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Abstract

This thesis is a contribution to the field of systems biology, where mathematical
and computational models are used to study large biological networks such as the
metabolism or the signaling pathways of living organisms. These models are simplified
representations of the studied biological systems and come in different granularities
and abstraction levels, depending on the size of the networks and on the modeling
formalisms.

One of the largest networks studied within systems biology is the metabolism, which
comprises all the biochemical reactions happening inside a cell. Until recently, such
large metabolic networks have been studied mainly in isolation and under stationary
conditions, without considering the environment dynamics or the enzymatic resources
needed to catalyze all the biochemical reactions. This has been mainly done using
constraint-based analysis and optimization. While proven to be very successful in pre-
dicting cellular behavior in some cases, this approach is not suited for microorgan-
isms living under changing environments. Two examples are cyanobacteria, whose
metabolism is adapted to the daily changes in the sunlight availability, and yeasts liv-
ing in large bioreactors and thus moving in an environment governed by local hetero-
geneities.

This thesis builds on top of recent developments in dynamic resource allocation for-
malisms for metabolism, which use tools from dynamic optimization and optimal con-
trol. We focus on modeling and understanding resource allocation in large (sometimes
genome-scale) metabolic models.

After giving an overview of existing tools for the study of metabolic resource allocation,
the thesis presents a new mathematical derivation of the widely used steady-state as-
sumption for metabolic networks and shows how this can be used to provide upper
bounds on dynamic resource allocation solutions. In preparation for the case studies,
we present a guide for generating a dynamic resource allocation model using informa-
tion from online databases, as well as guidelines and useful problem transformations.
All the theory developed so far is then applied in two case studies. One of them investi-
gates the cyanobacterium Synechococcus elongatus PCC 7942. This is the first genome-
scale dynamic resource allocation study. It gives insight into the temporal organiza-
tion of enzyme synthesis processes following light availability and shows that the linear
pattern of glycogen accumulation throughout the day period is an optimal behavior
that arises as a tradeoff between several conflicting resource allocation objectives. The
second case study concerns the yeast Saccharomyces cerevisiae. We aim to understand
what mechanisms enable some of the cells to survive environmental transitions. We
show that overflow metabolism and diauxie, which are phenomenons widely spread in
nature, are optimal behaviors from a resource allocation perspective. Moreover, we in-
vestigate how one can use resource allocation models to understand how yeast adapts
to oxygen and nutrient availability shifts. We end with a perspectives chapter which pro-
vides some preliminary results for using time courses from dynamic resource allocation
models to infer the regulatory structures that implement these optimal behaviors.






Chapter 1

Introduction

“Most of an organism, most of the time, is developing from one
pattern into another, rather than from homogeneity into a pattern.
One would like to be able to follow this more general process math-
ematically also. The difficulties are, however, such that one cannot
hope to have any very embracing theory of such processes, beyond
the statement of the equations. It might be possible, however, to
treat a few particular cases in detail with the aid of a digital com-
puter. This method has the advantage that it is not so necessary to
make simplifying assumptions as it is when doing a more theoreti-
cal type of analysis.” (Alan Mathison Turing, The chemical basis of
morphogenesis, 1952)

Sixty-five years after the publication of The chemical basis of morphogenesis by
Alan Turing, we are sitting on top of a plethora of computational techniques that
we developed to help us understand biology. And one cannot help noticing how
right Turing was. We still do not have a unifying theory for understanding biol-
ogy and life, not even for the simplest bacteria. However, computer models of
biological systems indeed helped and still help us understand better how living
organisms grow and evolve.

Recent techniques in genomics, such as whole-genome sequencing (Ng and
Kirkness, 2010), whole transcriptome shotgun sequencing (Morin et al., 2008)
or mass spectrometry-based proteomics (Aebersold and Mann, 2003) have pro-
vided detailed information about the structure of several organisms. However,
having the complete genome sequence of an organism is not the end of the story,
but rather the beginning of a whole series of analyses starting with the identifi-
cation of genes, regulatory and signaling structures, and hopefully ending with
an understanding of how everything encoded in the genome comes together
into what can be observed by the naked eye and by experiments. Microarrays
provide us with data about genes that are expressed by the organism in differ-
ent growth and/or disease conditions. But they do not tell us how the activity
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Chapter 1. Introduction

of those genes determines the phenotype. Similarly, mass spectrometry-based
proteomics gives us information about what proteins are present and in which
concentrations, but does not tell us anything about their function. Therefore,
there is a growing need for understanding the integrated behavior of cellular
subsystems such as the metabolism and the gene regulatory structure. This is
how systems biology emerged. Scientists in this field try to understand design
principles of biology by looking at organisms as a whole, rather than analyzing
individual subsystems (Kitano, 2002).

A wide part of systems biology is concentrated on understanding growth phe-
notypes via the study of genome-scale metabolic networks. As whole-genome
sequencing advanced, genome-scale reconstructions (Francke et al., 2005;
Notebaart et al., 2006) of the metabolism of many organisms became available
(Forster et al., 2003a; Feist et al., 2007; Thiele et al., 2013). As a matter of fact,
more than 2600 functional draft reconstructions have been generated up to
now (Biichel et al.,, 2013) and many of them can be retrieved from online
databases such as BioModels (Le Novere et al., 2006; Li et al., 2010; Chelliah
et al., 2015; Juty et al., 2015). These reconstructions contain information about
all enzymatic and spontaneous reactions that can happen in the organism’s
cells. Since metabolic genes can often be mapped to the enzymes they encode
and enzymes to the reactions they catalyze, one can easily obtain information
about the impact of a gene knock-out only by performing simulations on a
metabolic network in which the corresponding reaction is deleted (Deutscher
et al., 2006). Moreover, metabolic network study can help in biotechnology
and strain design by predicting knock-out strategies that couple growth of an
organism to production of biotechnologically useful by-products (Hadicke and
Klamt, 2011; Burgard et al., 2003). Genome-scale metabolic networks also help
in the search for cancer drug targets by identifying pairs of synthetic lethal
genes (Jerby and Ruppin, 2012). And these are only some of the application
areas of metabolic modeling.

But before we go on with studying metabolism, let us first see what a metabolic
model is.

1.1 Metabolic networks and notation

The main structures through which we will discuss metabolism in this thesis
are (genome-scale) metabolic networks. They are directed hypergraphs that de-
scribe the biochemical reactions happening inside a cell. Figure 1.1 shows a toy
example of such a network and establishes nomenclature for its components.

12



1.1 Metabolic networks and notation

external metabolite reversible reaction
\

\
\ internal metabolite (Beat
\

system boundary

internal reaction

Figure 1.1: Example metabolic network. Assume that Agys, Bext, Cexts Eexts Fexts
and Gy are metabolites present outside the cell and A — G are metabolites
present in the cell. The figure shows the metabolic network representation of
the reaction system: Agy — A, A— B+ C, Beyy — B, C— Cgy;, B— D, C — E,
E— Epty E= D, D G,G < Geygt, D= F, F > Foy.

Because of its similarity with graphs, a metabolic network can be represented
mathematically via a stoichiometric matrix S, which is nothing else than an inci-
dence matrix that allows for encoding the hyperedges as well as the stoichiome-
try of metabolites in reactions. The rows of S correspond to the internal metabo-
lites and the columns to the internal and exchange reactions. For instance, the
stoichiometric matrix of the network depicted in figure 1.1 is:

1 2 3 4 5 6 7 8 9 10 11 12

A1 -1 0 0 0 O O O O o0 o0 o
B|jO 1 -1 0 -1 0 O O O O O O
cjo 1 0 -1 0 -1 0 0 O O o0 O
S=bD|0O 0 0 0 1 O O 1 -1 0 -1 0O
Efo o o o o 1 -1 -1 0 O O O
FJjo 0 0 o0 O O O O O 0 1 -1
¢G\0 0 0 0 0 0 O O 1 -1 0 O

We call the tuple (#,%,S) a metabolic network, where £ := 2My T is the
set of internal reactions (denoted by 2") and exchange reactions (denoted by
27) (1-12 in the example in figure 1.1), ./ is the set of internal metabolites
(A-G in the example in figure 1.1), and S is the stoichiometric matrix. We note
that, in classical metabolic network analysis, external metabolites are typically
not modeled, but they will become important later on in this thesis.

Often, information about the reversibility of reactions and lower and upper
bounds on reaction fluxes is available and can thus be incorporated into the

13



Chapter 1. Introduction

mathematical description. We denote by Irr € % the set of irreversible reactions,
by 1, u € R the lower and upper reaction rate (flux) bounds.

We use S., to denote the column corresponding to reaction r and S,,. to de-
note the row corresponding to metabolite m respectively. S,,, then denotes the
stoichiometric coefficient of metabolite m in reaction r. We will use sets of in-
dices to denote submatrices: S.j+ for example will denote the submatrix of S
corresponding to all irreversible reactions Irr.

Of particular importance for the metabolic modeling is also the set of enzymes
that catalyze the reactions, which we denote as &. We use v = (vl, A gg|)T to de-
note the fluxes (the rates at which substrates are converted into products, also
known as reaction rates), ¢ = (cl, N M|)T to denote metabolite concentrations,
e=(e},...,eg)" to denote the set of enzyme concentrations, where x” denotes
the transpose of the vector x. We use p to denote the growth rate of the organism.
Since some of the methods we will use involve molar amounts rather than con-
centrations, we use n; to denote the molar amount of compound i, irrespective
of whether it is a metabolite or an enzyme.

Please note that the fluxes v, the concentrations c, e, the molar amounts n, and
the growth rate u can in some cases depend on time. Furthermore, v() € RI%!,
c(t) e [Rlz“é[ Le(n)e [leol, andne [R?';f){ Y81 are vectors and thus written in boldface,
as all other vectors appearing in this thesis. Equality or inequality relationships
between vectors and constants apply elementwise, i.e., a = 0 indicates that every

entry in the vector a is greater or equal to zero.

1.2 Metabolic modeling

1.2.1 Dynamic modeling

A classical and well-known way of modeling biochemical reaction systems is via
systems of ordinary differential equations that describe the rate of change of
metabolite concentrations ¢ (Klipp et al., 2008). Assuming a constant cell vol-
ume, the rate of change of the concentration c; of a metabolite i is given by the
difference between its rate of production and the rate at which it is consumed:

dc;(1)

dt = Vproduction — Vconsumption-

This can be written for metabolic networks using the stoichiometric matrix S:

dc(t)
dt

= Sv(t).

14



1.2 Metabolic modeling

The reaction rates v are usually nonlinear functions of the substrate and enzyme
concentrations' and we can write them as:

V(1) = f(e(n),c(1)).

The deterministic kinetic rate laws f : Rfol x [Rlz“é[ | - RI%! are largely unknown,
and even if they are known, they depend on kinetic parameters that need to
be determined experimentally. For example, if we assume Michaelis-Menten
kinetics (Michaelis and Menten, 1913) for a simple irreversible reaction j: A —
B, the rate law is given by

CA

—_—, (MM)
ca+ Ky

VJ = e] kcat
where Kj; is the so-called Michaelis constant, which is a constant specific to
each reaction, and k. is the turnover rate of the respective enzyme and is de-
fined as the maximum number of molecules of substrate that the enzyme can
convert to product per catalytic site per unit of time.

To the basic kinetic model presented above, various degrees of regulatory infor-
mation can be added, including but not limited to enzyme production dynamics
via the ribosomes depending on transcription factor activities or various types
of enzyme activity inhibition.

At genome-scale, such modeling approaches are largely limited by the huge
number of reactions, the nonlinearity of the kinetic rate laws and the missing
information about kinetic parameters. Moreover, the number of enzymological
studies has reduced significantly since 1998 (based on statistics on entries in
the BRENDA database (Schomburg et al., 2013)), and there is little hope that
this situation will become better in the near future (Holzhiitter, 2004).

1.2.2 Constraint-based modeling

To overcome the computational limitations and data requirements of kinetic
modeling of reaction networks, constraint-based modeling has emerged as yet
another popular approach (Price et al., 2004; Bordbar et al., 2014). One of the
core assumptions of this type of modeling is that the internal metabolites are
at steady-state, i.e., their production and consumption fluxes are balanced and
thus their level is assumed to be constant.

This steady-state assumption can be motivated from two different perspectives.
In the time-scales perspective, we use the fact that metabolism is much faster
than other cellular processes such as gene expression. Hence, the steady-state
assumption is derived as a quasi-steady-state approximation of the metabolism

IThere are other additional factors that can influence the reaction rate such as (allosteric) en-
zyme inhibitors, pH or temperature. Depending on the level of detail of the model, these can also
be included or left out.
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Chapter 1. Introduction

that adapts to the changing cellular conditions. However, the time scale separa-
tion argument is not necessarily needed to derive the steady-state assumption.
A second perspective, on which we will focus in chapter 3, states that, on the long
run, no metabolite can accumulate or deplete. In contrast to the first perspec-
tive it is not immediately clear how this perspective can be captured mathemat-
ically and what assumptions are required to obtain the steady-state condition.
We leave the answers to this question for chapter 3, and now focus on what are
the consequences of assuming intracellular metabolites to be at steady-state.

This assumption essentially eliminates the need for kinetic rate laws and param-
eters. It can be written as:
Sv=0.

We will see in chapter 3 that one way to understand v is as an average over time
of v(1).

This transforms the problem into a linear equation system which is much easier
to analyze. It however comes at several expenses: the solution space of this sys-
tem, even after adding constraints about reaction directionality and bounds, is
a polyhedron and hence the system is underdetermined. Additionally, a hidden
assumption comes into place, namely that all enzymes are present and in the
correct concentrations to sustain the resulting fluxes.

Additional information about the reversibility of reactions, inferred, for exam-
ple, from thermodynamic considerations, can be incorporated by adding the
constraint vy, = 0.

To limit the size of the system, assumptions about the cellular behavior are
made. Namely, the cell is assumed to optimize a particular biological objec-
tive. In the first article to introduce constraint-based modeling for metabolic
networks, the assumption was that the cell tends to optimize its growth rate in
the form of biomass production (“It is expected that the metabolic phenotype
of wild type strains is defined by a tendency to optimize their growth rates, at
least in nutritionally rich environments such as those found in the majority of
bioprocesses.”, Varma and Palsson (1994), p. 995).

The maximization of biomass production is usually done by adding a pseudore-
action to the stoichiometric matrix that consumes all metabolites (amino acids,
fatty acids, carbohydrates, ATP, cofactors etc.) assumed to be needed for cellular
growth, and flux through this reaction is maximized. This approach is known as
flux balance analysis (Varma and Palsson, 1994; Orth et al., 2010), in short FBA,
and is shown below:

\gl[R{% Vbiomass

s.t.Sv=0
Vir =0

I<sv=u,

16



1.2 Metabolic modeling

where 1, u are lower and upper bounds on the reaction fluxes that may come ei-
ther from information about maximal reaction rates or as a need to limit growth
yield as explained below.

Later on, a series of other objectives have been introduced. For an evaluation
of objective functions for predicting intracellular fluxes in the bacterium Es-
cherichia coli we refer the reader to (Schuetz et al., 2007). It turns out that not
only there is no universally assumed cellular objective, but some of them may
even be conflicting. Take, for instance, the fact that the cell is assumed to turn
off “jobless” pathways to save on enzyme costs, but, at the same time, it is also
assumed to be minimizing response time to changes in the environment, i.e.,
have the enzymes already produced to be able to react immediately. This is how
multiobjective modeling of metabolism came to life (Schuetz et al., 2012).

When dealing with multiobjective problems, we no longer talk about unique op-
timal objective values and unique growth yields, but about sets of optimal solu-
tions known as the Pareto front. This is the set of solutions that cannot be im-
proved with respect to one objective without making another objective worse.
All these solutions are optimal with respect to the given objectives, but they rep-
resent different compromises between the individual objectives. In addition,
multiobjective problems should not be confused with problems that consider a
single objective function with multiple weighted terms. In the latter case, only
one of the Pareto solutions is found instead of the Pareto front, and this solu-
tion may be very sensitive to the weighting of the individual objective terms.
Indeed, it has been shown via a combination of experimental and computa-
tional methods that, for the bacterium E. coli, the metabolism works close to the
Pareto-optimal surface defined by competing objectives (Schuetz et al., 2012).
In this case, the Pareto front is determined by three objectives: maximization of
biomass yield, maximization of ATP yield and minimization of total flux through
the network.

The advantage of the constraint-based formulation is that it gives rise to a linear
optimization problem, also known as linear program (LP), which can be solved
very fast. Since unlimited nutrient uptake would give rise to unlimited growth,
usually a constraint that limits nutrient uptake is added, such as vgjycose uprake <
1, meaning that the cell is only allowed to take up one unit of e.g. glucose per
unit time, i.e., the flux through the glucose uptake reaction is at most one.

By introducing the limits on nutrient uptake however, we do not optimize
growth rate anymore, but growth yield. That is, FBA does not actually predict
how fast the organism can grow, but how efficiently it can turn the nutrient into
growth. This is however not what microorganisms living in rich environments
do. Rather, at high substrate concentration the organisms opt for maximizing
growth rate and, in doing this, they sometimes choose yield-suboptimal
strategies. Only when the substrate becomes limiting do microorganisms use
yield-optimal strategies (Molenaar et al., 2009).
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Chapter 1. Introduction

To give some examples, yeast cells use fermentation even in the presence of oxy-
gen to process glucose at high extracellular glucose concentrations (van Dijken
etal., 1993). However, fermentation is yield-suboptimal since it produces a total
of only two ATP molecules per molecule of glucose. The yield-optimal strategy
would be to use respiration, which results, depending on the organism, in about
30 molecules of ATP per glucose molecule.

On the other hand, although it has a high ATP yield, aerobic conversion of glu-
cose employs large pathways with many enzymes. To run all these pathways
at a high rate, the cell has to make the effort of producing all the necessary en-
zymes. In addition, the production of all these enzymes in high amounts results
in molecular crowding of the cell, which can impede other cellular processes by
hindering diffusion.

For a comparison, in fermentation, the whole Krebs cycle and oxidative phos-
phorylation are replaced by only three reactions needing three enzymes for
catalysis.

Not only yeast, but many other biological systems are known for not acting
yield-optimally. Other examples are cancer cells that display the Warburg effect
(Warburg, 1956), or the lactic acid fermentation of Bacillus subtilis (Sonenshein,
2007). These examples, together with additional theoretical and experimental
observations (Schuster et al., 2008), point out that using growth yield as a cue
for growth rate may lead to false predictions. Thus, FBA is not always the way to
go for predicting metabolic flux.

Another important point is that maximization of yield comes together with
a hidden assumption: enzymes are present in the correct concentrations for
achieving optimal yield reaction rates. However, in reality, before using an
enzyme, the organism has to produce it. Producing enzymes in very high
concentrations comes at two expenses: cellular resources have to be invested
in enzymes, and increased molecular crowding that can hinder other biological
processes.

While modeling the former is the very topic of this thesis and will be discussed
extensively by giving a state of the art of metabolic resource allocation in chap-
ter 2, the latter we briefly explain here.

The main idea of accounting for molecular crowding as a way to limit reaction
flux has been addressed in (Beg et al., 2007) and in (Shlomi et al., 2011) via im-
posing extra constraints on the solution space. The constraints can be formu-
lated either on the total enzyme mass, as done in (Shlomi et al., 2011), or on the
total enzyme volume, as done in (Beg et al., 2007), following roughly the same
principles. One typically imposes a constraint that limits the total sum of fluxes,
weighted by the mass or the volume of respective metabolic enzymes. To impose
these constraints one typically needs additional data such as enzyme molecular
weights or volumes, which may not always be available in the literature.
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1.3 Cellular resource allocation

In addition to the FBA disadvantages already explained, we note that it is rarely
the case that FBA reports a unique optimal flux distribution. More often, there
are several flux vectors with the same optimal growth yield. While imposing
thermodynamic constraints can help to further shrink the optimal solution
space (Beard et al., 2002, 2004; Schellenberger et al., 2011; Hamilton et al., 2013;
Reimers, 2014) by further constraining some reaction reversibilities, it is rarely
the case that this results in a unique solution. For this reason, typically addi-
tional methods like flux variability analysis (Mahadevan and Schilling, 2003)
need to be used to check the optimal solution variability, and flux modules
(Kelk et al., 2012; Miiller and Bockmayr, 2014; Reimers et al., 2015) can be used
to visualize which alternate pathways give rise to the variability.

1.3 Cellular resource allocation

Another view in metabolic modeling is that microorganisms are autocatalytic
systems. They invest resources in terms of nutrients and time into enzymes that
they then use to catalyze reactions to again produce more enzymes. In addi-
tion, ribosomes need to be present to translate the enzymes, and the ribosomes
themselves need to be produced, following the same principle. A question of
prioritization then arises: in which components should the cell invest such that
it grows optimally?

This is why, in recent years, the systems biology of metabolism has moved more
and more from classical metabolic network study towards the study of growth
as aresult of an optimized cellular economy.

The ideas that a cell minimizes the total enzyme concentration needed for a
fixed steady-state flux and that there exists a competition among reactions for
available enzyme resources are however not new, but go back to (Brown, 1991)
and (Klipp and Heinrich, 1999). Moreover, similar ideas have been used to study
activation of metabolic pathways and enzyme allocation under a constraint of
limited total enzymatic capacity starting with (Klipp et al., 2002). This was then
further investigated using experimental (Zaslaver et al., 2004) as well as mathe-
matical techniques (Oyarzin et al., 2009; Bartl et al., 2010) and was even brought
forward in a multiobjective dynamic optimization study (de Hijas-Liste et al.,
2014).

In their article, (Molenaar et al., 2009) pointed out that the limited total
proteome constraint does not apply only to metabolism, but to all cellular sub-
systems, which have to share resources among each other. In this study a small
dynamic model of a self-replicating system is used to explain how overflow
metabolism arises by means of tradeoffs between different growth strategies.
Further on, Goelzer et al. (2011) introduced resource balance analysis (RBA), as
a means of predicting the cell composition of bacteria in a specific (constant)
environment through a convex optimization problem that takes into account
the bioenergetic costs of running a pathway. More or less in parallel, Lerman
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et al. (2012) introduced the idea of an integrated model of metabolism and
gene expression (ME model) as a means to explore the relationship between
genotype and phenotype using biochemical representations of transcription
and translation processes. Their research group then continued with an ME
model of the model organism Escherichia coli (O’Brien et al.,, 2013). Also
experimental studies focused on relating absolute protein abundances to how
metabolic pathways balance production costs and activity requirements (Li
etal., 2014).

These steady-state resource allocation formalisms have then been combined
with the dynamic optimization ideas in (Klipp et al., 2002; Oyarzun et al., 2009;
de Hijas-Liste et al., 2014), to understand how resources are distributed in a dy-
namically changing environment by means of a dynamic enzyme-cost flux bal-
ance analysis (deFBA) and conditional flux balance analysis (cFBA) (Waldherr
et al, 2015; Riigen et al., 2015).

Such dynamic resource allocation models have a wide area of applicability. One
such an example is the study of microorganisms growing in industry-scale biore-
actors. There, the organism has to balance resources not only in order to be able
to grow optimally, but also in order to survive transitions through local hetero-
geneities of the reactor. The ability to take such transitions into account within
metabolism has been shown to be crucial for survival (van Heerden et al., 2014).

In addition, a perfect study case is the metabolism of phototrophic organisms,
who live in regular day-night light conditions. Dynamic resource allocation
modeling helps us understand how they organize their synthesis and storage
processes following light availability.

The main underlying hypothesis of such studies is that organisms have been
shaped through evolution by reoccurring changes in their environment and that
the observed patterns in their metabolism are the result of optimized growth
in this changing environment. Thus, along the lines of (Klipp, 2009), we can
check using optimization principles and models if what we observe in nature
are indeed optimal behaviors.

1.4 Structure of this thesis

Following the recent developments in optimal dynamic resource allocation for-
malisms, this thesis focuses on modeling and understanding resource allocation
in large (sometimes genome-scale) metabolic models.

In chapter 2 we start with a state of the art overview on metabolic resource allo-
cation formalisms.

We then present in chapter 3 a new mathematical derivation of the widely used
steady-state assumption that motivates its successful use in many applications.
This derivation can then be used to quickly provide upper bounds on growth
rates in dynamic resource allocation problems.
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Chapter 4 then provides a protocol on how to generate a dynamic resource allo-
cation model. Before we turn our attention to applications, we present in chap-
ter 5 some guidelines, useful problem transformations and instructions for nu-
merically solving the resulting dynamic resource allocation problems.

Having set the stage this way, we proceed in chapter 6 with an in depth study at
genome-scale of the metabolic resource allocation in the cyanobacterium Syne-
chococcus elongatus PCC 7942. This is the first genome-scale dynamic resource
allocation study and it presents insight into the temporal organization of synthe-
sis processes following light availability. Moreover, it shows that the linear pat-
tern of the accumulation of storage (glycogen) throughout the day period is an
optimal behavior that arises as a tradeoff between several conflicting resource
allocation objectives.

We continue in chapter 7 with a study of yeast living in dynamically changing
environments. This is motivated by the observation that, in industrial-scale
bioreactors, yeast cells live in a changing environment governed by local het-
erogeneities. We therefore want to understand what mechanisms enable some
of the cells to survive such environment transitions, and why other subpopu-
lations do not make it through the transitions and die out. We show that over-
flow metabolism and diauxie, phenomenons that are not exclusively observed
in yeast but widely spread in nature, are optimal behaviors from a resource allo-
cation perspective. Moreover, we investigate how one can use resource alloca-
tion models to understand how yeast adapts to oxygen and nutrient availability
shifts.

A next step, which we explore in chapter 8, is the perspective of using time
courses from dynamic resource allocation models to infer the regulatory struc-
tures that implement these optimal behaviors.

We conclude by summarizing the results of the thesis and listing possible next
steps in using dynamic resource allocation models to understand metabolism
and its regulation.
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Chapter 2

Resource allocation formalisms

This chapter aims at giving an overview of the current metabolic resource allo-
cation formalisms and exemplifies them using the toy model proposed in (Mole-
naar et al., 2009). This will help us better understand the methods used for the
case studies in chapters 6 and 7.

2.1 Resource allocation principles in a self-replicator

In their article, (Molenaar et al., 2009) start by noting that there are several com-
mon patterns that can be observed in the physiology of unicellular organisms,
such as increase of cell size and ribosomal content with increasing growth rate,
or a shift to energetically inefficient metabolism at high growth rates. Moreover,
such patterns are not only observed in unicellular organisms, but also in tumor
cells for example. They argue that such patterns hint at the existence of design
principles that result in the optimization of evolutionary fitness.

This idea of fitness optimality is not new. It has already been applied successfully
in the study of cellular subsystems like metabolism. There, global metabolic re-
action rates (fluxes) are predicted using a network of biochemical reactions and
assuming that cells have evolved towards optimizing growth yield in a constant
environment. While the resulting predictions have been shown to fit experimen-
tal measurements relatively well (Edwards et al., 2001; Ibarra et al., 2002), such
models fail to predict the usage of inefficient metabolic routes and “spilling” of
resources at high nutrient concentrations, a phenomenon known in the litera-
ture as overflow metabolism. The reason, according to (Molenaar et al., 2009),
lies in the modeling of only one subsystem (metabolism), rather than the sub-
system in its context, where the cell would have to produce catalytic units be-
fore these can be used to catalyze reactions and would have to balance the costs
and benefits of the macromolecules it produces together with the effects of such
macromolecules on the overall growth rate.

23



Chapter 2. Resource allocation formalisms

To prove their theory, (Molenaar et al., 2009) propose a self-replicator model that
contains most cellular subsystems, including production of macromolecules
such as membrane, the ribosome, or transporters. We have reproduced this
self-replicator model in figure 2.1, and we will use it to explain the state of
the art of resource allocation formalisms in the next sections. In addition, we
present in table 2.1 the list of species and reactions of this model.

Nout

Figure 2.1: Self-replicator toy model proposed by (Molenaar et al., 2009) in their
resource allocation study. Extracellular nutrients are depicted in yellow, intra-
cellular metabolites are shown in green, and macromolecules in blue. Reactions
are shown in continuous arrows, while catalysis relationships are in dashed ar-
rows. The model contains all subsystems of a cell: N,,;, extracellular nutrient
source; N;;,, intracellular nutrient; B, metabolic precursors; L, lipid synthesis en-
zyme; M, metabolic enzyme; Q, lipid membrane; R, ribosome; T, transporter.

(Molenaar et al., 2009) consider the self-replicator system in a growth medium
with infinite volume and a constant substrate concentration cy,,,. Furthermore,
they assume the main objective of the system is to maximize the growth rate u
under a balanced growth condition, where each component grows at the same
rate. The main limitations of growth are constraints imposed by physics and

chemistry that we will detail in the following subsections.

2.1.1 Growth rate and dilution

To understand the growth rate u, we need to look at the volume of the system,
which is assumed to grow exponentially, following the equation

V() =Vy-ett, 2.1)
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2.1 Resource allocation principles in a self-replicator

Table 2.1: List of species, reactions, and catalysis relationships for the model in
figure 2.1. We note that we have a one to one correspondence between reactions
and their catalyzing enzymes and we therefore denote them by the same letter.

External metabolites: Nour
Internal metabolites: A ={Nj,, B Q}
Enzymes: E={L MR,T}
Reactions  Catalyzed by = Turnover rate
Nour = Nin T 7
N;, — P M 5
P—0Q L 5
P—-L R 3
P—-M R 3
P—R R 3
P—-T R 3

where V} is the initial volume of the bacterial population. By taking the deriva-
tive in equation 2.1, we obtain
1 av
H=Vo ar
consistent with the definition in (Heinrich and Schuster, 1996). The case where
the growth rate is not constant is discussed in section 5.3.

(2.2)

Following the definition of concentration of a molecule i as number of moles
n;(t) per volume V(¢), ¢;(t) = 1 '\ve obtain then that

Yo
d _ d n; (1)
5= v

_dn;(1) 1 _dV(t) 1 n;(p)
Codt V() dt V() V)

_dm 1
T Tar v "V
—— ——

production dilution by growth

2.1.2 Mass balance equations

The authors of (Molenaar et al., 2009) assume an exponential growth model for
the biomass of the system where p is the constant specific growth rate. In addi-
tion, they assume a steady-state in the form of balanced growth, i.e., the rates of
production and dilution by growth of each intracellular species are balanced as

0= dcci(tt) _ szynthesis(l.) _ Zvdilution(t) =S y V() — pc(r),
0 _ d;(;) — szynthesis(t) _ Zvdihnion(t) = Séb*V(t) - ﬂe(t)v
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Chapter 2. Resource allocation formalisms

where S is the stoichiometric matrix. Therefore, they assume that the fluxes and
the concentrations are constant and thus we omit their time dependency in this
section and write simply v, ¢, and e.

The system can modulate the growth rate y, by modulating the production rate
of each protein. That means that the fractions of ribosomes used for the synthe-
sis of each protein can be changed and for each i € {L, M, R, T} we have

de;(t)

ar Si«v(t) — uei(t) = a;vp — ue; =0,

where vy is the rate at which the total ribosome pool synthesizes proteins, a;
is the fraction of this pool dedicated to the synthesis of protein 7, and the stoi-
chiometry S; . is omitted because all coefficients are one.

2.1.3 Kinetics of rate equations

We have already seen in the previous section that the flux values v play an im-
portant role in the growth of the system. In this model, they are all assumed to
follow irreversible Michaelis-Menten kinetics, as described in table 2.2.

Table 2.2: Rate equations for the reactions of the self-replicator. kém is the
turnover rate of enzyme i, which can be found in table 2.1. Kj, is the Michaelis
constant and is assumed to be equal to 1 for all reactions.

Reaction Rate equation
kT ‘eT-CN
Nour — Nip vr = cat =
KM-}-CNDM
M
N:, — P VM_kcat'eM'cNm
1243 -
KM+cNm
L
P—»Q VL:—kcat'eL'cp
Ky +cp
kR ‘@R -Cp
P—i€{lL, M,R T} vp=-4 —~ =
Ky +cp

2.1.4 Membrane integrity

An important observation is that the lipids Q, which we call from now on quota
metabolites, will in fact never be produced in a solution that is optimal with
respect to maximizing u given the constraints above. They are simply a drain
of resources that does not contribute to the autocatalytic nature of the system.
However, in reality, the membrane lipids play an important role in keeping the
integrity of a cell. Therefore, a constraint is imposed to make sure that the mem-
brane of the self-replicator is not only made of transporters, but a lipid quota is
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2.1 Resource allocation principles in a self-replicator

also present. This is done by imposing that the amount of transporters needs to
be at most equal to that of membrane lipids, i.e.,

Ccg =er.

Just as the lipids, also DNA and RNA are important components without cat-
alytic role that are essential for replicating the cell. They are not considered ex-
plicitly in this model, but they will later on play a role in metabolism and expres-
sion models (ME models), resource balance analysis (RBA), dynamic enzyme-
cost flux balance analysis (deFBA), and conditional flux balance analysis (CFBA),
which we explain in later chapters. We call these quota metabolites, to highlight
that a certain quota in the total biomass has to be dedicated to them.

2.1.5 Total proteome is limited

The volume of a cell is obviously not infinite, and that means there is also a limit
to how much protein can be contained inside a cell. Therefore, the authors of
(Molenaar et al., 2009) impose a constraint on the total amount of proteins as

e; <1.
ie{L, M, R, T}

As mentioned in the introduction, the idea of such a constraint is not new. A
version of this constraint has been already introduced in (Klipp et al., 2002) and
later on used in flux balance analysis with molecular crowding (Beg et al., 2007),
as well as in other metabolic resource allocation formalisms as detailed in the
following sections.

2.1.6 Additional constraints

There are also more obvious constraints that we need for the self-replicator
model. For instance, species concentrations should be nonnegative, which can
be expressed as

c,e=>0.
Additional volume constraints are used in the article. We do not detail them be-

cause they do not bring any additional understanding of the resource allocation.

Finally, the ribosome fractions used for protein synthesis should sum up to 1,

a; = 1.
ie{L, M,R, T}
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2.1.7 The nonlinear optimization problem

Putting together the constraints above, we obtain a nonlinear optimization
problem (NLP) over the variables g, c, e, v, a for every fixed cy,

max

a,u,cev
S.t.Sjx-v—p-c;=0 Vi€ {Nj, PQ} (2.3)
a;-vp—pu-e; =0 Vie{lL, M, R, T} (2.4)
kT .er-c
vy = cat T Nout (25)
KM +CNom
KM .er-cn
vy = cat M Nin (26)
Ky + CN;,
ki .ei-c
y; = —cat “L' 7P Vie (L R) 2.7
KM +cCp
cp=er (2.8)
e <1 (2.9)
ie{L, M, R, T}
a,c,e=0 (2.10)
a;=1. (2.11)
i€{L, M, R, T}

The authors solve the optimization problem using GAMS (https://www.gams.
com/) in combination with the KNITRO solver. This solver only guarantees find-
ing local solutions to the NLP. The authors then check the global solution op-
timality using the LINDOGlobal solver. Such solvers can use branch and cut
methods to break the NLP into subproblems which are either infeasible, optimal
or that are in turn split again. At additional computational cost, they can auto-
matically linearize some of the nonlinear relationships. They guarantee global
optimality within a user-set tolerance. Please note that using an NLP solver for
such a small model may be feasible in terms of the solving time, but it will defi-
nitely not be an option anymore if the problem grows to hundreds or even thou-
sands of variables.

2.1.8 Results and extensions

Although it is a simple model, the self-replicator and its extensions presented in
(Molenaar et al., 2009) are capable of displaying many behaviors observed in real
organisms. The authors show how growth of the ribosome pool with increasing
growth rate, overflow metabolism, or growth strategies on two substrates arise
as tradeoffs between the costs and benefits of proteome allocation.

The model has inspired a series of resource allocation studies, of which we detail
resource balance analysis (RBA), metabolism and gene expression models (ME
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2.2 Resource balance analysis

models), dynamic enzyme-cost flux balance analysis (deFBA), and conditional
flux balance analysis (cFBA) in the following sections.

2.2 Resource balance analysis

Introduced by (Goelzer et al., 2011), RBA exploits the same idea as the resource
allocation model in (Molenaar et al., 2009): modeling the cell as an interdepen-
dence of several subsystems that complete different tasks contributing to growth
and that share common resources. There are however several differences to the
work of (Goelzer et al., 2011), which we will detail below.

To begin with, the authors of RBA give a formal definition of the growth rate
u as a function of the volume of the cell, as we have already detailed it in the
previous section. As in our steady-state assumption including dilution effects
in section 5.3 and as in the article of (Molenaar et al., 2009), they note that at
steady-state the production and dilution of all cellular macromolecules should
balance in order to maintain their concentrations constant. Furthermore, they
also assume that the fluxes are constant.

2.2.1 Relaxing steady-state constraints and imposing quota

However, they relax the steady-state constraint compared to equations (2.3) and
(2.4), and allow overproduction of metabolic precursors and macromolecules,
but not of metabolic intermediates. Assuming the stoichiometric matrix also
contains the macromolecule production reactions, equations (2.3) and (2.4) are
replaced by

Spxv=0,

SNyyx V=0,
Sixv—p-e; =0, Vie{lL,M,R, T},

S« V—p-co=0.

We note also that only dilution of macromolecules by cell growth is modeled in
RBA, but not dilution of internal metabolites N;, and P. In chapter 5 we estimate
the error that we make by neglecting metabolite dilution via cell growth.

Furthermore, by including Q in the latter equation and fixing the required
amount ¢ = 0, quota metabolites are required to also grow at the rate p.

2.2.2 Kinetics of rate equations are replaced by linear constraints

Reaction rates in RBA are not modeled using kinetic rate laws as in (Molenaar
et al.,, 2009). Instead the authors assume that enzymes are substrate-saturated
and that the reaction rate is given by the product of the turnover rate and the
enzyme amount. As reasoning, the authors cite a PhD thesis written in French

29



Chapter 2. Resource allocation formalisms

that is not available online, but which suggests that “at steady state, the enzymes
operate at (or close to) saturation” (Goelzer et al., 2011). Although not mentioned
in the RBA article, in (Bennett et al., 2009) absolute metabolite concentrations
in Escherichia coli are compared to the Kj; values of their degrading enzymes,
and the results indeed indicate that most enzymes analyzed (83%) are more than
50% saturated with substrate. Moreover, 59% of the analyzed enzymes process
substrates in a concentration that is more than 10—fold higher than their Kj,.
These results indicate that, for most reactions r catalyzed by an enzyme E, the
reaction flux is somewhere in the interval [% kfa :"€E, kcEa ;~€gl, assuming simple
Michaelis-Menten kinetics. The equality assumption that v, = k£, - e in RBA
is still quite strong, since it forces flux whenever the enzyme is present although
regulatory effects may impose that only a fraction of this flux is present at times.

Nevertheless, this assumption simplifies the equations for fluxes (2.5)-(2.7) to

Vil = k., -e;, Vi€ {T,M,L,R).

This is the first time such an approximation is introduced in order to linearize
kinetic expressions. The absolute value is present because some reactions may
be reversible, and in that case their flux values, albeit negative, should still be
constrained by the enzyme amount. This usage of the absolute value in the con-
straint introduces a nonlinearity into the optimization problem. However, this
is easily resolved by introducing extra variables v'*** = 0, and requiring that

vi—v'<0 and —-v;—v""* <0, Vie{T,M,L,R}.

Note that this transformation relaxes the original equality constraint, into v, <
kfa ;~€g, and thus the saturation hypothesis is given up.

It should additionally be noted that, instead of using the fractions @ to model
competition of the protein synthesis reactions for the ribosome, RBA uses an
upper bound on the sum of enzyme production fluxes in combination with the
rate equation linearization as

R
Z VR, = kcas-er,
ie{T,M,L,R}

where vy, denotes the synthesis flux for protein i.

2.2.3 Modeling volume vs. modeling density

As in (Molenaar et al., 2009), RBA also does not explicitly model volume. In-
stead, a density constraint is used that requires the intracellular density to re-
main constant to ensure diffusion is not impaired. In detail, the weighted sum
of the densities of the macromolecules is bounded by the mean density D of the
cell as

Y. piei+pg-co=sD,
ie{T,L,M,R}
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where p; is the density of macromolecule i. This effectively means that the sat-
uration assumption from above is given up.

