria and yeast

7.3.6.1.2 Filamentous fungi

7.3.6.2 Agar dilution in plates

7.3.7 Calorimetric bioassay

7.3.7.1 Calibration of the flow calorimeter

7.3.7.2 Sterilization of the calorimetric set-up

7.3.7.3 Microcalorimetric cultivation of bacteria

7.3.7.4 Determination of O_2 concentration and CFU

7.3.7.5 Treatment of bacteria with propolis

7.3.7.6 Determination of calorimetric MIC and MBC values

7.3.8 Statistical analysis

7.4 Results

7.4.1 Differences in the yield of extraction and physical properties of propolis samples

7.4.2 Antimicrobial activities of ethanol extracts of different propolis samples

7.4.3 Comparison of antimicrobial activities of different extracts

7.4.4 Differences in the sensitivity of various microorganisms to propolis

7.4.5 Calorimetric experiments

7.4.5.1 Calorimetric cultivation of bacteria

7.4.5.2 Effect of propolis treatment on bacterial culture properties

7.4.5.3 Calorimetric dose-response curves

7.4.5.3.1 Calorimetric MIC and MBC values

7.4.5.3.2 Level of the p-t curve after treatment with different concentrations of propolis

7.4.5.3.3 Slope of the curve ascend after treatment

7.4.5.3.4 Level of the of the p-t peak achieved after treatment

7.4.5.4 Comparison of the antimicrobial activities of different propolis extracts

7.5 Discussion

7.5.1 Physico/electro-chemical properties of propolis and yield of extraction

7.5.2 Petridish bioassay of different propolis samples
7.5.3. Comparison of the sensitivity of different microbes to propolis 132
7.5.4 Comparison of the antimicrobial activities of different propolis extracts 134
7.5.5 Calorimetric experiments 135
7.5.6 Possible mechanisms of propolis action 139

8.0 General discussion / Allgemeine Diskussion 141
 8.1 General discussion 141
 8.2 Allgemeine Diskussion 147

9. Outlook 153

10. References 155

11. Appendix 170
 12.1 Appendix to Chapter 7 170
 12.2 Acknowledgements 175
 12.3 Personal data 177
 12.4 List of own publications 178
 12.5 Declaration 180