Chapter 2

Thermostatistics of small systems

At the thermodynamical limit, a first (second) order phase transition at say = z¢ =
g_}s(‘ X, 1s signaled by a singularity in the second (third) derivative of the free energy F
(canonical potential) with respect to the intensive variables z [LY52A, LY52B, GR69,
GL69]. From the properties of the probability distribution of the “extensive” variables
X in CE (whenever F is singular or not), one can infer a definition of phases and phase
transitions based on the local curvature of the microcanonical entropy-surface (see for
systems depending on M = 1 “extensive” parameter [GM87, GMS97, GrR090, GrROO01],
special cases of M = 2 [GEZ96, GV00, Gro01] and a straightforward generalization
in [FGO1]).

In this chapter, these definitions and their origins are recalled and illustrated with
the analytical models presented in section 1.4 on page 12. Some consequences of these
new definitions and their link to the standard ones are also discussed. Finally, alternative
definitions are reviewed and commented in section 2.5.

2.1 Pure phases

2.1.1 Definition

At the thermodynamical limit a system is in a pure phase at say xo when F' is an infinitely
differentiable function of z at zo [LY52A, CAL85, GL69]. In a pure phase ME and CE
are equivalent. The distribution of % in CE is a delta peak centered at Xj, where X
satisfies zg = g—§| X,- For a finite system, the precursor of this delta peak is a distribution
with a mazimum at X, (see sec. 1.2.2). This means that, at Xy, the entropy is a concave
function. I.e. A1, the largest eigenvalue of the Hessian matrix of S, is negative. Thus, for
a one dimensional system, its heat capacity is positive, Cy o< — (%) ' > 0.

Definition 3. A microcanonical ensemble of states is in a pure phase at X = Xy if
A1 (Xo) <0.
2.1.2 Example

In fig. 2.1 on the next page the sign of A\, the largest eigenvalue of the Hessian matrix of s
the entropy of the van der Waals model ® (presented in section 1.2.1) is plotted versus the

*s(e,v) =In(v—1) + In(e+ 1).
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Chapter 2. Thermostatistics of small systems
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Figure 2.1: Sign of \;, the largest eigenvalue of the Hessian matrix of s for the van der
Waals entropy-model. The white region at large volume corresponds to A\; < 0 (pure
phase). The gray region corresponds to A; > 0. )\; is equal to zero along the boarder—
line between these two regions. The black dot locates the critical point X, known form
standard thermostatistics.

specific energy € and volume v. The white region at large energies corresponds to A\; < 0
and therefore, according to def. 3, to a pure phase.

If one chooses a pressure pg and a temperature Tp = L at say Xo = (€0,v0), i.e.
Bo = %¥|x, and Bopo = 82 |x, where A; (Xo) < 0, then f (X, Xg) = f (X, z0 = (Bo,po)) =
—1x9- X +5(X) has a local maximum at Xj. This is illustrated in fig. 2.2 on the facing page,
where a density—contour plot of f is shown for (eg,v0) = (5,5) = (Bo,po) = (2,3L) =~
(0.71,0.68). f has a clear maximum at (5,5). It is even a global maximum. In this

example, CE and ME are equivalent at X in the sense given in sec. 1.2.3.

2.2 First order phase transitions

2.2.1 Definitions

Pure phases are locally defined by a negative A\;. What does happen to the probability
distribution P (X, Xy) if A1 (Xo) > 07 First of all, for M =1 (i.e. S(X) = S(F)) this
implies a negative specific heat capacity. There ME and CE cannot be equivalent. Fur-
thermore, the probability distribution P (X, Xy) o exp (f (X, Xp)) has a local minimum
at Xo.
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Figure 2.2: Contour—Density plot of f(X, Xy) = f(X,z9) = —z¢- X +s(X) for the van der
Waals entropy-model at Xy = (e, v9) = (5,5), where o = (B, Bopo) = §—§|X0 = (?, %—g)
and A1(Xp) < 0. There is a clear maximum at (e, v9). The gray level correspond to the
value of f: the grayer the larger is f. The thick line corresponds to A; = 0 (see fig. 2.1
on the facing page); on the right side of this line A\; < 0 and on the left one A\; > 0. The

scale of f is non—linear.

This is illustrated in fig. 2.3(a) on the next page, where P (€,¢y) (unnormalized) is
plotted for the entropy-model s; P for different value of 3. The first one has been taken
at ¢g = 0 and the other at ¢y = 0.2 which correspond to 8 = 8; = 1 and B = 1.002, resp.,
and for N = 102. The two probability distributions have a minimum at their respective
€o- Moreover, in each distribution there are two maxima which have, by construction,
the same temperature than their respective €¢p, but their respective heat capacities are
positive. I.e. the two peaks correspond to two pure phases. For 8 = 1 the two peaks are
of equal height, while for 8 = 1.002 the peak at low energy is higher than the other one.
In CE (at finite size and at 8 = f;), the two pure phases have the same probability of
occurrence. Therefore, the fluctuations and consequently the specific heat capacity are
large in CE (eq. (1.13) on page 8). Hence, the equivalence condition (2') ¢ does not hold,
although condition (1’) 4 is fulfilled since (¢)cr = € (f is an even function for 8 = 3;).
For 8 = 1.002 the condition (1’) clearly does not hold.