This constraint is only imposed for the macromolecules, since metabolite con-
centrations are not modeled explicitly and metabolites are assumed to be small
enough to not impair diffusion. The main role of this constraint is to provide an
upper bound on total proteome, similar to constraint (2.9).

2.2.4 Nutrient uptake

The RBA article does not explicitly mention how extracellular nutrient uptake is
modeled. We assume that they use a Michaelis-Menten rate law as in (Molenaar
etal., 2009), and fix the parameters k_,, Ky, as well as the substrate concentra-
tion cy,,,. If this is the case, the uptake rate vy depends linearly on the amount

of enzyme er, while the rest of the terms are fixed, as

T
kcat er- cNaut
Ky +cpn

out

v =

2.2.5 The quadratically constrained optimization problem

By replacing the kinetic expressions for the fluxes with linear terms that only
depend on enzyme concentrations and k.,;, RBA casts the resource allocation
problem into a quadratic program, with ¢ as common variable in all quadratic
terms. Putting together all constraints, RBA for the toy model in figure 2.1 is
given by:

max
u,c,e,v,vnax

s.t.Spx V=0 2.12)
SN« V=0 (2.13)
Siv-V—pi-€; =0 Vie{L, M,R,T} (2.14)
SQ*-V—,Lt'CQEO (2.15)
v = kL e Vie{L,M,R,T} (2.16)
v -V <0 Vie{L, M,R,T} 2.17)
—v; V" <0 Vie{L, M,R,T} (2.18)
Y vr <kl -er 2.19)

ie{T,M,L,R}

kT .er-c
vr = Zeat " *T " ENow (2.20)
KM +CNDM

pi-€i+po-cog<D (2.21)

ie{T,L,M,R}
v c,e,u=0. (2.22)
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Since p is common to all quadratic terms, instead of solving a quadratic problem
one can use a half-interval search (also known as binary search) over y, and for
every fixed pu solve a linear feasibility problem. Briefly, one starts with a very
small fixed value of i and successively doubles it until the resulting feasibility
problem becomes infeasible. Once this is the case, a typical binary search can be
used to search the optimal value for u, which is now in the interval between the
last feasible u and its double. Usually one has to set a tolerance for the smallest
change in p at which this procedure should stop.

2.2.6 Mathematical and biological implications

In addition to providing a resource allocation framework that is efficiently solv-
able also for large-scale systems, the authors prove mathematically several im-
portant properties about the framework, of which we mention here a few.

The article provides a proof that, if the resulting feasibility problem is feasible for
a fixed p*, then it is also feasible for any other value of y in the interval [0, u*].
They also prove that there exists a finite optimal u* and that every value larger
than this will result in an infeasible problem.

The authors show that the growth rate y increases when the fixed required non-
catalytic biomass quota ¢ is decreased. This fact has also been proven experi-
mentally in (Fischer and Sauer, 2005) by deleting the inductor of expression for
flagellar proteins in Bacillus subtilis, which are proteins only required for mobil-
ity, with no catalytic role. The resulting mutant strain displayed a faster growth
rate than the wild type.

Last but not least, (Goelzer et al., 2011) show that increasing the turnover rates
reduces the necessary amounts of enzymes for running the same flux and thus
increases growth rate, and that “cheap” pathways (in terms of synthesis invest-
ment) are nearly always preferred (e.g. uptake amino acids rather than de novo
synthesis). They also point out that an “expensive” pathway may be preferred
sometimes if it reduces cost of producing a co-metabolite needed somewhere
else in the system.

(Goelzer et al., 2011) apply RBA to a model of Bacillus subtilis metabolism, with
342 genes, 277 enzymes, 54 transporters, and 358 metabolic reactions and show
that the modular configuration of this metabolic network is a function of the
medium composition.

2.2.7 Extension through metabolism and gene expression models

Up to now we have seen how RBA takes into account resource investment into
metabolic pathways by modeling protein translation explicitly. One can how-
ever go one level of detail higher, as in metabolism and gene expression models
(ME models) (Lerman et al., 2012; O’Brien et al., 2013), and also model the tran-
scription process. One can then provide limits on the number of proteins that
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can be translated from a given messenger RNA (mRNA) before this mRNA is de-
graded or passed on to daughter cells. The synthesis of mRNA has to then match
the costs of degradation and dilution via growth, which can be achieved through
coupling constraints, as we will detail in this section. We, however, do not aim
here at a full description of ME models, but more at a high level view on the
extension they provide to RBA.

In figure 2.2 we show the transcription and translation processes, as they
are modeled in ME models. In addition to metabolites, enzymes, and quota
components, ME models also explicitly incorporate RNA as mRNA, rRNA, and
tRNA. Furthermore, they model production, usage, dilution to daughter cells,
and degradation of enzymes and RNA molecules through so-called “coupling
constraints”.

degradation
nucleotides production dilution
_— >
energy mRNA 0
amino acids

energy production

Enzyme dilution 0

X usage
degradation

metabolite A ——» metabolite B

Figure 2.2: Scheme of the transcription and translation processes as they are
modeled in ME models. Metabolites and macromolecules are depicted in blue,

while reactions and degradation/dilution by growth processes are shown in
black.

Growth rate vs. doubling time

Just as RBA, ME models include dilution via growth using the growth rate p.
However, sometimes the constraints are expressed as a function of the doubling
time Ty, which can be obtained from the growth rate u as
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Dilution and degradation of mRNA

For each enzyme modeled, the ME model additionally keeps track of the mRNA
molecule which is used to translate the enzyme. That means, that for every en-
zyme i € {T, M, L, R} we model the production, dilution, and degradation fluxes
involving mRNA; using coupling constraints. The first coupling constraint re-
lates dilution and degradation of such mRNAs by imposing that a certain mRNA
can be degraded a maximum number of times before it is passed on to a daugh-
ter cell. In short,

VAN > e VO € (MRNA7, mRNA 7, mRNA7, mRNARg}.
The parameter a,,qy is the ratio of the mean lifetime of an mRNA molecule
TmrNaA and the doubling time Ty,

a. . TmRNA
max «— = -~ -
Tq

In the simulations TyhrNa is typically set to 5 minutes, since 80% of mRNAs in
E. coli have been shown to have half-lives between 3 and 8 minutes (Bernstein
et al.,, 2002). Ty, as a function of the growth rate u, comes into this constraint
as a variable which is instantiated at each new iteration of the binary search
explained for RBA. The fluxes v{ilution ydegradation

WV, are variables of the LPs solved
at each binary search iteration.

Although the authors do not explicitly mention this fact and since the system is
assumed to grow exponentially, we expect that the expression for the dilution
flux is given by

viilution — 4. ¢;, i € {mRNA7, mRNA y;, mMRNAz, mRNAR]}.

Limited mRNA usage for translation

The second coupling constraint relates the mRNA layer to the enzyme layer and
thus imposes a bound on the number of times an mRNA can be used for trans-
lation before it has to be degraded. Concretely,

VIR V%, Vi € (MRNA7, mMRNA 7, mRNA7, mRNAR}.

The parameter b,y is dependent on the ribosome translation rate in amino
acids per second, the ribosome footprint (how many ribosomes fit on the tran-
script), the length of the transcript, and the mean lifetime of the mRNA molecule
TmRNA. 10 give an example, let us look at an mRNA that is 1000 nucleotides long.
Since the space a ribosome takes on the transcript is about 20 nucleotides long,
it follows that approximately 50 ribosomes can fit on this mRNA. Moreover, since
three nucleotides form a codon that translates an amino acid, the resulting pro-
tein will be 333 amino acids long. Assuming we model a bacterium, the maximal
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translation rate of the ribosome will be about 20 amino acids per second (Young
and Bremer, 1976). Given these numbers, the maximum translation rate is given
by

iR 20 amino acids 1 protein proteins

cat

=50ribosomes-
second - r1bosome 333 amino ac1ds second

bmax is then given by m, which for the example protein would be 1/900.
cat “Mm

Naturally, b4, needs to be computed for every modeled mRNA in this fashion.

Although the authors do not explicitly mention it, we assume that the usage flux
for the mRNA is the same as the production flux for its corresponding protein,
and thus

usage production
Voo, = Vi ,\Vie{T,M,LR}.

Limited enzyme usage for catalysis

In the case of enzymes, the authors of the ME model formalism assume that the
degradation flux is negligible compared to the dilution flux,

V(jiegradation < V?ﬂution.
Thus, as a third coupling constraint, the enzyme layer is related to the
metabolism layer by imposing a total bound on how many times an enzyme is
used for catalysis before it is passed on to a daughter cell, similar to the coupling
constraint of the previous layer,

Vdilu‘[ion

usage
i

= Cma

,Vie{T,M,L,R}.

Again, although the authors do not explicitly mention the fact, we assume that
the usage flux for the enzyme is related to the fluxes of the reactions it catalyzes

as
usage Z
. Vi
l l I
kcat Jevi

where v; gives the set of metabolic reactions catalyzed by the enzyme i, and the
underlying assumption is that the enzyme catalyzes these reactions at the same

i
turnover rate k/ ;.

The parameter ¢4y is then dependent on how fast the enzyme is (k. ,,,) and on

the doubling time as
1

kl

Cclt

Crmax =

All these coupling constraints between the different modeled layers of the sys-
tem are then added to the RBA formulation and the whole problem is solved as
explained for RBA.

We note that the number of parameters of the model substantially increases by
adding the mRNA layer and that reasonable estimates of all these parameters
may not always be available in the literature.
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2.3 Dynamic enzyme-cost flux balance analysis

We have already seen some formalisms for predicting the optimal metabolic re-
source allocation in a constant given environment. However, cells very rarely
live in a constant environment outside of the laboratory. Instead, they are of-
ten faced with the choice between being a “generalist” and a “specialist”. This
means a choice between being robust against changes in the environment, ex-
pressing enzymes that are not needed in that environment, at the expense of a
lower growth rate versus achieving a maximum growth rate in that environment
at the expense of little robustness and the risk of not being able to adjust to sud-
den changes.

In this respect, a different sort of resource allocation model is needed, that al-
lows tracking the effect of environmental changes on the metabolic resource al-
location. For this purpose, dynamic enzyme-cost flux balance analysis (Wald-
herr et al., 2015), in short deFBA, has been introduced.

2.3.1 Mass balance equations and quasi-steady-state of metabolism

A first observation we make is that as opposed to the model in (Molenaar et al.,
2009) and to RBA and ME models, deFBA does not model a cell, but a popula-
tion. As such, the growth rate u does not appear explicitly throughout the deFBA
formalism.

The authors of deFBA do not make any assumptions about the growth of the
system, but instead begin by writing the mass balance equations of the system.
However, these are now using molar amounts n(#) instead of concentrations.
Furthermore, molar amounts and fluxes are no longer considered constant, but
time-dependent, and thus we use n(¢) and v(#) to denote them.

As before, we will exemplify all constraints using the model in figure 2.1:

ny,, () = -vr(t) (2.23)

ny,, (£) = vy (1) —vp(t) (2.24)

np()=vy®)-ve()— Y vg (1) (2.25)
ie{L,M,R, T}

ng (1) =vp(r) (2.26)

n; (1) =vg, (1) Vie{lL, M, T, R}. (2.27)

The authors then note that the system displays two time-scales: metabolite
amounts are changing very fast compared to extracellular concentrations and
macromolecule amounts. In addition, macromolecule production reactions
have much larger stoichiometric coefficients compared to metabolic reactions.

These observations allow the authors to use Tikhonov’s theorem (Khalil, 2002)
and do a quasi-steady-state approximation for the dynamics of the internal
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metabolite amounts. They do not prove that the conditions for applying
Tikhonov’s theorem hold, since the conditions “are hard to check in realistic
networks because enzyme kinetics are not always known and because it may
not be possible to solve for the steady-state of [internal metabolite amounts]”
((Waldherr et al., 2015), p. 472). Instead, as is typically the case in the constraint-
based modeling, the authors assume that a stable quasi-steady-state exists
based on biophysical insight, but they also note that this need not always be the
case.

After applying the quasi-steady-state approximation for the internal metabolite
amounts, the system becomes

ny,, (f) = —vr(t) (2.28)
0=vr(t) —vp(d) (2.29)
O=vu(®)-vi(H~ ) Vg(D (2.30)

ie{L,M,R,T}
ng () =v(r) (2.31)
n; (1) = vg, (1) Vie{lL, M,R,T}. (2.32)

2.3.2 Enzyme capacity and nonnegativity constraints

So far the reaction fluxes v(#) in the system above are free variables. However,
in reality, they depend on several quantities, among which we mention kinetic
parameters, enzyme molar amount and substrate concentrations. Internal
metabolite concentrations are however no longer modeled explicitly because
of the quasi-steady-state approximation. The authors therefore employ only
enzyme capacity constraints based on the maximum velocities, which are
dependent only on enzyme amounts and turnover rates (kc4¢)-

The capacity constraints are similar to RBA, and imposed at each point in time
as

vi(t) < kL, m;(t) Vie(T,M,L} (2.33)
VR;‘?(,"‘) <ng(?), (2.34)

ie(TLMR} Kog;

for all £ = 0. Please note that these upper bounds on reaction fluxes are time-
dependent and change with possible increases in enzyme amounts at each time
point.

It is also important to note that, if an enzyme catalyzes several reactions, as is
the case of the ribosome, then the total flux through those reactions, weighted
by the turnovers, is bound by the enzyme amount. Furthermore, as in the case
of RBA, the bounds are typically used for the absolute values of the fluxes, but
since all reactions are irreversible in our toy model, we omit this detail here.
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Last but not least, additional biomass-independent bounds are added to ensure
nonnegativity of macromolecule amounts and of fluxes through irreversible re-
actions (in this toy model case all reactions):

n(t),v(t) =0, Vit=0. (2.35)

2.3.3 Imposing quota production

In a similar fashion to RBA, production of quota components is imposed as a
path constraint. At each time point the amount of Q is required to make up at
least a certain fraction g of the total biomass, as

no(zq ), ), V=0
ie{L,M,T,R,Q}

Note that in our simple toy model we have assumed that all macromolecules
have the same molecular weight. This is not the case in general, and thus in a
real biological model the sum of the macromolecules above would be weighted
by the molecular weights of the individual macromolecules to obtain the total
biomass, as we will see later in the models in chapters 6 and 7.

2.3.4 Objective functions

Since deFBA does not explicitly model the growth rate, the authors explore sev-
eral possible objective functions, some of which are inspired from classical FBA.
One of them is maximization of the total biomass at the end of the simulation
time,

max Y n(ey), (2.36)
i€e{L,M,T,R,Q}

where tr denotes the end time. In a small model the authors show that this
objective function gives rise to a large variability in the optimum.

A second objective is the minimization of the final time such that at the end
of the simulation all substrate has been used, i.e., the substrate should be con-
sumed as quickly as possible,

min ¢y
s.t.ny,, (tf) =0. (2.37)

A third objective is the maximization of the integral of the biomass over the
whole simulation time, discounted by a negative exponential, as

Iy
max f Y ni(ne?'dr. (2.38)
0 ie{L,M,T,R,Q}
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The authors show that a solution obtained in this way is unique for a small toy
model.

The factor ¢ in the negative exponential is used “to reduce the effect of the ter-
minal time ¢¢ on the objective function, since the objective function value is
uniformly bounded for varying terminal times, provided that the discount pa-
rameter is larger than the maximal growth rate”. However, we do not a priori
know the growth rate, so it is unclear how one could set ¢ for an entirely new
model. Moreover, we will see in chapter 5 that the choice of ¢ can be crucial for
the resulting system dynamics.

2.3.5 The dynamic optimization problem, solving strategies and
main results

Putting together all the constraints described above, we obtain a dynamic opti-
mization problem:

Iy

max Y. nj(ne?dr (2.39)
nONv0 Jo e, M TR Q)

S.t. I'IN(M(I) =—-vr(f) Vt=0 (2.40)
O0=vr(t) —vp(D) Vt=0 (2.41)
O=vy(-vi)— Y g (D) VE=0  (2.42)

ie{L,M,R, T}
I'IQ(t)=VL(t) Vt=0 (2.43)
n; (1) =g, (¢) Vie{LLM,R,T},,Vt=0 (2.44)
vi(t) < ki, mi(0) Vie{T,M,L},Yi=0 (2.45)
Vg (t
R;e(, e Viz0  (2.46)
ie(T,LM,R}y k.,
n(t),v(t) =0 V=0 (247
no()zqg ), m) Viz0 (2.48)
ie{L, M, T,R,Q}

The authors suggest to discretize the dynamic variables n(#),v(#) using a Radau
numerical scheme and thus cast the problem into a linear programming prob-
lem which can then be solved efficiently. We will see in chapter 5 how exactly
to do this and that other discretization schemes such as the midpoint rule are
possible and have the advantage of more simplicity in the implementation.

To show how the method performs, the authors then apply it to a toy model
of core carbon metabolism adapted from (Covert et al., 2001). This model is
shown to reproduce important biological processes such as the diauxic shift.
Furthermore, the authors display the dynamically changing biomass composi-
tion that, as opposed to steady-state constraint-based models, can in this frame-
work adapt to changes in the environment.
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The deFBA method thus sets the stage for a series of computational studies that
can now be performed in order to understand adaptation of organisms to dy-
namic environments.

2.4 Conditional flux balance analysis

Conditional flux balance analysis (cFBA), introduced by (Riigen et al., 2015), can
be seen as a variant of deFBA, which has been developed as a dynamic resource
allocation formalism to understand phototrophic growth in a periodic day-night
environment.

As such, most of the ingredients of a deFBA model can also be found in the cFBA
model. We will therefore not detail again the constraints, but instead explain the
main difference between the two approaches.

The main assumption behind cFBA is the fact that the studied organism grows
in a chemostat and that the cellular composition after a full diurnal period is
invariant, that is

n(tf) = a-n(0),

where «a is the amount by which the culture has grown in one period, and is itself
a variable of the dynamic optimization problem.

Given this condition, the organism is assumed to maximize the multiplication
factor @ by which it grows in a full period. We observe that this assumption
introduces a quadratic term in the dynamic optimization problem. However, as
a is the only quadratic term, the authors perform a binary search as in RBA to
obtain the maximum factor a, where at each step they solve a linear program.

A second minor difference between deFBA and cFBA are the initial conditions.
While as part of deFBA an RBA problem is solved to obtain the initial amounts
of macromolecules, in the case of cFBA, these initial amounts are themselves
variables, and an additional constraint is imposed that limits their total sum
weighted by molecular weights, as in the case of constraint (2.21) in RBA. The
quota fraction constraint is then only set for the initial time point and through-
out the time period these quota components are required to grow with the same
factor a as the catalytic biomass.

Last but not least, cFBA a priori sets a step size and hence a number of time
steps and then builds the linear programming problem by combining the con-
straints for each time point following the explicit Euler scheme. The procedure is
mathematically equivalent to modeling macromolecule amounts by ODEs as in
deFBA and using an explicit Euler discretization of the dynamic quantities. On
the other hand, in deFBA the discretization is done using a more complicated
collocation method. Because of the mathematical equivalence, in this thesis,
we treat cFBA as a dynamic optimization method, just as deFBA, with an explicit
Euler discretization scheme of the dynamic variables.
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We note that, due to the exponential nature of the growth process described in
cFBA, the use of an explicit Euler scheme may not be a very good choice, as
explicit numerical methods have been shown to behave badly on numerically
stiff problems (Deuflhard and Bornemann, 2013). Thus, we would recommend
that a more stable numerical scheme such as implicit midpoint rule be used
for such dynamic optimization problems as cFBA. We will see in chapter 5 that,
even when such an implicit scheme is used, we may need to reformulate the
optimization problem in order to obtain numerically stable results.

2.5 Conclusions

With the advent of all the methods for studying resource allocation described
above, it is now possible to computationally explore several interesting biologi-
cal questions.

We use cFBA to study the implications of the diurnal environment on the
metabolic resource allocation in Synechococcus elongatus PCC 7942 in chapter 6
and we use deFBA to understand the optimal resource allocation in Saccha-
romyces cerevisiae under dynamically changing environments in chapter 7.

However, before we come to the applications, we detail in the next chapter how
one constructs a metabolic resource allocation model and in chapter 5 what are
the numerical difficulties of such resource allocation formalisms and how one
solves such problems in practice.
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Chapter 3

Steady states and upper bounds
on growth rates from resource
allocation models

The work presented in this chapter has been done in collaboration with
Arne Reimers and is published in Journal of Theoretical Biology under
(Reimers and Reimers, 2016), available at http://dx.doi.org/10.1016/
j.jtbi.2016.06.031.

Note that, in contrast to the previous chapter where RBA and deFBA were
introduced, the stoichiometric matrix here only contains the rows for the
internal metabolites and metabolic and exchange reactions. Similarly, the
flux vectors only contain the entries that correspond to the metabolic and
exchange reactions. How enzyme concentrations change based on fluxes is
not stated here because our results do not require this extension.

Before we continue the study of resource allocation models, we provide in this
chapter a derivation of the steady-state assumption using flux averages over
time. This helps us prove that FBA models provide upper bounds on biomass
production rates obtained from deFBA models.

3.1 Introduction

As introduced in section 1.2.2, a key assumption for modeling metabolic net-
works is that production and consumption of internal metabolites must balance
(steady-state assumption). This assumption lies at the core of many metabolic
network analysis techniques such as FBA (Varma and Palsson, 1994; Orth et al.,
2010), elementary flux mode analysis (Schuster and Hilgetag, 1994), metabolic
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control analysis (Heinrich and Schuster, 1998) or gene intervention studies (Bur-
gard et al., 2003; Hadicke and Klamt, 2011).

Given the stoichiometric matrix S of a metabolic network, we call a vector of
reaction rates (fluxes) w a steady-state flux if it satisfies

Sw=0. (SS)

In this chapter we provide a new, mathematically sound derivation of the
steady-state condition using flux averages over time. This derivation does
not require any underlying theory on dynamics, like oscillations, in metabolic
networks. While the biological motivation of our approach (Fell, 1997; Schuster
and Fell, 2007; Knoke et al., 2008; Steuer and Junker, 2009; Palsson, 2015), is well
known, the mathematical foundation presented here strengthens the existing
approaches that study metabolism using steady-state fluxes.

The steady-state assumption, as used in metabolic network analysis is usually
mathematically derived from a quasi-steady-state perspective. This perspec-
tive is however not always applicable, as pointed out by (Song and Ramkrishna,
2009). Therefore, our mathematical derivation presented here does not use the
quasi-steady-state argument. We nevertheless outline the quasi-steady-state
perspective below for the sake of comparison.

3.1.1 Classical derivation based on the quasi-steady-state assump-
tion

To illustrate the differences between the existing theory and our new derivation,
we first recall from section 2.3.1 how the steady-state assumption is mathemat-
ically derived in the quasi-steady-state perspective.

Given a kinetic model
e() = Sv(1), v(?) = f(e(t),c(1) (KM1)

that describes the dynamics of the internal metabolite concentrations c, reac-
tion rates v and enzyme concentrations e given the kinetic rate laws f, we as-
sume that the dynamics of the metabolism can be approximated by a quasi-
steady-state solution with respect to the enzyme dynamics.

A quasi-steady-state solution of (KM1) is a tuple of time-dependent functions
(c,v,e) such that

0=Sv(1), v(t) = f(e(t),c(1) forall = 0. (QSS)

Please note that in this model enzyme and metabolite concentrations can still
change over time while fluxes transition from one metabolic steady-state to an-
other, and are therefore not constant.
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Indeed, as Varma and Palsson put it, “this assumption is based on the fact
that metabolic transients are typically rapid compared to cellular growth rates
and environmental changes. The consequence of this assumption is that all
metabolic fluxes leading to the formation and degradation of any metabolite
must balance” (Varma and Palsson (1994), p. 994). Similar reasons for assuming
a quasi-steady-state for metabolism are obtained by comparing the time
scale of metabolic processes (fast) to those of e.g. transcriptional regulation
or cell cycle (slow) (Heinrich and Schuster, 1996; Moreira dos Santos et al.,
2004; Almquist et al., 2014). Hence, it is assumed that at every time point
the metabolite concentrations have converged to a steady-state and thus the
quasi-steady-state assumption (QSS) follows (Schilling et al., 1999; Voss et al.,
2003; Waldherr et al., 2015).

There are, however, situations when the quasi-steady-state assumption cannot
be applied (Song and Ramkrishna, 2009; Behre and Schuster, 2009). This means
the derivation above cannot be used. Therefore, the main result of this chapter
is a derivation, which does not need this assumption.

Before we continue with our new mathematical approach, it is worth noting the
difference between the steady-states in (QSS) and the global steady-state used
in classical metabolic network analysis tools such as FBA.

Given (QSS), for every time point ¢, v(¢) is a steady-state flux. Therefore, we
consider the quasi-steady-state assumption a time-local property. From this the
steady-state condition S-w = 0 as used in classical metabolic network analysis
is derived. This simplification allows for an efficient analysis of metabolic net-
works, since metabolite concentrations and time do not need to be modeled
anymore. For example, it is used in methods such as FBA to predict optimal
biomass yields.

In FBA we use only one steady-state flux to describe the whole growth cycle. This
is what we call a time-global steady-state flux. However, metabolic fluxes are not
constant in time. For instance, during the cell cycle the cell goes through differ-
ent phases (Gi, S, G2 and M) during which the metabolic activity is different.
Therefore, the metabolism can be considered to use different time-local steady-
state fluxes that follow the division cycle. Since the sum of steady-state fluxes
yields another steady-state flux, i.e., if Sw = 0 and Sv = 0, then S(w+v) =0, by
combining the time-local steady-state fluxes we can obtain a time-global steady-
state flux for the whole growth cycle.

3.1.2 The perspective based on long time periods

However, we do not need time-local steady-states to obtain a time-global
steady-state. For example the steady-state assumption is also often motivated
by stating that no metabolite can accumulate or deplete on the long run (Fell,
1997). We provide here a general mathematical framework based on this idea.
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In particular, we will generalize the following approach used in (Steuer and
Junker, 2009; Knoke et al., 2008, 2010). They observe that, if after a time T no
net change Ac(T) = 0 has occurred in the metabolite concentrations, we obtain
N fOT v(t)dt = 0. Hence, in this case, the average flux

T
v(T) ;:lf v(ndt (AVGV)
T Jo

is also a steady-state flux. In contrast to the fluxes derived via the quasi-steady-
state assumption, it applies globally over the time interval [0, T]. In particular,
in cases where the quasi-steady-state assumption is not entirely justified (Song
and Ramkrishna, 2009), one can still obtain a time-global steady-state.

Building upon the ideas in section 1.5.2 of (Steuer and Junker, 2009), we observe
that, if we consider a long enough time period T, we do not necessarily need to
come back to the same concentration, but in order to obtain an average steady-
state flux we only require that the concentrations stay bounded (see figure 3.1).
While this is implied by physical laws, it should also happen because accumula-
tion of metabolites in very high amounts is toxic for a cell. Therefore, on the long
run, to avoid such toxicity, every metabolite should be produced, on average, at
the same rate at which it is consumed (Fell, 1997).
St I
—vi(t)
—v2(t)
v3(t)
—-—-Vi(t)
- = =V2(t)
v3(t)

Figure 3.1: Fluxes v; and average fluxes ¥; for the example system discussed in
section 3.4. While the fluxes continue oscillating indefinitely, the average fluxes
converge to a steady-state.

Based on these observations, we present in section 3.2 a mathematical perspec-
tive on the steady-state assumption that does not need the quasi-steady-state
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argument, but instead considers flux averages over time. Using this model we
compute for how long we have to observe the system to obtain a sufficiently
good steady-state distribution on the example of three model organisms.

The mathematical framework presented here is not only another justification
for the steady-state assumption, but can also be used to mathematically show
when FBA gives upper bounds on yield and growth rate as shown in section 3.3.

However, there are also some caveats when dealing with the steady-state as-
sumption for long time periods. In section 3.4 we present a simple, artificial
mass-action system, where the constraints implied by kinetic rate laws are vio-
lated by the average concentrations and fluxes. We conclude by posing the ques-
tion whether a metabolic system can be more efficient by utilizing oscillations
than with simple steady-state fluxes.

3.2 The steady-state assumption for long time periods

Since no metabolite can accumulate or deplete indefinitely, it follows intuitively
that production and consumption of all metabolites must balance. We will now
formulate this argument mathematically.

3.2.1 Modeling assumptions

Our result applies to a very general setting. We essentially only ignore stochastic
effects and thus require the following modeling assumptions:

* We assume that the volume stays constant and changes in concentrations
are only reaction-driveni.e., we do not yet consider dilution of metabolites
due to cell growth. The case when the volume can change is discussed in
section 5.3. While enzyme concentrations can be varied arbitrarily (e.g.
due to regulatory control), metabolite concentrations and fluxes have to
satisfy the following relationship, mentioned already in the introduction,
for every t = 0:

c(1) = Sv(1), V(1) = f(e(r),c(1). (KMD)

¢ Concentrations are measured in number of molecules per fixed volume.
Hence, enzyme and metabolite concentrations are bounded, i.e., there ex-
ist ¢™® and e™® with |lc(B)|| = ™, |le(r)| = e™® for every time ¢ = 0,
where ||x|| denotes the Euclidean norm of the vector x.

* We assume that the function f that represents the kinetic rate laws is con-
tinuous.

¢ We assume that c(¢) is differentiable and e(?) is a continuous function of
time.
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Since f is continuous, and c(¢) and e(t) are bounded and continuous, it follows
that v(£) must also be bounded and continuous (Rudin, 1976).

3.2.2 Average fluxes
For a given time period T, we define the average fluxes Vv, as introduced above,

as:

T
v(T):= lf v(t)dt. (AVGV)
T Jo

To mathematically analyze long time periods, we consider the case when T —
oo. Unfortunately, it can happen that

v:= lim ¥(7T) 3.1

T—o0

does not exist (see Appendix B in (Reimers and Reimers, 2016) for an example).
For simplicity, we assume in the following that the limit exists. Even in the case
when the limit does not exist, the results hold in a similar fashion as we have
shown in in Appendix A of (Reimers and Reimers, 2016).

In (Reimers and Reimers, 2016) we have proved that average fluxes are steady-
state fluxes:

Theorem 3.2.1 Sv=0.

PrOOF Since the concentrations are non-negative and bounded, i.e., 0 < c(t)
and |[c(8) || = ¢™® for all ¢ = 0, it follows by the main theorem of integration that

T
f c(dt|| = e(T) —c(0)| < ™ (3.2)
0
1 T cmax
— c(dt|| = — 3.3
= ” Tfo c(1) T (3.3)
1 T cmax
= lim H—f c(dt|f < lim — =0. (3.4)
T—oo| T Jo T—oo T

Since the norm is only zero for the zero point, it follows that

1 T
lim — c(dr=0. (3.5)
T—oo T Jo
The rest of the proof follows by the definitions (KM1) and (AVGV). -
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3.2.3 Violation of the steady-state condition for finite time T

For obtaining the statement of theorem 3.2.1 we have assumed that T — oo.
However, in practice we do not run the experiments for infinitely long time. We
are therefore interested in how large do we have to choose T so that the fluxes
violate the steady-state condition by at most &.

om

We observe that with T := Tax we get

le(T) —c(0)]| - cmax

T =¢. (3.6)

- 1T 1t
scon =2 [ s = |1 [ x| -

We consider three organisms: Escherichia coli, Saccharomyces cerevisiae, and
Homo sapiens (HeLa cells) and compute in each case the averaging time T so
that we obtain a relative violation of the steady-state condition of at most 1% in
the approximation of fluxes.

3.2.4 Escherichia coli

For E. coli the average glucose uptake flux is 1.63 - 10718 mol/(s-cell) (Jain and
Srivastava, 2009; Loferer-KréRbacher et al., 1998). Since we would like to have a
violation of at most 1%, our ¢ is then 0.01-10718 = 1072% mol/(s- cell). The max-
imum metabolite concentration measured in this organism is 96 mM (Bennett
et al., 2009). We will therefore consider ¢c™®* as

¢™& = 100mmol/L
=10"'mol/L-0.6-10""°L/cell
=0.6- 10_16mollcell,

where 1 cell = 0.6- 107 L is the volume of an E. coli cell (Kubitschek, 1990).
CmaX

Therefore, if we average the fluxes of this organism over a period T = “— = 6000
s = 2 h the steady-state condition will be violated by at most 1%.

Note that this means that we would have to average over six to eight generations
in the case of very fast growing E. coli. This is reasonable considering the fact
that we need to average out fluctuations arising from the cell cycle.

3.2.5 Saccharomyces cerevisiae

In the case of S. cerevisiae, the average intracellular fluxes are around 1.38-10718
mol/(s-cell) (Stewart et al., 2010; Mitchison, 1958). Our ¢ in this case is there-
fore again 1072° mol/(s- cell). According to (Canelas et al., 2008) and (Finka and
Goloubinoff, 2013), we can choose ¢™® = 10716 mol/cell. Thus, the minimum
time period for averaging so that we violate the steady-state condition by at most
1% is T =10000s = 3 h.
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3.2.6 Homo sapiens (HeLa cells)

Finally, HeLa cells have a glucose uptake flux of about 4.5-10717 mol/(s- cell)
(Mojena et al., 1985), and thus we choose € = 10712 mol/(s- cell). By the findings
of (Mojena et al., 1985), we can choose ¢™® = 10~1% mol/cell. Thus, in this case
T=10*s=3h.

3.3 Applications to yield optimization

We have seen that, given a kinetic model, the average fluxes satisfy the steady-
state assumption. This also applies to optimal control problems, such as those
resulting deFBA and cFBA. However, since we know that the average flux is a
steady-state flux we can build a much simpler FBA model to bound the results
of the optimal control problem. Let us consider the optimum of the following
FBA problem:

U;BA ‘= MAaX Vhiomass
s.t. Sv=0 (FBA1)

lsv<u,

where Vpiomass i the flux through the biomass reaction. Consider in addition
the optimum of the following optimal control problem formulated based on the
kinetic model (KM1):

T

7" :=max lim — | Vpiomass(Ddt
vice T—oo T Jo

s.t. €(t) = Sv(¢) V=0
V(1) = f(e(t),c(1) V=0 (OCP1)
l<sv(t)<u Yt=0

Note that, since the change of enzyme amounts in deFBA is given only by the
product of S and v, maximizing the integral of enzyme production fluxes above
is the same as maximizing the integral of the enzyme amounts. Hence, our ob-
jective in (OCP1) is the same as objective (2.38) in section 2.3.4.

Furthermore, we note that the existence of the limit in the objective of (OCP1) is
an implicit constraint of the optimization problem.

We observe that the FBA optimum is an upper bound for all steady-state solu-
tions and hence also for average fluxes:

Corollary 3.3.1 vy, = 0".

PROOF We recall from (3.1) that
T

lim — Viiomass(D) At = Vpiomass- 3.7)
T—oo T Jo
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If the limit vin (3.1) exists, then by theorem 3.2.1, v satisfies SV = 0. It is also easy
to see that v also satisfies 1 < v < u. Hence v is a feasible solution of (FBA1).

If v does not exist, we instead can use theorem 3 in Appendix A of (Reimers
and Reimers, 2016) and any accumulation point will be a feasible solution of
(FBA1). -

We observe that (OCP1) is more general than a typical deFBA problem, since
it allows for changes in metabolite concentrations. Furthermore, we also note
that we can add additional constraints to (OCP1) that link e(#) with v(¢#) and the
solution of (OCP1) will still be a feasible solution of (FBA1).

We will see in section 5.3 that we can prove a similar result for RBA and cFBA,
where dilution by growth is also included in the model.

3.4 Kinetic constraints

In the case of resource allocation models such as the one in (Molenaar et al.,
2009) that we described in section 2.1, additional constraints next to the steady-
state condition are employed. For example, assume we want to use the actual
kinetic rate laws encoded by f to also constrain the average steady-state solu-
tion by the average enzyme and substrate concentrations. Our kinetically con-
strained steady-state model will then have the form:

Sw=0, w= f(ec) ec=0 (KSS)

Can the results from the previous section also be applied to this model?

Assume we have measured average fluxes v and enzyme concentrations € in an
experiment (or from a simulation of the dynamic model). In the previous sec-
tions we have found that Sv = 0. Can we also always find concentrations € such
that we get a feasible solution to the kinetically constrained steady-state model
(KSS)? If we cannot, then kinetically constrained steady-state models may be
overconstrained. The answer is not easy, since in the next subsection we will
observe that ¢ = ¢ does not always give a feasible solution.

To formulate the problem we define the average enzyme concentrations

T
e(T) ::lf e(ndt. (AVGE)
T Jo

Again, the average enzyme concentrations might not exist. But for simplicity, we
assume here that

e(T):= 71im el (3.8)

exists. For the general case we refer the reader to Appendix A of (Reimers and
Reimers, 2016).

We can now formulate the problem as:
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Problem 3.4.1 Does there always exist at € IR% | such thatv = f(ec)?

In the following subsection we illustrate the difficulties posed by problem 3.4.1
using a toy example.

3.4.1 Average concentrations can be inconsistent with average fluxes

We consider the following toy metabolic network.

r: B+2A; — 34
ro: 2A1+2A — A;+3A,
rs: 2A) — Ax+C

For simplicity we assume that the system is subject to mass-action kinetics and
enzyme concentrations have no effect. B and C are boundary metabolites and
are kept at a constant concentration of 1. Considering all kinetic constants to be
1, we get the following system of ordinary differential equations:

€1(0) = v (8) —va(0) vi(8) = c1(0)?
&2 (1) =vo (1) —v3(1) Vo (1) = ¢1(D%ca(8)? (Ex1)

v3(1) = cp(8)?,

where c; (#) and c,(#) denote the concentrations of metabolites A; and A, re-
spectively, and v, (1), v, (), v3(t) denote the fluxes through ry, 12, r3.

The only steady-state solutions of this system arec; =0=cp and¢; =1 =c¢p. If
we do not start in such a steady-state, the system will oscillate. This can be seen
as follows. The function

H(x)=x1+i+xz+l, 3.9
X1 X2

where x = (x1,%)T € R?, is a Hamiltonian of the considered ODE system, since
the derivative %H (c(1)) is zero for all £ = 0. We observe that the system cannot
explode since for any (c;, ) > 0 the Hamiltonian has a finite constant value and
hence both ¢, (#) and c,(#) stay bounded for all ¢ = 0. Furthermore, we observe
that, for any other starting point that is not a steady-state, the Hamiltonian has
a value different from 4, which is the minimum achieved at¢; = ¢, = 1.

The trajectory of this system (obtained from numerical integration) with the
starting point (¢, c2) = (2,2) is shown in figure 3.2. As average concentrations
and fluxes we approximated numerically:

1 T
c= lim — c(t)dt = (0.82,0.82) (3.10)
T—-oo T Jo
1 T
v= lim — v(t)dt = (1.00,1.00,1.00) (3.11)
T—oo T Jo
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Figure 3.2: Trajectory of our toy model with starting point ¢;(0) = 2,¢2(0) = 2.
The cross marks the average concentration for T — co.

We therefore conclude that in the toy example, the average concentrations are
not compatible with the average fluxes i.e., v # f(€) where f denotes the kinetic
rate laws of the toy system. In particular, the average concentrations do not even
correspond to any steady-state flux distribution. This has also been observed
and mathematically analyzed by (Knoke et al., 2010) for oscillations of Ca?* in
non-excitable cells using Jensen’s inequality (Jensen, 1906).

Please note that problem 3.4.1 remains open since there exists a concentration
vector (¢, c2) = (1,1) in the toy example that is consistent with the average fluxes.

3.4.2 Linear kinetic constraints remain consistent

Because of the problem described above, we consider kinetic constraints as used
in RBA, deFBA and cFBA as

vi(t) <k}, .ei(0). (ubMM)
For reversible reactions, we get the additional bound
v;(f) = —k;mei(t), (IbMM)

where k:m, k., are the turnover rates for forward and the reverse direction of

the reaction respectively.

Therefore, we assume in the following that for a set of reactions £ < % we have
constants k™, k™ such that

—k;e;(t) =v;(1) Sk;ei(t) forallt=0andie % . 3.12)
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This form gives us enough flexibility to also constrain the average fluxes using
the average enzyme concentrations.

Assuming the average enzyme concentrations € exist, for the linear kinetic con-
straints as used in section 3.4.2, we get the following result:

Proposition 3.4.2 AssumeV, € exist. Then it holds that
-k;e; <v;<kég forallie % . (3.13)

PROOF For the first inequality we have

kie;—v;= %Ergokféi(T) —v,(T) (3.14)
1 T
=Tlirrgo? kie;(t)—vi()dt =0, (3.15)
- 0

because v; (1) < k;rei(t) for all t = 0. Thus, v; < k;réi. The same argument also
applies to show that —k; &; <V;. n

The case when v, e do not exist is discussed in (Reimers and Reimers, 2016). This
result allows us to include enzyme capacity constraints of the type used in RBA,
deFBA and cFBA into (FBA1).

3.5 Conclusions

One of the main arguments against using the steady-state assumption in mod-
els of biochemical reaction networks is that, if one assumes steady-state, oscil-
lations that are biologically important will not be observed in the simulation
results (Goldbeter, 1997; Sowa et al., 2014; Papagiannakis et al., 2017).

3.5.1 Average fluxes satisfy the steady-state assumption

However, in many cases we might not be interested in these oscillations, because
they increase the complexity of the model, or even make it computationally in-
tractable. In these cases, where only average fluxes over long time periods are
of interest (e.g. if we are interested in predicting the lethality of gene knockout
experiments), we have shown that the steady-state assumption can still be ap-
plied, i.e., we still get a reasonably good description of the metabolic system by
computing a steady-state flux. In particular, it is also valid for oscillating systems
that are not at steady-state at any point in time. The only condition is that the
system is averaged over a long enough time period.

For example, FBA computes an upper bound on the biomass yield, which ap-
plies to all steady-state solutions. Hence it also applies to the average fluxes.
Therefore, the system cannot obtain a higher yield using oscillations.
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3.5 Conclusions

We showed that an average over three hours is sufficient to obtain fluxes that
only slightly violate the steady-state assumption for E. coli, S. cerevisiae, and
Hela cells. Since the estimate was rather pessimistic, much shorter averaging
times might be sufficient in practice. Furthermore, the violation we obtained
lies within the error range of current measurement technology for concentra-
tions and fluxes.

3.5.2 Pitfalls of averaging

We have seen that, if only average fluxes over long time periods are of interest,
the steady-state assumption, is clearly a good model. While this adds another
argument why methods like FBA can indeed predict the growth rates of some
organisms accurately (Edwards et al., 2001; Harcombe et al., 2013), the integra-
tion of nonlinear constraints should be done with care.

For instance, average concentrations might be inconsistent with the average
fluxes. Thus, we cannot exclude that there exists a chemical reaction system
(candidates are described in Knoke et al. (2010); Sowa et al. (2014); Gottstein
et al. (2014)) where an oscillation can induce a higher average flux than the flux
that would be possible by assuming steady-state. We have, however, shown that
linear constraints, such as those imposed by enzyme availability and enzyme ca-
pacity, do not introduce inconsistencies for average concentrations and fluxes.

Since these linear kinetic constraints remain consistent for average concen-
trations and fluxes, we could show using averaging why FBA provides upper
bounds on biomass yields obtained from resource allocation models. In
addition, we will see in section 5.3 how, in a similar fashion, RBA provides upper
bounds on growth rates from cFBA models. This is a very useful result when
debugging errors in the resource allocation model construction. We now turn
our attention in the next chapter to how one constructs such resource allocation
models.
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Chapter 4

Building and encoding a
metabolic resource allocation
model

The section on SBML encoding presented in this chapter has been done
in collaboration with Henning Lindhorst within the European project RO-
BUSTYEAST. The work presented in this chapter has been published in
the journal Metabolites under (Reimers et al., 2017b) and can be found at
http://dx.doi.org/10.3390/metabo7030047. Furthermore, the devel-
oped SBML standard has been made available on Fairdomhub as a standard
operating procedure (SOP) at https://www.fairdomhub.org/sops/304.

In this chapter we present a guide for generating a complete (genome-scale)
metabolic resource allocation model, as well as a proposal for how to represent
such models in Systems Biology Markup Language (SBML) format. These mod-
els lie at the core of resource allocation studies in metabolic networks. To the
best of our knowledge, no guidelines for generating such a model have been
published up to now, although the idea of metabolic resource allocation studies
has been present in the field of systems biology for several years.

Therefore, we focus in this chapter on a step-by-step guide towards constructing
such a model, summarized in figure 4.1, with a focus on the deFBA formalism
which is described in chapter 2. We detail here all the necessary information as
well as which databases may be used to retrieve it (see table 4.1). To facilitate
exchange among researchers, we furthermore propose a standard for specify-
ing such models in SBML format using the Flux Balance Constraints extension
(Olivier and Bergmann, 2015). Last but not least, we provide some guidelines for
diagnosing possible problems or errors that may arise during the model build-
ing process.
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4.1 Model prerequisites
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Figure 4.1: Roadmap for generating a deFBA model. From an annotated
genome sequence (a) of the organism of interest the metabolic network (b)
is reconstructed following instructions in (Thiele and Palsson, 2010). Given
the gene-reaction mapping and the annotated genome sequence, the en-
zymes and ribosomes (c), and their synthesis reactions are added to the sto-
ichiometric matrix (see Section 4.2). Next, the biomass composition con-
straints (d) should be set up using information from the biomass objective
function of the metabolic network model (see Section 4.3). Then reaction
turnover rates (e) sourced from literature and online databases should be added
(see Section 4.4). Lastly but most importantly, the deFBA model should be
fine tuned to match experimental growth rates (f) obtained in the laboratory
(see Section 4.5). Images retrieved from: (a) http://goo.gl/aBNfPz (Skin-
ner et al., 2009; Cherry et al., 2012); (b) http://www.genome. jp/kegg-bin/
show_pathway?map01100 (Kanehisa and Goto, 2000); (c) http://www.genome.
jp/kegg-bin/show_pathway?map01100 (Kanehisa and Goto, 2000), http:
//pdb101.rcsb.org/motm/10 (Berman et al., 2000), https://swissmodel.
expasy.org/repository/uniprot/P04806 (Kiefer et al., 2008).
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Table 4.1: Databases where the necessary information needed to build a metabolic resource allocation model can be found.

Resource Link Reference

Annotated genome sequences

Genbank https://www.ncbi.nlm.nih.gov/genbank/ Benson et al. (2013)
UniProtKB http://www.uniprot.org/ UniProt Consortium (2014)
Metabolic network reconstructions

BiGG http://bigg.ucsd.edu/ King et al. (2016)
BioModels https://www.ebi.ac.uk/biomodels-main/ Juty et al. (2015)
ModelSEED http://modelseed.org/ Devoid et al. (2013)

KEGG http://www.genome . jp/kegg/pathway.html Kanehisa and Goto (2000)
Pathway Tools http://bioinformatics.ai.sri.com/ptools/ Karp etal. (2016)

Enzyme subunit stoichiometry

UniProtKB http://www.uniprot.org/ UniProt Consortium (2014)
Ribosome composition

Ribosomal Protein Gene Database http://ribosome.med.miyazaki-u.ac.jp/ Nakao et al. (2004)

KEGG http://www.genome. jp/kegg/ Kanehisa and Goto (2000)
Quantitative proteomics datasets

MaxQuant http://maxgb.biochem.mpg.de/mxdb/ Schaab et al. (2012)
Proteomaps https://www.proteomaps.net/index.html Liebermeister et al. (2014)
Turnover rates

BRENDA http://www.BRENDA-enzymes.org/ Schomburg et al. (2013)
SABIO-RK http://sabio.villa-bosch.de/ Wittig et al. (2012)
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The most important prerequisite for building a metabolic resource allocation
model is a high quality (genome-scale) metabolic reconstruction of the organ-
ism of interest. As we will see in the following sections, it is very important that
key-elements of this reconstruction such as the gene-reaction mapping or the
biomass composition and coefficients are as accurate as possible.

A description of how exactly to come up with such a genome-scale metabolic
reconstruction is out of the scope of this chapter. To date, more than 2600 func-
tional draft reconstructions have been generated (Biichel et al., 2013) and many
of them can be retrieved from online databases such as BioModels (Le Novere
et al., 2006; Li et al., 2010; Chelliah et al., 2015; Juty et al., 2015). If there exists
no genome-scale metabolic reconstruction for the organism of interest, but the
full genome sequence of the organism is available, the protocol of (Thiele and
Palsson, 2010) can be followed in order to generate the metabolic network re-
construction.

Note that, depending on the organism, it may not be possible to simulate a
complete genome-scale deFBA model due to the size of the resulting linear
program. While RBA allows simulation of steady-state resource allocation in
genome-scale networks (Goelzer and Fromion, 2017), the dynamic approaches
like deFBA are constrained to smaller sizes. Networks with up to 500 metabolic
reactions can be successfully simulated with deFBA as demonstrated in
(Reimers et al., 2017a). If the starting metabolic network is too large, tools such
as the minimal network finder in (R6hl and Bockmayr, 2017) or the procedures
in (Erdrich et al., 2015; Ataman et al., 2017) can be used to reduce the size of the
network while at the same time keeping desired functionalities.

Another key prerequisite of a deFBA model are the annotated amino acid se-
quences of all the genes present in the model, as we will explain next.

4.2 Building the protein production reactions

Any good quality genome-scale metabolic reconstruction comes with a gene-
reaction mapping. Such a mapping describes exactly what genes are involved
in the catalysis of each reaction. In addition, it also offers information about
isoenzymes, i.e., enzymes that differ in amino acid sequence but catalyze the
same reaction. In the following subsections we will explain how to make use of
the gene-reaction mapping in order to construct the protein production reac-
tions for a deFBA model.

4.2.1 The case of enzymes encoded by one gene only

To build any protein production reaction using the gene-reaction mapping the
key ingredient is a database of all genes and their corresponding amino acid
sequences. This can be obtained as a FASTA file from online databases such
as Genbank (Benson et al., 2013) or UniProt (UniProt Consortium, 2017). A
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FASTA file is a file formatted such that it represents either nucleotide or pep-
tide sequences using single-letter codes. The advantage of using UniProt is that,
through the Java API (http://www.ebi.ac.uk/uniprot/japi/usage.html),
one can automatically access the sequences, as well as information about the
Enzyme Commission number (EC number) or subunit stoichiometry for en-
zymes. There also exist organism-specific databases where this information can
be retrieved. To give some examples, in the case of Saccharomyces cerevisiae one
could obtain such a FASTA file also from the Saccharomyces Genome Database
(Cherry et al., 2012), while for cyanobacteria one could use Cyanobase (Nakao
etal., 2010).

To then build the enzyme production reaction for an enzyme encoded by one
gene only, we look up the corresponding gene in the FASTA file, compute its
amino acid count, and set the amino acids with their respective counts as re-
actants for the production reaction. Additional reactants are then the energy
cofactors needed to grow the peptide chain: per amino acid added, one ATP
is hydrolyzed into AMP and PP;, and two GTP molecules are hydrolyzed into
GDP and P;. Last but not least, for the translation initiation a molecule of 10-
formyltetrahydrofolate (fTHF) is converted into a molecule of tetrahydrofolate
(THF) (Nelson et al., 2008).

Another important factor that comes into play is then also whether the enzyme
is a monomer, i.e., if only one copy of the corresponding gene product is needed
to build the enzyme. If this is not the case, then the amount of copies of the
gene product required to produce the enzyme has to be accounted for in the
production reaction. This information can be often retrieved from the UniProt
database. As an example, if the enzyme is a homotrimer, i.e., three copies of the
gene product are needed to build it, then the stoichiometries of the amino acids
and the energy cofactors in the production reaction have to be multiplied by
three. The importance of taking into account such information can be seen in
the cost of producing such an enzyme. Not taking into account such extra costs
can result in wrong predictions in the use of alternative pathways.

4.2.2 The case of isoenzymes

Isoenzymes usually arise as a result of partial genome duplication and subse-
quent point mutations or insertion/deletion events in the course of evolution.
They usually have different kinetic properties and are subject to different regu-
latory influences. Isoenzymes are important features of metabolism that allow
fine-tuning of reactions rates in a way that satisfies the exact needs of the organ-
ism at different stages of development or of the cell cycle. An example of such
pairs of enzymes are glucokinase and hexokinase, which both catalyze the con-
version of a hexose into a hexose 6-phosphate. While hexokinase is inhibited
by glucose 6-phosphate, glucokinase is not. This different regulatory feature,
together with its lower affinity for glucose, allows glucokinase to play different
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roles in cells of specific organs.

Isoenzymes also play a special role in a deFBA model. To see this, let us as-
sume we have two enzymes e; and e, that catalyze the same reaction r. In the
deFBA model we would then build two enzyme production reactions with dif-
ferent amino acid requirements for the two enzymes and then the sum of the
amounts of these enzymes will bound the flux through reaction r together with
the corresponding turnover rates.

Having mentioned turnover rates, it is important to keep in mind that usually
isoenzymes are assigned the same EC number. This means that, when search-
ing turnover rates for isoenzymes we are usually bound to find the same val-
ues in databases such as BRENDA (Schomburg et al., 2013), although in reality
the turnover rates may be different. This is partially due to the EC number be-
ing a bad standard, but also partly due to lack of biochemical data on different
enzyme isoforms. This fact results in isoenzymes most often having the same
catalytic efficiency in a deFBA model.

Therefore, the only distinguishing feature of isoenzymes from the perspective of
resource allocation, is their amino acid cost. The amino acid cost is not a de-
fined concept. It can be understood in several ways: the length of the enzyme
sequence in amino acids or the amount of energy in the form of ATP needed to
build all the amino acids in the enzyme or the number of carbon molecules in-
vested in building all the amino acids for an enzyme. If we think of the amino
acid cost of an enzyme in terms of the length of the sequence, then if the two
isoenzymes have the same length, which of them will be in the end be produced
in the deFBA model strongly depends on the requirements of the rest of the sys-
tem in terms of amino acids at that particular time point. On the other hand,
if the lengths of the two isoenzymes are different, very often the deFBA model
will predict that only the enzyme with the shorter sequence will be produced
and used. This points out two aspects: (i) the system can be simplified by sim-
ply not considering at all the more expensive enzyme and this way sparing in
the number of variables and the solving time, and (ii) it may be that the regula-
tory structure of the cell actually has a strong impact on whether these enzymes
are produced in reality, but since deFBA ignores this regulatory structure it may
mispredict the usage of these enzymes.

Last but not least, which isoenzyme is used may also be dependent on the ex-
tracellular conditions in which the cell lives. In this case, even if usually shorter
(and hence very likely cheaper) enzymes are preferred, it can still be that the
environment turns this decision around and gives rise to a different resource al-
location scheme. Therefore, if they do not make a significant difference in the
complexity of the resulting linear program, it is recommended that all isoen-
zymes are represented in the resource allocation model.

The way the isoenzyme production reactions are built depends on their subunit
structure. If each of them is only encoded by one gene, then we proceed as in
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subsection 4.2.1 above. If several genes are needed to encode one of the isoen-
zymes, then the respective isoenzyme production reaction will have all amino
acids of all involved gene products as substrate requirements, as described in
subsection 4.2.3 below.

4.2.3 The case of enzyme complexes encoded by several genes

Suppose we want to build the production reaction for an enzyme encoded by the
combination of three gene products, g1, g2, and gs. The metabolic model en-
codes this as the gene rule for the respective reaction being “g; AND g» AND g3”.
In this case, we compute the amino acid counts for all three genes, add them up
and use them as reactants as described in subsection 4.2.1, while making sure
we also adapt the ATP and GTP requirements.

This strategy is however only correct in the case in which the peptides encoded
by each gene participate in the enzyme as monomers. This is not always the
case, and often peptides encoded by one gene participate in enzymes as dimers
or trimers, as is the case for example in ATPase, where subunit alpha participates
as trimer. Therefore, it is often the case that, before we add up the amino acid
counts for all genes, we have to multiply some of the counts with the factor with
which they participate in the enzyme.

Information about the stoichiometry of individual peptides within enzymes is
unfortunately not readily incorporated in genome-scale metabolic reconstruc-
tions and can often only be found through extensive literature research or by
querying the UniProt database. Failing to incorporate such stoichiometric in-
formation is very likely to give rise to false computational predictions due to the
different tradeoffs arising from incorrect enzyme energetic cost.

4.2.4 Theribosome

In deFBA models, the ribosome is assumed to simply have catalytic function
just as any other enzyme. The amount of ribosome bounds the combined fluxes
through the protein production reactions via different turnover rates.

Ribosome production

Considering the ribosome to be an “enzyme” encoded by several genes, its pro-
duction reaction can be modeled as described in subsection 4.2.3 above. As op-
posed to usual enzymes for which it may be difficult to find the stoichiometry
of individual peptides, the ribosomes are rather well studied and information
about their composition can be found for many organisms in the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) or in the
Ribosomal Protein Gene Database (Nakao et al., 2004). In addition to the ribo-
somal proteins, also the ribosomal RNA needs to be taken into account for the
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production reaction. Information about this can also be found in the KEGG re-
source.

Ribosome translation rate

The ribosome translation rate is a key parameter in a deFBA model and it has
very high impact on the tradeoffs that govern the choice of one model behav-
ior over another. This parameter directly affects the enzymatic cost of different
pathways.

Ribosome translation rates vary between prokaryotes and eukaryotes and they
even vary with growth rate within the same organism (Bremer and Dennis,
2008). They are usually measured in attached amino acids per second, and
hence the efficiency of the ribosome for building different enzymes is de-
pendent on this parameter, but also on the respective enzymes’ lengths. For
instance, if we consider the translation of one enzyme of 100 amino acids by a
bacterial ribosome with a rate of 15 amino acids per second then, assuming the
enzyme does not compete with other proteins for the ribosome, the enzyme
will be translated at a maximal rate of 3600-15/100 = 540 enzymes per hour. In
general the formula for computing the k.,; of the ribosome for the production
of a protein is thus given by

r
kcat = 36007,

where r is the ribosome rate in amino acids per second, and ! is the length of
the protein in amino acids. In this way we can assign all protein production
turnover rates, including those of the protein quota, by using the protein amino
acid length, which is the sum of the stoichiometries of the amino acids in the
protein production reaction.

4.2.5 Compartmentalization

Eukaryotic cells, as opposed to prokaryotic ones, are usually compartmental-
ized, with compartments such as cytosol, mitochondrion etc. This compart-
mentalization plays a role in the way enzymes are built, in the sense that there
may be identical enzymes that are active in the cytosol as well as in the mito-
chondrion for example. In this case, two production reactions should be used,
one for each compartment, since an enzyme that is in the cytosol cannot cat-
alyze a reaction in the mitochondrion.

4.3 Setting up quota compounds and storage

Although the catalytic biomass is the main part of the model that is responsible
for the autocatalytic cycle, there are several noncatalytic macromolecules that
are also needed in a full cell model. Examples are DNA, RNA, cell wall or mem-
brane. Without accounting for the growth and duplication of these components,
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we would not be modeling a whole copy of a cell and we would be neglecting
a significant biosynthetic energy requirement. We recall that we have named
these macromolecules guota metabolites, to reflect the fact that a certain quota
of the total biomass needs to be dedicated to them.

In the case of a periodic environment as is the case for cyanobacteria, algae or
plants for example, the production of quota compounds can be enforced by im-
posing initial quota amounts and requiring that these amounts grow at the same
rate as the catalytic biomass, as done in the cFBA model in chapter 6.

In case the environment is not periodic, the simulation can be started by im-
posing these quota components to make up a certain percentage of total initial
biomass, and that these percentages are then kept throughout all the time points
of the solution. The question then arises: what are appropriate initial amounts
for these quota components?

4.3.1 Initial quota compound amounts

A good place to look for initial quota amounts is the biomass reaction of the
metabolic network reconstruction. The stoichiometric coefficients for the reac-
tants of this artificial reaction describe the average composition of the modeled
cell. To better understand this, let us take a look at the biomass reaction of the
Yeast 6.06 model which we have reproduced in table 4.2.

We observe here the main biomass components: proteins (in the form of
charged transfer RNAs), storage (glycogen and trehalose), DNA (in the form of
dAMP, dCMP, dGMP, dTMP), RNA (AMP, CMP, GMP, UMP), cell wall (mannan
and B-D-glucan), membrane (lumped lipid), other small molecules, and the
ATP energy needed for polymerization. For ease of understanding later on,
we denote the biomass reaction by b, the indices of biomass components
(reactants of biomass reaction) as I;,, and the indices of biomass byproducts
(products of biomass reaction) as I,. Then the biomass reaction has the form

Z Sip#; — 1 biomass + Z Sip M.

i€1pio i€ly,

In general, the reactant stoichiometries for the biomass reaction are chosen
such that, when weighted by the corresponding molecular weights (MW), they
addupto 1,i.e,

Y SipMW;— Y S;pMW; =1.

i€lpip iEIbp

In other words, we can look at the reactant stoichiometries, multiplied by the
molecular weights, as the fractions g; := S;; MW; of the respective metabolites
within one cell, or equivalently one gram dry weight of cells. Hence, these can
also be used as initial quota amounts.
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Table 4.2: Biomass reaction of the Yeast 6.06 model.

Reactants Stoichiometry ‘ Products Stoichiometry
Ala-tRNA(Ala) 0.4588 | tRNA(Ala) 0.4588
Arg-tRNA(Arg) 0.1607 | tRNA(Arg) 0.1607
Asn-tRNA(Asn) 0.1017 | tRNA(Asn) 0.1017
Asp-tRNA(Asp) 0.2975 | tRNA(Asp) 0.2975
Cys-tRNA(Cys) 0.0066 | tRNA(Cys) 0.0066
GIn-tRNA(GIn) 0.1054 | tRNA(GIn) 0.1054
Glu-tRNA(Glu) 0.3018 | tRNA(Glu) 0.3018
Gly-tRNA(Gly) 0.2904 | tRNA(Gly) 0.2904
His-tRNA(His) 0.0663 | tRNA(His) 0.0663
Ile-tRNA(Ile) 0.1927 | tRNA(Ile) 0.1927
Leu-tRNA(Leu) 0.2964 | tRNA(Leu) 0.2964
Lys-tRNA(Lys) 0.2862 | tRNA(Lys) 0.2862
Met-tRNA(Met) 0.0507 | tRNA(Met) 0.0507
Phe-tRNA(Phe) 0.1339 | tRNA(Phe) 0.1339
Pro-tRNA(Pro) 0.1647 | tRNA(Pro) 0.1647
Ser-tRNA(Ser) 0.1854 | tRNA(Ser) 0.1854
Thr-tRNA(Thr) 0.1914 | tRNA(Thr) 0.1914
Trp-tRNA(Trp) 0.0284 | tRNA(Trp) 0.0284
Tyr-tRNA(Tyr) 0.1020 | tRNA(Tyr) 0.1020
Val-tRNA(Val) 0.2646 | tRNA(Val) 0.2646
ATP 59.2760 | ADP 59.2760
H,0 59.2760 | phosphate 58.70001
(1-3)-p-D-glucan 1.1348 | H* 59.3050
(1—6)-B-D-glucan 1.1348 | biomass 1
glycogen 0.5185
trehalose 0.0234
mannan 0.8079
riboflavin 0.00099
lipid 1
sulphate 0.0200
dAMP 0.0036
dCMP 0.0024
dGMP 0.0024
dTMP 0.0036
AMP 0.0460
CMP 0.0447
GMP 0.0460
UMP 0.0599




4.3 Setting up quota compounds and storage

To help reduce the number of quota compounds we model and also the size
of the resulting resource allocation problems, we can build helper spontaneous
reactions that consume the metabolites above and produce the needed quota
compounds. As an example, all charged transfer RNAs (whose indices we denote
by Iua-mmna < Ipip) would be consumed to produce one merged protein quota
compound, and release all the uncharged tRNAs (indices denoted by I;gna ©
Ipp). In setting up this reaction, we should make sure that we adjust the sto-
ichiometric coefficients in such a way that, multiplied with the corresponding
amino acids’ molecular weights, they add up to one, i.e., we need to divide them
by
Yprotein = Z SipMW;.
i€1aa-RNA

Thus, the protein quota building reaction will read

S S SH,0b
“20b gy 2ATPD ap . PH20D 4y
i€l mna Aprotein (protein Aprotein
. Si S Sphosphate b Sy+
— 1 protein + Z b M+ ADPb ADP + prosp phosphate + H—bHﬁL'
i€ Ipna protein Aprotein Yprotein {protein

For the protein quota in Yeast 6.06, we can compute from table 4.2 gprorein =
0.466298. Therefore, the corresponding quota production reaction would then
look as shown in table 4.3. The necessary ATP needed for polymerization, which
is the fraction ¢pyozein Of the total ATP consumed in the original biomass reaction,
is also part of this reaction.

After setting up this reaction, the required initial amount of protein quota is
dprotein- However, of these proteins, some are modeled explicitly as enzymes,
and in the next section we will see how to adjust the gprorein to only require the
proteins that are not modeled as enzymes or ribosome. For the rest of the quota
compounds (DNA, RNA, cell wall, membrane, other small molecules) we would
proceed in a similar fashion as for the proteins, with the sole difference that their
g would not need to be adjusted once computed.

4.3.2 The case of noncatalytic proteins

The noncatalytic proteins quota is a special case because, in typical biomass
reactions, we only have one protein component which encompasses all protein
content present in one gram dry weight of cells. However, we need to distinguish
in a deFBA model between proteins with catalytic role, and those without, and
thus to find a way of splitting this percentage, since obviously the cell contains
other proteins besides those we model individually as enzymes.

One way to do this is find a (genome-scale) quantitative proteomics dataset. If
not already scaled, we normalize the protein amounts in the dataset to add up to
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Table 4.3: Helper reaction for producing the protein quota in the Yeast 6.06

model.

Reactants Stoichiometry \ Products Stoichiometry
Ala-tRNA(Ala) 0.9839201541 | tRNA(Ala) 0.9839201541
Arg-tRNA(Arg) 0.3446294001 | tRNA(Arg) 0.3446294001
Asn-tRNA(Asn) 0.2181008711 | tRNA(Asn) 0.2181008711
Asp-tRNA(Asp) 0.6380040232 | tRNA(Asp) 0.6380040232
Cys-tRNA(Cys) 0.0141540388 | tRNA(Cys) 0.0141540388
GIn-tRNA(GIn) 0.2260357111 | tRNA(GIn) 0.2260357111
Glu-tRNA(Glu) 0.6472255939 | tRNA(Glu) 0.6472255939
Gly-tRNA(Gly) 0.6227777087 | tRNA(Gly) 0.6227777087
His-tRNA(His) 0.1421837537 | tRNA(His) 0.1421837537
Ile-tRNA(Ile) 0.4132550429 | tRNA(Ile) 0.4132550429
Leu-tRNA(Leu) 0.6356450167 | tRNA(Leu) 0.6356450167
Lys-tRNA(Lys) 0.6137705931 | tRNA(Lys) 0.6137705931
Met-tRNA(Met) 0.1087287529 | tRNA(Met) 0.1087287529
Phe-tRNA(Phe) 0.2871554242 | tRNA(Phe) 0.2871554242
Pro-tRNA(Pro) 0.3532076054 | tRNA(Pro) 0.3532076054
Ser-tRNA(Ser) 0.3975998181 | tRNA(Ser) 0.3975998181
Thr-tRNA(Thr) 0.4104671262 | tRNA(Thr) 0.4104671262
Trp-tRNA(Trp) 0.060905258 | tRNA(Trp) 0.060905258
Tyr-tRNA(Tyr) 0.2187442365 | tRNA(Tyr) 0.2187442365
Val-tRNA(Val) 0.5674482841 | tRNA(Val) 0.5674482841
ATP 36.3823134562 | ADP 36.3823134562
H,O 36.3823134562 | phosphate 36.3823134562

H* 36.3823134562

protein 1

one. We observe that in this dataset we find two types of proteins corresponding
to our model: those modeled explicitly as enzymes, which sum up to a fraction
fe, and those not present explicitly in our model, that we call quota proteins,
and which sum up to 1 — f; after the normalization of the dataset.

Since we want to adapt the protein quota to only account for the noncatalytic
proteins, we adjust gprorein by multiplying it with the fraction 1 - f, of noncat-
alytic proteins in the dataset.

An important point here is the growth rate at which the cells used for the quanti-
tative proteomics measurement were growing. It has been shown already in sev-
eral studies that, for instance, the total amount of ribosomes grows linearly with
the growth rate and that partitioning of proteome strongly varies with growth
rate and growth conditions (Klumpp et al., 2009; Scott et al., 2010, 2014). Since
deFBA models an autocatalytic system that grows exponentially, quantitative
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proteomics datasets from exponentially growing cultures should be used if avail-
able.

4.3.3 Storage

Besides the catalytic and quota macromolecules, most organisms also have stor-
age macromolecules. For some of them, like cyanobacteria, the storage is essen-
tial to survive over the night period, when no energy from the sun is present. For
others, like yeast, the storage is useful to survive through periods of starvation,
as well as sudden changes in the nutrient landscape, when new enzymes and
transporters have to be synthesized in order to survive. Therefore, it is impor-
tant that a resource allocation model takes such storage macromolecules into
account.

Taking a second look at the biomass reaction of Yeast 6.06 in table 4.2, we
observe that glycogen and trehalose are also consumed. We have however
not added them as quota compounds, because these are the storage macro-
molecules of yeast. Therefore, we allow these macromolecules to accumulate in
a deFBA model, the same way as proteins. Moreover, they are part of the total
biomass used as objective and to constrain the quota amounts. However, there
is no reason why we should impose an initial amount for the storage. We still
allow that initial storage amount is present by constraining the total biomass at
the beginning of the simulation to be equal to 1 gram. In this way, storage may
be present at the beginning, but at the expense of having less catalytic biomass.

4.4 Assigning reaction turnover rates

Turnover rates are necessary parameters in a resource allocation model. They
are involved in the capacity constraints that bound reaction fluxes using the
amount of their catalyzing enzymes. A recent study has shown that turnover
numbers reported in online databases are a good enough approximation of in
vivo turnover numbers (Davidi et al., 2016).

The two main databases for retrieving turnover numbers are BRENDA (Schom-
burg et al., 2013) and SABIO-RK (Wittig et al., 2012). While BRENDA offers both
manually curated as well as text mining data, SABIO-RK only offers data that
was either manually extracted from the literature or directly submitted by ex-
perimenters. As a result, BRENDA offers a larger amount of turnover rates than
SABIO-RK. Both databases offer automated retrieval options. Some simple rules
of thumb for retrieving turnover rates from these databases are that one should
filter for wild type, non-recombinant values, and, if possible, should make sure
that the measurements were done at (nearly) physiological pH and temperature
values.

Although large amounts of biochemical data are now available, not all turnover
rates for the organism of interest can be found. We recommend in this case, if
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turnover rates for a given enzyme from other organisms are found, that these
should be used. The question then arises: which of the available turnover rates
should be used? Should it be a mean or a median of all found turnover rates, or
the turnover rate from the organism that has the most sequence similarity with
the target organism within that protein?

To answer this question, we have automatically retrieved wild type turnover
rates from the BRENDA database for all enzymes from three organisms: Sac-
charomyces cerevisiae, Escherichia coli, and Bacillus subtilis. In a second iter-
ation, we retrieved turnover rates of all enzymes from all other organisms, ex-
cluding the organism of interest, and computed the mean, median, and best
sequence match with the organism of interest k.,;. The best sequence match
was obtained by computing the alignment score using the Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970) with the BLOSUM®62 scoring matrix
(Henikoff and Henikoff, 1992). Since we mostly want that the order of magni-
tude of the turnover rates is correct, we computed the Pearson correlation coef-
ficients between the logarithms of k.,; values from the organism of interest and
the logarithms of the mean, median and best sequence match k,; values ob-
tained from other organisms. Only values corresponding to the same enzymes
were compared. The resulting correlation coefficients are displayed in table 4.4.

Table 4.4: Pearson correlation coefficients between the logarithms of k4 values
from the organism of interest and the logarithms of the mean, median and best
sequence match k.,; values obtained from other organisms.

Organism median mean bestsequence match
Saccharomyces cerevisiae 0.701 0.650 0.526
Escherichia coli 0.808 0.756 0.606
Bacillus subtilis 0.762 0.708 0.679

We observe that, in the cases we have analyzed, the medians of all turnover rates
enzyme-wise is the best approximation for the actual turnover numbers in the
organism of interest. Moreover, the order of magnitude correlation coefficients
are very high and the P-values we get are all in the order of 10~!* or lower, indi-
cating that indeed these median turnover rates from other organisms are good
enough approximations of the real k.,; values if no specific data is available for
the organism of interest.

To give an idea of the spread of the turnover rate data, we show in figure 4.2 a plot
of the k4 values in yeast versus the median k.,; values from other organisms.

4.5 Validating the model using experimental data

Once the model has been constructed, a first step before further investigations is
its validation using experimental data. This can stretch from fairly basic match-
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Figure 4.2: Turnover rates in yeast versus the median k4, values from other or-
ganismes.

ing of growth rates obtained from batch experiments to matching of reaction
fluxes if data is available.

In general, the growth rate obtained in the model under constant conditions
should provide an upper bound on the growth rate measured in the lab, since
the model gives the optimal behavior of the metabolism, which may not always
be observed in the lab. To check that this is the case, we need data from an expo-
nentially growing batch culture of the organism of interest at saturating nutrient
concentrations. In this case, it is sufficient to compute the growth rate of the
culture peyp as the slope of the logarithm of the optical density (OD) measure-
ments versus time, as in figure 4.1. In addition, we also need to compute the
instantaneous growth rate of the model (under the same conditions as in the
experiments), which we define as

Vie (L, tiv1). (4.1)

biomass(ti+1)
Emodel(t) := ,

n
tir1— L (biomass(ti)

We observe that, if nutrients are saturating, {,,0401(t) is constant, and hence we
will refer to it in this case as simply t,,0dei-

We note that this definition is nearly identical to the growth rate definition in
equation (2.2). It is however based on mass and not on volume, and thus as-
sumes that the mass grows exponentially. Therefore, with a slight abuse of no-
tation and by assuming the density of the cell remains constant, we will use the
same letter p to denote the mass-based growth rate.

If timoder is smaller than peyp,, the problem lies very likely in the k4, values and
these should then be checked manually. If this is not the case, ;040 can be
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tuned to Yy by forcing flux through the ATP maintenance reaction', which hy-
drolyzes ATP into ADP and phosphate. This makes sense also from a biological
perspective, since we cannot claim that our resource allocation model covers all
energy expending processes in an actual cell, so the ATP maintenance reaction
serves the purpose of modeling this remaining energy expenditure.

4.6 Units

One very important aspect in the model building process are the units, as mis-
matches between them nearly always give rise to either infeasible or incorrect
computational results. Therefore, in this section we will elaborate on the units
of the quantities in a deFBA model.

4.6.1 Metabolic reactions

Metabolic reactions r, including the exchange reactions, are in general of the
form

F:ZS,',X,' _’ZS]"XJ"
i J

where X;, X; are metabolic reactants resp. products and S;;, S are their stoi-
chiometric coefficients in reaction r.

As itis usually the case in metabolic network reconstructions, the unit of the flux

through this reaction is gngv"’,‘,’;l. This information can be found in the SBML file

of the metabolic network reconstruction. However, methods such as deFBA use

molar amounts, and thus the gDW part is not present, so the fluxes there are in
mmol

h

Since the derivative of the molar amount of a metabolite participating in this
reaction has to have the same unit as the flux, it follows that the internal and
external metabolite amounts are measured in mmol.

The unit of the turnover rates of these reactions is 1!,

4.6.2 Reactions producing quota compounds

In some metabolic network reconstructions artificial reactions are added
to form each biomass component. These biomass components are then in
turn consumed by the biomass reaction. This is for instance the case for the
Synechococcus elongatus model in chapter 6. These reactions have the general

INote that the flux we need to force through maintenance strongly depends on how detailed
the model is and how much lumping of reactions has been done. We therefore cannot provide an
order of magnitude approximation for how much flux should be forced. Modelers should however
be aware that the need for a large ATP maintenance forced flux to match experimental growth
rates is an indication of model errors or poor model quality.
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form
r:ZSirXi — 1g Bj,
i

where X; are internal metabolites, B; is an artificial metabolite that represents
a quota macromolecule (e.g. membrane), and S;; are corresponding stoichio-
metric coefficients, as explained in section 4.2. The coefficients S;, are chosen
such that, when multiplied with the molecular weights of the metabolites X;,
their sum amounts to 1 gram.

The unit of the flux through such a reaction is then 2~!. The amounts of the
metabolites X; are measured in mmol, and the amount of B; is measured in g.
The reactions producing quota compounds are artificial reactions, and hence in
the deFBA model they are marked as spontaneous, i.e., no enzyme is needed for
their catalysis.

The biomass reaction of the metabolic reconstruction then has the form

r: ZSirBi — Bio,
i

where B; are the artificial metabolites that represent quota macromolecules and
Bio is then the biomass itself, measured in grams. The coefficients S;, are then
chosen such that they represent the fractions of the respective macromolecules
in one gram dry weight of cells. The flux through this reaction is measured in
hL.

While this biomass reaction is not of direct interest in the case of deFBA mod-
els, its coefficients S;, are used as initial quota compound amounts and the
whole simulation is set such that at the beginning we are looking at one gram
dry weight of cells.

A special case arises here: the quota reaction producing nonmetabolic proteins.
This reaction is not spontaneous, but it is catalyzed by the ribosome and com-
petes this way for the ribosome with the enzyme production reactions. Thus, we
have to compute a turnover rate for it as described in section 4.3 above. The unit

. : -1 1
of this turnover rate however is not 4~ *, but o

4.6.3 Reactions producing enzymes

Enzyme production reactions have the form

20
r: Y SirAi+diATP+d,GTP+{THF — E + dyAMP+ d, PP; + d,GDP + d,P; + THF,
i=1
where Ay, ..., Ay are the 20 proteinogenic amino acids, E is the produced en-
zyme, and S; r, d := Z?gl Si r, d» :=2-d, are the stoichiometric coefficients of
the amino acids and energy requirements, set up as described in section 4.2.

The flux, molar amounts, and turnover rate units for such reactions are the same
as the ones for metabolic reactions.
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4.7 Debugging the model

Even if one follows very carefully the steps we have described above, it is rarely
the case that the model building process ends here. Typically, one needs addi-
tional efforts for “debugging” errors.

One example of such an error is that, when simulating growth in a simple en-
vironment without any limiting nutrients using cFBA, the resulting LP problem
is infeasible. If this happens, one should try to analyze the simplest possible
case: constant environment, one discretization time step. As we will see in chap-
ter 5, this is equivalent to solving an RBA model. This results in the smallest
problem size, since the problem size typically grows linearly with the number of
discretization points. In this simplest setting, one can then use the tools of LP
solvers to compute an irreducible inconsistent subsystem (IIS) and get an idea
about which constraints are involved in the infeasibility. An IIS is a subset of
the constraints and variable bounds of the LP. Removing any constraint of the
IIS from the LP produces a feasible result. Standard commercial LP solvers like
CPLEX or Gurobi offer tools for computing IIS. The type of constraints involved
in the IIS could then help diagnose the infeasibility.

A similar problem can be found in a deFBA model simulated in a simple envi-
ronment without nutrient limitations, with the difference that the resulting LP
is not infeasible, but instead no biomass growth is obtained. One can approach
this problem in a similar way as above, by forcing a small flux through the ri-
bosome production reaction using a positive lower bound for instance. This will
then very likely result in an infeasible LP that can be approached, as above, using
the IIS.

However, not too much time should be spent on exploring the IIS because it may
happen that there is actually nothing wrong with the model. In other words, the
numerical instabilities may be the reason for an infeasibility. It is therefore worth
trying to solve the LP also with a more accurate LP solver that can perform itera-
tive refinement, such as SoPlex (Wunderling, 1996; Gleixner et al., 2012, 2016). If
a feasible solution is obtained this way, then numerical problems are the cause
of the infeasibility.