In fig. 2.3(b) the same distribution functions as in fig. 2.3(a) are plotted but this time
for N = 103. The width of the peaks are smaller. For 5 = 1.002 the smallest peak is of

Ps1(e) = € — 0.04(|e| — 0.5)*0(]e] — 0.5) — 0.01N /3 cos(me), as defined in sec. 1.4.1.
“Small fluctuations of the “extensive” parameters in CE, see page 11.
X))o = Xo =0, see page 11.
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Figure 2.3: Unnormalized distribution functions Pf(e,¢9) o exp(f(e €)) =
exp (—%M e+ 81(6)) for the entropy model s; (see eq. (1.20) or footnote (b) on the

preceding page); for two values of N and of temperatures T(;1 = %|€0. When ¢ is cho-

sen in the region of negative specific heat capacity, the probability distribution of € has a
double peak structure.

no importance compared to the one at low energy. At the thermodynamical limit, this
distribution function is simply a single Dirac distribution at € &~ —0.8, and not at € = ¢!
Now, for 8 = 1, i.e. ¢g = 0, the two peaks remain. At the thermodynamical limit, the
distribution function is composed of two delta Dirac €, one at ¢ = —0.5 and the other
at € = 0.5. In CE, the fluctuations of the energy are larger for f = 1 and smaller for
B = 1.002. But nevertheless, the equivalence conditions (1’) or (2') do not hold for any of
the two €.

These two delta peaks are at the origin of the critical behavior of F' at a first order
phase transitions [GRO97]. Consider the system at the thermodynamical limit and its
probability distribution for X, ie. limy_o P (%, %) At 8 = By — 08 < B, P has

=¢ = (6€)cg < —05. At B = B+ 68 2 B, P has a single
peak at % = ¢ = (€)crg 2 0.5 and at exactly § = B;, P has two peaks, one at € =
—0.5 and the other at e = 0.5 (implying (€)cr = (€1 + €2) /2). Consequently, in CE,
B is a discontinuous function of (e). Therefore, the specific heat capacity Cy = aaﬂ(f)l
diverges at B = P¢. This divergence signals a first order phase transition in standard

a single peak at %

°It may be not clear why P should be composed of two peaks at the thermodynamical limit and at the
transition temperature. Indeed, at the limit N — 00, 1 = Seo + N ™355y, is just seo = € — 0.04(|¢| —
0.5)*0(|e| — d). swo is a linear function of € in the range [—0.5,0.5]. Therefore P should be simply flat in
this interval.
This argument is not correct since the limit N — oo has been taken too soon. Consider P(e, N) o

exp (N (—eﬁ + soo(€) + N_l/?’ssmf(e))) for a finite N, at the transition temperature 8 = [; and for

€ €] — 0.5,0.5[. The points in the transition region are suppressed exponentially because N (S0 — 1) =
N2/3Ssmf < 0. When N — oo, although the relative weight of Si compared to S vanishes, i.e.
Soo +N_1/sssurf

Soco

limy 00 SSTL = limy_ o0 = 1, their absolute difference diverges limy_00 Soo — S1 =

Iimpy oo NQ/Bsswf = —o0, leading to the double d—peak shape of P at the limit N — oo. This illus-
trates nicely the danger of taking the limit NV — oo too soon.
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Figure 2.4: Inverse temperature as a function of ¢ (ME; plain lines), (¢) (CE; dashed lines)
and N for the model s; (see eq. (1.20) or footnote (b) on page 19). Byr(e, N) = % =

—0.16(|e| — 0.5)® + 0.017 N /3 sin(me). For finite N, 8’68% > 0 for € €] —0.5,0.5], whereas

853((67)’3 < 0 for any (e). With increasing N the differences between both inverse temperatures

vanish. However, in the limit N — 400, Scg is not defined for (e) €] — 0.5,0[U]0,0.5]
in contrast to By/g which is defined for all e. The discontinuity of (¢) (Bcg) leads to the
conventional signal of a first order phase transition.

thermostatistics [RUE69, CAL85, LL.94, LY52A].

In fig. 2.4 the inverse temperature curves for the same entropy-model s; are plotted
versus € (microcanonical = By ) and (€) (canonical 8 = Scg) for different N. For all N,
Bum e and Beg are clearly different in the energy range [—0.5,0.5] where the microcanonical
specific heat capacity is negative. Close to these regions even though A\ < 0, ME and
CE are also not equivalent because of the presence of a second peak in their respective
canonical distribution functions (see fig. 2.3). For small systems, a phase transition in
ME implies the non-equivalence between the ensemble, while the non—equivalence does
not lead to a phase transition (in ME). With increasing N, these non—equivalence regions
with A; < 0 shrinks to the transition region if the surface effects vanishes. For increasing
N, both the microcanonical and the canonical specific heat capacity increases at 8 = §; to
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Chapter 2. Thermostatistics of small systems

eventually diverge at the limit N — oco. Again, this signals a first order phase transition.