Last but not least, it is also worth checking that all quota compounds can be
produced. If this is not the case, this may be a reason for the infeasibility. To
check that each quota compound can be produced, simply require them one by
one and solve the resulting LPs.

It can sometimes also happen that the LP problem is feasible, but the resulting
time courses reveal problems of the solution. We mention here two types
of problems: (i) non-smoothness/instabilities of the time courses of stor-
age/biomass components, and (ii) significantly high amounts of a few of the
enzymes. In the former case, the discretization of the dynamic variables may
be faulty, as we will see in the next chapter. In the latter case, it may be that
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the turnover numbers of those enzymes are not correct. Typically few enough
enzymes show this problem, so one can simply check those turnover rates
manually and look up alternatives in the databases.

4.8 The SBML representation of a metabolic resource al-
location model

For metabolic network models used together with constraint-based modeling, it
is standard to define them in the systems biology markup language (SBML), an
XML-based way of representing models (http://sbml.org/Main_Page). How-
ever, there is so far no specific way of representing resource allocation models,
which come with several extra ingredients in addition to the metabolic network
part. Therefore, in this section we propose a way of making use of the existing
SBML capabilities for representing resource allocation models. We illustrate this
proposal using a toy resource allocation model listed in table 4.5 for which we
attach the SBML representation in Appendix B.

4.8.1 Compartments

We keep any compartments present from the original reconstruction of the
metabolic network. If possible, we place the gene products in the compart-
ments in which they are acting. This means for instance that enzymes are
located where the reactions they are catalyzing are happening. Species without
any real physical location in the model, e.g. quota compounds, can be placed
arbitrarily in any compartment.

4.8.2 Species

Each species (metabolite or macromolecule) must contain the fields:
e id
* compartment
e constant (true or false)

* boundaryCondition (true or false)
¢ initialAmount

Depending on the function of the species in the model, it also contains a
ram:species annotation.

We distinguish between limiting extracellular metabolites (N; and N3), nonlim-
iting extracellular metabolites (O,), intracellular metabolites (N, AA, ATP), stor-
age (Stor), and biomass components (ETrans1, ETrans2, Complex_1, EMetabl,
EMetab2, EStor, S, R).

The parameters constant and boundaryCondition are used to express
whether a species is intracellular (constant = ‘“false’ boundaryCondition =
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Table 4.5: List of species, reactions, and catalysis relationships for the toy model
whose SBML representation can be found in Appendix B. The reaction that con-
sumes AA and ATP but produces nothing is the maintenance reaction and is
considered spontaneous. The reaction that produces the storage compound
Stor has different turnover numbers for the forward (f) and reverse (1) directions.
Complex_1 is a transporter complex composed of ETrans1 and ETrans2. Sis a
structural quota component and R is the ribosome.

External metabolites: N1, N5, O,
Internal metabolites: N, AA, ATP
Macromolecules: Stor, ETrans1, ETrans2, Complex_1,
EMetabl, EMetab2, EStor, S, R
Reactions Catalysed by Turnover rate
N; + Oy — N ETransl 1800
Ny ~N Complex_1 2400
N — AA + ATP EMetabl 2000
N — AA + ATP EMetab2 2500
N — AA + 2 ATP EMetab2 2000
50 AA + 60 ATP -
200 AA + 300 ATP — Stor EStor f: 25,1: 30
100 AA + 450 ATP — ETransl R 10
60 AA + 270 ATP — ETrans2 R 16.67
160 AA + 720 ATP — Complex_1 R 6.25
200 AA + 900 ATP — EMetabl R 5
160 AA + 720 ATP — EMetab2 R 6.25
150 AA + 500 ATP — EStor R 5
1500 AA + 200 ATP —S R 10
1000 AA + 4500 ATP — R R 1

‘“false’’), whether it is part of the environment and assumed to be present in
abundance (constant = ‘‘true’’ boundaryCondition = ‘‘true’’), or whether
the species is a limiting nutrient (constant = ‘‘false’’ boundaryCondition =
““true’’). We show in Table 4.6 examples on how to set the mandatory species

fields for each of these metabolite types.

Table 4.6: Examples for setting species fields for each species type.

id compartment constant boundaryCondition initialAmount
N; N1 external false false 10
0, 02 external true true 10
N N metabolites false false 0
Stor | Stor storage false false 0
R R bio false false 0.03364
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The biomass and storage species have an additional annotation field for storing
their molecular weight, their objective weight, the biomass percentage and their
function as a species in the deFBA model. The biomass percentage attribute
contains the fractions of the quota components that need to be reinforced at
each time point. We distinguish between the species types “storage”, “enzyme”,
and “quota”. Species without a ram:species annotation are considered to be
either external species or metabolic species in steady-state. Below we show the

annotation fields for the ribosome and the structural component.
Ribosome R:

<species id="R" name="Ribosome" compartment="cytosol"
initialAmount="0.03364"
constant="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:molecularWeight="weight_ R" ram:
objectiveWeight="weight_R"
ram:biomassPercentage="zero" ram:speciesType="enzyme"/>
</ram:RAM>
</annotation>
</species>

Structural component S:

<species 1d="S" name="Structrual biomass component" compartment
=""bio"
initialAmount="0.7499" constant="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:molecularWeight="weight_S" ram:
objectiveWeight="weight_S" ram:biomassPercentage="
bp_S" ram:speciesType="storage"/>
</ram:RAM>
</annotation>
</species>

Note that "weight_R", "weight_S", "zero", "bp_S" are ids of parameters de-
fined in the list of parameters of the SBML model.

Guideline to ensure uniqueness of macromolecule ids

There are some enzymes that can act in different compartments of the cell. An
example is fumarase, which catalyzes reactions both in the cytosol and in the
mitochondrion in yeast. While we include the respective compartments for the
species in their description, a common error is to give both enzymes the same
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id. Hence, we suggest to name enzymes in a specific pattern combining e.g.
their name and their respective location.

If the enzyme is acting in only one compartment we choose its id in the for-
mat “Main_id_[acting-compartment]”. If the enzyme is a transporter between
two compartments we choose “Main_id_[compartmentl]_[compartment2]”. If
the enzyme is translated from only one gene (e.g. ETrans1), this represents the
main id. For enzyme complexes made of multiple gene products we suggest
simply using “Complex_number” as main id (e.g. Complex_1). Of course, the
user can choose these ids freely, but following these suggestions can help with
easier evaluation of the model in deFBA implementations.

4.8.3 Gene products

Each macromolecule is not only present as a species, but also as a gene prod-
uct, with the fields id, label, and associatedSpecies. The id is either the
gene name for single gene macromolecules (e.g. ETrans1) or Complex_number
(e.g. Complex_1) for complexes as explained above. The label field includes
the recipe for the creation of the enzyme(-complex). The associatedSpecies
is the id of the biomass species associated with this gene product and used for
bounding the flux. An example for Complex_1 is:

<fbc:geneProduct fbc:id="Complex_1" label="1*GTRANS1 AND 1x
GTRANS2" associatedSpecies="Complex_l“/>

4.8.4 Reactions

All reactions must contain the fields:
e id
e reversible (true or false)
e fast (true or false)

listOfReactants
listO0fProducts

Depending on the kind of reaction, they also include an fbc : geneProductAssociation
and a ram:reaction annotation. Additionally, we recommend adding the EC
number, if known, to the reactions in form of a note:

<notes>
<body xmlns="http://www.w3.org/1999/xhtml">
<p>EC Number: x.y.z.t</p>
</body>
</notes>

The id must be unique for each reaction. For reactions producing biomass we
recommend starting the id with “synth_" for easier reading and reduced chance
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of assigning the same id multiple times. Furthermore, this makes it easier to
distinguish between the reactions from the original metabolic network model
and the deFBA additions. The fast attribute can also be used to distinguish
biomass production reactions (fast = "false") from the rest of the reactions
(fast = "true").

The fbc:geneProductAssociation is used to map catalysis relationships
between the enzymes (which are also gene products, see above) and the
reactions. Each fbc:geneProductAssociation consists of at most one
fbc:geneProductRef, which gives the id of the associated gene product. Reac-
tions that do not have a gene product association are considered spontaneous
(e.g. the ATP maintenance reaction), and hence their capacity is not bound
using a kcq¢.

The forward and reverse k.,; values for each reaction can be found in the anno-
tation, in the fields kcatForward and kcatBackward respectively. It is typically
the case that the values in the kcatForward and kcatBackward are defined as
parameters, and in these fields the ids of the respective parameters are stored,
as we will see in the examples below.

The maintenance reaction

As we have seen above, maintenance reactions are typically part of metabolic
resource allocation models, since these models do not account for all energy ex-
penditures of the cell. The maintenance reactions we consider here are growth-
associated, i.e., the flux forced through them is dependent on the total biomass
at each time point. Thus, we add an annotation field, maintenanceScaling,
which specifies what is the factor f such that

Vinaintenance(t) = f - biomass(t).

For typical reactions this field is “zero” as in the case of the metabolic reaction

<reaction id="Metabl_2" reversible="false" fast="true">

<annotation>

<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:reaction ram:kcatForward="kcat2" ram:kcatBackward="zero

" ram:maintenanceScaling="zero"/>

</ram:RAM>

</annotation>

<fbc:geneProductAssociation fbc:id="Emetab2">
<fbc:geneProductRef fbc:geneProduct="Emetab2" />

</fbc:geneProductAssociation>

<listOfReactants>

<speciesReference species="N" stoichiometry="1" constant="

true"/>
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</list0fReactants>

<listOfProducts>

<speciesReference species="AA" stoichiometry="1" constant="
true"/>

<speciesReference species="ATP" stoichiometry="1" constant="
true"/>

</list0fProducts>

</reaction>

For the maintenance reaction we have the representation

<reaction id="Maintenance" reversible="false" fast="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:reaction ram:kcatForward="zero" ram:kcatBackward="zero"
ram:maintenanceScaling="main"/>
</ram:RAM>
</annotation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="50" constant="
true"/>
<speciesReference species="ATP" stoichiometry="60" constant="
true"/>
</list0fReactants>
<listOfProducts>
</1ist0fProducts>
</reaction>

4.9 Conclusions

In this chapter we have provided a guide for generating a metabolic resource
allocation model. Together with the step by step guidelines, the links to the rel-
evant databases are listed and some guidelines for finding errors that may arise
in the model building process are provided. Last but not least, we have pro-
posed a standard for exchanging such models using SBML and the flux balance
constraints package.

We will present in detail in chapters 6 and 7 models that have been generated fol-
lowing these guidelines together with the new insights into metabolic resource
allocation we have obtained using them.

However, before we proceed, we dedicate the next chapter to techniques for
solving deFBA problems, numerical concerns, and actual implementation de-
tails.
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Chapter 5

Metabolic resource allocation in
practice: numerical concerns and
solving strategies

Assuming that we have generated a full and correct dynamic resource alloca-
tion model following the instructions in the previous chapter, the question then
comes: how do we actually solve this? What discretization scheme do we use?
How do we handle numerically the large difference in order of magnitude of the
turnover rates and of the enzyme production and metabolic fluxes?

Alot of the work that goes into studying resource allocation is actually spent on
programming the tools for solving such problems. We discuss in this chapter
how everything was set up and what problems needed to be overcome in order
to obtain the results presented in chapters 6 and 7.

We start by presenting some problems encountered when applying deFBA and
cFBA and propose ways to work around these problems. Next, we address nu-
merical matters in solving deFBA and cFBA problems and present a reformula-
tion of cFBA that alleviates discretization problems. Finally, we offer a concise
description for the software written to solve deFBA and cFBA problems.

5.1 Artefacts of model formulations

5.1.1 deFBA dependency on the discount factor ¢ in the objective

As already mentioned in chapter 2, a practical concern with deFBA is setting
the discount factor ¢ used in the objective function (2.38). Not only do simula-
tions depend very strongly on the choice of ¢ as shown in figure 5.1, but there is
no way of deciding which value to use for this parameter. Although the deFBA
framework itself does not depend on using this particular objective function, we
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note that this is the objective used to simulate the fact that the modeled organ-
ism has evolved to grow as fast as possible in the given environment. Thus, this
is the objective function used in most applications.
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Figure 5.1: External metabolite time courses from the toy deFBA model in (Wald-
herr et al., 2015) using ¢ =0, ¢ = 0.1, and ¢ = 0.3 as objective discount factors.
Note that both values 0.1 and 0.3 have been used in the simulations in the deFBA
article (Waldherr et al., 2015).

The way we have circumvented this problem is simply by eliminating the nega-
tive exponential discount altogether (¢ = 0) and instead using as objective

2
maxf Y bin;(ndt, (5.1)
(U
where i denotes a biomass component and the vector b contains the molecular
weights of the biomass components.

5.1.2 Linear versus exponential growth in deFBA

Another difficulty arising in solutions of deFBA problems is that, depending
on the extracellular nutrient levels and on the end time Ly of the simulation,
sometimes a linear growth of the biomass is predicted instead of an exponen-
tial growth. In theory, any differentiable function, and hence also the exponen-
tial, can be locally approximated by a linear function. We note, however, that
this behavior is not only observed locally, but over a large portion of the sim-
ulation period, corresponding to several consecutive time points spread over
several hours.

Linear growth is characterized by a linear shape of the total biomass curve over
time. We have noticed this problem arising in three situations:
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* when the extracellular nutrients run out during the simulation,

* when the simulation end time is too small, and a larger ty would result in
exponential growth,

* towards the end of the simulation time a switch from exponential to linear
growth is sometimes observed.

We believe that this is an artefact of the objective function. As shown in fig-
ure 5.2, it takes some time before the linear curve is overtaken by an exponential
curve, and thus, before this intersection time the linear curve is simply optimal
while the exponential one is not.

11

10

O

total biomass

4 1 1 1 1 I}
0 2 4 6 8 10

time
Figure 5.2: The total biomass accumulation in the toy model from (Waldherr
et al., 2015), using an end time tf =10 (continuous curve) and tr =60 (dashed
curve). The initial extracellular nutrient amounts are the same as in figure 5.1
above. The discount factor has been set as ¢ = 0.

The linear growth results from the system producing only the cheapest biomass
component as shown in figure 5.3.
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Figure 5.3: Time courses of individual biomass components corresponding to
figure 5.2. The left plot shows the time courses for tr=10 (linear growth), while
the right plot shows those for 77 = 60 (exponential growth).

There is no easy solution to this problem, and we recommend that the modeler
simply makes sure that nutrients do not run out during the simulation and that,
if a linear growth curve is obtained, then the simulation end time ty should be
increased.

In a starvation scenario, i.e., when the nutrients run out before the end of the
simulation, we observe that deFBA with the biomass integral as objective func-
tion (equation (5.1)) predicts linear growth characterized by production of only
the “cheapest” (in terms of required resources) biomass component. What is ob-
served in reality, however, is a much more complex behavior: the cell degrades
certain proteins to make other catalytic components from the resulting build-
ing blocks in an attempt to survive as long as possible. Simply producing the
cheapest component in such a scenario is nothing that would enable the cell to
survive longer. Therefore, the use of deFBA with the objective (5.1) should be
done with care when modeling a cell in starvation conditions.

5.1.3 deFBA dependency on choice of simulation endpoint

Another issue we found is the dependency of deFBA solutions on the choice of
the end time tr. We illustrate this in figure 5.4, where the same model has been
simulated using 7y = 60 and 7y = 150. In this simulation the discounted ob-
jective J3 from the original manuscript (Waldherr et al., 2015), corresponding
to objective (2.38) in chapter 2, has been used. Thus, as the authors claim, the
quantitative differences should not be due to the existence of alternative optima.
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Figure 5.4: External metabolite time courses from the original deFBA toy model
in (Waldherr et al., 2015), scenario 1 (carbon switch). The end time points of the
simulations were 60 minutes and 150 minutes. We used one discretization point
per minute and ¢ = 0, which is equivalent to using objective (5.1) above.

As has been already proposed in (Lindhorst et al., 2016), this problem can be
overcome by using the short term deFBA (st-deFBA). st-deFBA uses a finite pre-
diction horizon and, as the simulations proceed, this moves forward in time.
Only the first time point of the result of each simulation is stored as part of the
solution and used as input for the next simulation, where the prediction horizon
window had moved by one step. The prediction horizon is chosen as the earliest
point in time at which the exponential strategy leads to a better objective value
than the linear growth strategy. For the exact details we refer to (Lindhorst et al.,
2016). However, using short term deFBA comes at the expense of additional sim-
ulation time since at each step in the solution a new LP is solved.

We have considered in the work presented here that the end time dependency is
small enough to be neglected and have used deFBA as in (Waldherr et al., 2015).

Obviously, one can argue that this end time point dependency does not exist in
cFBA. However, cFBA is only suited for organisms displaying balanced growth
in a periodic environment such as cyanobacteria or algae. For other organisms,
like yeast, there is no reason why we should have periodic biomass composition
constraints.

cFBA comes however, with a different difficulty related to optimality as we will
see in section 5.5.
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5.2 Numerical considerations and scaling

5.2.1 The midpoint rule discretization

To numerically solve deFBA and cFBA problems, the dynamic variables for the
macromolecule and external metabolite amounts need to be discretized in time.
The authors of deFBA propose a Gau3-Legendre method with Radau colloca-
tion points of order 2 and 3 using a Lagrange polynomial interpolation function,
while the authors of cFBA use an iterative scheme that turns out to be mathe-
matically equivalent to the simplest discretization method, explicit Euler.

The explicit Euler method can be shown to be numerically unstable, in partic-
ular for stiff equations. This means that the numerical solution obtained using
explicit Euler becomes very large for equations where the exact solution does
not. This is the reason why this numerical method should not be used in prac-
tice. On the other hand, a Gau3-Legendre method with Radau collocation points
of order 2 and 3 using a Lagrange polynomial interpolation function is not only
difficult to implement, but it also susceptible to interpolation errors known as
Runge’s phenomenon. These are oscillations that appear at the edges of the in-
terpolation interval when using identically spaced interpolation points (Runge,
1901).

A much simpler and stable choice is to use the implicit midpoint rule, which is
the simplest collocation method (after the Euler schemes). In short, this states
that, given a differential equation

V' (0 = f(t,y(0),
and a step size h, we can discretize it as

h + Vie—
Vi=Yk-1+h-f tk—1+§,%

’

where yy is the numerical solution at time point #.

This method allows us to preserve a simple implementation and, at the same
time, guarantees numerical stability even for stiff equations. Therefore, we have
decided to use the implicit midpoint rule in the studies presented in chapters 6
and 7.

Specifically, fixing a number of discretization points N = %f, we discretize the
dynamic variables for macromolecule and extracellular metabolite amount (n)
at each discretization point #;, while the fluxes v and the derivative values n
are evaluated always in the middle of the discretization intervals at [’“+T[’H This
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means that for the dynamic optimization problem in section 2.3.5 we obtain:

N

max ) Y. n(f) (5.2)
nnv ;_y ie{L,M,T,R,Q}

T+ L I+ tr—
sthg, = 2’“ 1): vT( k 2’“ 1) (5.3)
i + tk—l) L + tk—l)
0= -V 5.4
T( > M 5 (5.4)
I+ tp— I+ tr— I+ tr—
0= (k kl)_vL(k kl)_ VRi(k kl) (5.5)
2 2 ie{L,M,R,T} 2
. [Tt Lk U + k1
np | kL), R 5.6
Q( 2 ) L( 2 ) 60
I+ th— I+
ni(%)zv&. (%) Vie{lLLM,T,R} (5.7)
I+ th— . n;(f) +n; (6
v,-(—’“ zk l)sk;m i (1) ; i), Vie (L, M,T} (5.8)
T+ t—
R, ( k+2k ) - ng(ty) +ng(fr-1) (5.9)
T IR kR - 2 .
Lo M, cat
I+ 1 —
n(tk),v(%) >0 (5.10)
noty) =g >, ni(%) (5.11)
i€{L,M,T,R,Q}
I+ Ly
n(tk) :nl’k_l +hn(M)’ (512)

forall ke{l,...,N}.

This practically means that the LP problem has, for each macromolecule 2N
different variables (IN concentration and N derivative variables) and for each
reaction flux N different variables related using the constraints above.

5.2.2 Cyclicity and discretization problems

In this section we point out that also the midpoint rule can lead to strong numer-
ical errors. This can in particular be seen in the case of using a cyclic objective
and maximizing the multiplication factor a as done in cFBA. The following ex-
ample illustrates this. Assume we are looking at a system with only one reaction

X— P

which has flux v and the reaction is catalyzed by P with a turnover rate k4.
Then we want to find the maximum multiplication factor a as follows:
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max a
v,np
st.np=v
[ kcatnp

np(ty) = anp(0)

We take the simplest case and use only one time step in the discretization, the
length of which is ;. That means that the derivative np and the flux v are con-
stant, and the expression for np(¢¢) is given by

np(tf) =np(0) + Iffflp (5.13)
and the capacity bound for v becomes

tr) + 0
bk np(tf) +np(0)

= Rcat ’

2

since in the midpoint rule we evaluate np in the middle of the time interval [0, trl
Ji np(tr)+np(0)

and approximate the lacking value of np (%) by 5
To get the largest multiplication factor «, it is obvious that a flux v will be cho-
sen such that the flux capacity constraint v < k.,/np is satisfied with equality,

therefore
np(tf) +np(0)

2
Replacing np(tf) by means of equation (5.13), we get

V= Kcat

np(0) + l'fflp +np(0)
2

If .
V= Kcat =kecar (nP (0) + EnP) .

Since np = v, we have

_ kcarmp(0)

t
v:kcat(np(0)+—fv)©v .
2 1-keary

Substituting back in equation (5.13), we get

kcarnp(0)
np(ty) =np(0) + 1y~
— Keat>

and from the cyclicity constraint then

kcamp(0)
— =

np(ty) =np(0) + 1y np(0).

— Reat™>y
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From the last equation we can then obtain the multiplication factor a as

k
a=1+tp—— (5.14)

I
1—keat

which points out that & depends on the end point of the simulation #¢. In par-

ticular, the multiplication factor becomes infinite as k., t%f approaches 1, that is
when the time step approaches 2

kCﬂ[ :

This points out an unintuitive effect of the combination between the differential
equation discretization and the cyclicity of the system. We believe that this is
not restricted to cyclic problems, but is a general issue of deFBA and cFBA. In
the cyclic case it is only particularly easy to exhibit the artefact. In the following
section we show how one can avoid this problem by reformulating the problem
and introducing a dilution term in the differential equation for np.

5.2.3 cFBA with dilution term

Problem reformulation

We start with a model

g (f) = Sg.v(t) Yt=0
0=S8_4.v(1) V=0
Av(f) < Bng (1) V=0

ang(0) = ng (zy),

where Sg. are the enzyme-producing stoichiometries and S_4. describes the
metabolism. A, B can be arbitrary matrices to constrain fluxes by enzyme
amounts.

With a slight abuse of notation, for arbitrary p > 0 we define the enzyme con-
centrations e and fluxes w subject to dilution by y as

V(0)exp(ut)
v(t)
w(t) ;= ——m—,
V(0)exp(ut)

where V(0) is the initial volume of the cell population.
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This yields
é(t):i ng() __ ng(0) y ng(1)
dt V(0)exp(ut) V(0)exp(ut) V(0)exp(ut)
=>eé(f) = S%L — ue(t)
V(0)exp(ut)
= e(1) = Sg.w(t) — ue(r)
0=38_y«w()

Aw(t) < Be(t)
ae0)V(0)=V(0) exp(,utf)e(tf)

Hence, with a = exp(u- tf), we get e(0) = e(tf).

This way we can transform a cFBA problem formulation into a formulation that
includes dilution by growth. By doing the transformation backwards, we can
transform a steady-state solution of the dilution model (e,w variables) to a uni-
form growth solution of the original problem (n, v variables).

Note that bounds on concentrations and fluxes are still possible. Moreover, it is
even possible that the constraint matrices A and B depend on time.

Discretization error in the dilution formulation

The dilution formulation of the problem is no longer affected by the discretiza-
tion errors described in the previous section. To see this, we consider again the
example in section 5.2.2, where we are looking at a system with only one reaction

X—P

which has flux w and the reaction is catalyzed by P with a turnover rate k.4;. In
the transformed problem formulation we want to find the maximum g using the
following optimization problem:

max
s.t.ep = w— uep (5.15)
w < keqrep (5.16)
ep(0) =ep(ty) (5.17)

We consider again the simplest case, using one time step of length ¢ for dis-
cretization. This means that, by applying the discretization, we obtain

ep(ty) =ep(0)+ t;-ep & ep(0) =ep(0) + tf-ep < ép =0. (5.18)

The bound (5.16) is applied taking the midpoint rule into account, as in sec-
tion 5.2.2, using the value of ep at the middle of the time interval, i.e.,

ep(0) +ep(tf) (517
w=< kmtff (c») w < kcgrep(0).
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To get the largest y, it is obvious that w will be chosen such that constraint (5.16)
is satisfied with equality and we thus obtain

w = kearep(0). (5.19)

From equations (5.15), (5.18), and (5.19), we observe that
w = pep(0) and w = kcqrep(0),

which shows that
K= Kkear.

We thus observe that the expression for u no longer depends on the end time ¢
asitdid in (5.14). Moreover, we observe that, with
log(a)

a=exp(u-tf) e pu= PR
f

the values for u and a are compatible when taking the limit 7y — 0 in equa-
tion (5.14),

log(l + tf%)

. logla) a4 . l—kear &
lim 08 619 lim e
tr—0 tf tr—0 If
tr 2
| Kear(1=Kear 4 )+ 174t
X : 7
141 —cat A
I'Hopital ., fl—km[%f (1 kear 2)
= lim
tf—>0 1
= kcat-

Conclusion
It is not coincidental that we have chosen p for the transformation. p is the
actual growth rate of the exponentially growing system.

To keep the simplicity of explanations in chapter 6, we consider this dilution
transformation an implementation detail. We still describe the model using the
original cFBA formulation, although in the solving software we implement the
dilution formulation.

5.3 Connections between cFBA and RBA

After the dilution transformation, we observe that the cFBA problem formula-
tion looks strikingly similar to RBA, and that cFBA with one time step is in fact
equivalent to RBA. Indeed, we show in this section that RBA provides an upper
bound on growth rates obtained using cFBA.
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We recall from chapter 2 that concentration is defined as the number of
molecules n of substance present in a certain volume V of a solution, i.e.,
c(r) = % While in section 3.2 we assumed a constant volume, we now allow
the volume to change over time. This happens for example in the case of cell

growth, when the total volume of all cells grows.

The metabolic network usually consumes and produces metabolites as speci-
fied in the stoichiometric matrix S. The product S_4.v(t) then gives the change
in metabolite concentrations when the volume stays constant. This product re-
flects the net production of each metabolite by the metabolic network. In case
the volume changes, we also obtain a dilution term, as in RBA and as in sec-
tion 5.2.3 above, so

€(1) = S« V(1) — p(B)e(r), (KM2a)
e(t) = Sg«v(1t) — u(t)e(r),

where the growth rate p(#) is defined as

(1) := m (5.20)
u(t) := v .
We observe that
1 T
A(T) := ?f pndr. (AVGM)
0
is the average growth rate:
Proposition 5.3.1 It holds forall T = 0 that V(T) = V(0) exp(@(T) T).
PROOF We define W (1) :=1n(V (¢)) for all £ = 0. It follows that
W(t)—m— (£) (5.21)
v F '
T T .
:>f ,u(t)dtzf W@det=W(T)—W(0) (5.22)
0 0
V(T) T
= ——=exp(W(T)-W(0)) =exp f ude]. (5.23)
V(0) 0
The proposition follows by definition of f. n

5.3.1 Modeling assumptions (with dilution)

For ease of notation, we use z:= (c,e)" and treat enzyme and metabolite concen-
trations together in the results we derive here. Following the derivation above
based on (KM2a), we now consider the new kinetic model

z(1) = Sv(1) — p(0)z(1), (KM2)
V(1) = f(z(1),
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where f denotes the kinetic rate law functions. The system (KM2) now also
models dilution of internal metabolites and enzymes via cell growth. The rest
of the assumptions are the same as in section 3.2.1. In addition we assume that
the growth rate u(t) is positive, bounded and continuous for all time points ¢ = 0.

5.3.2 Average fluxes and average concentrations

For a given time period T, we additionally define the average concentrations Z
as:

o1 T
2= | ﬁz(t)dt. (AVGZ)

Note that we scale the concentrations by the growth rate u. The motivation
for this is that, in order to avoid depletion of metabolite pools, it is much
more important to overproduce metabolites in fast-growing periods than in
slow-growing ones. We observe that Z(T) can be considered an average over
growth rates rather than over time since

T
Dz(t)dt
ZT) = M (5.24)
Jo n(ndte
As in the case for the average fluxes v, it can happen that

z:= lim Z(T), (5.25)

T—o0
fi:= lim f(T) (5.26)

T—o0

do not exist. Hence we again assume, for simplicity, that the limits v, z, and
exist and refer the reader to the appendix of (Reimers and Reimers, 2016) for the
case where they do not exist.

We observe in the following that, if we consider dilution, the steady-state condi-
tion for the average fluxes changes slightly:

Theorem 5.3.2 Sv=1Zji.

ProOF Following the same arguments as in the proof of theorem 3.2.1, we ob-
tain that

T

lim L Sv(t) —uz(t)dt =0. (5.27)
T—oo T Jo

We can then use equations (AVGV), (5.24), and (AVGM) to arrive at the theorem
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statement as

1T 1T
0= Th_rgo?fo Sv(t)dt—Tll_{r;O?f() wnz(de (5.28)
1 T
MY 65— 1im = f u(Oz(Hdt (5.29)
T—oo T Jo
624) oo . -1 T
=" Sv— lim zZ(T)— udte (5.30)
T—o0 T Jo
WM og 201, (5.31)
]

One way to understand theorem 5.3.2 is to think of Z as the composition of the
biomass of an RBA model. fi is then the flux through the biomass production
reactions. Because Zincludes in our case all macromolecules and all metabolites
present in the cell, all these have to be duplicated upon cellular division. This
way, the dilution term enforces the production of all macromolecules present in
the cell.

We observe here a shortcoming in the formulation of RBA and cFBA, which ig-
nore metabolite dilution by growth. We check the impact of this shortcoming in
the next section.

5.3.3 Violation of the steady-state condition by dilution

In the following we estimate the order of magnitude of this violation relative to
the fluxes. For this purpose let us assume that the RBA model approximates z
with a total error of 1 mM. We again use the three organisms Escherichia coli,
Saccharomyces cerevisiae and Homo sapiens as examples. The detailed calcu-
lations for the three organisms are presented in Appendix A. Other examples
where the same trend can be observed can be found in (Stephanopoulos et al.,
1998).

Escherichia coli

E. colihas an average cell volume of 0.6 pm?’ (Kubitschek, 1990), a dry weight of
0.489 pg (Loferer-KrdBbacher et al., 1998), an average growth rate on glucose of
0.9 h™! (Andersen and von Meyenburg, 1980), and a glucose uptake rate of 12
mmol/(gDW -h) (Jain and Srivastava, 2009). Using these values it follows that an
approximation error of 1 mM for z implies a violation of the steady-state condi-
tion in the order of 107 relative to the fluxes.

Saccharomyces cerevisiae

A similar result is obtained in the case of S. cerevisiae, which has an average
growth rate on glucose of 0.4 h™! (Waldron and Lacroute, 1975), average intra-
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cellular fluxes of 0.5 mmol/(gDW-h) (Stewart et al., 2010), a dry weight of ap-
proximately 107! g = 10 pg (Mitchison, 1958), and a volume of 20 um? (Tyson
etal., 1979). These values imply that an approximation error of 1 mM for zZ leads
to a violation of the steady-state condition in the order of 1073 relative to the
fluxes.

Homo sapiens (HeLa cells)

In the case of HeLa cells we obtain a similar order of magnitude for the violation.
HeLa cells have an average growth rate of 0.06 h~! (Kumei et al., 1989), glucose
uptake flux of about 18 nmol/(min - mg protein) (Mojena et al., 1985), approxi-
mately 150 pg protein (Finka and Goloubinoff, 2013), and a volume of 2600 um3
(Luciani et al., 2001; Finka and Goloubinoff, 2013). With these values, an ap-
proximation error of 1 mM for zZ implies a steady-state condition violation in the
order of 1073 relative to the fluxes.

5.3.4 Bounds for cFBA from RBA

Let i* be the optimum of the following optimal control problem formulated
based on the kinetic model (KM2):

— %k

= max
v(1),2(1),p
s.t. z(1) = Sv(1) — pu(D)z(1) V=0
-K z(t) =v(t) <K' z(D) V=0 (0OCP2)
1(8) =v(£) =u(r) Vi=0,

where 1(#) and u(#) are time-dependent functions that can be used to enforce
limits from the environment, and K~, K" are matrices containing the turnover
rates for the forward and reverse directions of the reactions.

Let ppg, denote the optimum of the following RBA problem:

* -—
HRrpa -=1NAX U

vzl
s.t. Sv=zu (RBA2)
-Kzsv=<K'z
Isvs<u,

where 1, @ are defined as

_ 1 rT
l:= lim — 1(t)dt,
T—oo T Jo

T
u:= lim — u(n)dt,
T—oo T Jo

assuming the limits exist.
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In this case it also holds that the RBA optimum gives an upper bound for the
growth rate i*:

Corollary 5.3.3 It holds that ppg, = ii*.

PROOF Assume the limits v and z exist. Then, by theorem 5.3.2, SV =Zpu.

Since u does not change over time in (OCP2), it follows that

A =p
and thus we have
1 T
z= lim — z(n)dt.
T—oo T Jo

By the linearity of the enzyme capacity constraint in (OCP2), we obtain

.. 1T .1
—K~ lim — z(H)dt < lim —
T—oo T Jo T—oo T

T 1 T
v(i)dt<K' lim = | z(®dt,
0 T—oo T Jo

which is equivalent to

-K~ K*z.

NI
IN
<
IA

It is also easy to see that v satisfies 1 < ¥ < 1. Thus, we observe that ¥,z,u is a
feasible solution of (RBA2).

If v and Z do not exist, we instead can use theorem 3 in Appendix A of (Reimers
and Reimers, 2016) and any accumulation point pair ¥,z will be a feasible solu-
tion of RBA2. -

Since cFBA assumes a constant growth rate over the whole cycle, similar to
(OCP2), we therefore conclude that RBA provides upper bounds on growth
rates from cFBA models. This fact can conveniently be used when debugging
implementation errors of dynamic resource allocation models as described in
chapter 4.

5.4 Condition numbers, time scale separation and scaling

To derive the quasi-steady-state approximation, the inventors of deFBA make
use of a transformation that reflects the fact that macromolecule production re-
actions are much slower than metabolic reactions and that the macromolecule
amounts in general change much more slowly than metabolite amounts. This
transformation effectively means that the macromolecule production fluxes are
scaled by a small dimensionless factor €.

This transformation also has practical consequences for the solving imple-
mentation. Since macromolecule production fluxes are much smaller than
metabolic fluxes, we obtain a large order of magnitude difference between these
variables inside the LP. This large difference gives rise in general to numerical
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inaccuracies and rounding errors, as explained in (Klotz, 2014). By scaling the
macromolecule production fluxes, the macromolecule concentrations and their
derivatives, we thus avoid such rounding errors. For ease of notation, we also
consider this an implementation detail and do not include it in the problem
descriptions in this thesis, but only in the software implementation.

Despite the ¢ scaling, additional numerical inaccuracies can stem from the k.,;
values used. A quick look at figure 4.2 will reveal that these parameters spread
over several orders of magnitude. The only kind of scaling that can help improve
the numerical stability in this case is the individual scaling of problematic rows
of the constraint matrices.

To get an intuition about the numerical condition of typical dynamic metabolic
resource allocation problems, we compute the condition number of the basis
matrices corresponding to typical solutions of the problems in chapters 6 and 7.

5.4.1 Recap on matrix condition numbers

Let us first have a look at the derivation of the condition number, which we have
adapted from (Klotz, 2014). Given the linear programming problem

T

maxa“ x (5.32)
s.t.Ax=Db (5.33)
x>0, (5.34)

we look at the subset B of the rows of the matrix A that is present in the basis.
The solution at this point is thus given by

XB = Aéib

Considering a small perturbation Ab of the right hand side b, we are interested in
the change Axp this perturbation will induce in the solution xp. After a couple
of computations and after applying the Cauchy-Schwarz inequality, we obtain
the upper bound

ll1Axp| < ||AgLII - 1|AD]. (5.35)
Similarly,
IIbl| < [|Ap. |l - [IX3]l. (5.36)

Multiplying the left and right hand sides of (5.35) and (5.36) together and rear-
ranging terms we obtain

[|Axp||
1xpll

1. (l1Ab]|
< || Ap.ll-[| A5l (W)
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which gives an upper bound on the relative change in the solution upon the
perturbation ||Ab||. For more details of the derivation we refer to (Klotz, 2014).

We observe that the condition number of the basis matrix, which is a submatrix
of the constraint matrix A, defined as

K(Aps) = || Apll - || AL

is a factor in the upper bound on the error we obtain upon a perturbation. This
number is a property of the modeled system rather than a result of rounding
errors. Since ill-conditioning of a problem is typically defined as a small per-
turbation in the input giving rise to a large error in the output, the condition
number allows us to assess the ill-conditioning of a problem given (submatrices
of) its constraint matrix A.

The rounding errors that occur in finite precision computing environments can
also be seen as perturbations to the entries of the constraint matrix or the right
hand side. These errors can be increased by a large condition number. To give
an intuition, assume ||Ab|| is in the order of 10716 and x (Ap.) is in the order of
10'3. Then rounding errors up to 107'6.1013 = 1073 can arise in the calculations.
In such cases, algorithms of LP solvers can run into numerical difficulties.

5.4.2 Condition numbers for typical deFBA and cFBA problems

The basis matrix of a typical solution of the Synechococcus elongatus model in
chapter 6 has a condition number in the order of 10!}, while that of a typical so-
lution of the Saccharomyces cerevisiae model in chapter 7 has a condition num-
ber in the order of 10°. Note that these condition numbers are obtained after the
scaling by € explained above.

In the light of the example above, these values are obviously large enough to
present a problem for standard commercial solvers such as CPLEX or Gurobi,
which offer feasibility check precision of only up to 1079,

Therefore, to minimize the potential rounding errors appearing, we have
decided to use an open source LP solver, SoPlex (Wunderling, 1996; Gleixner
etal., 2012, 2016), with higher precision (up to 10716) than standard commercial
solvers, and which can perform iterative refinement of the solution, going up to
arbitrary precision.

This increase in precision comes however at the expense of increased solving
time. In addition, the solving time is further increased in the software written
for this thesis by the lack of an interface of SoPlex for MATLAB. This results in
each LP having to be written to file by the MATLAB code and then read by the
solver. With large LPs such as those resulting from dynamic resource allocation
problem, this becomes a real challenge.
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5.5 Convexity of the binary search in cFBA

While deFBA problems become linear programs after the discretization and
hence are guaranteed to arrive at a global optimum, this is not the case for cFBA
problems because of the quadratic terms in the constraints.

Similar to RBA and ME models, cFBA uses a binary search procedure to arrive at
the optimal multiplication factor a* which corresponds to the optimal growth
rate u*. However, we need to prove mathematically that this binary search is
guaranteed to arrive at the optimal growth rate. To prove this, one has to show
that, if the organism can grow at a growth rate u*, then it can also grow at any
growth rate p € [0, u*]. While biologically this is intuitively correct, we also show
here how it works out mathematically.

We can only prove the convexity of a slightly modified problem, where we
weaken the constraint
e(1) = Sg.w(t) —pu'e(r)

by only requiring an inequality, as
e(t) < Sg.w(t) —u'e(n.

At a steady-state, as in the case of RBA, this would mean that production of
macromolecules has to be greater or equal to dilution by growth, i.e.,

Se.w(t)—pu*e(r) =0,
which is the same as constraint (2.14) in the RBA formulation.