The previous examples enlighten the fact that the singularity signaling a first order
phases transition at the thermodynamical limit has its origins in an anomalous curvature
of S, i.e. Ay > 0. The converse statement is not necessarely true, i.e. a negative curvature
at a given finite N does not imply a phase transition at the limit N — oo, indeed nothing
forbids the sign of A; to be also a function of N at fixed )](—VQ

Definition 4. A microcanonical ensemble of states is in a first order phase transition at
X=Xpif M1 (X()) > 0.

The eigenvalue v; associated with \; gives the direction of the largest negative curva-
ture. In simple models when one follows the trajectory given by vi f, one reaches the two
extrema (pure phases) which have the same zy than the one at Xy. Therefore, v; gives
the direction of the local order parameter (see below and also [GROO01]).

Definition 5. The direction of the local order parameter of a first order phase transition
is given by vi.

Note that, for a multidimensional X, there might be many positive eigenvalues (say
from i =1,...,k), this means that there are several first order phase transitions. A basis
for the order parameters is simply given by the set {vy,...,vg}.

There is an important point to add. From the fig. 2.3 on page 20 one sees that the
information contained in the region where A\; > 0 are overridden by the ones coming
from the dominant peak (see also footnote (e) on page 20). Information contained in
the convex part of S is smeared out in CE [HUL94A]. Formally no information is lost
since one can always perform a inverse Laplace transform (when of course the equivalence
condition (0’) 8 is fulfilled). But this inverse transform is in practice so unstable that this
information is actually lost in CE [CH88].

So far, only models with simple topological entropy—surfaces have been studied. For
these models a first order transition region always led to two local maxima in f connected
by the curve of constant control parameter (as defined in footnote (f)). However, a priori,
more complicated cases (i.e. with more than two maxima) are not excluded (see for a
“three—peaks” system [GROO01]).

2.2.2 Example

In fig. 2.5 on the facing page, exp {f (X, Xo) } x P (X, X)) is plotted for the van der Waals

entropy-model. Xy = (€p,v9) = (0.94, 1) has been chosen in the region where A; > 0. At
(€0, v0), f has a saddle point because the second eigenvector Ao is negative. One sees also,
just like for the one dimensional model in fig. 2.3, that f has two maxima in the pure
phase region. One corresponds to the liquid phase (small € and v) and the other to the
gas phase. By construction, their temperature and pressure are the same than the ones at
Xo.

The fig. 2.6 on page 24 is the same as fig. 2.5 plus the vector field v;, and the line of
constant control parameter that goes through Xy = (€, vg) as defined in footnote (f). It

fIt is the line solution of the following differential equation
X(t) =vi (X(t)), (2.1)

with X (t = 0) = Xo and ¢ €] — 00, +o0[ is a parameter. This line can be labeled by a control parameter.
€Finite partition function, see page 11.
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Figure 2.5: Contour-Density plot of f(X,Xy) = —z¢ - X + s(X) for the van der Waals
entropy-model at X = (eg,vp) = (0.94,1), where zy = g—§| X,- The thick line corresponds
to A1 = 0. Below (above) it, A1 is negative (positive), hence A1(Xp) > 0. f has two local
maxima one at X; ~ (1.68,1.32) and another at Xy ~ (0.2,0.8) which correspond to two
pure phases peak (A1 (X12) < 0). f has a saddle point at Xy = (eg,v0) (A1 (Xo) > 0
and A2 (Xp) < 0). By construction, §—§(|X1 = g—§|x2 = §—§|XO = z9. In CE the main
contributions to the partition function Z(z() comes from the two peaks X; and Xo, and
the information from X is in practice lost. The white dot locates the critical point X..

nicely illustrates the definitions of the order and control parameters. If one follows the
curve tangent to vy starting from Xy (gray line in fig. 2.6), one eventually reaches the gas

or liquid extrema (labeled by X; and X3). Along this gray line f has an extremum " in
the vy direction, in a symbolic formulation
Vf vy =0. (2.2)

hHere it is an maximum since A2 < 0.
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Chapter 2. Thermostatistics of small systems
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Figure 2.6: Contour—Density plot of f(X,Xy) = —z¢ - X + s(X) for the vdW entropy-
model at Xy = (€g,v9) = (0.94,1), where zy = g—§(|xo, plus the vector field vi and the line
of constant control parameter (as defined in footnote (f) on page 22) that goes through
Xy (gray line; see fig. 2.7). As one can see this line goes also through the two maxima
X; and X5. At the maxima, by construction the values of the inverse temperature and
pressure are equal to zg (which are defined at X;). The thick line corresponds to A\; = 0,
below (above) it A1 is negative (positive). The critical point X, is located by a white dot.