Theorem 5.5.1 Given a feasible solution (w()*,e(1)*, u*)" with u* > 0 of the
optimization problem

max
w(r),e(r),u

s.t. &() < Sg.w(t) — pe(r)
0=3S_y4.w(?) (OCP3)
Aw(t) < Be(t)
e(0) =e(zy)
foreveryp=0,6u> 0 withut = u+6u, (w()*,e(0)*, 1) isalso a feasible solution
of (OCP3).

PROOF Since
e <Sg.w(t) —uten)*t

is the only constraint where u* appears, we only need to check that this is satis-
fied also for the smaller growth rate u. With u* = u+ 6y, for 5u > 0, we obtain

e < Se.w(t)" — (u+dwe(n)” < Sg.w(t)" —pe®)”,

since the term - e(r)* is positive. -
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From a biological perspective, weakening the constraint as above is equivalent
to overproducing amino acids or energy, and most organisms have mechanisms
to dissipate excess energy such as futile cycles or wastage of ATP by an ATPase.
However, by weakening the constraint for the cyanobacterium model in chap-
ter 6, we obtain a slightly increased growth rate in the reference day case (3.68%
increase in ). This points out that indeed using the equality version is a restric-
tion to the system and this may be one reason why we were not able to prove a
stronger convexity statement.

5.6 Implementation

In this section we give a very brief description about implementing deFBA (and
its cFBA variant) and what are necessary parts of this implementation. For an
example implementation focused on deFBA we refer the reader to the github
repository athttps://github.com/alexandra-m-reimers/deFBA.

5.6.1 Variables

The variables of a deFBA problem are the fluxes v, the amounts for the extra-
cellular metabolites and macromolecules n, and their derivatives n. Each of
these variables in turn has N instances, one for each time point of the discretiza-
tion. We can therefore imagine v for instance as a matrix with N rows and |Z%)|
columns. The same then applies for n and n. Therefore, a deFBA numerical
solution is a structure made of these three different matrices. At this point it is
clear that a necessary ingredient of the implementation are two functions that
can convert from the solution vector to the variable matrices (foStruct) and back
(toVector) for ease of access of the results as well as for easily formulating the
constraints.

In addition to v, n, n, if one does not want to split reversible reactions, then
helper variables for imposing the capacity bounds are needed. As an example,
assume reversible reaction r; and irreversible reaction r, are both catalyzed by
enzyme e, with turnover rates k; and k; respectively. Then the capacity bound
for them is given by

vy, ()] + vy, (1)
k1 k>

=ng, ().

Obviously, we need to reformulate this constraint since LP solvers cannot han-
dle absolute values. One way to do this, is to introduce helper variables E and
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formulate this constraint as

v, () < ki1 Ey, (1)
—v,, (t) < k1 -E,, (1)
v, (£) < koEy, (1)
E,, (1) +E,, (1) <ng, (1)
E(1)=0

This formulation allows us the flexibility of also having different turnover rates
for the forward and the reverse direction of a reaction. E has the same structure
and dimensions as the vector v.

However, another special case to be handled is also the case where another en-
zyme ey catalyzes r» and another reaction r3. We already notice that we would
need a second, different E,, (¢) variable for implementing this constraint as ex-
plained above. Therefore, we need to look at E as a three dimensional matrix,
with one dimension for the reactions, one for the enzymes, and one for the time
points. We therefore talk for example about variables like Efll (£). At this point it
becomes even more clear that the functions toStruct and toVector are crucial for
avoiding implementation mistakes.

5.6.2 Constraint matrix

The constraint matrix of a deFBA (or cFBA) problem contains several constraint

types:

* differential equations equality constraint for external metabolites (e.g.
(5.3)) and macromolecules (e.g. (5.6)-(5.7))

» steady-state equality constraint for internal metabolites (e.g. (5.4)-(5.5))

* enzyme capacity inequality constraint (e.g. (5.8)-(5.9))

e discretization equality constraint for relating n to n (e.g. (5.12))

* inequality constraint to impose quota macromolecule production (e.g.
(5.11)).

For ease of implementation and debugging, we recommend that a function is
written for constructing the submatrix of the constraint matrix and the subvec-
tor of the right hand side corresponding to each type of constraint. Then these
submatrices and subvectors can be merged and passed to the solver. In a similar
fashion, a function should be written to build the objective vector.

To build all these constraint submatrices, a key element is a function that, given
avariable type (e.g. v), the reaction (resp. component) index, and the time point
returns the index of this variable in the solution vector (getIndex).
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5.6.3 Bounds on variables

Using the function getindex, positivity constraints and bounds on irreversible or
exchange reactions can be formulated for each time point. In a similar fashion,
dynamic bounds as the light uptake in chapter 6 can be formulated.

5.6.4 Shift experiments

In case one wants to perform nutrient shift experiments as in chapter 7, some
of the constraints need to be adjusted. For example, assume that at time point 3
one nutrient source y; is removed. Obviously, the constraint

ny, (3) =ny, (2) + h-ny, (2.5)

no longer holds. In such cases, this discretization constraint needs to be re-
moved. In addition, the constraint that Ib,, (3) = uby, (3) = 0 needs to be added,
where b, ub are the lower and upper bound vectors of the LP.

The best way to implement such constraints is to have a structure as part of
the model that stores the variable type (n in this case), the index of the shifted
compound (index of y;) and the time point at which the shift occurs (3 in this
case). This structure then has one field for each shift.

Shifts in nonlimiting extracellular metabolites (e.g. O, in yeast), for which we do
not model an explicit amount but instead the amount taken up is only bounded
by the turnover rate and the transporter amount, are easier to implement since
we do not need to drop any constraint, but only impose flux bounds at the re-
spective time points.

5.6.5 Short term deFBA

In case one wants to implement the short term deFBA (Lindhorst et al., 2016),
which we have introduced briefly in section 5.1.3, aloop around a typical deFBA
run is sufficient. At each step of the loop a deFBA problem is solved over the
given prediction horizon (#f) and the values of the first time point of the solution
are stored and passed on as initial values to the next iteration. A way of finding
the minimum prediction horizon such that exponential growth is preferred to
linear growth (cf. section 5.1.2) is described in (Lindhorst et al., 2016).

In case shift experiments are implemented, with each iteration the shift time
point comes “closer” and the time point values for the shifts need to be updated
also.
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Chapter 6

Cellular tradeoffs and optimal
resource allocation during
cyanobacterial diurnal growth

The work presented in this chapter has been done in collaboration with
Henning Knoop and Ralf Steuer. This work has been published in Pro-
ceedings of the National Academy of Sciences (PNAS) under (Reimers
et al., 2017a) and can be found at http://dx.doi.org/10.1073/pnas.
1617508114.

Cyanobacteria are an integral part of the Earth’s biogeochemical cycles and
a promising resource for the synthesis of renewable bioproducts from atmo-
spheric CO,. Growth and metabolism of cyanobacteria are tied to the diurnal
rhythm of light availability. So far, however, insight into the stoichiometric
and energetic constraints of cyanobacterial diurnal growth is limited. In this
chapter we investigate the optimal allocation of cellular resources during
diurnal phototrophic growth using a genome-scale metabolic reconstruction
of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate
phototrophic growth as an autocatalytic process and solve the resulting time-
dependent resource allocation problem using cFBA. Based on a narrow and
well-defined set of parameters, we obtain an ab initio prediction of growth
properties over a full diurnal cycle. The computational model allows us to
study the optimality of metabolite partitioning during diurnal growth. The
cyclic pattern of glycogen accumulation, an emergent property of the model,
has timing characteristics that are in qualitative agreement with experimental
findings. Our model gives insight into the dynamic resource allocation problem
of phototrophic diurnal growth. Furthermore, it serves as a general framework
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to assess the optimality of metabolic strategies that evolved in phototrophic
organisms under day-night conditions.

6.1 Introduction

Cyanobacterial photoautotrophic growth requires a highly coordinated distri-
bution of cellular resources to different intracellular processes, including the de
novo synthesis of proteins, ribosomes, lipids, and other cellular components.
For unicellular organisms, the optimal allocation of limiting resources is a key
determinant of evolutionary fitness. The protein economy and its implications
for bacterial growth laws have been studied extensively. However, this was done
almost exclusively for heterotrophic organisms under stationary environmen-
tal conditions (Molenaar et al., 2009; Scott et al., 2010; Flamholz et al., 2013;
Vazquez-Laslop and Mankin, 2014; Hui et al., 2015; Burnap, 2015; Weil3e et al.,
2015).

For photoautotrophic organisms, including cyanobacteria, growth-dependent
resource allocation is further subject to light-dark cycles that partition cellu-
lar metabolism into distinct phases. Recent experimental results have demon-
strated the relevance of time-specific synthesis for cellular survival and growth
(Shultzaberger et al., 2015; Diamond et al., 2015; Lambert et al., 2016). Nonethe-
less, the consequences of a day-night environment on the cellular resource al-
location problem are insufficiently understood, and computational approaches
developed for heterotrophic organisms are not straightforwardly applicable to
diurnal phototrophic growth (Westermark and Steuer, 2016).

Here, we use dynamic optimization to study optimal diurnal resource allocation
for phototrophic growth. We are mainly interested in the stoichiometric and
energetic constraints that shape the relationship between the maximal growth
rate and the relative partitioning of metabolic, photosynthetic, and ribosomal
proteins during a full day-night cycle. We aim to obtain a prediction of the prop-
erties that arise from a narrow and well-defined set of parameters and assump-
tions about cyanobacterial growth — and to contrast these properties with exper-
imentally observed behavior.

We assemble and numerically evaluate an autocatalytic genome-scale model of
cyanobacterial growth, based on a metabolic reconstruction of the cyanobac-
terium Synechococcus elongatus PCC 7942, which has been provided by Hen-
ning Knoop. Our model significantly improves upon previous computational
analyses of diurnal phototrophic growth (Knoop et al., 2013; Cheung et al., 2014;
Knies et al., 2015; Riigen et al., 2015). Key aspects of the model are depicted in
figure 6.1.

Our main question is: What are the rate and temporal order of synthesis reac-
tions such that we obtain maximal growth of a cyanobacterial cell in a day-night
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Figure 6.1: An autocatalytic growth model of Synechococcus elongatus PCC
7942. Energy and reducing agents from the photosynthetic light reactions drive
the fixation of inorganic carbon via the Calvin-Benson cycle, as well as the sub-
sequent synthesis of cellular macromolecules. The synthesis of macromolecules
is modeled as described in chapter 4. The capacity of each metabolic reaction
depends on the availability of its catalyzing enzymes. Enzymes are translated
using their amino acids, which are themselves the products of metabolism. The
abundances of all macromolecules relevant to cellular growth (enzymes, trans-
porters, photosynthetic and respiratory protein complexes, phycobilisomes,
and ribosomes) are time-dependent quantities that are governed by differential
equations, as explained in chapter 2.

environment? To answer this, we build a resource allocation model of Syne-
chococcus elongatus PCC 7942 as explained in chapter 4. Our key results include:

* a prediction of the timing of intracellular synthesis reactions that is in
good agreement with experimental observations about metabolite parti-
tioning during diurnal growth,

* limits on the estimated maximal rate of phototrophic growth that are
close to observed experimental values, suggesting a highly optimized
metabolism,

* a predicted optimal timing of glycogen accumulation that is in good
agreement with recent experimental data.
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6.2 Model building

6.2.1 The genome-scale reconstruction

The genome-scale reconstruction provides a manually curated stoichiometric
description of all metabolic reactions relevant to cellular growth: Photons are
absorbed by light-harvesting antennae, the phycobilisomes, attached primarily
to photosystem II (PSII). The energy derived from absorbed photons drives wa-
ter splitting at the oxygen-evolving complex (OEC) and, via the photosynthetic
electron transport chain (ETC), regenerates cellular ATP and NADPH. The ETC
consists of a set of large protein complexes, PSII, the cytochrome bgf complex
(Cytbgf), photosystem I (PSI), and ATP synthase (ATPase), embedded within the
thylakoid membrane.

The metabolic network was reconstructed by Henning Knoop using the recon-
struction of Synechocystis sp. PCC 6803 (Knoop et al., 2013) as a scaffold. Main
differences to the reconstruction of Synechocystis sp. PCC 6803 are:

* asmaller genome size, 3.57 megabases for Synechocystis sp. PCC 6803 ver-
sus 2.8 megabases for Synechococcus elongatus PCC 7942

¢ no known tocopherol synthesis

* no known PHB and cyanophycin pathways

* no known echinenone synthesis (carotenoid)

no known delta 6 and 15 fatty acid desaturases

no annotated urea metabolism

methionine synthesis is annotated

only alternative synthesis pathway for branched chain amino acids (Wu

etal., 2010)

¢ incomplete TCA cycle that cannot operate in cyclic mode

e neither the bypass of (Zhang and Bryant, 2011), nor the GABA
shunt (Knoop et al., 2013) is annotated

* malate dehydrogenase and glutamate dehydrogenase are not annotated

6.2.2 The macromolecules of autocatalytic growth

Given the metabolic network reconstruction, we use the gene-reaction map-
ping together with the sequence annotations to describe the production of each
metabolic enzyme from the metabolic network, as detailed in chapter 4.

Ribosomes

Ribosome synthesis is modeled analogously to enzyme production. We assem-
bled a list of the ribosomal proteins, their corresponding genes, and the ribo-
somal RNA, based on the KEGG resource. Table Al in Appendix C provides the
ribosome composition of Synechococcus elongatus PCC 7942.

The ribosome translation rate of Synechococcus elongatus PCC 7942 has not
been measured directly, we therefore assume a rate similar to that of Escherichia
coli, namely 15 amino acids per second (Young and Bremer, 1976).
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Synthesis of photosystems and the electron transport chain

The photosynthetic electron transport chain consists of a number of protein
complexes. Their location is of lesser importance for the resource allocation
problem, so only the ETC of the thylakoid membrane is considered. The protein
complexes of the ETC constrain flux through the ETC analogously to metabolic
enzymes that constrain biochemical flux.

The photosynthetic electron transport chain

The reactions of photosystem I have been merged together into a single overall
reaction:

1photon + 1 oxidized ferredoxin + 1 reduced plastocyanin

— 1 oxidized plastocyanin + 1 reduced ferredoxin.

Similarly, the reactions of photosystem II have been merged together into the
overall reaction:

4photons+2H,0+2plastoquinone+4 H* — 10,+2, plastohydroquinone+4H™.

The reactions of the cytochrome bgf complex have been merged together into:
1 plastohydroquinone + 2 oxidized plastocyanin + 2 H*

— 2reduced plastocyanin + 1 plastoquinone + 4H™.

The NADPH dehydrogenase complex (NDH I) is known to participate in a variety
of reactions within respiration, cyclic electron transport around PSI and CO,
uptake (Ma and Ogawa, 2015). Its precise role is still not fully understood. In our
model, NDH I catalyzes the following two reactions:

NADPH +5H" + plastoquinone — NADP* + plastohydroquinone + 4 H*,

and
NADPH +4H™ + plastoquinone + H,0 + CO»

— NADP™ + plastohydroquinone + 4H* + HCO3 .

The gene compositions of PSI, PSII, NDH I and Cytb6f and the corresponding
stoichiometries are provided in tables A2-A4 in Appendix C. We note that pig-
ments are necessary compounds for the synthesis of the photosystems. For pig-
ments whose stoichiometries are not known, a separate quota metabolite is in-
cluded to enforce their presence in the model biomass.
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Phycobilisomes

Phycobilisomes (PBS) are protein complexes that act as light harvesting anten-
nae (Thomas et al., 1993). The captured energy is transferred to the PSII chloro-
phyll. In Synechococcus elongatus PCC 7942, phycobilisomes are essential for
the correct functioning of PSII (Bhalerao et al., 1995). PBS attach and detach
from the photosystems and in this way regulate how much light is absorbed and
transferred to the photosystems (Liu et al., 2013). Since PBS are assumed to be
predominantly associated with PSII, we only consider energy transfer from PBS
to PSII.

From a structural perspective, the phycobilisomes are made of two cylinders
that form the core and six light harvesting antennae of variable length (Bhalerao
et al., 1995; Campbell et al., 1998). The antenna length influences the efficiency
of the phycobilisome: the longer the antenna, the more efficient the light har-
vesting. In times of high light intensity, the antennae can be shortened and the
proteins that belonged to them are degraded back into individual amino acids.

Thus, we model the photosystem II and phycobilisomes in individual states, ac-
cording to how long the antennae are. We consider as base state a PSII to which
the core of the phycobilisome is attached. Cyanobacteria with such phycobil-
isomes are able to survive at very low growth rates (Bhalerao et al., 1995). We
then model transitions to other states where the antennae size is increased by
reactions that “consume” the respective proteins and produce a complex with
longer antennae. The respective transitions are shown in figure 6.2. The gene
composition of a phycobilisome is provided in table A3 in Appendix C.

Respiratory chain

The gene composition of ATPase, Cytochrome c oxidase, and succinate dehy-
drogenase are detailed in table A4 in Appendix C.

The model encompasses a total of 465 macromolecules and 1112 reactions, in-
cluding 645 metabolic and exchange reactions, 616 metabolic genes, as well as
467 reactions describing the synthesis of macromolecules.

6.3 Model constraints and objective
Before we list all the constraints, we would like to make two observations:

¢ Glycogen is the main storage component of cyanobacteria. It is typically
accumulated during the day and consumed over the night as energy
source to ensure survival. In our model we denote it by G and allow it to
accumulate.

* Ribosomes, denoted by R, are considered as enzymatic component, and
thus Re é.
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Figure 6.2: PSII-phycobilisome complexes and the transitions between them.
The PSII-phycobilisome complex reactions labeled with R are assumed to be
catalyzed by the ribosome, while reactions labeled with S are assumed to be
spontaneous. The following abbreviations are used: PSII Core PBS - Complex
of photosystem II and core phycobilisome, PSII Core Rod 1 PBS - Complex of
photosystem II, core phycobilisome, and 6 antennae of length 1, PSII Core Rod 2
PBS - Complex of photosystem II, core phycobilisome, and 6 antennae of length
2, PSII Core Rod 3 PBS - Complex of photosystem II, core phycobilisome, and 6
antennae of length 3, Rod 1 - rod protein made of phycocyanin, CpcA, CpcB and
CpcG, Rod 2 - rod protein made of phycocyanin, CpcA, CpcB and CpcC.

6.3.1 Constraints

Steady-state versus time-dependent quantities

As in described in chapter 2, we assume metabolism to be at steady-state,
whereas amounts of macromolecules are time-dependent quantities. In partic-
ular, every metabolite .#; is assumed to be produced at all time points at the
same rate as it is consumed. Therefore, we obtain the constraint

dn_y (1)
dt

for all internal metabolites at all time points ¢.

=S.uxv(t) =0, (6.1)

Enzymes and ribosomes have to be synthesized by cellular metabolism and their
dynamics are governed by a system of differential equations at all time points ¢,

dng (1)
dt

= Sg.V(1). (6.2)
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Similarly, quota metabolites, which we denote by the set 2, have to be synthe-
sized using precursors from cellular metabolism, therefore all time points ¢ we
have

dng(1)
dt

= So.v(1). (6.3)

To account for basic cell maintenance in the absence of light, we allow the glyco-
gen G to accumulate and be consumed. Therefore, glycogen amount is allowed
to vary and obeys the differential equation

dng (1)
dt

=S« V(1). (6.4)

So, putting all differential equations together, we obtain

dn; (1)
dt

= S;«v(D), VieEUZ2UG. (6.5)

Enzyme amounts constrain reaction rates

Enzyme amounts constrain reaction rates within the metabolic network as ex-
plained in chapter 2. Turnover numbers for metabolic enzymes are retrieved
from the BRENDA database (Schomburg et al., 2013). A known problem in this
context is the fact that recorded values for a specific enzyme spread over sev-
eral orders of magnitude. In our model we deal with this problem by using the
median value of all wild type turnover numbers reported for an enzyme. For en-
zymes with no annotated values for k.,;, we follow the strategy used by (Shlomi
et al., 2011): we use the median value of all the known wild type turnover rates
we found as k.,;. An alternative strategy to deal with unknown k., values has
also been provided in section 4.4.

Turnover numbers for the 7 macromolecules of the ETC are sourced from the
primary literature and listed in table 6.1.

Table 6.1: Turnover numbers sourced from the literature for the macromolecules
of the electron transport chain.

Compound  Catalytic efficiency Reference

PSI 5005~ ! (Vermaas, 2001)

PSII 1000 s} (Vermaas, 2001)

NDH-1 130s7! (Teicher and Scheller, 1998)
Cytb6f 20057t (Vermaas, 2001)

Cyt c oxidase 670s7! (Howitt and Vermaas, 1998)
SDH 130057t (Cooley and Vermaas, 2001)
ATPase 1000s~!  (Nitschmann and Peschek, 1986)

110



6.3 Model constraints and objective

For irreversible enzyme-catalyzed reactions, our constraint then reads
v (1) < kl,me, (1), (6.6)

for all irreversible reactions j at all time points ¢. In the case of reversible reac-
tions, both directions are constrained

vi(t) < klimg (0, vi(0) =~k ng (1), 6.7)

where ki;rt and ki;t is the turnover rates for the forward and reverse direction
respectively. We impose these two constraints at each time point ¢ for each re-
versible reaction j. The constraints apply only for enzyme-catalyzed reactions.

Rates of spontaneous reactions remain free of these bounds.

In case several reactions are catalyzed by the same enzyme, their total flux
weighted by the inverse of the respective turnover numbers is bound by the
enzyme amount. Such a situation happens, for instance, in the case of the
ribosome, as detailed in section 2.2.2.

Note that enzyme production reactions are irreversible and hence the bound is
only applied for the forward direction of the reaction, while the reverse direction
is prohibited using a lower flux bound of zero at all time points.

Amounts of quota compounds

The model includes eight quota compounds: DNA, RNA, cell wall, pigments,
noncatalytic proteins, lipids, cofactors and vitamins, ions. These are modeled
dynamically and their initial values are set to be equal to their corresponding
amounts in 1 gram dry weight of Synechococcus elongatus PCC 7942 cells and
displayed in table A5 in Appendix C. We denote their initial amounts as the vec-
tor qo, and therefore we require that

ng (fp) = qo. (6.8)

We additionally impose that, together with metabolic proteins and glycogen, the
initial composition vector adds up to one gram, and thus obtain the additional
constraint

Y n;(fp) + Y n;(t) -MW; +ng(1p) = 1. (6.9)
ie2 €&

We note that protein amounts are expressed in mmol, while the glycogen and
the quota amounts are expressed in grams. This why in the constraint above we
multiply the enzyme amounts with their molecular weights MW;.
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Adjustment of pigment quota

Chlorophyll, B-carotene and phylloquinone are important ingredients of the
photosystems. Therefore, the reactions building the photosystems already in-
corporate these pigments. To account for this, the general pigment quota re-
quirements have to be adjusted. Without the adjustment, the original biomass
requirements are

0.841 mmol Chlorophyll a + 0.136 mmol f—Carotene

+0.321 mmol Zeaxanthin + 0.064 mmoly—Carotene

+0.068 mmol Phylloquinone — 1 g Pigment,

and the initial pigment quota would be 0.0244 g.
Since chlorophyll a, a-carotene and phylloquinone are no longer part of the
quota compounds, we identify the factor f such that

f+0.321 mmol-MWgzeaxanthin + f - 0.064 mmol - MW, _carotene = 1 g Pigment

and then change the initial pigment quota to % g. We obtain f =4.609, and

therefore the pigment quota formation equation becomes
1.479 mmol Zeaxanthin + 0.295 mmol y—Carotene — 1 g Pigment,

and the initial pigment quota is 0.0053 g.

Periodicity of the system

We consider diurnal growth as a periodic system. Hence, we enforce that all
macromolecule amounts at the end of the time period are multiples of their
amounts at the beginning of the time period. We thus obtain the constraint

a-n(t) =n(ty). (6.10)

This constraint ensures balanced growth of the whole system as already de-
scribed by (Riigen et al., 2015).

Non-catalytic proteins and constraints on initial protein amounts

To account for proteins without catalytic activity within our model, we include
additional proteins as a quota compound, the synthesis of which is also cat-
alyzed by the ribosome.

According to previous quantitative proteomics data by (Guerreiro et al., 2014),
the proteins included in our model, make up a fraction of 45% of the total pro-
teome of Synechococcus elongatus PCC 7942. In the original biomass reaction of
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the metabolic model, proteins make up 0.51 g in a gram dry weight of cells. Of
these, 45% are catalytic proteins, and the remaining 55% represent quota pro-
teins.

The model is able to choose the initial distribution of catalytic proteins, but
needs to obey constraint (6.9). For fast growing cells of Synechococcus elongatus
PCC 7942 no experimental estimates are available. We conjecture that the
quota of non-catalytic proteins for fast growing Synechococcus elongatus PCC
7942 is significantly lower than 55%. Growth rate increases significantly with
a decreasing amount of quota compounds (see figure 6.7 and discussion).
We note that minimal models of (heterotrophic) cellular growth typically also
include a growth-independent fraction of protein, typically of the order of
50% (Scott et al., 2014).

Light uptake

Light availability is modeled by a half-wave rectified sine function that mimics
the day-night cycle

I = lmaxsm( i ) if sm( 7 )20 6.11)
0 else,

where t¢ =24 h and [jq, the maximum light intensity that occurs ¢¢/4 hours
after dawn.

The amount of light absorbed by the system is proportional to the combined
amount of photosystem I and photosystem II-phycobilisome complexes at the
respective time point multiplied by their respective effective cross sections:

Vpro0(t) < o psy-npsy(2) - 1(2) (6.12)

Vpego(t) < 0 psir-npsy (1) - 1(1), (6.13)

where vp;gp and vpggp are the fluxes of absorbed photons respectively, and o ps;
and o pgyy are the cross sections of photosystems-phycobilisome complexes. We
do not distinguish between photons of different wavelength.

The cross section of PSI is assumed to be equal to 0.5 nm?, independent of the
status of phycobilisomes. The cross section of PSII depends on the length of the
rods of its attached phycobilisome. A PSII with only the core of the phycobili-
some is assumed to have a cross section of 0.1 nm?, if the rods of the phycobili-
some have length one, then the cross section is 0.33 nm?, rods of length two give
a cross section of 0.67 nm?, and full length rods give a cross section for PSII of 1
nm? (Mackenzie et al., 2004). The effective cross sections only affect absorbed
light versus incoming light intensity and do not qualitatively affect simulation
results.
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Maintenance

Similar to conventional FBA models, we assume that there are other processes
that require energy and are not considered by our model. Therefore, the model
contains a non-growth associated maintenance reaction that hydrolyzes ATP
into ADP and P;. We enforce alower bound of 0.13 mmol-h™! for the flux through
this reaction at each time point in order to account for energy consumption of
general maintenance.

Discretization of time points across the diurnal cycle

As detailed in chapter 5, we discretize time using the implicit midpoint rule.
Derivatives n and fluxes v are evaluated at the middle of the discretization in-
tervals, while macromolecule amounts n are evaluated at the ends of the dis-
cretization intervals.

6.3.2 The optimization objective

As optimization objective, we assume that the cell has evolved to grow as much
as possible within a full diurnal period, that is, the regulatory system has evolved
such that the multiplication factor « involved in constraint (6.10) is maximal.
Even if this assumption of optimality turns out to be incorrect, the optimal so-
lution with respect to the assumption is still of high interest to compare with
experimentally observed behavior. It is only by knowledge of optimal solutions
of the resource allocation problem that suboptimal behavior, or incorrect as-
sumptions and parameters, can be identified.

We start our simulation with 1 gram dry weight and track the changes in the
cellular composition and growth over day-night cycles.
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6.3.3 The quadratic program and binary search

The optimization problem is given by

max «a
a,v,n,n
ti+ti_
S.t. SM*V(]—”) = 0;
2
ti+tj- ti+ti-
ni(]—”):s,-*v(’—”), Vie&U2UG,
2 2
vi(T52) ng) + ety
i n;(t;)+ng(ti—
y — - T e Vkeé,
IEVk kcat 2
(2] et +niteion)
i ng(t;)+ng(ti_
- ) : < &0 kjl, Vkeé&,
ievi\Irr kcm 2
ng (%) =qo,

an(fp) =n(ty),
Y mi(fp) + Y m;(to)-MW; +ng(f) =1,

€2 €€

Vlight(tj +2tj_1) < l(tj i tj‘l),

VP700( d +2tj_l) <opsr- npgy(t}) +2npsl(tj—1) ‘ l(tj +2tj_1 )’

VPBBO(M) =0opsi- npsi(4)) + 0psir(tj-1) -l(tj +tj-1 ) ,
2 2

Vmaintermnce(m) > 0_13'

n(tj) =n(tj-1) + (¢ = tj-1) n(%)

ti+tiq
m(%),n(m >0.

for all j € {1,..., N}, where v; denotes the set of reactions that are catalyzed by
enzyme k, and N is the number of discretization points.

As pointed out in chapter 5, this formulation of the problem gives rise to dis-
cretization errors, so in the implementation of the problem the dilution formu-
lation described in section 5.2.3 has been used.

We notice that, because a and n are both variables in the model, our program
contains a quadratic constraint, namely the one that guarantees the periodic-
ity of the system. Since we aim to maximize a, we run a binary search and
for each new value of a we test the feasibility of the resulting linear program
asin (Goelzer et al., 2011; O’Brien et al., 2013; Riigen et al., 2015).
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Due to the numerical condition of our problem, we chose to solve the individual
feasibility linear programs using the SoPlex 2.2.1 optimization package (Wun-
derling, 1996; Gleixner et al., 2012, 2016), as explained in chapter 5.

All code is provided at

https://sourceforge.net/projects/cfba-synpcc7942/.

6.3.
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4 Further model specifications

¢ Growth rate and multiplication factor: As a reminder, relationships be-
tween growth rate u (unit 2~1), the multiplication factor a (unitless), and
the division time Tp (unit k) are

Ina In(2)
a = exp(u-24h), p:m, TD:T.

(6.14)

¢ Light intensity and the cross sections of photosystems: Figure 6.3
indicates that the values used as photosystem cross section and sourced
from (Mackenzie et al., 2004) are too low. However, since a modification
of parameters with hindsight would violate our aim of an ab initio pre-
diction of emergent properties, we decided to keep figure 6.3 unchanged.
However, the absolute value of the incoming light intensity only impacts
the model via the effective cross sections. A change of the cross sections
results in a shift of incoming light intensity, with no further impact on
any simulations or model-derived property. Since the cross section
is quadratic as a function of diameter, small changes in the effective
diameter may result in significant changes with respect to the saturating
light intensity.

¢ Constraints and range of applicability: The evaluation of our model is
based on the assumption of a stationary culture in a periodic environ-
ment. This equation primarily holds on the culture level. That is, under
stationary conditions, we expect average cell composition to be invariant
with respect to a full diurnal cycle (either in a turbidostat setting or via
serial dilution).

However, equation (6.10) must not necessarily hold for an individual cell.
Nonetheless, equation (6.10) is still a valid assumption for our analysis,
based on the following arguments: Firstly, cyanobacterial growth hap-
pens on diurnal time scales. Typical division times are approximately 24h.
Faster rates, up to 2.5 — 3% are only observed under highly optimized con-
ditions. Secondly, our main interest are (metabolic) synthesis reactions
related to diurnal growth. We conjecture that such cellular temporal pro-
grams go beyond the timespan of a single cell cycle. Indeed, it has been
shown that the phase of cellular oscillations persists also after division
events (Elowitz and Leibler, 2000). It is therefore reasonable to assume


https://sourceforge.net/projects/cfba-synpcc7942/

6.4 Results

that an evolved temporal metabolic program to optimize resource alloca-
tion reflects the external (light) conditions, according to equation (6.10),
rather than, for example, an individual cell cycle. Our assumption im-
plies that a cell has evolved to synthesize glycogen according to the global
resource allocation problem considered herein, even though dusk might
happen only after 1 —2 division events.

We do not expect our analysis to capture cellular resource allocation for
very slow division times. While equation (6.10) certainly remains appli-
cable, other constraints than the energetic implications of de novo protein
synthesis, such as protein turnover and repair, become relevant, and even-
tually dominant. Such additional constraints may be included within the
model, but are outside the scope of the current analysis.

* Possible improvements of the model: We consider our analysis to be a
reasonable first installment to evaluate the energetic and stoichiometric
implications of diurnal phototrophic growth. Nonetheless, the model al-
lows for a number of improvements to evaluate specific environmental
conditions in future analysis. In particular, carbon limitation might be
considered which requires a more detailed representation of carbon cy-
cling processes and the carboxysome. Right now the cost of carbon cy-
cling is part of general maintenance. Likewise, limitations of other fac-
tors, in particular nitrogen, may be included. We also expect that a more
detailed representation of photodamage, as a result of high light intensity,
should be considered in future installments of the model. In each case,
quantitative information about the respective processes exists. A particu-
lar challenge, however, is to formulate the respective processes such that
a solution of the respective dynamic optimization problem remains com-
putationally feasible.

6.4 Results
6.4.1 Growth under constant light

Prior to evaluating diurnal dynamics, we investigate light-limited growth under
constant light. Our aim is to compare the results to conventional flux balance
analysis and thereby to verify the consistency of the model. Solving the global re-
source allocation problem, we obtain the multiplication factor a and the growth
rate u = log(a)/24h as a function of the light intensity, as well as the cellular
composition for different growth rates. Key results are shown in figure 6.3.

To compare model properties with previous results obtained using FBA, we use
areference light intensity I = 150 umol photons s~ m ™2 resulting in the absorp-
tion of 15.9 mmol photons gDW~'h~!, a growth rate of y = 0.03 ™! (multipli-
cation factor a = 2), and an oxygen evolution rate of 1.92 mmol gDW~! h~!,
These values are in quantitative agreement with values previously estimated us-
ing FBA (Nogales et al., 2012; Knoop et al., 2013). In particular, performing a
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Figure 6.3: Balanced growth under constant light. A: The resulting growth rate
1 as a function of light intensity is consistent with a Monod growth law. B: Oxy-
gen evolution as a function of the growth rate u. C: Ribosome content per cell as
a function of i, assuming a cell dry mass of 1.5 pg. D: The cellular composition

for a light intensity of 150 umol photons m=2 s~ 1.

conventional FBA on the metabolic reconstruction of Synechococcus elongatus
PCC 7942 using a static biomass objective function (BOF) and a light uptake of
15.8 mmol absorbed photons gDW~! h~! results in an oxygen evolution rate of
1.92 mmol gDW~! h~! and a growth rate of u = 0.03 h~!. We note that quantita-
tive agreement between results obtained from the resource allocation problem
and conventional FBA cannot be expected a priori— as the former are also based
on capacity constraints induced by kinetic parameters whose values are glob-
ally sourced from databases. In contrast to the static pre-assigned BOF used in
FBA, also the cellular composition of the autocatalytic model is an emergent re-
sult of the global resource allocation problem (figure 6.3D). The allocated abun-
dance of catalytic macromolecules is in quantitative agreement with previously
reported BOFs (Nogales et al., 2012; Knoop et al., 2013).

6.4.2 Adaptations to different light intensities

When solving the model for different (but constant) light intensities, the growth
rate, as well as the oxygen evolution rate, increase with increasing light inten-
sity (figures 6.3A and 6.3B). We note that light uptake depends on the cross sec-
tion of PSII, reported to be ops;y = 1 nm? (Mackenzie et al., 2004). The results
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shown in figure 6.3 indicate that the reported value significantly underestimates
the actual effective cross section. Similar to results obtained for models of het-
erotrophic growth (Molenaar et al., 2009; Scott et al., 2010; Weil3e et al., 2015), the
relative amount of ribosomes linearly increases with increasing growth rate (fig-
ure 6.3C). We observe that growth as a function of light saturates at a growth rate
of Umax = 0.1281 Kl (multiplication factor a = 18, doubling time T; = 5.4 h),
estimated using a Monod growth equation (figure 6.3A). The maximal doubling
time obtained from the model is slightly lower but still within the range of the
fastest published doubling time of Synechococcus elongatus PCC 7942, reported
by (Yu et al., 2015) as T; =4.9+0.7 h (u=0.14 h™1).

6.4.3 Sensitivity analysis

Since the model primarily provides an upper bound for the maximal specific
growth rate, we performed a sensitivity analysis of growth rate as a function of
estimated parameters, in particular with respect to the catalytic efficiencies k¢t.

While the sensitivity with respect to the catalytic efficiencies of individual en-
zymes is low (figures 6.4-6.6), a major determinant of maximal growth rate is
the ratio of non-catalytic proteins (figures 6.7-6.8). Based on recent proteomics
data for slow growing cells of Synechococcus elongatus PCC 7942 (Guerreiro et al.,
2014), the relative quota of non-catalytic proteins was determined to be 55% of
total protein mass. No experimental estimates exist for fast growing cells. If the
true ratio for fast growing cells is assumed to be ~ 20%, the resulting growth rate
is fmax = 0.20 h™1, corresponding to a doubling time of Tp = 3.5k, and slightly
exceeding the reported maximal growth rate of Synechococcus elongatus PCC
7942.
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Figure 6.4: Sensitivity of the multiplication factor to k.,; values for constant
light (A: low light, B: high light). To test for the importance of individual k.,
we randomized the assignment between the k.,; and their respective enzymes.
That is, enzymes are assigned a k.,; drawn from the original distribution (ran-
dom sampling with replacement). The randomization is motivated by the as-
sumption that there is no systematic bias in BRENDA as far as the overall distri-
bution of k.4, is concerned, but individual assignments may be erroneous. The
figure shows the distribution of the multiplication factor « after randomization.
A: For a light intensity of 150 umol photons s~! m~2 we observe a low sensitiv-
ity. The median a;,,04iqan = 1.83 of the distribution is close to the original value of
a = 1.99 (before randomization), which is indicated by the arrow. B: For a light
intensity of 6000 umol photons s~' m~2 we observe a highly skewed distribu-
tion. The median of the distribution «,¢4iz, = 5.0 is much lower than the orig-
inal reference value of a = 18.6 (1 = 0.12), which is indicated by the arrow. The
fraction of randomized «a larger than the reference value is 7.2%. This does not
allow claiming a significant difference between original and randomized growth
rates. Nonetheless, models with randomly assigned k.,; seem to have consis-
tently lower growth rates than the original model. This fact is more pronounced
at high light intensities. We therefore hypothesize that the assignments of k.,
are not random, but evolutionarily selected to allow for higher growth rates. The
hypothesis requires further investigation. With respect to overall sensitivity, we
conclude that, at low light intensities, randomization of k.4, has no major effect
on growth rate.
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Figure 6.6: Dependency of the growth rate u on the ribosome translation rate
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the simulations is 15 amino acids per second. The simulation was run for a con-
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Figure 6.7: Sensitivity of the growth rate on the ratio of non-catalytic proteins
in the proteome. Shown is the multiplication factor a (A) and the growth rate
1 (B) as a function of the percentage of non-catalytic proteins in the proteome.
As expected, the growth rate increases for a lower amount of quota proteins. We
conjecture that the amount is variable and considerably lower for fast growing
cells. We note that the protein complexes of the ETC, phycobilisomes, and pro-
teins of central metabolism (including RuBisCO) are assumed to constitute the
bulk of the proteome and are all included as catalytic proteins within our model.
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Figure 6.8: Balanced growth under constant light when the percentage of non-
catalytic proteins is set to 20% of the proteome. Shown is the multiplication
factor a as a function of light intensity. The maximal growth rate obtained in
this case is = 0.2019 1.
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6.4.4 A day in the life of Synechococcus elongatus PCC 7942

Going beyond constant light conditions, our main interest is a solution of the
resource allocation problem for diurnal light. The light intensity is modeled as
a sinusoidal half-wave with a peak value of 600 umol photons s~! m~2, except
otherwise noted. We seek to identify a time-dependent flux pattern (or patterns)
that maximizes the overall growth of the cell during a diurnal cycle. Growth rates
and overall cellular composition (figure 6.9) depend on the peak light intensity.
The results (figures 6.10-6.11) are qualitatively similar to the case of constant

light already depicted in figure 6.3.
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Figure 6.9: Biomass composition over a full diurnal cycle. Shown is the relative
biomass composition over a full diurnal cycle as a result of the resource alloca-
tion problem. The simulations were run for a peak light intensity of 600 umol
photons s m™2.