In fig. 2.7 on the next page, the parametric lines (e(t), ag(t)) and (e(t), ap(t)) along
the constant control parameter line in fig. 2.6 are shown, where

- 1B(t) = B(Xo)]|
. |p(t) — p(Xo)|
P(t) - p(Xo) 9 (24)

and ¢ is the “time” parameter as defined in footnote (f) on page 22. This figure shows that
the gray line goes indeed through the two local maxima in the pure phase phase regions.
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2.2. First order phase transitions
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Figure 2.7: Parametric plots (e(t), ag(t)) (dashed line) and (e(t), o (t)) (plain line) along
the constant control parameter line (as defined in footnote (f) on page 22) with Xy, =
(€0,v0) = (0.94,1) (gray line in fig. 2.6). ag and «a, are the relative difference between
resp. fo and pg as a function of ¢t where (S, Bopo) = xo = g—i\xo (see egs. (2.3) and (2.4)).
a,p(t) = ag(t) =0, for t such that X(¢) is equal to Xy, X; or Xo.

The two equations ag(t) = 0 and op(t) = 0 shares the same three solutions, tg, t; and t3
which correspond time to X (¢;) = X;, 4 =0,1 and 2.

In fig. 2.8 on the following page, the vector field vy for the van der Waals model is
plotted along with the sign of A; and with the contour plots of the inverse temperature
B and of Bp. L.e. B and Bp are constants along their respective contour lines. The lines
fp = cst are almost ' tangent to vi. Hence, Bp is at a good approximation a control
parameter.

Although it is hardly to be seen on fig. 2.8, due to the scale and to the orientation
of the axes, the lines of constant 8 and the one of constant 3p cross each other one or
three times (as checked in fig. 2.7). In the latter case one crossing is located in the A; > 0
region.

Another point worth to be noticed, is that at Ay = 0, the lines of constant § and
constant Op are parallel to each other and also to vy, i.e.

VB AVSBp =0, (2.5a)
and

This is easy to understand since

0s 9%
Qvoe
"The angle 6 between vi and V8p is /2 along the line A1 = 0, elsewhere in the parametric range used
on fig. 2.8 the absolute difference |§ — 7/2| is of the order of 10™°.
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Figure 2.8: vdW entropy-model. Vector field vi; Contour—plot 8 = cst and Bp = cst
solid and dashed lines, respectively. Sign of A;: gray shaded region A\; > 0 (first order
phase transition), white region A; < 0 (pure phase). The dot at (e,v) = (1, 1) locates the
critical point of the first order phase transition of the vdW entropy-model. The vectors
vi are almost tangent to the lines 8p = cst, i.e. at a good approximation Sp is the control
parameter of this first order phase transition.

and

VBp =V (%) = ( f’Zf:v ) (2.6b)

o2

which are the columns of Hg, the Hessian matrix of S in the coordinates (¢, v). Now, the
fact that Ay = 0 implies that these columns are linear combinations of the eigenvectors
whose eigenvalues are not zero. Thus, the columns are linearly dependent. Therefore,
and as the dimension of the parametric space is two, VB o« Vfp « vo L vi. The latter
relations lead to egs. 2.5a. In other words, at A\; = 0 the constant intensive parameters
lines are all parallel to each other and to v;.
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2.2. First order phase transitions

In fig. 2.8 one can also notice that the lines of constant intensive parameters are tangent
to the line Ay = 0 at the critical point X.. This is discussed further in sec. 2.3.

The egs. (2.5) can trivially be extended for M > 2. The gradients of z = {z1,....zp}
are linear combinations of the eigenvectors whose eigenvalues are non null. Therefore, if
e.g. A1 = 0 then {Vzq,...,Vz} is a set of linearly dependant vectors which are all
orthogonal to vi.

2.2.3 Transition parameters

In classical thermodynamics one characterizes first order phase transitions by some couples
of quantities, the transition parameters, e.g. transition temperature T3 = %, latent heat
qiat, surface tension v, etc.

These parameters are well defined for infinite systems. However, for small ones they
hardly make sense. As one can see on figs. 2.4 on page 21, there is no temperature at which
the transition take place, but on the contrary, the transition occurs (in ME sense) within
a certain range of temperatures. Of course, at the thermodynamical limit, if it exists,
this range shrinks to one point and the usual definition of the transition temperature is
recovered. As the other transition parameters rely on the value of T}, they are in their turn
not unambiguously defined for small systems. For the surface tension «, the difficulties
are even greater since it is almost impossible to define surface areas for small systems.
Indeed, in macroscopic systems the interphase is a two dimensional object only at a first
approximation. The density of the liquid does not abruptly change from its liquid value to
its vapor one; it decreases smoothly over a length of the order of the particle interaction
range. Hence, for a small system, whose size is of the order of the interaction range, the
definition surfaces are rarely unambiguous (an exception is e.g. spin systems [GEZ96]).
E.g. for the liquid—gas transition of metallic clusters how to define a gas part, a liquid
part, and a surface area between them when the system is composed of a few thousands
of atoms?

Again all these parameters are defined in the limit N — oo. Nevertheless, it could be
useful to have some “finite-size” definitions (though ambiguous and inaccurate) in order
to make the bridge to their thermodynamical limit ones. I.e. definitions that converge to
the usual ones at the limit N — co. This can be useful to perform some finite-size scaling
as done in sec. 3.4.

M=1

A convex intruder in the specific entropy curve s(e) is forbidden for infinite systems,
because there the system gains entropy if it would divide itself into two pieces one with
specific energy € = €; and the other with € = €3 see fig. 2.9(a) on the next page. Both
pieces together would have a larger entropy spuu(€) = a1s(e1) + ags(ez) > s(e = are; +
age3), where a; = 6611633, a3 = :11;53 and a1 + a3 = 1 are the relative sizes of the two
parts | [CAL85, HUL94B]. Then, the slope of sp,; gives the transition temperature 8;. An
equivalent approach is to make the Maxwell construction (see fig. 2.9(b); there g; = 1).
The latent heat qq¢ is simply given by ¢, = €3 — €1, i.e. by the length of the Maxwell
construction segment. By construction, in fig. 2.9(b) the shaded area on the left side below
Btr is equal to the one on the right side above 8; and also to spuu(€2) —s(€2) = Asgyrp = As
the surface entropy, see also fig. 2.9(a).

i1t is implicitly assumed that the surface effects can be neglected [GrRo01, GROOOR].
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Figure 2.9: Determination of the transition parameters for the entropy-model s; (as defined
in sec. 1.4.1, eq. (1.20)), N = 100. At a first order phase transition, the specific entropy
has a convex intruder (panel (a); for conveniency a linear function of € is added to si,
a = —0.5, b = 1). For short-range interaction systems, this intruder is forbidden by
van Hove’s theorem [VH49] in the limit N — +o00. Indeed, those systems would gain
entropy by splitting up into two parts, one at specific energy €; and the other at e3 (the
resulting entropy is sp,y in panel (a)). For finite system, % = [(; defines the transition
temperature T; = 3, ! This temperature is also the one given by the Maxwell construction
(panel (b)). The latent heat can be defined as €3 — €1, the length of the Maxwell segment,
or alternatively, as 0.5 —(—0.5) = 1, the length of the negative specific heat capacity region
(see text). At ez, As = spyy — S1, the entropy—loss induced by the surface correlations is
by construction equal to the areas between the Maxwell line and the lobes of the 8 curve
(gray shaded areas in panel (b)).

The intra—phase surface v tension is related to Asg,,; by

N
Y= Vssurf tha (27)
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2.2. First order phase transitions

Figure 2.10: Specific entropy s (€) = s1(€) + £ exp (—20€?) (a = —0.5, b= 1); for |¢| > 0.5
s1(€) ~ s1(e). If one uses the convex hull spyy (~ Maxwell line) to define first order
phase transitions (~ canonical definition), one would conclude that there is one first
order phase transition between €; and e3 (just like for s, see fig. 2.9(a)). However, in the
microcanonical sense there are two phase transition regions for |¢| €]0.13,0.53[ (A1(€) > 0).
This is an illustration of the deeper insight that gives ME compared to CE into small
systems phase transitions. Moreover, it shows also how ambiguous can be the definition
of transition parameters based on the Maxwell construction.

where A is the surface area.

As an approximation, one can use these definitions for small systems with M = 1.
However, as already mentioned they are ambiguous and should be used with caution. As
an example, one can realize that these definitions consider everything below the Maxwell
line as being a mixture of two pure phases (the ones at the end points of this line). But a
priori, there is no reason that forbids the presence of another pure phase below this line,
i.e. a region characterized by A\; > 0 but whose entropy is smaller than sy, (see for an
illustration fig. 2.10). In this sense, the surface entropy and the other usual macroscopic
transition parameters are global properties of s, because at one point X = X, As depends
on the values taken by s on the whole parameter space.

An alternative definition for the latent heat is the length of the energy region over
which the specific heat capacity is negative (in fig. 2.9 on the preceding page, gt =
0.5 —(—0.5) =1 < e3 —€1). At the thermodynamical limit, the two definitions for g, are
equivalent.

M>1

For these systems there is so far no equivalent of the Maxwell construction. The simplest
solution is to reduce the problem to a one dimensional one by considering only the lines
at constant control parameter (gray line in fig. 2.6). This allows to have s as a function
of a unique parameter order and to use the machinery developed for M = 1.