Figure 6.12 shows the resulting metabolic flux pattern for a reference day as a
function of diurnal time, the relative flux values normalized to the RuBisCO car-
bon fixation flux, as well as selected examples of fluxes corresponding to differ-
ent functional categories.
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Figure 6.10: Growth in diurnal light conditions. A: Dependency of the multi-
plication factor a on the peak light intensity. Growth increases with increasing
light. B: Oxygen export flux at noon as a function of the multiplication factor a.
The plots are in good qualitative agreement with the results shown for constant
light in figure 6.3.
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Figure 6.11: Growth in diurnal light conditions. A: The ribosome content per
cell as function of the multiplication factor a. B: Dependency of the number of
PSII per cell on peak light intensity. C: Dependency of the number of PSI per
cell on peak light intensity. The numbers were inferred from the number per dry
weight, assuming a cell mass of 1.5 pg.
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Figure 6.12: A solution of the resource allocation problem over a full diurnal
cycle. A: Normalized metabolic fluxes as a function of diurnal time. To indi-
cate the periodicity of the solution, the beginning of the subsequent light pe-
riod is also shown (hours 24-30). We observe a highly coordinated metabolic
activity over a diurnal period. Metabolism is organized into distinct tempo-
ral phases, ranging from synthesis of amino acids and pigments, to synthesis
of lipids, DNA/RNA and peptidoglycan, to synthesis of co-factors. The func-
tional category of each flux is indicated by a black bar in the table adjacent
to the plot. B: Excerpt of the light period. The flux values are normalized to
RuBisCO flux and scaled to the unit interval. The normalization emphasizes
relative carbon partitioning rather than the dependence of metabolic fluxes
on total light input. C: Selected metabolic fluxes and their corresponding ca-
pacity bounds. Dashed red lines indicate the enzymatic capacities (propor-
tional to enzyme amount). Photosynthesis and reactions of central metabolism
closely follow light availability (e.g. transketolase TKL or PSII). Metabolic ac-
tivity during the early light period is dominated by amino acid synthesis (e.g.
DA7-P for synthesis of aromatic amino acids, nitrate uptake NITTR, and GTRR
towards chlorophyll). Later, metabolic activity shifts to DNA and RNA syn-
thesis (e.g. 5PRPPAT) and lipid synthesis (e.g. 3-OA-ACP-syn.), followed by
synthesis of peptidoglycan (e.g. GF6PAT) and co-factors (e.g. L-Asp-O. to-
wards nicotinamide adenine dinucleotide). During night, glycogen is utilized
via the glycogen phosphorylase (GP). Abbreviations: DAH7-P synthase, 3-deoxy-
D-arabino-heptulosonate 7-phosphate synthetase; GP, glycogen phosphory-
lase; AO, aspartate oxidase; GF6PAT, glucosamine-fructose-6-phosphate amino-
transferase; NITTR, nitrate transporter; THG, transhydrogenase; 5PRPPAT, 5’-
phosphoribosylpyrophosphate amidotransferase; GTRR, glutamyl-tRNA reduc-
tase; OAAS, 3-oxoacyl-ACP synthase; TKL, transketolase; PSII, photosystem II.
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The solution of the resource allocation problem exhibits a highly coordinated
metabolic activity over a diurnal period: oxygenic photosynthesis is active
during the light period. Inorganic carbon is imported and assimilated via the
Calvin-Benson cycle (anabolism), respiratory components (catabolism) are
active during the dark period. We highlight two results of the model.

First, we observe that growth is dynamic. The instantaneous growth rate, de-
fined in equation (4.1), follows a specific pattern over the light period. The
growth rate is low in the early morning, increases over the course of the light pe-
riod and decreases again towards dusk (figure 6.13). Such a dynamic growth rate
over a diurnal cycle was recently reported for the cyanobacterium Synechocystis
sp.- PCC 6803 (Angermayr et al., 2016), and is also observed when the sinusoidal
light input is replaced by the square-wave light-dark cycle typically employed in
experiments.
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Figure 6.13: Instantaneous growth rate (h~!) for reference day using sine-
wave and square-wave light input. The instantaneous growth rate is defined
as ﬁ -log(%), where biomass(t;) is the biomass amount at time point
t; and At = t; — t;—) (here At = 0.5h). The instantaneous growth rate has re-
cently been measured for Syncheocystis sp. PCC 6803 under diurnal conditions
(see figure 1A in Angermayr et al. (2016)). Therein, after a lag phase, the growth
rate increases until shortly after noon, and decreases again towards the evening.
Measurements were done under a square-wave light input. The initial lag phase
might be due to the sudden light increase at dawn, such effects are not captured
by our model. We observe a similar curve under both, sinusoidal, as well as
square-wave light input.

Secondly, we observe that growth is exclusive to the light period. During the
night phase, glycogen is used for cellular maintenance, serving as a substrate
for respiration via the oxidative pentose phosphate pathway and ultimately cy-
tochrome C oxidase. While this observation is unsurprising given the known
data on S. elongatus 7942 and other cyanobacteria, we emphasize that cessa-
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tion of metabolic activity at dusk is not self-evident but already the result of a
cellular tradeoff. Limited metabolic activity at night implies not using already
existing capacity in terms of enzymes and ribosomes during dark. The bene-
fit of avoiding or reducing the timespan of this idle cellular capacity, however,
would require additional storage compounds that must be synthesized prior to
the dark period . This, in turn, would entail additional enzymatic costs in terms
of storage synthesis capacity. To demonstrate this tradeoff, we conducted an in
silico experiment using a reduced cost for glycogen synthesis and utilization by
neglecting the synthesis costs of the respective enzymes. In this case, cellular
synthesis also prevails during the night phase, driven by an increased amount
of stored glycogen at dusk (figure 6.14). The experiment, however, also reveals
that the amount of necessary additional storage capacity is significant. The high
storage requirements explain why such behavior is not observed for the original
parameters.
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Figure 6.14: A hypothetical scenario in which the synthesis and breakdown of
glycogen requires no enzymatic costs. Glycogen synthesis and use are imple-
mented using spontaneous reactions. As expected, under these conditions it
is energetically more favorable to use synthesis reactions also during the night
phase, thereby lowering capacity requirements during the light phase, at the ex-
pense of increased glycogen storage. A: Timing and dynamics of glycogen accu-
mulation over the day. The plot shows that synthesis reactions during the night
period require a significant amount of glycogen. B: Metabolic activity of key re-
actions. Time courses are color-coded and normalized to the unit interval.

6.4.5 Metabolite partitioning during diurnal growth

The results obtained from the resource allocation problem can be compared to
known experimental observations about metabolite partitioning during diurnal
growth. While no '3C flux measurements over a full diurnal cycle have been
conducted yet, several studies have investigated the transcriptome, proteome
and physiology of S. elongatus PCC 7942 and other cyanobacteria over a full
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24 h diurnal cycle (Lehmann et al., 2013; Guerreiro et al., 2014; Diamond et al.,
2015; Saha et al., 2016). Published transcriptome studies of cyanobacteria typi-
cally show global rhythms in gene expression, including a significant reduction
of the transcriptional output during the dark period (Ito et al., 2009; Lehmann
et al., 2013; Beck et al., 2014). While environmental light-dark cycles are suf-
ficient to drive transcriptional and metabolic rhythms, metabolic rhythms are
also influenced by the cyanobacterial circadian clock and persist in cultures un-
der constant light (Markson et al., 2013; Pattanayak et al., 2014; Diamond et al.,
2015). Several transcriptomic studies described a broad temporal order of di-
urnal growth, typically distinguishing between genes peaking at dawn versus
genes peaking at dusk (Ito et al., 2009; Diamond et al., 2015). The former set
includes genes associated with the Calvin-Benson cycle, as well as genes as-
sociated with amino acid synthesis. The latter set includes genes associated
with glycogen mobilization and the oxidative pentose phosphate pathway (Di-
amond et al.,, 2015). The observed temporal order is consistent across differ-
ent cyanobacterial strains. For the cyanobacterium Synechocystis sp. PCC 6803,
(Saha et al., 2016) report an upregulation of PSI and PSII transcripts, genes for
amino acid metabolism, and genes from the Calvin-Benson cycle at the begin-
ning of the light period, whereas essential genes for glycogen catabolism showed
upregulation in the dark period. (Behrenfeld et al., 2008) report metabolism is
dominated by amino acid synthesis between sunrise and noon in a synchro-
nized culture of Prochlorococcus PCC 9511.

The results of the resource allocation problem, shown in figure 6.12, closely
replicate this temporal order. Metabolism at dawn is dominated by amino acid
synthesis and synthesis of pigments. Photosynthetic activity and reactions of
central metabolism closely follow light availability. Later in the day, DNA and
RNA are synthesized, then lipid, peptidoglycan, and co-factors follow. We note
that synthesis of enzymes can precede reaction flux, for example for the glyco-
gen phosphorylase (plot GP in figure 6.12C). Overall, the differences in activity
between light and dark metabolism, the initiation of amino acid metabolism
at dawn, and storage metabolism are in qualitative agreement with reported
metabolite partitioning during diurnal growth.

However, several caveats limit a direct comparison of individual reaction rates to
currently available data. Current transcriptomics data are predominantly mea-
sured under constant light conditions using synchronized cultures. Such mea-
surements aim at discerning the effects of the circadian clock versus light-driven
regulation and conceal actual resource allocation. Furthermore, gene expres-
sion is not necessarily indicative of metabolic flux. Measurements also typi-
cally involve slow growing cultures, with reduced requirements for de novo pro-
tein synthesis. Correspondingly, proteomics measurements typically exhibit re-
duced diurnal variability (Waldbauer et al., 2012; Guerreiro et al., 2014) com-
pared to transcriptomics data. The qualitative agreement of results obtained
from the computational model with transcriptomics data may therefore provide
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further incentives for experimental studies to focus on de novo protein synthesis
in fast growing cultures — and thereby to enable a quantitative comparison of the
timing of protein synthesis.

6.4.6 The dynamics of glycogen accumulation

Glycogen is the main storage compound in cyanobacteria. Cells accumulate
glycogen during the light phase and mobilize it as a source of carbon and energy
during the night. It was recently shown that the timing of glycogen accumula-
tion is under tight control of the cyanobacterial circadian clock and disruption
of the clock results in altered glycogen dynamics (Diamond et al., 2015). We
therefore investigate the dynamics of glycogen accumulation in the context of
the global resource allocation problem. We note that our simulation does not
impose any ad hoc constraints on the kinetics and timing of glycogen synthesis.
Rather, accumulation of glycogen is a consequence of optimal resource alloca-
tion. Figure 6.15 shows the time course of glycogen accumulation obtained from
the global resource allocation problem over a diurnal period, as well as the pre-
dicted carbon partitioning ratio during the light period.
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Figure 6.15: Timing and dynamics of glycogen accumulation over a full diurnal
cycle. After a brief lag phase, cells accumulate glycogen during the light period
and mobilize it as a source of carbon and energy during the night. Shown are
absolute amounts of stored glycogen per gram dry weight, as well as the car-
bon partitioning ratio. We define the carbon partitioning ratio as the ratio be-
tween the glycogen synthesis flux and the carbon assimilation flux (RuBisCO),
weighted by the corresponding stoichiometries.

The constant rate of glycogen accumulation through the light period is in excel-
lent agreement with recent data on S. elongatus PCC 7942 (Diamond et al., 2015)
and Synechocystis sp. PCC 6803 (Saha et al., 2016). To verify the robustness of
our approach, and since most experimental studies use a square-wave light in-
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tensity, rather than a sinusoidal function, we also investigate glycogen accumu-
lation using a square-wave light function, resulting in a similar functional form
(figure 6.16).
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Figure 6.16: Glycogen under a square light wave. The overall shape of the curve
remains robust. We note that results for a square-wave input have to be inter-
preted with caution. Our approach is based on the assumption that S. elonga-
tus evolved an appropriate regulatory scheme that coordinates its metabolism
in their natural diurnal environments. For experiments in an environment dif-
ferent from the natural environment, the evolved regulatory scheme is still in
place. We therefore expect to observe a superposition of the effects of the new
environment and the original (evolved) regulatory scheme.

We emphasize that the linear slope is not self-evident, but emerges as a trade-
off between at least two conflicting objectives: (i) minimal withdrawal of carbon
during the early growth period, when the resources could be invested in creat-
ing enzymatic and translational capacity that can be used throughout the day
versus (ii) investing a minimal amount of carbon resources into the enzymes
needed for glycogen synthesis. While the former objective favors withdrawal of
carbon for glycogen synthesis later in the day, the later justifies a constant car-
bon withdrawal for storage synthesis throughout the light period. To the best of
our knowledge, the initial lag phase has not yet been noted experimentally, but
might provide a stimulus for further experimental evaluation.

6.4.7 Glycogen accumulation for variable day lengths

To highlight glycogen accumulation as a systemic property, we also investigate
the minimal amount of accumulated glycogen for different photoperiods. Fig-
ure 6.17A shows the resulting time courses for different lengths of day versus
night periods. Figure 6.17B shows the minimal amount of glycogen required at
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Figure 6.17: Glycogen for different day lengths. A: Time courses of glycogen
accumulation for different lengths of the light period (day length). B: Mini-
mal glycogen requirements for different day lengths. Peak glycogen content is
always observed at dusk. While the minimal amount of glycogen required at
dusk exhibits a clear bound, cells can accumulate more glycogen with no dis-
cernible effects on overall growth yield. Higher glycogen at dusk implies in-
creased metabolic activity shortly before dawn at the expense of slightly reduced
synthesis reactions during the light period.

The overall form of glycogen accumulation remains largely identical. We note,
however, that the amount of glycogen required at dusk exhibits a certain plas-
ticity. Firstly, if the night period is doubled, slightly less than twice the glycogen
is required to sustain night metabolism. Secondly, while the minimal amount
of glycogen required at dusk exhibits a clear bound, cells can accumulate more
glycogen with no discernible effects on overall growth. In this case, certain syn-
thesis tasks, in particular lipid synthesis, can be postponed to the end of the
night period, thereby requiring less enzyme capacity during the day at the ex-
pense of an increased glycogen storage at dusk.

6.5 Discussion

Phototrophic growth under diurnal conditions requires a precise coordination
of metabolic processes — and the resulting constraints and tradeoffs are chal-
lenging to describe using constraint-based analysis and conventional FBA (Hen-
son, 2015). We have developed a genome-scale resource allocation model that
allowed us to investigate the stoichiometric and energetic constraints of diurnal
phototrophic growth in the context of a global resource allocation problem. We
focused on the net stoichiometric and energetic implications of diurnal growth
on the de novo synthesis of proteins and other cellular macromolecules.

Our aim was a prediction of optimal diurnal resource allocation: how are
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metabolism and the synthesis reactions of cellular macromolecules organized
over a full diurnal cycle? What is the optimal timing of glycogen accumulation
during the light phase? From the perspective of cellular resource allocation,
these questions can be asked without detailed knowledge about regulatory
mechanisms and their corresponding kinetic parameters.

The results obtained from the computational model allowed us to pinpoint
several energetic tradeoffs and constraints related to diurnal growth. Overall,
the model-derived time courses are in good qualitative agreement with pre-
vious experimental observations about flux partitioning in S. elongatus PCC
7942 and other cyanobacteria. Growth is dynamic and takes place during the
light phase. Carbon fixation and the reactions of central metabolism largely
follow light availability. The synthesis of amino acids and pigments dominate
metabolism during the early light period, whereas other synthesis reactions
peak at later time points. In the absence of light, almost all metabolic activity
ceases, and cellular metabolism is dominated by respiratory activity. While
well-known experimentally, we emphasize that in the computational model the
cessation of metabolic activity during darkness is a consequence of a tradeoff
between the cost of unused enzymatic capacity during darkness versus the
cost of additional storage that would be required for synthesis reactions to
take place in the absence of light. In this respect, the function of the storage
compound glycogen is analogous to a cellular battery or capacitor: we expect
that if glycogen synthesis and utilization would not entail additional enzymatic
(and other) costs, synthesis reactions would continue during the night. Within
our computational framework we confirmed this hypothesis using an in silico
experiment with modified enzyme synthesis costs.

For our reference parameters, the predicted timing characteristics of glycogen
accumulation matched recent experimental observations (Diamond et al., 2015;
Saha et al., 2016). The emergent dynamics of glycogen accumulation point to
the role of the circadian oscillator to modulate metabolite partitioning during
growth. It has been shown recently that the circadian oscillator controls the tim-
ing of glycogen accumulation such that it occurs at a constant rate through the
light period. A disrupted clock results in increased glycogen accumulation early
in the day (Diamond et al., 2015). The disrupted pattern of glycogen accumula-
tion is indeed significantly different from the optimal profile predicted here. A
manifest hypothesis is therefore that cyanobacterial growth is organized accord-
ing to a temporal program that evolved to maximize growth in a periodic envi-
ronment, and that the circadian clock is a regulatory circuit that modulates the
transcriptional program of the cell to approach this metabolic optimum. Mis-
alignments between metabolism, clock and environmental cycles will therefore
result in impaired growth, as observed by (Lambert et al., 2016).

Recent analyses (Goelzer et al., 2015; Price et al., 2016; Yang et al., 2016) reveal
several interesting differences with respect to our results. The model-derived
growth rates for E. coli corresponding to an optimally allocated proteome were
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consistently higher than the experimentally measured rates. In the model, the
latter could be supported with 95% less proteome under certain conditions
(Yang et al., 2016). This was attributed to cellular “bet hedging” in (generalist)
wild-type E. coli against unknown environmental challenges. Furthermore,
significant protein production without detectable growth benefit was observed
experimentally (Yang et al., 2016; Price et al., 2016).

In contrast, the model-derived maximal growth rates we report here are within
the range of the (maximal) growth rates observed for S. elongatus PCC 7942, even
though actual growth rates observed in a laboratory are typically significantly
slower (Kuan et al., 2015).

We note that the resource allocation problem only provides upper bounds for
the growth rate, assuming an optimally-allocated metabolism, and does not in-
corporate several detrimental factors, such as light damage and possible pho-
toinhibition. Thus, the close correspondence between observed and model-
derived values suggests that cyanobacterial metabolism operates close to op-
timality — at least in experiments designed for rapid growth.

The model-derived maximal growth rates should be interpreted as an order-of-
magnitude approximation, not as a precise estimate. For example, a major un-
known factor is the relative amount of non-catalytic proteins, estimated to be up
to 55% of total protein for slow growing cells (Guerreiro et al., 2014). We hypoth-
esize that for fast growing cells this percentage is considerably lower. The impact
of non-catalytic proteins as (condition-specific) niche-adaptive proteins on the
maximal growth rate was already discussed in (Burnap, 2015). The question to
what extent slow growing cyanobacteria perform cellular bet hedging similar to
E. coliand how the allocation of proteome to non-growth-related processes cor-
relates with resistance to adverse environmental and sudden stress conditions
remains a question for further research — with implications for biotechnological
strain design.
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Chapter 7

Optimal resource allocation in
yeast under dynamically
changing environments

The work presented in this chapter has been done within the European
project ROBUSTYEAST, a collaboration of

 Freie Universitdt Berlin (Alexander Bockmayr)

* Vrije Universiteit Amsterdam (Frank Bruggeman)

e Ecole polytechnique fédérale de Lausanne (Vassily Hatzimanikatis)
¢ Katholieke Universiteit Leuven (Steffen Waldherr)

This project aims at revealing the principles for robustness of metabolism to
extracellular nutrient dynamics in yeast using systems biology approaches.
Experimental data used in this chapter was provided by Johan van Heerden.

Microbial strains used in biotechnological production pipelines at industry-
scale need to fulfill two key requirements: they need to be able to produce
the products of interest at high yield, and they need to be robust to the local
heterogeneities arising in large industrial bioreactors, especially to transient
limitations in nutrient sources and oxygen.

For the former requirement of high yield several systems biology approaches
have been developed to obtain very productive strains (Hddicke and Klamt,
2011; Kim et al., 2011; Jungreuthmayer and Zanghellini, 2012; Trinh, 2012;
Gruchattka et al., 2013; Erdrich et al., 2014; von Kamp and Klamt, 2014; Klamt
and Mahadevan, 2015). However, such strain optimization strategies report
strains that are optimized for steady-state conditions, and not for the dynamical
conditions present in industry-scale bioreactors. As a result, these strains are
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very rarely capable of overcoming the nutrient and oxygen shifts arising from
imperfect mixing. Indeed it has recently been shown that individual cells
respond very differently to changes in nutrient availability. This gives rise to
a subpopulation adapting to the new conditions and resuming growth, while
another subpopulation dies out, and thus induces a huge productivity loss (van
Heerden et al., 2014).

We, in the ROBUSTYEAST consortium, believe that one element that makes a
difference in survival is the choice of the organism between being a generalist
and being a specialist. That means a choice between investing resources into
proteins that are unnecessary at the moment but may become useful later ver-
sus only producing the proteins needed at the moment. Besides that, we want
to understand how does the organism adapt to the new environment.

For this purpose, we built a dynamic resource allocation model of the yeast
Saccharomyces cerevisiae. As a start, we validated the growth rates obtained
from our model using experimental data provided by Johan van Heerden, as
explained in section 7.3.1. We have obtained a very good agreement between
model and data, without any parameter changes.

We continued by studying how wildtype yeast adapts to changes in the environ-
ment.

Next, we have designed a series of studies of in silico yeast knock-out mutant
strains in dynamic environments. The idea behind this is that, mutants who are
viable in constant conditions, but do not survive environment shifts are miss-
ing a gene that is vital for surviving the transition. Thus, we provide a list of
candidate genes critical for survival in dynamic conditions. This list remains to
be validated once data from the experimental partners in the ROBUSTYEAST
project is available.

7.1 Model building

7.1.1 Choice of reconstruction and model reduction

The first step in building a resource allocation model for yeast was choosing a
metabolic reconstruction to start with. Since 2003, more than 25 genome-scale
metabolic network reconstructions of yeast have been published (Forster et al.,
2003b; Duarte et al., 2004; Krieger et al., 2004; Kuepfer et al., 2005; Herrgérd et al.,
2006; Hjersted and Henson, 2006; Herrgard et al., 2008; Nookaew et al., 2008; Mo
et al., 2009; Aho et al., 2010; Dobson et al., 2010; Zomorrodi and Maranas, 2010;
Costenoble et al., 2011; Matsuda et al., 2011; Swainston et al., 2011; Szappanos
et al., 2011; Celton et al., 2012; Heavner et al., 2012; Aung et al., 2013; Heavner
etal., 2013; Osterlund et al., 2013), some of which were reviewed in (Heavner and
Price, 2015). The genome-scale models range in size between iND750 (Duarte
et al., 2004) with 1061 metabolites and 1266 reactions and Yeast 7 (Aung et al.,
2013) with 2220 metabolites and 3498 reactions.
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Based on this wide variety, one would most likely choose the newest consen-
sus model, Yeast 7, as this contains the most recent and comprehensive anno-
tations. However, the size of this model is too large to allow a dynamic resource
allocation analysis using deFBA. One can reduce this model, while preserving
desired functionalities, as described in chapter 4 using a network reducer. How-
ever, after running the minimal network finder tool for more than 24 hours, we
still could not obtain a reduction. Therefore, we have decided to use Yeast 6
(Heavner et al., 2013), which we were able to reduce using the minimal network
finder from (R6hl and Bockmayr, 2017).

We focus, just as the experimental partners in ROBUSTYEAST, on growth in min-
imal Verduyn medium, whose composition we detail in table A6 in Appendix D.
Additionally, we would like to study yeast both in aerobic and anaerobic condi-
tions. According to (Ishtar Snoek and Yde Steensma, 2007), yeast needs sterols
and unsaturated fatty acids in the medium to grow anaerobically. Therefore,
additional medium components were added. For a complete list of these com-
ponents see table A7 in Appendix D.

The network reducer in (R6hl and Bockmayr, 2017) uses a mixed integer linear
programming approach to compute the minimal subnetwork of a given network
that still preserves some user-given functionalities. For instance, one function-
ality could be that the reduced network retains 99% of the original network’s
flux through the biomass reaction in a fixed environment. Another functional-
ity could be that certain metabolites or reactions should be kept in the reduced
network.

Therefore, to reduce the Yeast 6 model, we have defined a list a functionalities
which should be kept in the reduced model:

¢ The reduced model should display at least 99% of the Yeast 6 biomass flux
in the following environmental conditions:

aerobic glucose

anaerobic glucose

aerobic galactose

anaerobic galactose

¢ The reduced model should retain the fermentation pathway.

We obtained a reduced network with 454 metabolites, 438 reactions, and 429
genes, which can be found at https://ndownloader.figshare.com/files/
8653207. As already seen in chapter 6, it is possible to study networks of this
size using dynamic resource allocation tools.

After the reduction, we wanted to include as much as possible from the new
information in Yeast 7 in our reduced network. Moreover, we made sure that
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the network can consume possible by-products of overflow metabolism such as
ethanol or glycerol, as is the case in reality. Therefore, the following additional
changes to the network have been made. Note that the reactions in Yeast 6 are a
subset of those in Yeast 7, and the reaction IDs are the same.
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reaction r_1117 has been constrained to be irreversible (Pereira et al.,
2016)

reactionsr 2111 and r_2133 (biomass) have been removed

putrescine cycling through reactions r_1250 and r_1251 has been removed
reaction r_0364 has been constrained to be irreversible as it has a strongly
negative Gibbs free energy at physiological pH and reactant concentra-
tions: A,G'™ = —55.4kJ/ mol computed using the eQuilibrator resource
(Flamholz et al., 2012)

reactions r_1130 and r_1131 have been constrained to be irreversible
(Marobbio et al., 2006)

reactions r_0735 and r_0736 have been constrained to be irreversible
(Miziorko, 2011)

reaction r_0143 has been constrained to be irreversible as it has a strongly
negative Gibbs free energy at physiological pH and reactant concentra-
tions: A,G'™ = —48.7kJ/ mol computed using the eQuilibrator resource
(Flamholz et al., 2012)

reactionr_1245 has been constrained to be irreversible (Hamel et al., 2004)
reaction r_0962 has been constrained to be irreversible (Portela et al.,
2006)

H* was removed from reaction r_0507 for charge balancing (Aung et al.,
2013)

GDH2 (r_0470) has been set to irreversible in the backwards direction
(Aung et al., 2013)

mitochondrial ADP/ATP transporter (r_1110) does not cotransport pro-
tons (Klingenberg, 1980; Vozza et al., 2004)

ATP synthase (r_0226) moves 4 cytoplasmic protons (Aung et al., 2013)
NADH:ubiquinone oxidoreductase (r_0773) is not proton translocating
(Veldzquez and Pardo, 2001)

malic enzyme (r_0718) is not NAD" -, but NADP*-dependent (Boles et al.,
1998; dos Santos et al., 2004)

changed proton stoichiometry for cytochrome oxidase (r_0438) (Post-
mus et al.,, 2011) and for ubiquinol cytochrome-c reductase (r_0439)
(Trumpower, 1990)

L-aminoadipate-semialdehyde dehydrogenase (r_0678) requires ATP
(Zabriskie and Jackson, 2000)

metabolites exchanged through the mitochondrial transporter r_1099
were changed to 2-oxoadipate and 2-oxoglutarate and the reaction was
set as reversible (Palmieri et al., 2001)
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¢ alcohol dehydrogenase (r_0163, ethanol to acetaldehyde), acetaldehyde
transport (r_1632), aldehyde dehydrogenase (r_0174, r_0175), acetyl-CoA
synthetase (r_0113), adenylate kinase (r_0149), and cytosolic glycerol 3-
phosphate dehydrogenase (r_0491), which had not been retained by the
reduction, were added back to ensure the model can consume overflow
metabolism by-products

* fructose bisphosphatase (r_0449) and phosphoenolpyruvate carboxyki-
nase (r_0884), which had not been retained by the reduction, were added
back to ensure the model can run gluconeogenesis

* glucan 1,4-a-glucosidase (r_0463), glycogen phosphorylase (r_0511), and
a,a-trehalase (r_0194), which had not been retained by the reduction,
were added back to ensure the model can consume the storage products
glycogen and trehalose

7.1.2 The macromolecules of autocatalytic growth

Starting from the reduced network, a deFBA model of yeast has been con-
structed, following the guidelines in chapter 4.

Ribosomes

The ribosome turnover rate was set to 10 attached amino acids per second ac-
cording to data in (Karpinets et al., 2006; Milo and Phillips, 2015), while the list
of ribosomal proteins was sourced from the Ribosomal Protein Gene Database
(Nakao et al., 2004) and is displayed in table A8 in Appendix D.

Enzyme subunit stoichiometry

The subunit stoichiometry of all enzymes has been sourced manually from
UniProtKB (UniProt Consortium, 2014) and from the Saccharomyces Genome
Database (Cherry et al., 2012). The SBML file, generated in the format described
in section 4.8, is in the process of being uploaded to FairdomHub.

Storage

The two main storage molecules of yeast are glycogen and trehalose, which we
denote by G and TH. Just as in the Synechococcus model in the previous chapter,
these are allowed to accumulate and may be consumed if available.

Noncatalytic biomass

The noncatalytic (quota) biomass has been organized into six quota metabo-
lites: noncatalytic proteins, RNA, DNA, cell wall, lipids and small molecules.
The production reactions for these quota metabolites are shown in table A9 in
Appendix D.
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7.2 Model constraints and objective

7.2.1 Constraints
Steady-state versus time-dependent quantities

As before, we assume internal metabolites are at a quasi-steady-state with re-
spect to the macromolecules and environment dynamics. As in chapter 6, we
have

dn_y (1)
— =8 « V(T :0, 7.1
T u«V(T) (7.1)
and J
i(f
';’t( . Vie€U2UGU TH. (7.2)

Enzyme amounts constrain reaction rates

Enzyme amounts constrain reaction rates within the metabolic network as ex-
plained in chapter 2. Turnover numbers for metabolic enzymes were retrieved
from the BRENDA database (Schomburg et al., 2013) and manually sourced
from the literature. The turnover numbers for glucose and galactose uptake
were set to 200 s~! according to data in (Ye et al., 2001).

For irreversible enzyme-catalyzed reactions j, our constraint then reads
vi(0) <kl,mg (1), (7.3)

at all time points t. In the case of reversible reactions, both directions are con-
strained

vi(0) < klimg, (1), vi(t) =~k ng, (0, (7.4)

where ki;t and k{:;t are the turnover rates for the forward and reverse direction
respectively. We impose these two constraints at each time point ¢ for each re-
versible reaction j. The constraints apply only for enzyme-catalyzed reactions.
Rates of spontaneous reactions remain free of these bounds.

In case several reactions are catalyzed by the same enzyme, their total flux
weighted by the inverse of the respective turnover numbers is bound by the
enzyme amount. Such a situation happens, for instance, in the case of the
ribosome, as detailed in the previous chapters. Enzyme synthesis reactions
are irreversible and hence the bound is only applied for the forward directions
of the reactions, while the reverse directions are prohibited using a lower flux
bound of zero at all time points.

Extracellular metabolites

We distinguish between nonlimiting extracellular metabolites (present in satu-
ration amounts) and part of the Verduyn medium
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° COZ

e ammonium

¢ phosphate

e sulphate

* (R)-pantothenate

¢ 14-demethyllanosterol
* ergosta-5,7,22,24(28)-tetraen-3beta-ol
e fecosterol

* myo-inositol

e lanosterol

* zymosterol

and nutrient sources the may deplete

* glucose
* galactose
* ethanol

The amounts of the latter are modeled dynamically following the uptake by the

metabolic network as
dng (1)

dt
where & denotes the set of extracellular metabolites available in limited
amounts. The uptake of extracellular metabolites present at saturation is only
constrained by the existing transporter capacity and its catalytic efficiency.

=Sq . v(1), (7.5)

Amounts of quota compounds

The initial values for the six quota compounds are set to be equal to their corre-
sponding amounts in 1 gram dry weight of yeast cells and displayed in table A10
in Appendix D. We denote their initial amounts as the vector qg, and require that
these proportions are kept as lower bounds for quota amounts throughout the
simulation time as

no()=qe »,  MW;n;(). (7.6)
iE6ULQUGUTH

According to the data in (De Godoy et al., 2008), the catalytic proteins which
are modeled explicitly in our model sum up to a fraction of 0.40561 of the total
proteome of yeast grown in minimal medium. In the biomass reaction of Yeast
6 we find that proteins make up 0.466298 grams in one gram dry weight of cells.
Thus, we have set the noncatalytic protein quota requirement to (1 —0.40561) -
0.466298 = 0.27716 g/ gDW.
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As before, together with metabolic proteins, glycogen, and trehalose, the initial
composition vector adds up to one gram, and thus we obtain the additional con-
straint

Y mi(fp) + ) ni(to) - MW, +ng(1p) +nra(fp) = 1. (7.7)
i€e2 i€e&

Maintenance

No ATP maintenance has been enforced since the growth rates obtained in the
model are close to those observed in experiments, as we will show in the results
section.

Time discretization

As detailed in chapter 5, we discretize time using the implicit midpoint rule.
Derivatives n and fluxes v are evaluated at the middle of the discretization in-
tervals, while macromolecule amounts n are evaluated at the ends of the dis-
cretization intervals.

Environment shifts

To analyze how yeast deals with environment shifts, we distinguish between two
types of shifts:

¢ Shifts in extracellular metabolites present at saturation. In case we
model that an extracellular metabolite that is not a nutrient is no longer
present in the environment for a time period, we simply block the
respective transporter by imposing its lower and upper flux bounds to be
Zero.

¢ Shifts in nutrient sources. In case we model shifts in nutrient sources,
such as a shift from glucose to galactose medium, we impose at the shift
time point Zs,;5; the desired bounds on the respective extracellular nutri-
ent amounts. In addition, for the nutrient removed from the medium, we
need to remove the constraint that links its amount at Zg;; with its amount
at the time point right before 4,7, as this constraint is no longer satisfied.

7.2.2 Objective

Since yeast does not follow a light availability periodicity as was the case for
cyanobacteria, we do not use cFBA, but deFBA to study dynamic resource allo-
cation in this model. Thus, as detailed in chapters 2 and 5, we use the objective

Iy
max Y MW;n;(f)dt. (7.8)
n(f)n(),v(e) Jo ic&
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To avoid the side effects of including storage and noncatalytic compounds in the
objective, analyzed in (Waldherr and Lindhorst, 2017), we only include enzymes
in the objective. Note that, since quota amounts are required to have a certain
fraction of total biomass at each time point, they are implicitly maximized using
this objective.

7.2.3 deFBA vs. short term deFBA

Since through a global optimization approach such as deFBA the system already
knows at the start of the simulation time whether and when an environment
shift will occur, an important method for these studies was short term deFBA,
which we briefly explained in chapter 2. This way, by only using a limited predic-
tion horizon, the system only detects a nutrient shift shortly before the shift ac-
tually happens, thereby mimicking the behavior of real cells (Kochanowski et al.,
2013).

7.2.4 Sudden shifts

Sudden environment shifts, for example from environment A to environment
B, are implemented using two chained deFBA problems, one for each environ-
ment. The initial biomass amounts for the second deFBA problem, i.e., in envi-
ronment B, are set to be equal to the last computed biomass amounts in envi-
ronmentA, i.e., to ngygy TH(tj/}) where t]/} is the total simulation time in environ-
ment A.

Since the condition number of a typical deFBA problem for yeast was lower, in-
dicating a better conditioning of the LP problem, all simulations were performed
using the CPLEX Optimization Studio version 12.2.

7.3 Results

Prior to studying yeast under dynamic environments, we validate our model
against growth rate experimental data obtained in the same (constant) environ-
ment.

7.3.1 Growth in constant environmental conditions

Figures 7.1-7.3 provide a comparison between the experimental and model-
derived growth rates in aerobic glucose, aerobic galactose, and anaerobic
glucose minimal Verduyn medium. We observe that the model provides a
relatively tight upper bound on the experimental growth rates. This is what we
expect, as the model provides an optimal solution that may not be reached in
the lab. We have therefore decided to not add any additional ATP maintenance
requirement to the model.
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Figure 7.1: Comparison between the experimental and model-derived growth
rates in aerobic glucose Verduyn medium. A. Log optical density of four batch
cultures of yeast grown in aerobic minimal Verduyn medium enriched with
sterols and glucose. The derived growth rates were obtained by fitting a line
through the data points. B. Log of model-derived total biomass for the same
medium computed using deFBA. The model-derived growth rate was obtained
by computing the instantaneous growth rate.
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Figure 7.2: Comparison between the experimental and model-derived growth
rates in aerobic galactose Verduyn medium. A. Log optical density of four
batch cultures of yeast grown in aerobic minimal Verduyn medium enriched
with sterols and galactose. The derived growth rates were obtained by fitting a
line through the data points. B. Log of model-derived total biomass for the same
medium computed using deFBA. The model-derived growth rate was obtained
by computing the instantaneous growth rate.

7.3.2 Overflow metabolism is an optimal behavior from a resource al-
location perspective

To display even more the very good qualitative agreement between model and
data, we show in figure 7.4 the extracellular glucose and ethanol concentrations
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Figure 7.3: Comparison between the experimental and model-derived growth
rates in anaerobic glucose Verduyn medium. A. Log optical density of four
batch cultures of yeast grown in anaerobic minimal Verduyn medium enriched
with sterols and glucose. The derived growth rates were obtained by fitting a
line through the data points. B. Log of model-derived total biomass for the same
medium computed using deFBA. The model-derived growth rate was obtained
by computing the instantaneous growth rate.

in aerobic glucose conditions, measured using high performance liquid chro-
matography, as well as their model-derived extracellular amount counterparts.
We note that a quantitative comparison of extracellular metabolite amounts
is not possible here due to unit mismatch between data (concentrations) and
model-derived quantities (molar amounts).

In addition to the good qualitative agreement, figure 7.4 also shows that the
model ferments glucose even in the presence of oxygen, phenomenon also
known in the literature as “overflow metabolism”. This indicates that, although
often termed “wasteful”, fermentation in aerobic conditions is the best strategy
for optimizing growth from a resource allocation perspective, consistent with
the conclusions in (Molenaar et al., 2009).

To understand the growth advantage offered by fermentation over respiration,
we have simulated the model under the same conditions as before, but with
the ethanol export reaction blocked. This way, we have essentially blocked the
whole fermentation pathway, as ethanol cannot be accumulated inside the cell
due to the quasi-steady-state constraint on internal metabolites. The resulting
instantaneous growth rate stabilized at a value of 0.37 s~! which is 10% lower
than the growth rate obtained when fermentation was allowed (0.41 s™1).

However, the ideal strategy in aerobic glucose conditions seems to not be exclu-
sively fermentation. Instead, a small flux through the respiratory pathway can
also be observed. This brings a small growth advantage and is also the reason
why the model derived growth rate in anaerobic glucose conditions is slightly
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Figure 7.4: Comparison between the experimental and model-derived extra-
cellular glucose and ethanol amounts in aerobic glucose Verduyn medium. A.
Extracellular glucose and ethanol concentrations measured in the laboratory by
high performance liquid chromatography, corresponding to the reactors in fig-
ure 7.1. B. Model-derived extracellular glucose and ethanol amounts computed
using deFBA.

lower than the growth rate obtained when oxygen is present (figures 7.1 and 7.3).

7.3.3 Diauxie is an optimal behavior from a resource allocation per-
spective

Another well-known phenomenon in yeast is the diauxie. This manifests when
yeast grows in a batch culture with a mixture of two sugars as nutrient source
(typically glucose-galactose). Instead of metabolizing both sugars simultane-
ously, some yeasts, including Saccharomyces cerevisiae, consume glucose first,
and then galactose, resulting in two separate growth phases (New et al., 2014;
Siegal, 2015).