Again, the parameters obtained are ambiguous and global. One should use them only
to make the bridge to their infinite system values.
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Chapter 2. Thermostatistics of small systems

2.3 Second order phase transitions

2.3.1 Definition

At a second order phase transition the surface tension between the phases vanishes. Two
(or more) phases coexist without any entropy loss. E.g. for M = 1 when the two peaks in
P(E) at f; are infinitely close from each other leading to macroscopic fluctuation of € in
CE. But, in contrast with a first order phase transition, (€) is still a continuous function of
[ at a critical point. In one dimension, these transitions are characterized by % = % =0
and ‘3275 = % = 0. Taking as an example the van der Waals entropy-model, one can see
in fig. 2.11 how the two peaks merges when one approaches the critical point from the first
order phase transition region. In a multidimensional parameter—space the above mentioned
criteria for 1-D systems can be extended as: first Ay = 0 and second a - VA; = 0, where
V1 is the gradient of A\; and o is a yet unknown vector that gives simply the direction
along which A; is flat up to the first order approximation (~vanishing third derivative of
S). From the infinite systems and from the fact that often second order transitions are
end—points of first order ones it can be inferred that this derivatives vanishes along the

order parameter [LL94], i.e. vi. Hence, the second criteria is vi-VA; = 0 [GV99, GrROO01].

Definition 6. A microcanonical ensemble of states is in a second order phase transition
at X = X() Zf Al (Xo) =0 and Vi (Xo) . V)\l (X()) =0.

The first eigenvalue A\; may not be the only one to fulfill the condition given in def. 6,
ie. A\ (Xo) =0and v; (Xp) - VA (Xo) =0fori=1,...,k < M, in this case Xj is called
a multicritical point.

For a system depending on two “extensive” parameters (M = 2), it is shown in sec. 2.2.2
that, where Ay = 0, the lines of constant intensive parameters are parallel to each other and
to vi. The second criterium in def. 6 implies that the line of constant intensive parameters
are parallel to the line \; = 0 (as already notices in the previous section).

This equivalent condition for second order phase transition can also be straightfor-
wardly generalized for M > 2. At a critical point the lines of constant intensive parameters
are orthogonal to v; where A\; = 0.

2.3.2 Example

Fig. 2.11(a)—(c) show how for the vdW entropy-model the two pure phases peaks merge
when Xy — X, where A(Xp) > 0. Fig. 2.11(c) illustrates the fact the derivative of \;
along v; vanishes. f(X,X,) = —59—)5(\)(6 + s(X) is a flat function (at least up to the third
order) along vy at X, i.e. the contours close to the value f(X,) are at first approximation,
ellipses whose larger axes are roughly parallel to v; (X,) and with large ratios of the major
axes length to the minor’s one.

In fig. 2.12 on page 32 the two criteria given in def. 6 are plotted for the van der Waals
model. The thin line corresponds to A; = 0 and the thick one to v - VA1 = 0. These two
lines cross each other at the already known critical point X, = (e = €.,v = v.). There is
no other point in the parameter space (€, v) satisfying the conditions for a critical point
given in def. 6.
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Figure 2.11: Contour density plot of f(ep,v9 =1) = —zo- X + s(X) for the vdW entropy-
model, where zy = g—;\(m,vozl) and for different values of ¢y, when ¢y — 1~. The thick line
locates A1 = 0. Below (above) this line A; is negative (positive). For vy = 1 and ¢ < 1,
A1 is positive. A1 > 0 defines a first order phase transition region. There f (~ minus the
canonical free—energy) has two maxima in the pure phase regions (panels (a) and (b)). At
the limit €9 — 1, these two maxima merge giving raise to a second order phase transition
(see text).

2.4 Single event as a signal for phase transition?

Consider as an example, the study of the liquid—gas phase transition of metallic clusters
(this transition is studied in part IT). At very low energy all atoms are bounded in one
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Figure 2.12: Criteria in def. 6 for second order phase transition applied to the vdW
entropy-model. The thin and the thick lines correspond to Ay = 0 and v; - VA; = 0,

respectively. These two lines cross each other at the already known critical point at
X. = (¢/ec,v/ve) = (1,1) (gray dot). In the gray (white) region A; > 0 (< 0).

big cluster (liquid phase). At higher energies the system enters the phase transition at an
energy, say 2 = F,, and starts to evaporate some monomers. Now, from a microcanonical
experiment, where the energy F is fixed but unknown, an event is randomly singled out.
Its mass distribution p is simply a big cluster and one monomer. The question is whether
this event, characterized by p1, signals the beginning (with increasing energy) of the phase
transition. In other words, does p1 imply E; = E.7

As defined in the previous sections, phases and phase transitions are linked to the local
properties of the microcanonical entropy surface. In its turn, the entropy is a property of
an ensemble of states via Boltzmann’s principle. Therefore, phases and phase transitions
are properties of an ensemble of states and not of a single event.