The diauxie is often considered to be a consequence of selection to minimize ex-
pression of “useless” metabolic pathways when a nutrient that can be more ef-
ficiently used is present in the medium (Magasanik, 1961; MacLean, 2007). This
means that also from a resource allocation perspective it must be more efficient
to metabolize the sugars sequentially rather than at the same time. We have
tested this hypothesis using our resource allocation model. Indeed, although the
model does not account for any regulatory mechanisms, and although deFBA
has global knowledge and can thus “foresee” that glucose will run out, the sug-
ars are still consumed sequentially, as shown in figure 7.5.
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Figure 7.5: Model-derived extracellular metabolite time courses showing the
preferential use of glucose over galactose. The time courses have been ob-
tained using deFBA (dashed curves) and short term deFBA (st-deFBA, continu-
ous curves) with a prediction horizon of one hour for Verduyn medium enriched
with sterols, glucose, and galactose, under aerobic conditions.

7.3.4 Adaptations of wildtype yeast to environmental shifts

Following our study of diauxie, with its slow environmental changes, we turned
our attention to what happens when yeast is subjected to sudden changes in the
environment. We investigated two scenarios: (i) sudden unavailability/avail-
ability of oxygen, and (ii) sudden changes in the nutrient source, i.e., shifts from
glucose to galactose.

Oxygen availability shifts

We investigated slow fluctuations in oxygen availability, happening at intervals
of four doubling times (T, = 1.5 h in aerobic glucose conditions). As opposed to
fast fluctuations, where we expect metabolic flexibility to play a crucial role, the
slow fluctuations will be governed by yeast’s ability to undergo transcriptional
adaptation.

As such, we have designed our in silico experiment over a total period of 24
hours, during which we alternate oxygen supply as shown in figure 7.6.

Since we are also interested in sudden changes (local, immediate) for the system
and it is important that these changes are not a priori known, as is the case in the
global resource allocation problem, we use both deFBA and short term deFBA to
study the impact of these shifts.

In the case of deFBA, we observe the behavior of an organism that is adapted to
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Figure 7.6: Timing of shifts in oxygen availability. The shifts are implemented
in the model using temporary zero bounds on the oxygen uptake flux during the
period when the oxygen supply is off.

a dynamic environment, so it expects the shifts to arise and has prior knowledge
of them.

Short term deFBA shows us how an organism that senses these shifts for the first
time shortly before they happen (a maximum of one hour prediction horizon)
behaves.

A third case is when the organism is a specialist, adapted to growth in constant
environment, and is then confronted for the first time with a sudden environ-
mental shift, without any prior knowledge. For implementing the third case a
sequence of deFBA problems was solved, one for each environment window
(i.e., the windows 0—6, 6—12, 12— 18, and 18 — 24 hours). For each environment
window we solve a deFBA problem, imposing as initial condition the biomass
composition at the end of the previous window. For the first window, the initial
biomass composition is free, but has to obey the constraints on quota and total
mass mentioned in section 7.2.1.

Our first observation is that in all cases growth is dynamic (figure 7.7). In sudden
shifts, as well as with a short prediction horizon (1 hour resp. 30 minutes), we
observe adaptation periods before the maximal growth rate is achieved in each
shift window.

The results in figure 7.7 highlight two facts. First, even if the system has global
knowledge about when shifts will occur, there is still a small adaptation pe-
riod before the maximal growth rate in the new environment is attained (deFBA
curve). In case of small prediction horizons ahead of the shift, enzymes needed
in the new environment are synthesized gradually after the shift at the expense
of a lower growth rate. The simulation with sudden environment shifts displays
the longest adaptation period in the new environment.

Second, an increase in the prediction horizon (and hence in the preparation
time for the new environment) results in a slight increase in growth rate, but
is not sufficient for yeast to be fully prepared for the new conditions.

Another important observation is that the system maintains a linear relation-
ship between the growth rate and the amount of ribosome units throughout the
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Figure 7.7: Dynamics of the growth rate following the shifts in oxygen avail-
ability from figure 7.6. Shown are the growth rate profiles obtained from a sud-
den shift (two sequential deFBA problems with a sudden environment change,
continuous curve), using short term deFBA with prediction horizon of half an
hour (dashed curve) and an hour (dash-dotted curve curve), as well as the
growth rate when the system has global knowledge of the shifts (one deFBA
problem, dotted curve) in Verduyn medium enriched with glucose and sterols.

shifts (figure 7.8). With increasing growth rates, we see an increase in the fraction
of the total proteome that is dedicated to the ribosomes, consistent with obser-
vations in mechanistic models of heterotrophic growth (Molenaar et al., 2009;
Scott et al., 2010; Weille et al., 2015), as well as with the results in chapter 6. The
points off the main line correspond to pairs of growth rate and ribosomal pro-
teome fractions right after the shifts.

To understand which new enzymes are synthesized during the adaptation to
anaerobic growth following a sudden oxygen removal, we have investigated the
enzyme synthesis fluxes (per unit biomass) that are higher in the interval 6 — 12
h compared to the interval 0 — 6 h (figure 7.9).
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Figure 7.8: The linear relationship between growth rate and the fraction of the
total proteome that is dedicated to the ribosomes over the shift period. Results
correspond to the growth curves in figure 7.7.
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We observe a strong increase in the synthesis fluxes for enzymes belonging to
the pentose phosphate pathway, fermentation, glycerol metabolism, as well as
some glycolysis and TCA cycle enzymes at the beginning of the adaptation pe-
riod. The increases in the pentose phosphate pathway and fermentation are
very likely due to these pathways taking over the flux that can no longer run
through respiration.

In addition, the impossibility to respire results in an NAD*/NADH redox imbal-
ance. According to (Albers et al., 1996; Ansell et al., 1997; Bakker et al., 2001;
Pahlman et al., 2001) fermentation is redox inert, i.e., the NADH produced in
glycolysis is reoxidized by converting pyruvate to ethanol and CO,. However,
biomass production generates excess NADH, which has to be re-oxidized by
redirecting part of the assimilated glucose to the formation and export of glyc-
erol. Therefore, we conclude that the adaptation period is due to enzymes of
the glycerol and pentose phosphate pathways having to be synthesized before
maximal growth in anaerobic conditions is possible.

Nutrient shifts

A recent study has shown that the length of the growth lag observed when yeast
cells are switched from the preferred carbon source (glucose) to alternative nu-
trients like maltose, galactose, or ethanol differs between wild yeast strains (New
et al., 2014). Moreover, the study points out that, after pregrowth on alternative
nutrients followed by growth on glucose, the length of the growth lag increases
with increasing time spent by the culture in the glucose medium. The lag is
believed to be due to the time needed for the cells to synthesize the enzymes
needed in the new environment.

In addition to testing whether our model can reproduce this behavior, we
wanted to identify which enzymes are synthesized during the lag period. Thus,
we have conducted an in silico experiment that subjects our model to such
nutrient shifts. After identifying the biomass composition in aerobic galactose
conditions, we have set this as initial condition and simulated aerobic growth
on glucose for different time periods ranging from two to ten hours. After this,
the system was shifted again to aerobic galactose conditions, while setting
as initial biomass amount the biomass composition of the last time point in
glucose.

The growth rate curves obtained from these shift experiments are shown in fig-
ure 7.10. We observe that the longer the cells are growing on glucose, the better
they adapt their growth rate to this environment. Consistent with the findings in
(New et al., 2014), we find also that the longer the time spent feeding on glucose
is, the larger the growth rate drop when the cells are shifted again to galactose
and the longer the time they need to adapt to galactose again.

While in both constant glucose and constant galactose environments yeast uses
a respiro-fermentation strategy, we note that growth in constant galactose con-
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ditions displays a higher rate of respiration compared to growth in constant glu-
cose conditions. This is also the reason why we see the growth rate difference in
figures 7.1 and 7.2.
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Figure 7.10: Growth rates following nutrient shift from glucose to galactose.
The longer the time spent feeding on glucose, the larger is the growth rate drop
when the cells are shifted again to galactose and the longer the time they need
to adapt to galactose again.

To find the enzymes that are synthesized during the lag period, we have cho-
sen the solution of the system that spent four hours in glucose before the switch
to galactose. We have identified the enzyme synthesis fluxes that are on average
higher right after the shift compared to their average before the shift. Figure 7.11
shows these normalized enzyme synthesis fluxes per unit biomass. We notice
that the large majority of these enzymes are part of the TCA cycle and the respi-
ration pathways. This is consistent with the findings of (Fendt and Sauer, 2010),
who show that during galactose growth there is an increase in TCA cycle fluxes
compared to glucose.

Shifting flux from fermentation to respiration however requires a large invest-
ment of resources into respiratory enzymes, which are not only larger but also
much more numerous than the enzymes required by fermentation. Thus, the
longer the cell population has spent in glucose, the more enzymes for respira-
tion it has to produce and therefore the longer it needs for adaptation.
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7.3 Results

7.3.5 Adaptations of yeast mutants to oxygen availability shifts

To find candidate genes that are involved in adaptation to sudden environment
shifts of the type found in large-scale bioreactors we have screened all viable sin-
gle knock-out mutants. These are mutants that survive in both constant aerobic
and anaerobic glucose conditions. We have subjected these mutants to sudden
oxygen availability shifts following the pattern in figure 7.6. We expect that the
mutants that were viable in constant conditions but are no longer viable in the
shift conditions lack a gene that is essential for surviving the shifts.

We have found fifteen genes for which the corresponding single knock-out mu-
tants display this behavior. These genes are listed in table 7.1, together with the
affected enzymes.

Table 7.1: Genes for which the corresponding single knock-out mutants are vi-
able under constant aerobic and anaerobic glucose conditions, but not viable
under oxygen shift conditions. We conjecture that these genes are essential for
survival in dynamic oxygen availability conditions.

Gene Affected enzyme
YBR221C pyruvate dehydrogenase
YER178W pyruvate dehydrogenase
YGR193C pyruvate dehydrogenase
YNLO71W pyruvate dehydrogenase
pyruvate dehydrogenase

YFL018C oxoglutarate dehydrogenase
glycine cleavage complex

YDR345C glucose transporter isoenzyme 4
YJR158W glucose transporter isoenzyme 13
YFLO11W  glucose transporter isoenzyme 7, D-galactose transporter isoenzyme 1
YNL318C D-galactose transport isoenzyme 5
YKR072C phosphopantothenoylcysteine decarboxylase isoenzymes 2 and 4
YML008C S-adenosyl-methionine delta-24-sterol-c-methyltransferase
YNRO13C phosphate transport isoenzyme 4
YPL117C isopentenyl-diphosphate D-isomerase

Of the enzymes in table 7.1, pyruvate dehydrogenase is used by the wildtype
both in constant aerobic and anaerobic glucose conditions as well as in oxygen
shift conditions. The glycine cleavage complex is active in the wildtype only in
constant anaerobic glucose conditions and in the anaerobic period in case of an
oxygen shift. All other enzymes in table 7.1 are not used in constant or oxygen
shift conditions by the wildtype. However, mutants may have a different set of
active reactions compared to the wildtype in both the aerobic and anaerobic
part, where these enzymes are important.
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The pyruvate dehydrogenase complex catalyzes the overall reaction
pyruvate + CoA + NAD" — acetyl — CoA + CO, + NADH + H™,
while the glycine cleavage complex catalyzes the reaction
glycine + tetrahydrofolate + NAD™"

— 5,10 — methylene — tetrahydrofolate + CO, + NHz + NADH + H.

We observe that both reactions have an impact on the NAD*/NADH balance of
the cell. As discovered in section 7.3.4, the main enzymes produced upon an
oxygen availability shift are mainly responsible for stabilizing the NAD*/NADH
redox balance in the new conditions. In this context, we conjecture that the ad-
ditional NAD*/NADH imbalance induced by turning off pyruvate dehydroge-
nase or the glycine cleavage complex makes it impossible for the cell to survive
the oxygen shift.

The issue deserves further experimental investigation. A computational inves-
tigation possibility is to relax the steady-state constraints for NAD+ and NADH
within the resource allocation model, and to track changes in the balance be-
tween the two compounds. Additional insight may also be gained by the use of
a kinetic model, where one can track changes in the NAD*" and NADH concen-
trations.

Since the rest of the enzymes in table 7.1 are not used in constant or oxygen shift
conditions by the wildtype, they may appear there as a result of alternate optima
within the first quarter of the shift period. One could argue that, since the cor-
responding reactions are not used in the wildtype, then the wildtype solution is
a feasible solution for the mutant as well. However, if the use of an additional
constraint for knocking out one gene results in a different yet still optimal so-
lution in the first quarter of the shift period compared to the wildtype solution,
then it is possible that this new solution can no longer be continued in the sec-
ond quarter of the shift period, as opposed to the optimum used by the wildtype
simulation. Unfortunately, running the variability analysis for a deFBA solution
is very computationally intensive for such large models, so this hypothesis can-
not be further investigated.

7.4 Discussion

In this chapter we have discussed the building and analysis of a dynamic re-
source allocation model for the yeast Saccharomyces cerevisiae. We have inves-
tigated growth under constant conditions, as well as environmental shifts con-
cerning oxygen and nutrient availability.

We have seen that the resource allocation model provides an upper bound on
the experimentally derived growth rates for the investigated constant condi-
tions. In addition, the simulation under constant conditions also pinpointed
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that overflow metabolism, i.e., the choice of yeast to ferment glucose even under
aerobic conditions although this results in a suboptimal ATP yield, is an optimal
behavior from a resource allocation perspective.

We were also able to prove, using the resource allocation model, that the diauxie
is an optimal behavior. Both the overflow metabolism and the diauxie are be-
haviors that are widely spread in nature. Organisms have different regulatory
structures that help implement these behaviors and we have shown here why
these regulatory structures have evolved: to maximize growth rate by optimiz-
ing the allocation of limited resources.

The second part of this chapter was concerned with the study of resource al-
location in dynamic environments. The motivation for this study comes from
biotechnology, and is concerned with the decreased productivity of strains op-
timized for steady-state conditions when they are faced with the local hetero-
geneities of imperfectly mixed industry-scale bioreactors.

We have shown here that dynamic resource allocation models are a powerful
tool for understanding why some of the strains do not survive in dynamic envi-
ronments. In the case of yeast, shifts in oxygen availability were shown to cause
imbalances in the NAD*/NADH redox balance in our simulations. Additional
knock-out simulations helped us show that two of the key enzymes involved in
survival of oxygen availability shifts are the pyruvate dehydrogenase complex
and the glycine cleavage complex. We conjecture that knock-out of these genes
renders the NAD"/NADH imbalance resulting from the shift impossible to re-
store. Additional experimental evidence is however needed to fully confirm this
finding.

Nutrient shifts among preferred (glucose) and alternate (galactose) carbon
sources were also investigated. We have shown that the recent observations
in (New et al.,, 2014), that the longer yeast has spent feeding on the preferred
nutrient the longer the growth rate lag upon switch to the alternate nutrient,
can be predicted and explained using resource allocation arguments. According
to our simulations, the lag is due to the time yeast needs to synthesize the large
and numerous respiratory and TCA cycle enzymes it needs to grow optimally
on the alternate carbon source.

However, we have also discovered some caveats of our methods in investigating
sudden environment shifts. We have seen that, due to the possible existence of
alternate optima, some genes were predicted to be essential for surviving oxygen
availability shifts although the wildtype does not use or produce these genes be-
fore, during or after the shift. We believe that a next step in the analysis should be
the development of efficient methods for analyzing deFBA solution variability.
Currently, computing the solution variability is impossible due to the time and
computational effort needed. A possible help may come from using flux cou-
pling information (Burgard et al., 2004). For instance, information about fully
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coupled reactions, which are reactions whose fluxes always differ only by a fac-
tor, may help reduce the number of optimization problems to be solved.

An additional next step in understanding how organisms adapt to dynamic en-
vironments would be to try to infer the regulatory rules responsible for the tran-
sitions. While for yeast many of the regulatory structures are known, for other
organisms they are still to be discovered. One idea would be to use time courses
from dynamic resource allocation models for the inference. Since the only limit
is the computational power, one can hope to be able to gather enough simu-
lation data from such models to be able to infer the regulation using machine
learning or other approaches.

To pursue this idea, we present in the next chapter some preliminary work using
a toy model where we try to infer the catabolite repression mechanism, which is
the regulatory structure behind the diauxie.
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Chapter 8

Perspectives: inferring gene
regulation from dynamic
resource allocation models

We have seen that deFBA solves a global dynamic resource allocation problem,
and thus at early time points in the solution it has knowledge of what will
happen later and adjusts its resource allocation accordingly. This is not truly
the case in biology, where cells can at most sense gradual changes in the
environment (Kochanowski et al., 2013), but definitely do not have knowl-
edge of these changes hours before they happen. We have also seen that an
alternative method we could use is short term deFBA, where the prediction
horizon determines how much in advance can the system sense a change in
the environment. However, this prediction horizon has to be chosen in such
a way that exponential growth is still the optimal strategy, as we have seen
in section 5.1.2. Depending on the system, it can still be that this minimal
prediction horizon is much larger than what is typically observed in real cells.

A second alternative would be an iterative RBA, where we fix a time step and at
each iteration solve RBA problems after which we update the extracellular nu-
trient levels according to the predicted fluxes and the time step. However, in this
case at each iteration we would have the same objective and gradual changes in
the environment would not be translated into gradual changes in the biomass
composition. This means we expect the biomass composition to remain con-
stant, resulting in the system being “surprised” when some nutrients run out.

So the question still remains: how can we model such processes without knowl-
edge of future events but also without the cell being entirely unprepared for en-
vironment changes? A strategy would be to do something similar to an iterative
RBA, but change the objective function depending on the environment state.
Thus, we can try to infer the different objective functions given environment
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information using machine learning techniques and data from time courses of
deFBA models. This will result in a control function that can be understood as a
regulatory network and can be applied iteratively.

In this chapter we present some first steps in this direction. We note that, even
if the learned regulatory structure is not close to what we expect regulatory net-
works to look like, it is still a benefit since it can be applied without knowledge
of what will happen at later time steps.

8.1 Formalizing the question

Before we begin formalizing the inference problem, we remark that the only type
of regulation we can infer from resource allocation models is transcriptional reg-
ulation. This means, we can only infer connections of the type

change in environment — production of enzyme e is upregulated/downregulated.

There are several reasons why we are limited only to this type of regulation.
First, resource allocation models cannot incorporate any kind of information
related to posttranslational modifications (phosphorylation, methylation, re-
versible binding of cofactors) of enzymes. Second, internal metabolite amounts
are assumed to be at steady-state, and thus not modeled explicitly. Hence, we
cannot use these to infer metabolic regulation of the type end-product inhi-
bition. Third, we would need a resolution of minutes or seconds in the time
courses in order to account for posttranslational regulation, which is currently
not possible in dynamic resource allocation models.

8.1.1 Toy model for inference

Before we try to infer metabolic regulation in a genome-scale model, it is im-
portant to see that our tools work on toy models. Therefore, we limit ourselves
in this chapter to inference of regulation in a toy model, and leave the genome-
scale case as a future perspective.

An ideal test case for learning regulation is the core carbon toy network from
(Covert et al., 2001), which we reproduce in figure 8.1.

In the (Covert et al., 2001) article the network is studied in combination with a set
of regulatory rules. In addition, the network has been used to illustrate deFBA
in (Waldherr et al., 2015; Lindhorst et al., 2016), and hence a deFBA model for
it already exists. We provide the macromolecule production reactions and the
turnover rates of this deFBA model in table 8.1.

The model, as described in (Waldherr et al., 2015; Lindhorst et al., 2016) and
shown in figure 8.2, is capable of reproducing the diauxic shift behavior. This
means it preferentially consumes Carbl,,; and only when this carbon source
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Carb2,.,; Carb1.,; Feut

> De,mt
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Figure 8.1: Core carbon network for inferring regulation. The network is re-
produced from (Covert et al., 2001).

is exhausted it starts consuming Carb2.y;. The diauxie is known to be due to
catabolite repression (Deutscher, 2008), that is inhibition of the synthesis of the
transporter for other carbon sources in the presence of the preferred carbon
source.

This phenomenon is an ideal test case for our inference methods. We expect
that an inhibitory connection between Carb1,,; and the synthesis flux for TC2 is
learned.

8.1.2 The general case

In this inference problem, we would like to find connections between extracel-
lular metabolite amounts and enzyme synthesis fluxes.

Thus, we are given two matrices containing (several) time series obtained from a
deFBA model with different initial values (rows correspond to the N time points,
while columns correspond to metabolite amounts or fluxes): X € REXIZT con-
tains the time courses of extracellular metabolite amounts, Y € RK*I%"| (where
¥ is the set of enzyme synthesis reactions) contains the time courses of the
enzyme production fluxes, and K is the number of rows of the two matrices. In
the most general case we want to learn a function g : R — RIZ"! that relates
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Table 8.1: Metabolic, transport, and macromolecule production reactions and
turnover rates for the model in figure 8.1 taken from (Lindhorst et al., 2016).

Reaction Enzyme Enzyme kear
molecular weight
Transport reactions
Carblgy —A TC1 4 3000
Carb2,y —A TC2 15 2000
Fexr —F TF 4 3000
—0> S 7.5 1000
D—Dgyr S 7.5 1000
Eexr —E S 7.5 1000
H—Heyt TH 4 3000
Metabolic reactions
A+ATP—B ER1 5 1800
B—C+2 ATP+2 NADH ER2 5 1800
B—F ER3 20 1800
C—-G ER4 5 1800
G—0.8 C+2 NADH ER5 5 1800
C—2ATP+3D ER6 10 1800
C+4 NADH—3 E ER7 10 1800
G+ATP+2 NADH—H ERS8 40 1800
NADH+0O, —ATP ERres 5 1800
Biomass reactions
400 H+1600 ATP—TC1 R 60 2.5
1500 H+6000 ATP—TC2 R 60 0.67
400 H+1600 ATP—TF R 60 2.5
400 H+1600 ATP—TH R 60 2.5
250 H+250 C+250 F+1500 ATP—S R 60 3
500 H+2000 ATP—ER1 R 60 2
500 H+2000 ATP—ER2 R 60 2
2000 H+8000 ATP—ER3 R 60 0.5
500 H+2000 ATP—ER4 R 60 2
500 H+2000 ATP—ER5 R 60 2
1000 H+4000 ATP—ER6 R 60 1
1000 H+4000 ATP—ER7 R 60 1
4000 H+16000 ATP—ERS8 R 60 0.25
500 H+2000 ATP—ERres R 60 2
4500 H+1500 C+21000 ATP—R R 60 0.2
entries in X to entriesin Y, i.e.
Yi*:g(Xi—l*)r Vie{2,...,K}.
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Figure 8.2: Extracellular metabolite time courses for the deFBA model in ta-
ble 8.1, showing the diauxic shift under aerobic conditions.

Note that we use the enzyme production fluxes and not the enzyme amounts
because the latter only increase in a deFBA model, while the fluxes can increase
and decrease and thus mimic up- and downregulation.

8.2 The simplest case: a linear model

While in general regulatory interactions are nonlinear and best described by sig-
moid functions (see (Jamshidi, 2012) and references therein), we discuss here
the most simple possible case and assume g to be a linear function, i.e.

Yl*:g(Xl—l*) = MXi—1*+€i) Vi€{2)~--rK}) (81)

where € denotes the error terms, i.e., the difference between the predicted en-
zyme production fluxes V4¢ and the actual enzyme production fluxes Y used as
training and obtained from the resource allocation model,

€=Y Vg =Y-MX.

The matrix M, which can also be seen as the adjacency matrix of a regulatory
network, then gives the influences of extracellular metabolite amounts on en-
zyme synthesis fluxes, with positive entries upregulating the production of the
corresponding enzymes and negative entries downregulating it.

In statistics, the task of learning M is called multiple linear regression and is
one of the simplest machine learning tools (Friedman et al., 2001). The method
finds, for the system in equation 8.1, a matrix M such that the square error €'¢ is
minimized (thus the name least squares regression).

One important property we would like to have for M is sparsity. This comes
from two motivations: it is unlikely that any component has more than three
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regulators due to crowding effects, and the more edges the regulatory network
has the more we are prone to overfitting the data.

Shrinkage methods such as Ridge or Lasso regression minimize the regression
coefficients in M by imposing a penalty on their size. This is done by introducing
an additional term in the objective which penalizes either the 2- (in the case of
Ridge) or the 1-norm (in the case of Lasso) of the coefficients using a Lagrange
multiplier parameter A. Thus, the objectives of Ridge and Lasso regression for
the system in equation 8.1 are

min e'e — A||M]]p,
M

with p =2 and p = 1 respectively. A third shrinkage method, the elastic net, uses
both the 1- and 2-norm penalties in the objective.

Such shrinkage methods are the easiest way of obtaining sparsity in the resulting
network M. Thus, we use least squares, Ridge, Lasso, and elastic net regression
for estimating the regulation network in this section.

We use as training data time courses of the toy deFBA model in figure 8.1 with the
initial extracellular metabolite amounts in table 8.2 under aerobic conditions.
We infer the four linear models using the python package scikit-learn (http:
//scikit-learn.org/stable/index.html).

Table 8.2: Initial extracellular metabolite amounts for the deFBA model to gen-
erate the training data. The deFBA problems were solved using the final time
tf =70 with N =70 discretization points for the dynamic variables.

Condition Carblg; Carb2.;

.
8
g

Eext Fexr Hex

1 2 120 0 0 0 0
2 10 110 0 0 0 0
3 20 100 0 0 0 0
4 30 90 0 0 0 0
5 40 80 0 0 0 0
6 50 70 0 0 0 0
7 60 60 0 0 0 0
8 70 50 0 0 0 0
9 80 40 0 0 0 0
10 90 30 0 0 0 0
11 100 20 0 0 0 0
12 110 10 0 0 0 0
13 120 2 0 0 0 0

After training the linear models we obtain four matrices, Mrs, Mrasso» MRidger
and Mgy, which describe the influences of extracellular metabolite levels on en-
zyme production fluxes. We show the values in Mrs, Mrasso, MRidge» and Mgy in
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8.3 Evaluating the learned regulation

tables A11-A14 in Appendix E. We note that, in the case of the shrinkage meth-
ods, the influences of the Lagrange multiplier values on the results vary, with the
Lasso being the most sensitive to the values of 1 and the Ridge being the least
sensitive. We have chosen the values in such a way that the smallest regression
coefficients are used, while at the same time ensuring a good prediction behav-
ior, as we will see next.

8.3 Evaluating the learned regulation

After learning the regulation, we would like to know how close the system that
includes regulation is to the original deFBA time courses. We expect a lower
growth rate, since deFBA shows us the behavior of the system assuming an ideal
regulatory system, i.e., assuming the error € in equation (8.1) is zero.

To evaluate our learned regulation, we have developed an iterative procedure
where at each time point the learned regulation is applied to determine the tar-
get enzyme production fluxes V4:. Then, a linear program (LPreg) is used to ob-
tain a solution that is as close as possible to these target synthesis fluxes, while
obeying a steady-state for the internal metabolite amounts, irreversibilities, and
enzyme capacity constraints.

Note that V4= (£;41) is a prediction of the new target fluxes given the extracellular
metabolite amounts ng (t;). Vge(¢;+1) is different from the training data Y.

We start by presenting the algorithm to compute such an iterative regulation
enzyme-cost solution:

Algorithm 1 Algorithm to compute an iterative regulation enzyme-cost solution.
Input: vector n(f) of initial enzyme and external metabolite amounts,
learned function g s.t. Ve (£;+1) = g(ng (1;)), step size Az, end time ¢¢.

i:=0
while 7; < t7 do
tiv1:=t; + AtL.

Compute target enzyme production fluxes Vg (£;+1) := gng ().
Find v(¢;41) from Ve (t;4+1) and n(#;) using (LPreg).
if 3v(t;4 1) then
Compute new amounts n(#;+1) =n(#;) + Sv(t;+1)At.
else
Break.
end if
i=i+1.
end while
Return n(?),v(t)Vte {t,..., i1}

If the organism cannot grow in the given environment using the resources in
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n(fy), then Algorithm 1 will return infeasible. If this is not the case, then Algo-
rithm 1 will run either until it has reached the given end time ¢¢, or until it is not
possible to find a new flux vector using (LPreg) because the extracellular nutri-
ents are exhausted.

To compute enzyme production fluxes that are as close as possible to the target
fluxes V4=(t;+1) given the resource allocation model, the enzyme and extracel-
lular metabolite amounts n(t;), and the step size At we solve the following linear
program:

max Y(ti+1)
¥ (ti1) ERV(ti11)ERIZ!

S.t.y(Fi1) - Ve (Liv1) < Vgpe(Fit1)
S.uxV(ti+1) =0

. l‘.
y vilti) _ ) Vke&
) kit
1EV cat
. l’.
-y M) Vke&  (LPreg)

ievi\lrr cat
Ny (6;) — Sar«Vv(ti+1)AT=0

Vir(tiv1) 20

The linear program (LPreg) computes a flux vector vge(£;41) such that internal
metabolites are kept at steady-state, enzyme capacity constraints are obeyed,
no more external metabolite amounts are used than available in the given step
size, and irreversible reactions only go forward. This flux vector is the vector
that contains the enzyme production fluxes closest to the target values Vg (#;+1)
obtained by applying the regulation function, and at the same time maximizes
growth by maximizing the enzyme production fluxes.

The (LPreg) is solved at each iteration of Algorithm 1 and for each of these iter-
ations a different y(¢;4+1) is computed. The role of y(#;+1) in (LPreg) is to bring
vgi(ti41) as close as possible to Ve (¢;4+1). Moreover, a closer look at (LPreg) will
reveal that, by maximizing y(¢;+1), we implicitly maximize vge(¢;+1) and hence
we also maximize biomass production.

Other ways that could be used to bring v« (¢;+1) as close as possible to Ve (¢;41)

would be minimizing the 1-, 2- or infinity-norm of their difference as

V(tiT)iEI;Q\%\ HV@E(ti"’l) — Ve (ti41) | ic’

with ¢ € {1,2,00} and eliminating the constraint involving y(#;+1). We have tried
these objective functions as well, but the resulting time course predictions were
worse than when using the y formulation in (LPreg).

Since the function g representing the regulation was learned from the time
courses of an optimal resource allocation model, by being as close as possible
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8.3 Evaluating the learned regulation

to the values predicted by g, we are as close as possible to the optimal resource
allocation, while at the same time taking into account the regulatory part.
We note that this iterative scheme is setting a different objective function at
each step by allowing a different y(¢;+1) and requiring different target enzyme
synthesis fluxes at each time point.

We have applied Algorithm 1 for the four linear models Mys, MLasso» MRidge,
and Mgy to evaluate how close the iterative regulation enzyme-cost solution
is to the deFBA solution. We show the resulting dynamics of enzyme synthesis
fluxes and extracellular metabolite amounts in figures 8.3 and 8.4, respectively.

We observe that in all four cases there is a significant delay in the time courses
of the iterative regulation enzyme-cost solution compared to the deFBA time
courses. However, the overall qualitative behavior is strikingly similar, suggest-
ing that the linear predictors are a good model.

On the other hand, the matrices Mrs, MLasso, Mpidge, and Mgy are far from
sparse or intuitive. They all display a negative influence of Carb1,,; on the pro-
duction of the transporter for Carb2,,;, which is why we do see preferential up-
take of Carb1,,; in figure 8.4 for all four models. However, this connection comes
along with other influences in Mrs, Mrasso, MRidge:» and Mgy which are hard to
understand.
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Figure 8.3: Evaluation of the learned linear regulation models. Shown are the enzyme synthesis time courses for the deFBA model
using Ccarp,,, (0) = 120, ccarpp,  (0) =100, cp, (0) =g, (0) = ¢ (0) = ¢, (0) = 0 as initial conditions (continuous curves), and
the time courses obtained using the iterative enzyme-cost regulation in Algorithm 1 for the different linear models (dotted curves).
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Chapter 8. Perspectives: inferring gene regulation from dynamic resource
allocation models

8.4 Discussion

This chapter presented some first steps in the direction of inferring regulatory
structures using time courses from dynamic resource allocation models. We
have seen that it is possible to infer matrices that implement the regulation
responsible for diauxie using simple machine learning tools such as linear re-
gression. Moreover, we have presented here an iterative algorithm that applies
the learned regulation while taking into account enzyme capacity constraints.
The benefit of this iterative procedure compared to deFBA is that, when making
the prediction for the current time point, the model no longer has knowledge of
what will happen in the future.

We have seen that, although we only used linear models, we can rediscover the
general shape of the enzyme synthesis time courses predicted by deFBA. In ad-
dition, although we observe a lag period compared to deFBA, the extracellular
metabolite time courses resulting from this procedure display the preferential
use of one carbon source over the alternative.

However, the inferred matrices are hard to interpret and do not necessarily re-
flect the general structure of regulation networks encountered in biology. What
we would expect to see is rather a sparse network with three layers: an input
layer consisting of extracellular metabolite time courses and exchange reaction
fluxes which then influence a middle layer of transcription factors, which then
in turn influence an “output” layer, namely the enzyme synthesis fluxes. This
resembles more the structure of another very popular machine learning tool: an
artificial neural network with one hidden layer which represents the transcrip-
tion factors.

We are thus tempted to assume that, if we were to use a neural network instead of
a linear regression model, we might be able to get even closer to the deFBA time
courses than we are in figures 8.3 and 8.4. By using a logistic activation function
for the middle layer, we would be even closer to the sigmoid shape of activation
and inhibition used in ODE models of gene regulatory networks (Klipp et al.,
2008).

On the other hand, this can come at several expenses. First, we would need
much more training data than we have used in this perspectives chapter. Sec-
ond, we would be fitting more parameters and we would be in more danger of
overfitting our data. Third, finding global optima when inferring neural net-
works is hard since we are no longer in the well-studied linear case, but we are
actually fitting nonlinear functions. Last, there would always be the questions of
how large should the hidden layer be, what values should we use for the initial
guess, how should we ensure sparsity?

It may be helpful to already enforce some regulatory links to be present in the
network, based on prior knowledge that we can obtain from databases such as
Yeastract (Teixeira et al., 2014). This is not trivial since it comes at the expense of
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8.4 Discussion

having to implement the solving routine to incorporate additional constraints
on neural network edges.

An important extension to the iterative scheme and the learning procedure
would also be to include the enzyme amounts and the import fluxes for
nonlimiting extracellular metabolites as explanatory variables in the inference
problem. An example would be, for the toy model in figure 8.1, the import flux
for oxygen. Since oxygen is not assumed to be limiting, its extracellular amount
is not modeled, but only the import flux. Thus, for learning regulatory mech-
anisms responsible for oxygen shifts of the type in chapter 7, it is important to
allow connections between the oxygen import flux and the enzyme synthesis
fluxes.
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Chapter 9

Conclusions

This PhD thesis is dedicated to the study of dynamic resource allocation in
metabolic networks. In the beginning of my PhD studies the state of the art
in this topic was limited to the existence of two related methods: dynamic
enzyme-cost flux balance analysis (Waldherr et al., 2015) and conditional flux
balance analysis (Riigen et al., 2015). These methods had been applied, as a
proof of concept, to a small core carbon network adapted from (Covert et al.,
2001) and to a minimal model of phototrophic growth, respectively. In addition,
there were two related formalisms for steady-state resource allocation studies:
resource balance analysis (Goelzer et al., 2011) and gene expression models
(Lerman et al., 2012). These had already been successfully applied at genome
scale for the study of Bacillus subtilis, Thermatoga maritima, and Escherichia
coli.

However, there were no guidelines for how to construct a dynamic genome-scale
resource allocation model. Thus, my first contribution was to find the ingredi-
ents of such models, how they come together and depend on each other, what
are the units of each ingredient, and where to find all the data needed to build
such a model. This is now formulated as a guide and presented in chapter 4.
In addition to this guide, chapter 4 also provides a standard for encoding such
models in SBML, for ease of exchange and reproducibility.

When I started this PhD there was also no software prototype for solving dy-
namic resource allocation problems at genome-scale. While implementing this
software I had to tackle all the mathematical difficulties presented in chapter 5.
This started with solution dependencies on simulation end point, and contin-
ued with numerical discretization of the dynamic variables and problem re-
formulation, giving upper bounds on the model-derived growth rates, suitably
scaling the resulting linear programs, analyzing the convexity of the quadrati-
cally constrained cFBA problem and thus justifying that binary search is a suit-
able solving approach, and ending with the actual software implementation and
solver interfaces.
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Chapter 9. Conclusions

All the results in chapter 5 made it possible to study dynamic resource allocation
at genome-scale for the first time. This was done in two case studies, on Syne-
chococcus elongatus in chapter 6, and on Saccharomyces cerevisiae in chapter 7.

The case study on Synechococcus elongatus pinpointed several energetic trade-
offs and constraints related to diurnal growth in cyanobacteria. Among the key
results was the observation that growth is dynamic and takes place during the
light phase. This was shown to be an optimal behavior that arises as a trade-
off between the cost of not using existing enzymes and ribosomes during dark
and the additional storage costs that would be required to continue using these
enzymatic resources at night. Moreover, the linear pattern of glycogen accu-
mulation throughout the day was shown to be an optimal behavior. The close
match between the model-derived and experimental growth rates pointed out
that cyanobacterial metabolism operates close to optimality.

The study of dynamic resource allocation in Saccharomyces cerevisiae subjected
to environmental changes showed that two seemingly suboptimal behaviors
that are widely spread in nature, overflow metabolism and diauxie, are in fact
consequences of an optimal allocation of enzyme resources. Moreover, we
have discovered that, in case of oxygen availability fluctuations, a key property
that allows some of the individuals to survive is their ability to rewire their
metabolism and to restore their NAD*/NADH redox balance. Finally, we have
shown that the experimentally observed increasing growth rate lag that arises
upon a nutrient shift after increasing time feeding on the preferred carbon
source is due to the time yeast needs to synthesize the large and numerous
respiratory and TCA cycle enzymes needed to grow optimally on the alternate
carbon source.

The natural next steps would be to use the time courses resulting from these dy-
namic resource allocation studies to infer the regulatory structures that coordi-
nate the observed optimal behaviors. Chapter 8 provided some preliminary re-
sults in this direction using machine learning and an iterative regulation scheme
combined with resource allocation. I believe that this idea has a lot of potential
and that more effort should be dedicated to alternative inference tools besides
linear models, with the natural next choice being neural networks.

Finally, another point where resource allocation studies may provide further un-
derstanding of biology are microbial community interactions. In such a mi-
crobial community, the species cooperate by exchanging metabolites and this
way grow faster than if they would not cross-feed. However, as pointed out in
(Gottstein et al., 2016), existing approaches either fail to predict the interactions
in the first place as is the case for FBA, or easily become computationally in-
tractable due to the nonlinear kinetic description of the exchange fluxes, as is
the case for dynamic FBA. One of the main challenges arising in such commu-
nity models is also modeling organisms that grow at different rates, but still co-
operate and survive together. I argue that, in the end, the cooperative behavior

174



is due to sharing resources and that dynamic resource allocation studies using
deFBA may provide solutions to the challenges encountered so far.
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Appendix

A The steady-state assumption

Calculation of dilution fluxes

In the following calculations all equalities should be considered as rough ap-
proximations.