Again, in other words, in a small system, a single event cannot be the signal of a
phase transition. At most, one can single out from the ensemble an event that would
characterize it by means of some most probable or average values of observables. E.g.
at £ = F, events with u = py are the most probable ones. The inverse proposition is
not necessarily true since the values of the observables can fluctuate (pretty much like
the energy fluctuates in CE for small systems). For example, an ensemble may contain
events with p; though the energy of this ensemble is very different from E.. Of course, in
general, the probability for a single event to have y = p; decreases as |E — E.| increases.
At the thermodynamical limit this probability becomes so small that the measurement of
an event with 4 = p; at Ey # F, may be regarded as practically impossible (to paraphrase
Maxwell’s own words [MAX]). Hence, at this limit the one-to—one mapping is recovered
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p=p < E=E..

2.5 Alternative theories

In this section two alternative frameworks for the thermostatistics of small (or more gener-
ally non-extensive) systems are briefly reviewed. They are also compared with the theory
presented in the previous sections. The first one tackles the problem of the lack of usual
signals of phase transitions (Yang-Lee divergences) in CE by seeking their roots in the
finite size partition function Z. The other is based on a extension (generalization) of
Boltzmann’s principle by redefining the entropy S. Most of the introduction materials are
taken directly from the respective literatures ((BMHO00] for section 2.5.1 and [T'sA99] for
section 2.5.2).

2.5.1 Distribution of zeros
Classification of phase transitions

At the thermodynamical limit Lee and Yang [LY52A], Grossmann & al. [GL69] and
Fisher [F1s65] showed that a classification of the phase transitions is made possible by
studying the properties of the distribution of zeros (DOZ) of the partition function Z (B)
on the complex temperature plane (B = 8 + i7). The DOZ is on one (or many) dense
line(s). This line crosses the real axis at the transition temperature and the angle made
by this line with the real axis gives the order of the phase transition.

For finite size systems the DOZ is discrete and there is no zero on the real axis. The
partition sum can be written as a function of its zeros By = B* |, = B +ir, (k € N)

Z(B) = Ziim (B) Zint (0) exp (BIpZint (0)) (2.8)
B B B B
<A (-5) (- 5) = (5 5)
_ z Tt (Be =B o (2B
= Zim (ﬂ)g( /3]%4'7-]? >e p(ﬁ]%‘l'T]g) (29)

where Z;,, (B) describes the limiting behavior of Z (B) for B — 0 imposing

lim Zjn (B) = 1. (2.10)
B—0
The free energy F (B) = —41InZ (B), has a derivative at every point in the complex

temperature plane except at the zeros of Z(B). The calculation of the specific heat
capacity Cy (B) by standard derivation yields

_ ’ 2 1 1
Cv (B) - CVlzm (B) B % ((Bk — B)2 + (BZ _ 3)2) . (2'11)

Zeros of Z (B) are poles of F'(B) and Cy (B). As can be seen from eq. (2.11) the
major contributions to the specific heat capacity come from zeros close to the real axis,
and a zero approaching the real axis infinitely close causes a divergence in the specific heat
capacity.
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Figure 2.13: Schematic plot of the distribution of zeros on the complex temperature plane
illustrating the definition of the classification parameters (taken from [MBHS00]). The
circles give the positions of the zeros.

Borrmann et al. [ BMH00, MBHS00, MB01] and Janke & Kenna [JKO00] proposed a
discretized version of Grossmann’s classification scheme.

First let us assume that the DOZ lies approximately on a straight line near the real
axis. The crossing angle of this line with the imaginary axis (see fig. 2.13) is then v = tan+y
with v = (82 — 1) / (12 — 71). The crossing point of this line with the real axis is given
by B; = B1 — y71. The discrete line density ¢ as a function of 74 is defined as the average
of the inverse distances between By and its neighboring zeros

1 1 1
) = = n E=2,3,.... 2.12
¢ (7) 2 (|Bk —Bi—1| B4 — Bk\) (2.12)

¢(7) in the region of small 7 is approximated by a simple power law ¢(7) ~ 7¢. A
rough estimate of a considering only the first two zeros gives

o = 06(713) — Ing(m)

InTs —Inmo

. (2.13)

When a = 0 and v = 0 the specific Cy exhibits a —peak which corresponds to a first
order phase transition. For 0 < a < 1 and v = 0 or ¥ # 0 the transition is of second order.

Comments

All the previous discussion on the DOZ is made explicitely in the canonical ensemble.
It is implicitly assumed that Z < oo (condition (0'), i.e. Z converges) and that the
distribution of the energy is well described by the canonical distribution. These points
(in particular the latter one) are criticized for small systems in section 1.3 on page 11.
See also [SSHT00, STHO0] and part III where the studied system does not always fulfill
condition (0').
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The classification scheme based on the DOZ relies on the formally true fact that there is
no information loss from ME to CE after the Laplace transform of exp S. But in practice,
the location of the zeros should be very sensitive to numerical precision leading to a loss
of information [CH88]. The question whether and how information extracted from the
DOQOZ is sensitive to these uncertainties deserve further studies. Moreover, the dimension
of the parametric space to be explored as been multiplied by two. This complicates the
classification for M > 1. Furthermore, the richness of a system is reflected in the DOZ,
see fig. 4(b) of [BMHO00] where the classification is already difficult for small N ~ 30. An
important question is how this complexity reflected in the DOZ affects the classification
scheme and its usefulness. Finally, if the partition function cannot be estimated directly
from analytical works, one has to Laplace transform the canonical probability distribution
for different temperatures. This distribution is in its turn generally estimated by some
numerical integration, e.g. Monte-Carlo integration. Here an important point is that one
cannot use the usual optimization procedures to compute the probability distribution since
there are only sensitive to extrema of P(X) leading to a tremendous loss of information.
This information is needed to have an accurate DOZ. All in all, one must estimate P(X)
over a broad X-range. But P(X) is nothing but the entropy S up to a linear constant
which can be trivially removed. So, estimating P is also estimating S which contains
already all the information about phases and phase transitions as shown in this chapter.
Thus, in this respect, a classification based the local topology of S is more direct than the
one using the DOZ.

2.5.2 Tsallis entropy
Schematic overview

It is probably true that Boltzmann’s principle has its own domain of physical validity
(much like classical mechanics is valid if at least the velocities involved are smaller than
the speed of light). As an attempt to extent this yet hypothetical restricted domain Tsallis
conjectured the following generalization of Boltzmann’s principle [TSA88]

w
Sq :kl _Zi::[pzq

i (2.14)

where EZVL pi =1, g € R and k ¥ is a positive constant and W is the total number of mi-
croscopic possibilities of the system. This expression recovers the usual Boltzmann—Gibbs
entropy namely —kp Z:Zl p;Inp; in the limit ¢ — 1. The entropic index ¢ characterizes
the degree of nonextensivity reflected in the following pseudo—additivity entropy rule

Sq(A+ B) [k = 5,(A) [k + Sq(B) [k + (1 —q) (54 (4) /k) (S4(B) /k), (2.15)

where A and B are two independent systems. Since S; > 0, ¢ <1,¢g=1and ¢ > 1
respectively correspond to superadditivity (superextensivity), additivity (extensivity) and
subadditivity (subextensivity). The ¢ expectation value (O), of an observable O is

w
i=1 pgoi
W
Zi:1 pf

*k may also be a function of ¢ provided that k — kg for ¢ — 1 where kp is Boltzmann’'s con-
stant [MNPP00, AMPPO0O].

(0)g = (2.16)
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Tsallis proved also in [TsA95] that the heat capacity

L 08, 0U,
Co=T T — or’ (2.17)
is positive, i.e.
1
va >0, (2.18)
9%8,
<0. 2.19
vz < (2.19)

Comments

One of the main criticism found in the literature against Tsallis’ entropy is the lack of
physical interpretation for g. Its value is usually adjusted a posteriori in order to fit
experimental data. For some authors, ¢ is related to and determined by the microscopic
dynamics [BLR, LBRT00], or to be more precise, ¢ is linked to the system sensitivity to
the initial conditions (see e.g. [AT98]). For others, g describes effects due to the finiteness
of the heat bath. I.e. the heat bath heat capacity is not infinity as it is usual assumed
to build the canonical distribution function, but instead C, o (¢ — 1)~! [ALM01]. The
latter point illustrates how Tsallis’ entropy (at least how it is used in literature) is closely
related to the canonical ensemble. Even Tsallis is keen on keeping the Legendre structure
of his theory, imposing therefore a positive heat capacity as shown in [TSA99, TSA95].

For the followers of Tsallis’ entropy, the domains where Boltzmann’s principle is no
longer valid are e.g. long-range systems and those with (multi-)fractal boundary con-
ditions [TSA99]. At least for long-range interaction systems, it is the usual canonical
description that appeared to be un—valid, whereas up to now they could be well described
within the microcanonical ensemble avoiding the need of an extension of Boltzmann prin-
ciple (see part III, see also [GRO01, PAD90] and references quoted therein).

2.6 Conclusions

By studying the topology of the microcanonical entropy defined via Boltzmann’s principle
one can define phases and phase transitions for any physical system without invoking the
thermodynamical limit.

The microcanonical ensemble is the proper ensemble for “small” systems. It gives a
deeper insight onto the physical properties of “small” systems than any other “canonical”
ensemble.

Up to now, the thermostatistics of small systems, as presented in this chapter, has
been very successful [GRO01, GMS97, GR090, DGC*00]. However, there are still open
questions. E.g. is there a second law for “small” systems and how to express it without
invoking the thermodynamical limit [GRO00A]? What are the links between the critical
exponent in CE to the local topology of the microcanonical entropy-surface?

In the following, original studies of the equilibrium properties of two systems far from
the thermodynamical limit are presented. In part II, the liquid-gas phase transition
of small sodium clusters is explored as a function of the system size and also of the
microcanonical pressure. On the other hand of the physical length scale, the equilibrium
properties of a self-gravitating system at fixed total energy and angular momentum are
studied in part III.
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