Calculation for E. coli

Volume: 1cell=0.6um®=0.6-10"°dm® =0.6-10"1°L
Dry weight: 1 cell = 0.489pgDW = 4.89-10"*gDw
Flux: |v| = 12mmol/(gDW-h) = 12-10>mol/(gDW - h)

12-4.89-10"%mol

=12-1072.4.89-10""®mol/(cell-h) =
3600s - cell

=1.63-10""8mol/(s - cell)
Concentration : 1mM = 10"3mol/L=10"3mol/L-0.6-10"°L/cell

=0.6-10""®mol/cell
0.9
Growth: p=09h=——=25-10"%s""
3600s
p-1mM = 1.5-10"22mol/(s - cell)
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Calculation for S. cerevisiae

Volume:

Dry weight:

Flux:

Concentration :

Growth:

1cell=20um® =2-10"1L
1cell=10"!'gDW
|v| = 0.5mmol/(h-gDW) = 0.5-10">mol/ (h - gDW)
0.5-1073-107'mol
3600s - cell

=0.5-1072-10""'mol/h =

=1.38-10"'8mol/(s- cell)
ImM =10"3mol/L = 10"3mol/L-2-10 "L/ cell
=2-10""mol/cell

0.4
p=04/h=——=1.11-10"%s"!
3600s

p-1mM = 2.22-10"2'mol/(s - cell)

Calculation for H. sapiens (HeLa)

Volume:
Protein weight:

Flux:

Concentration :

Growth:
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1 cell =2600um> = 2.6- 10" 12L
1 cell = 150pgProtein = 1.5- 10~ 'mgProtein
v = 18nmol/(min - mgProtein) = 18- 10" %mol/ (min - mgProtein)
18-107%-1.5-10""mol
60s - cell

=18-1072-1.5-10""mol/ (min - cell) =

=4.5-10""mol/(s- cell)
1mM = 10">mol/L = 10"°mol/L-2.6-10"*2L/cell
=2.6-10""mol/cell
0.06

©=0.06/h=——=1.67-10"s""
3600s

p-1mM=4.34- 10~2°mol/ (s-cell)



B The SBML representation of resource allocation models: illustration using
a toy example

B The SBML representation of resource allocation mod-
els: illustration using a toy example

<?xml version="1.0" encoding="UTF-8"7>
<sbml xmlns="http://www.sbml.org/sbml/level3/versionl/core"
level="3" version="1" xmlns:fbc="http://www.sbml.org/sbml/
level3/versionl/fbc/version2" fbc:required="false">
<model id="resallocl" name="resallocl" fbc:strict="false">
<notes>
<body xmlns="http://www.w3.org/1999/xhtml">
<p>This model uses the ram standard 1.0</p>
</body>
</notes>

<listOfCompartments>
<compartment id="ext" name="external" constant="true"/>
<compartment id="cytosol" constant="true"/>
</list0fCompartments>

<list0fSpecies>

<species id="N1" compartment="ext" initialAmount="10"
constant="false" boundaryCondition="false"
hasOnlySubstanceUnits="true"/>

<species 1id="N2" compartment="ext" initialAmount="10"
constant="false" boundaryCondition="false"
hasOnlySubstanceUnits="true"/>

<species 1d="02" compartment="ext" constant="true"
boundaryCondition="true" hasOnlySubstanceUnits="true"
initialAmount="1000"/>

<species id="AA" compartment="cytosol" initialAmount="OQO"
constant="false" boundaryCondition="false"
hasOnlySubstanceUnits="true"/>

<species 1d="ATP" compartment="cytosol" initialAmount="Q"
constant="false" boundaryCondition="false"
hasOnlySubstanceUnits="true"/>

<species id="N" compartment="cytosol" initialAmount="0"
constant="false" boundaryCondition="false"
hasOnlySubstanceUnits="true"/>

<species id="Stor" name="Storage molecules" compartment="
cytosol" initialAmount="0.0" constant="false"
boundaryCondition="false" hasOnlySubstanceUnits="true"
>

<annotation>
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<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:species ram:molecularWeight="weight_0" ram:
objectiveWeight="zero" ram:biomassPercentage
zero" ram:speciesType="storage"/>
</ram:RAM>
</annotation>
</species>
<species id="Complex_1" name="Transporter complex"
compartment="cytosol" initialAmount="
0.004166667083123639" constant="false"
boundaryCondition="false" hasOnlySubstanceUnits="true"

>
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:species ram:molecularWeight="weight_1" ram:
objectiveWeight="weight_11" ram:biomassPercentage
="zero" ram:speciesType="enzyme"/>
</ram:RAM>
</annotation>
</species>

<species id="Emetabl" name="Generic metabolic enzyme"

compartment="cytosol" initialAmount="
1.9442790116926745" constant="false" boundaryCondition

="false" hasOnlySubstanceUnits="true">

<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops

/304">
<ram:species ram:molecularWeight="weight_2" ram:
objectiveWeight="weight_12" ram:biomassPercentage
="zero" ram:speciesType="enzyme"/>
</ram:RAM>
</annotation>

</species>
<species id="Emetab2" name="Specialized metabolic enzyme"

compartment="cytosol" initialAmount="
0.008000000399798693" constant="false"
boundaryCondition="false" hasOnlySubstanceUnits="true"
>

<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops

/304">



B The SBML representation of resource allocation models: illustration using
a toy example

<ram:species ram:molecularWeight="weight_ 3" ram:
objectiveWeight="weight_13" ram:biomassPercentage
="zero" ram:speciesType="enzyme"/>
</ram:RAM>
</annotation>
</species>
<species id="Estor" name="Metabolic enzyme for handling
storage" compartment="cytosol" initialAmount="0.0"
constant="false" boundaryCondition="false"
hasOnlySubstanceUnits="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:species ram:molecularWeight="weight_4" ram:
objectiveWeight="weight_14" ram:biomassPercentage
="zero" ram:speciesType="enzyme"/>
</ram:RAM>
</annotation>
</species>
<species id="Etransl" name="Transporter enzyme"
compartment="cytosol" initialAmount="
0.005555555555555556" constant="false"
boundaryCondition="false" hasOnlySubstanceUnits="true"
>
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:species ram:molecularWeight="weight_5" ram:
objectiveWeight="weight_15" ram:biomassPercentage
="zero" ram:speciesType="enzyme"/>
</ram:RAM>
</annotation>
</species>
<species id="Etrans2" name="Cofactor of transporter enzyme
" compartment="cytosol" initialAmount="0.0" constant="
false" boundaryCondition="false" hasOnlySubstanceUnits
=""true'>
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:species ram:molecularWeight="weight_6" ram:
objectiveWeight="weight_16" ram:biomassPercentage
="zero" ram:speciesType="enzyme"/>
</ram:RAM>
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</annotation>

</species>

<species id="R" name="Ribosome" compartment="cytosol"

initialAmount="0.033641975308641964"
boundaryCondition="false" hasOnlySubstanceUnits="true"

>

<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:species ram:molecularWeight="weight_7" ram:

objectiveWeight="weight_17" ram:biomassPercentage

="zero" ram:speciesType="enzyme"/>
</ram:RAM>
</annotation>

</species>

<species 1d="8" name="Structrual biomass component"
compartment="cytosol" initialAmount="

0.7499999999999999" constant="false" boundaryCondition

="false" hasOnlySubstanceUnits="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:species ram:molecularWeight="weight_8" ram:

objectiveWeight="weight_18" ram:biomassPercentage

="biomp" ram:speciesType="quota"/>

</ram:RAM>
</annotation>
</species>
</1list0fSpecies>
<listOfParameters>
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"

id="kcatt"
id="kcatC"
id="kcat1l"
id="kcat2"

value="1800" />
value="2400" />
value="2000" />
value="2500" />

id="zero" value="0.0" />

id="kcatR1"
id="kcatR2"
id="kcatR3"
id="kcatR4"
id="kcatRb"
id="kcatR6"
id="kcatC1"
id="kcatSf"

value="10" />
value="16.67" />
value="5" />
value="6.25" />
value="1" />
value="10" />
value="6.25" />
value="25" />

constant="false"



B The SBML representation of resource allocation models: illustration using
a toy example

<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
<parameter constant="true"
</list0fParameters>

<fbc:1ist0fGeneProducts>
<fbc:geneProduct fbc:id="Etransl" fbc:label="1*GTRANS1"
fbc:associatedSpecies="Etransl"/>
<fbc:geneProduct fbc:id="Etrans2" fbc:label="1*GTRANS2"
fbc:associatedSpecies="Etrans2"/>
<fbc:geneProduct fbc:id="Complex_1" fbc:label="1*GTRANS1
AND 1*GTRANS2" fbc:associatedSpecies="Complex_1" />
<fbc:geneProduct fbc:id="Emetabl" fbc:label="1+*GMETAB1"
fbc:associatedSpecies="Emetabl"/>
<fbc:geneProduct fbc:id="Emetab2" fbc:label="1+*GMETAB2"
fbc:associatedSpecies="Emetab2"/>
<fbc:geneProduct fbc:id="R" fbc:label="1*GRIBOS" fbc:

associatedSpecies="R"/>

id="kcatSb" value="30" />

id="main" value="0.2" />

id="biomp" value="0.15" />

id="weight_0"
id="weight_1"
id="weight_2"
id="weight_3"
id="weight_4"
id="weight_5"
id="weight_6"
id="weight_7"
id="weight_8"

id="weight_10"
id="weight_11"
id="weight_12"
id="weight_13"
id="weight_14"
id="weight_15"
id="weight_16"
id="weight_17"
id="weight_18"

value="0.2" />
value="0.16" />
value="0.2" />
value="0.16" />
value="0.15" />
value="0.1" />
value="0.06" />
value="1.0" />
value="1.5" />
value="0.2" />
value="0.16" />
value="0.2" />
value="0.16" />
value="0.15" />
value="0.1" />
value="0.06" />
value="1.0" />
value="1.5" />

<fbc:geneProduct fbc:id="Estor" fbc:label="1*GSTORF" fbc:
associatedSpecies="Estor"/>
</fbc:1ist0fGeneProducts>

<listOfReactions>
<reaction id="Maintenance"

<annotation>

reversible="false" fast="true">
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<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="zero" ram:
kcatBackward="zero" ram:maintenanceScaling="main"
/>
</ram:RAM>
</annotation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="50"
constant="true"/>
<speciesReference species="ATP" stoichiometry="60"
constant="true"/>
</list0fReactants>
</reaction>
<reaction id="PMetabl" reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatR3" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="200"
constant="true"/>
<speciesReference species="ATP" stoichiometry="800"
constant="true"/>
</list0OfReactants>
<listOfProducts>
<speciesReference species="Emetabl" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="Metabl_1" reversible="false" fast="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatl" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"

/>



B The SBML representation of resource allocation models: illustration using
a toy example

</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Emetabl">
<fbc:geneProductRef fbc:geneProduct="Emetabl" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N" stoichiometry="1"
constant="true"/>
</list0fReactants>
<listOfProducts>
<speciesReference species="AA" stoichiometry="1"
constant="true"/>
<speciesReference species="ATP" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="Trans2" reversible="true" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatC" ram:
kcatBackward="kcatC" ram:maintenanceScaling="zero
ll/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Complex_1">
<fbc:geneProductRef fbc:geneProduct="Complex_1"/>
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N2" stoichiometry="1"
constant="true"/>
</list0fReactants>
<listOfProducts>
<speciesReference species="N" stoichiometry="1"
constant="true"/>
</list0fProducts>
</reaction>
<reaction id="Metabl_2" reversible="false" fast="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcat2" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"

/>
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</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Emetab2">
<fbc:geneProductRef fbc:geneProduct="Emetab2" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N" stoichiometry="1"
constant="true"/>
</list0fReactants>
<listO0fProducts>
<speciesReference species="AA" stoichiometry="1"
constant="true"/>
<speciesReference species="ATP" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="Transl" reversible="true" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatt" ram:
kcatBackward="kcatt" ram:maintenanceScaling="zero
|l/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Etransl">
<fbc:geneProductRef fbc:geneProduct="Etransi" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N1" stoichiometry="1"
constant="true"/>
<speciesReference species="02" stoichiometry="2"
constant="true"/>
</list0fReactants>
<listOfProducts>
<speciesReference species="N" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="Storing" reversible="true" fast="false" fbc:
lowerFluxBound="kcatSf" fbc:upperFluxBound="kcatSb">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
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B The SBML representation of resource allocation models: illustration using
a toy example

<ram:reaction ram:kcatForward="kcatSf" ram:
kcatBackward="kcatSb" ram:maintenanceScaling="
zero" />
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Estor">
<fbc:geneProductRef fbc:geneProduct="Estor" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="200"
constant="true"/>
<speciesReference species="ATP" stoichiometry="
300" constant="true"/>
</list0fReactants>
<listOfProducts>
<speciesReference species="Stor" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="PEtransl" reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatR1" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="100"
constant="true"/>
<speciesReference species="ATP" stoichiometry="400"
constant="true"/>
</list0fReactants>
<list0fProducts>
<speciesReference species="Etransl" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="PEtrans2" reversible="false" fast="false">
<annotation>
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<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatR2" ram:

kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="60"
constant="true"/>
<speciesReference species="ATP" stoichiometry="240"
constant="true"/>
</list0fReactants>
<listO0fProducts>
<speciesReference species="Etrans2" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="PComplex_1" reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatCl" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="160"
constant="true"/>
<speciesReference species="ATP" stoichiometry="640"
constant="true"/>
</list0fReactants>
<listO0fProducts>
<speciesReference species="Complex_1" stoichiometry="1
" constant="true"/>
</1list0fProducts>
</reaction>



B The SBML representation of resource allocation models: illustration using
a toy example

<reaction id="PMetab2" reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatR4" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="160"
constant="true"/>
<speciesReference species="ATP" stoichiometry="640"
constant="true"/>
</list0fReactants>
<listOfProducts>
<speciesReference species="Emetab2" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="PEstor" reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatR3" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="150"
constant="true"/>
<speciesReference species="ATP" stoichiometry="600"
constant="true"/>
</list0fReactants>
<listO0fProducts>
<speciesReference species="Estor" stoichiometry="1"
constant="true"/>
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</1list0fProducts>
</reaction>
<reaction id="PR" name="Ribosome expression" reversible="
false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatR5" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="1000"
constant="true"/>
<speciesReference species="ATP" stoichiometry="4000"
constant="true"/>
</list0fReactants>
<listOfProducts>
<speciesReference species="R" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="Metab2" reversible="false" fast="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatl" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Emetab2">
<fbc:geneProductRef fbc:geneProduct="Emetab2" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N" stoichiometry="1"
constant="true"/>
</list0fReactants>
<listO0fProducts>



B The SBML representation of resource allocation models: illustration using
a toy example

<speciesReference species="AA" stoichiometry="1"
constant="true"/>
<speciesReference species="ATP" stoichiometry="2"
constant="true"/>
</1list0fProducts>
</reaction>
<reaction id="PS" name="Structural biomass production"
reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops
/304">
<ram:reaction ram:kcatForward="kcatR6" ram:
kcatBackward="zero" ram:maintenanceScaling="zero"
/>
</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="1500"
constant="true"/>
<speciesReference species="ATP" stoichiometry="200"
constant="true"/>
</list0fReactants>
<listOfProducts>
<speciesReference species="S" stoichiometry="1"
constant="true"/>
</1list0fProducts>
</reaction>
</list0fReactions>
</model>
</sbml>
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C Synechococcus elongatus 7942 model
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Table Al: Ribosome composition of S. elongatus 7942.

Ribosomal Gene Stoichiometry =~ Molecular
protein weight (Da)
Small ribosomal subunit
S1 Synpcc7942_0694 1 34591
S2 Synpcc7942_2530 1 28400
S3 Synpcc7942_2226 1 27718
S4 Synpcc7942_1487 1 23206
S5 Synpcc7942_2216 1 19330
S6 Synpcc7942_0012 1 12346
S7 Synpcc7942_0886 1 17756
S8 Synpcc7942 2219 1 14682
S9 Synpcc7942_2205 1 14937
S10 Synpcc7942_0883 1 12179
S11 Synpcc7942_2210 1 13712
S12 Synpcc7942_0887 1 13991
S13 Synpcc7942_2211 1 13979
S14 Synpcc7942_0446 1 11752
S15 Synpcc7942_2299 1 10308
S16 Synpcc7942_1772 1 9555
S17 Synpcc7942_2223 1 9347
S18 Synpcc7942_1123 1 8307
S19 Synpcc7942_2228 1 10238
S20 Synpcc7942_1520 1 10892
S21 Synpcc7942 1774 1 7029
Large ribosomal subunit
L1 Synpcc7942_0633 1 25855
L2 Synpcc7942_2229 1 31706
L3 Synpcc7942_2232 1 22452
L4 Synpcc7942_2231 1 23203
L5 Synpcc7942_2220 1 20016
L6 Synpcc7942_2218 1 19198
L7/L12 Synpcc7942_0631 2x (2-3)=4-6 13151
L9 Synpcc7942_2559 1 16679
L10 Synpcc7942_0632 1 18810
L11 Synpcc7942_0634 1 14903
L13 Synpcc7942_2206 1 17072
L14 Synpcc7942_2222 1 13318
L15 Synpcc7942_2215 1 15289
L16 Synpcc7942_2225 1 16139

Continued on next page




C Synechococcus elongatus 7942 model

Table Al - continued from previous page

Ribosomal Gene Stoichiometry =~ Molecular
protein weight (Da)
L17 Synpcc7942_2208 1 13262
L18 Synpcc7942_2217 1 13047
L19 Synpcc7942_2541 1 13444
L20 Synpcc7942_1277 1 13316
L21 Synpcc7942_1219 1 13870
L22 Synpcc7942_2227 1 13253
L23 Synpcc7942_2230 1 11148
L24 Synpcc7942_2221 1 12449
L27 Synpcc7942_1220 1 9227
L28 Synpcc7942_0042 1 9119
L29 Synpcc7942_2224 1 7650
L31 Synpcc7942_2204 1 8799
L32 Synpcc7942_0997 1 6534
L33 Synpcc7942_1122 1 7372
L34 Synpcc7942_1614 1 5230
L35 Synpcc7942_1278 1 7840
L36 Synpcc7942_2212 1 4364
Ribosomal RNA

16S Synpcc7942_R0004 1

58 Synpcc7942_R0006 1

23S Synpcc7942_R0005

Table A2: Gene composition of the photosystems I and IT monomers of S. elon-
gatus 7942.

Enzyme Gene Gene name Stoichiometry
Photosystem I | Synpcc7942_2049 PsaA 1
monomer Synpcc7942_2048 PsaB 1
Synpcc7942_0535 PsaC 1
Synpcc7942_1002 PsaD 1
Synpcc7942_1322 PsaE 1
Synpcc7942_1250 PsaF 1
Synpcc7942_2343 Psal 1
Synpcc7942_1249 PsaJ 1
Synpcc7942_0407 PsaK1 (PsaX) 1
Synpcc7942_0920 (PsaK2) (PsaX) 1
Synpcc7942_2342 Psal. 1
Synpcc7942_1912a PsaM 1
C05306_cyt Chlorophyll a 96

Continued on next page
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Table A2 — continued from previous page

Enzyme Gene Gene name Stoichiometry
C02094_cyt p-carotene 22
C02059_cyt Phylloquinone 2

Photosystem II | Synpcc7942_0424 (A) 1

monomer Synpcc7942_0893 (A) 1
Synpcc7942_1389 (A) 1
Synpcc7942_0655 (D1) PsbA (D1) 1
Synpcc7942_1637 (D2) PsbD (D2) 1
Synpcc7942_0697 PsbB 1
Synpcc7942_0656 PsbC 1
Synpcc7942_1177 PsbE 1
Synpcc7942_1176 PsbF 1
Synpcc7942_0225 PsbH 1
Synpcc7942_1705 Psbl 1
Synpcc7942_1174 Psb] 1
Synpcc7942_0456 PsbK 1
Synpcc7942_1175 PsbL 1
Synpcc7942_0699 PsbM 1
Synpcc7942_0224 PsbN 1
Synpcc7942_0294 PsbO 1
Synpcc7942_1038 PspP 1
Synpcc7942_0696 PsbT 1
Synpcc7942_1882 PsbU 1
Synpcc7942_2010 PsbV 1
Synpcc7942_2016 PsbX 1
Synpcc7942_1692 PsbY 1
Synpcc7942_2245 PsbZ 1
Synpcc7942_0343 Psb27 1
Synpcc7942_1679 Psb28 (W) 1
Synpcc7942_2478 Psb28-2 (W) 1
C05306_cyt Chlorophyll a 35
C02094_cyt p-carotene 11
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C Synechococcus elongatus 7942 model

Table A3: Gene composition of phycobilisomes in S. elongatus 7942. The follow-
ing abbreviations are used: a PC - Phycocyanin alpha subunit, ¢ PC - Phyco-
cyanin beta subunit, @ AP - Allophycocyanin alpha subunit, u AP - Allophyco-
cyanin beta subunit, Lcr - core-rod linker protein, Lr - rod-rod linker protein, Lc
- core-core linker protein, Lcm - core-thylakoid membrane linker protein.

Subunit Description Gene or Gene Stoichiometry
metabolite name

Phycocyanobilin 48

24 - (aAP + uAP) Synpcc7942_0327 ApcA 24

Core Synpcc7942_0326 ApcB 24
6-Lc Synpcc7942_0325 ApcC 6

2-Lem Synpcc7942_0328 ApcE 2
Phycocyanobilin +108

Rods +36-(aPC+ uPC) Synpcc7942_1048 CpcA +36
(length 1) Synpcc7942_1047 CpcB +36
+6-Lcr Synpcc7942_2030 CpcG +6
Phycocyanobilin +108

Rods +36-(aPC+ uPC) Synpcc7942_1048 CpcA +36
(length 2) Synpcc7942_1047 CpcB +36
+6-Lr Synpcc7942_1049 CpcC +6
Phycocyanobilin +108

Rods +36-(aPC+ uPC) Synpcc7942_1048 CpcA +36
(length 3) Synpcc7942_1047 CpcB +36
+6-Lr Synpcc7942_1049 CpcC +6

Table A4: Gene composition of NDH I, Cytochrome b6f, ATPase, Cytochrome ¢
oxidase, and succinate dehydrogenase.

Enzyme ‘ Gene Gene name Stoichiometry

NADPH dehydrogenase Core (State M):
Synpcc7942_1343 NdhA
Synpcc7942_1415 NdhB
Synpcc7942_1180 NdhC
Synpcc7942_1346 NdhE
Synpcc7942_1345 NdhG
Synpcc7942_1743 NdhH
Synpcc7942_1344 Ndhl
Synpcc7942_1182 Ndh]
Synpcc7942_1181 NdhK
Synpcc7942_0413 NdhL
Synpcc7942_1982 NdhM
Continued on next page
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Enzyme

Gene

Table A4 — continued from previous page

Gene name

Stoichiometry

Synpcc7942_2234
Synpcc7942_2177
Variable:

Synpcc7942_1976
Synpcc7942_1977

Synpcc7942_1439
Synpcc7942_1977

Synpcc7942_2092
Synpcc7942_2091
Synpcc7942_2093
Synpcc7942_2094

Synpcc7942_0609
Synpcc7942_0309
Synpcc7942_0308

NdhN
NdhO

State L:
NdhD1
NdhF1
State L:
NdhD2
NdhF1
State MS:
NdhD3
NdhF3
CupA
CupS
State MS’:
NdhD4
NdhF4
CupB

1
1

[EE——

e

Cytochrome b6f

Synpcc7942_1232
Synpcc7942_2426
Synpcc7942_0978
Synpcc7942_1231
Synpcc7942_2331
Synpcc7942_2332
Synpcc7942_0475
Synpcc7942_1479
Synpcc7942 0113
Cytochrome:

Synpcc7942_0239
Synpcc7942_1630
Synpcc7942_2542

PetC
PetM
PetH (FNR)
PetA
PetB
PetD
PetN
PetG
PetL

cytf
cyt A (Pet])
Cyt c6-2

NN DNDNDDNDNDNDN N =

ATPase

Synpcc7942_0331
Synpcc7942_0332
Synpcc7942_0333
Synpcc7942_0334
Synpcc7942_0335
Synpcc7942_0336
Synpcc7942_0337
Synpcc7942_2315
Synpcc7942_2316

A

C

B’

B

delta
alpha
gamma
beta
epsilon

bt | et

10-15
1-2
1-2

—_— W = W

Continued on next page
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C Synechococcus elongatus 7942 model

Table A4 — continued from previous page
Gene Gene name

Enzyme

Stoichiometry

Cytochrome c oxidase

Synpcc7942_2603 subl
Synpcc7942_2602  subll
Synpcc7942_2604  sub III

Succinate dehydrogenase

Synpcc7942_0314 SdhC
Synpcc7942_0641 SdhA
Synpcc7942_1533 SdhB

S ) [V (—

Table A5: Fractions of the dry weight of a S. elongatus cell that correspond to the
quota metabolites as well as absolute amounts of the quota metabolites in one
cell, assuming a dry weight of 1.5 pg/cell.

quota metabolite

fraction (g/gDW) Amount (pg/cell)

Noncatalytic proteins 0.357
DNA 0.031
RNA 0.17
Cell wall 0.059
Lipids 0.12
Cofactors and vitamins 0.029
Ions 0.01
Pigments 0.0244

0.5712
0.0496
0.272
0.0944
0.192
0.0464
0.016
0.03904
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D Saccharomyces cerevisiae model

Table A6: Verduyn minimal medium composition and corresponding Yeast 6
transporters.

Compound Transporters
D-glucose r_1714
D-galactose r 1710

oxygen r_1992
(NH4)2S04 r_1654, r_2060, r_2061
KH,PO,4 r_2020, r_2005
MgSO,4 - 7H,0 r_2060,r_2061
D-biotin r 1671
Ca-D-pantothenate r_1548
Nicotonic acid r 1967
Myo-inositol r_1947

Thiamine hydrochloride r_2067
Pyridoxal hydrochloride r_2028

p-aminobenzoic acid r_1604

Na, r_2049
7ZnSOy4-7H,0 r_2060, r_2061
MHC12 . 2H20 -

COClz . 6H20 -

CuSO4 -5H,0 r_2060, r_2061
NazMOO4 . 2H20 -

CaClg . 2H20 -
FeSOy4-7H,0 r_1861

H3BO3 -

KI -

Table A7: Additional medium components needed for anaerobic growth, and
their corresponding Yeast 6 transporters.

Compound Transporters
episterol r 1753
ergosterol r_1757
fecosterol r 1788
lanosterol r_1915
zymosterol r 2106
14-demethyllanosterol r 2134
ergosta-5,7,22,24(28)-tetraen-3beta-ol r_2137
oleate r_2189

198



D Saccharomyces cerevisiae model

Table A8: Ribosome composition of S. cerevisiae. All gene stoichiometries are 1.

Ribosomal protein Gene name Gene
Small ribosomal subunit
SA RPSOA YGR214W
RPSOB YLR048W
S2 RPS2 YGL123W
S3 RPS3 YNL178W
S3A RPS1A YLR441C
RPS1B YMLO63W
4 RPS4A YJR145C
RPS4B YHR203C
S5 RPS5 YJR123W
36 RPS6A YPL090C
RPS6B YBR181C
7 RPS7A YOR096W
RPS7B YNL096C
38 RPS8A YBL072C
RPS8B YER102W
S9 RPS9A YPLO81W
RPS9B YBR189W
310 RPS10A YOR293W
RPS10B YMR230W
311 RPS11A YDR025W
RPS11B YBR048W
S12 RPS12 YOR369C
S13 RPS13 YDR064W
314 RPS14A YCRO31C
RPS14B YJLI91W
S15 RPS15 YOL040C
RPS22A YJL190C
SI5A RPS22B YLR367W
316 RPS16A YMR143W
RPS16B YDL083C
317 RPS17A YML024W
RPS17B YDR447C
318 RPS18A YDR450W
RPS18B YML026C
319 RPS19A YOL121C
RPS19B YNL302C
S20 RPS20 YHL015W
S21 RPS21A YKRO57W

Continued on next page
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Table A8 — continued from previous page

Ribosomal protein  Gene name Gene
S21 RPS21B YJL136C
523 RPS23A YGR118W
RPS23B YPR132W

S RPS24A YER074W
24 RPS24B YIL069C
o5 RPS25A YGR027C
RPS25B YLR333C

$26 RPS26A YGL189C
RPS26B YER131W

o7 RPS27A YKL156W
RPS27B YHR021C

S27A RPS31 YLR167W
528 RPS28A YOR167C
RPS28B YLR264W

S RPS29A YLR388W
29 RPS29B YDL061C
S RPS30A YLR287C-A
30 RPS30B YOR182C

Large ribosomal subunit

LPO RPPO YLR340W
LP1 RPPIA YDL081C
RPP1B YDL130W

LP2 RPP2A YOL039W
L3 RPL3 YOR063W
L RPL4A YBRO31W
4 RPL4B YDRO12W
L5 RPL5 YPLI31W
16 RPL6A YML073C
RPL6B YLR448W

L7 RPL7A YGL076C
RPL7B YPL198W

L7A RPL8A YHLO033C
RPL8B YLL045C

RPL2A YFR0O31C-A

L8 RPL2B YILO18W
L9 RPLYA YGL147C
RPL9B YNLO67W

L10 RPL10 YLRO75W
RPL1A YPL220W

L10A RPL1B YGL135W

Continued on next page




D Saccharomyces cerevisiae model

Table A8 — continued from previous page

Ribosomal protein  Gene name Gene
111 RPL11A YPR102C
RPL11B YGR085C

112 RPL12A YEL054C
RPL12B YDR418W

L13 RPL13A YDL082W
RPL13B YMR142C

RPL16A YIL133C

L13A RPL16B YNL069C
L14 RPL14A YKLOO6W
RPL14B YHLOO1W

L15 RPL15A YLR029C
RPL15B YMR121C

L17 RPL17A YKL180W
RPL17B YJL177TW

L18 RPL18A YOL120C
RPL18B YNL301C

RPL20A YMR242C

L18A RPL20B YOR312C
L19 RPL19A YBR084C-A
RPL19B YBLO27W

121 RPL21A YBR191W
RPL21B YPLO79W

122 RPL22A YLRO61W
RPL22B YFL034C-A

123 RPL23A YBL087C
RPL23B YER117TW

L23A RPL25 YOL127W
124 RPL24A YGL031C
RPL24B YGR148C

L RPL26A YLR344W
26 RPL26B YGRO034W
127 RPL27A YHRO10W
RPL27B YDR471W

L27A RPL28 YGL103W
L29 RPL29 YFR032C-A
L30 RPL30 YGLO30W
RPL31A YDLO75W

131 RPL31B YLR406C
L32 RPL32 YBL092W
L34 RPL34A YER056C-A

Continued on next page
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Table A8 — continued from previous page

Ribosomal protein  Gene name Gene

L34 RPL34B YIL052C

135 RPL35A YDL191W
RPL35B YDL136W
RPL33A YPL143W

L35A RPL33B YOR234C
RPL36A YMR194W

136 RPL36B YPL249C-A
RPL42A YNL162W

L36A RPL42B YHR141C

137 RPL37A YLR185W
RPL37B YDR500C

L37A RPL43A YPR043W
RPL43B YJR094W-A

L38 RPL38 YLR325C

L39 RPL39 YJL189W

140 RPL40A YIL148W
RPL40B YKR094C

141 RPL41A YDL184C
RPL41B YDL133C-A

Ribosomal RNA

258 RDN25-1

5S RDN5-1

5.8S RDN58-1

18S RDN18-1




Table A9: Quota metabolite production reactions for S. cerevisiae. The reactions and energy requirements have been constructed
following the information in the supplement of (Férster et al., 2003a).

Reactants

Stoichiometry ‘ Products

Stoichiometry

Nocatalytic proteins

Ala-tRNA(Ala)
Arg-tRNA(Arg)
Asn-tRNA(Asn)
Asp-tRNA(Asp)
Cys-tRNA(Cys)
GIn-tRNA(GIn)
Glu-tRNA(Glu)
Gly-tRNA(Gly)
His-tRNA(His)
Ile-tRNA(Ile)
Leu-tRNA(Leu)
Lys-tRNA(Lys)
Met-tRNA(Met)
Phe-tRNA(Phe)
Pro-tRNA(Pro)
Ser-tRNA(Ser)
Thr-tRNA(Thr)
Trp-tRNA(Trp)
Tyr-tRNA(Tyr)
Val-tRNA(Val)

0.9839201541
0.3446294001
0.2181008711
0.6380040232
0.0141540388
0.2260357111
0.6472255939
0.6227777087
0.1421837537
0.4132550429
0.6356450167
0.6137705931
0.1087287529
0.2871554242
0.3532076054
0.3975998181
0.4104671262

0.060905258
0.2187442365
0.5674482841

tRNA(Ala)
tRNA(Arg)
tRNA(Asn)
tRNA(Asp)
tRNA(Cys)
tRNA(GIn)
tRNA(Glu)
tRNA(Gly)
tRNA (His)
tRNA(Ile)
tRNA(Leu)
tRNA(Lys)
tRNA (Met)
tRNA(Phe)
tRNA(Pro)
tRNA(Ser)
tRNA(Thr)
tRNA(Trp)
tRNA(Tyr)
tRNA(Val)

0.9839201541
0.3446294001
0.2181008711
0.6380040232
0.0141540388
0.2260357111
0.6472255939
0.6227777087
0.1421837537
0.4132550429
0.6356450167
0.6137705931
0.1087287529
0.2871554242
0.3532076054
0.3975998181
0.4104671262

0.060905258
0.2187442365
0.5674482841

Continued on next page
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Table A9 — continued from previous page

Reactants Stoichiometry | Products Stoichiometry
ATP 36.3823134562 | ADP 36.3823134562
H,O 36.3823134562 | phosphate 36.3823134562

H* 36.3823134562

protein quota 1

RNA
AMP 0.691255 | RNA quota 1
CMP 0.671719 | ADP 24.614677
GMP 0.691255 | H* 24.614677
UMP 0.900134 | phosphate 24.614677
ATP 24.614677
H,0 24.614677
DNA
dAMP 0.919380 | DNA quota 1
dCMP 0.612920 | ADP 26.559855
dGMP 0.612920 | H* 26.559855
dTMP 0.919380 | phosphate 26.559855
ATP 26.559855
H,0 26.559855
Cell wall

(1 — 3)-beta-D-glucan 3.605775 | cell wall quota 1
mannan 2.567065 | ADP 16.553263
ATP 16.553263 | H* 16.553263
H,0 16.553263 | phosphate 16.553263

Continued on next page
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Table A9 - continued from previous page

Reactants Stoichiometry ‘ Products Stoichiometry
Lipids
1-phosphatidyl-1D-myo-inositol 0.185284 | lipid quota 1
14-demethyllanosterol 0.006782
complex sphingolipid 0.050499
episterol 0.011626
ergosta-5,7,22,24(28)-tetraen-3beta-ol 0.015138
ergosterol 0.678165
ergosterol ester 0.098334
fatty acid 0.024947
fecosterol 0.013806
lanosterol 0.003875
phosphatidyl-L-serine 0.045171
phosphatidylcholine 0.348771
phosphatidylethanolamine 0.084407
triglyceride 0.094580
zymosterol 0.001817
Small molecules
riboflavin 0.431599 | small molecules quota 1
sulphate 8.719170
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Table A10: Fractions of the dry weight of a S. cerevisiae cell that correspond to
the quota metabolites.

quota metabolite fraction (g/gDW)
noncatalytic proteins 0.27731
RNA 0.066546
DNA 0.0039157
cell wall 0.31472
lipids 0.0082576
small molecules 0.0022938
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E Regulation inference using deFBA time courses

Table A11: Transpose of the least squares regression matrix Mg learned using
deFBA time courses for the toy model in figure 8.1.

Carbly, Carb2.y, Doyt Eext Fexr Hext
ER1 0.00019381 0.00015021 0.0013658 -2.2705 0 0
ER2 0.00021147  0.00018655 0.00060077 -2.8392 0 0
ER3 -3.0439e-05 -5.0733e-05 0.00092267 -0.31313 0 0
ER4 -5.193e-05 -7.3483e-05 0.0036452 4.0171 0 0
ER5 -0.00016764 -0.00020332 0.0034676 5.6247 0 0
ER6 1.9984e-05 -3.89e-05 0.00079994 -0.238 0 0
ER7 -3.3693e-08 1.5392e-08 1.9897e-07 0.0037495 0 0
ER8 9.6483e-05 9.1794e-05 0.0004666 -1.8497 0 0
ERres | -7.6346e-05 -0.00014287 0.0067211 1.9126 0 0
ETC1 0.00021299 -1.8809e-06 0.00027752 -1.0494 0 0
ETC2 | -0.00025606  0.00016953 0.0016208 -2.6385 0 0
ETH 0 0 0 0 0 0
ETF 0 0 0 0 0 0
S -0.003285 -0.0059422 0.079068 120.01 0 0
RIB 0.00018009  0.00016234 0.0011605 -3.7149 0 0

Table A12: Transpose of the Lasso regression matrix My 455, (Objective Lagrange

multiplier A = 0.115) learned using deFBA time courses for the toy model in fig-

ure 8.1.

Carbl,y, Carb2,y; Dext  EBext Fext Hext
ER1 0.00017539 0.00016227 0.0011829 -0 0 0
ER2 0.00019353 0.0001987 0.00041413 -0 0 0
ER3 -0 -0 0.00067714 0 0 0
ER4 -8.2981e-06 -2.4977e-06 0.0033939 0 0 0
ER5 -0.00012543  -0.0001326 0.003227 0 0 0
ER6 0 0 0.00059914 0 0 0
ER7 0 0 0 0 0 0
ER8 7.7699e-05 0.00010379 0.00028652 -0 0 0
ERres | -3.0924e-05 -7.156e-05 0.0064559 0 0 0
ETC1 0.00019352  9.9853e-06 0.00010272 -0 0 0
ETC2 | -0.00018036 0.00015524 0.0014088 -0 0 0
ETH 0 0 0 0 0 0
ETF 0 0 0 0 0 0
S -0.0033411 -0.005891 0.079585 0 0 0
RIB 0.00016291 0.00017464 0.00096803 -0 0 0
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Table A13: Transpose of the Ridge regression matrix Mp;4¢. (Objective Lagrange
multiplier A = 10°) learned using deFBA time courses for the toy model in fig-

ure 8.1.

Carbl,y, Carb2,y; Dext Eext  Fext Hext
ER1 0.00020323 0.0001894 0.0011256 -1.4931e-08 0 0
ER2 0.00021314  0.00020067 0.00049013 -2.4703e-08 0 0
ER3 -2.004e-05 -2.0394e-05 0.0007607  1.9977e-09 0 0
ER4 -1.6188e-05  4.2613e-05 0.0030387  5.9358e-08 0 0
ER5 -0.00013163 -8.9192e-05 0.0028951  7.4231e-08 0 0
ER6 2.7094e-05 -1.2239e-05 0.00066033  2.0254e-09 0 0
ER7 -3.2894e-08  2.0771e-08 1.8546e-07 3.7875e-11 0 0
ER8 9.9724e-05 0.00010398 0.00038026 -1.5652e-08 0 0
ERres | -7.1847e-06  7.1492e-05 0.0055727  5.5565e-08 0 0
ETC1 0.0002077  9.3213e-06 0.00022628 -8.9323e-09 0 0
ETC2 | -0.00022469 0.00021064 0.0013308 -1.6804e-08 0 0
ETH 0 0 0 0 0 0
ETF 0 0 0 0 0 0
S -0.0024955  -0.0032847 0.065934 1.6113e-06 0 0
RIB 0.00018921 0.00019445 0.00094788 -3.0205e-08 0 0

Table A14: Transpose of the elastic net regression matrix Mgy (objective La-
grange multiplier A = 0.2) learned using deFBA time courses for the toy model

in figure 8.1.

Carbl,y, Carb2,,; Dext  Bext  Fexr Hext
ER1 0.00017805  0.00016078 0.0012046 -0 0 0
ER2 0.00019619  0.00019719 0.00043595 -0 0 0
ER3 -0 -0 0.00069879 0 0 0
ER4 -1.4297e-05 -1.1814e-05 0.0034295 0 0 0
ER5 -0.00013152 -0.00014183 0.0032626 0 0 0
ER6 0 0 0.00062081 0 0 0
ER7 0 0 0 0 0 0
ER8 8.0358e-05 0.00010227 0.00030835 -0 0 0
ERres -3.699e-05 -8.0672e-05 0.0064909 0 0 0
ETC1 0.00019617 8.4662e-06 0.0001246 -0 0 0
ETC2 | -0.00018991 0.00015721 0.0014339 -0 0 0
ETH 0 0 0 0 0 0
ETF 0 0 0 0 0 0
S -0.0033462 -0.0058973 0.079606 0 0 0
RIB 0.00016557  0.00017315 0.00098974 -0 0 0
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Notation

Here we summarize all the notation used in this thesis:

R denotes the set of real numbers
R>o denotes the set of real numbers that are greater or equal to zero
v; denotes the i-th element of the vector v

v4 denotes the subvector of v containing only the elements of the index
set A

Sij denotes the element at row i and column j of the matrix S
S;« denotes the i-th row of the matrix S

S« denotes the i-th column of the matrix S

(a,b)T denotes the transpose of the vector (a,b), i.e., (a,b)7 := (ﬁ)
Z denotes the set of reactions

4 denotes the set of internal metabolites

& denotes the set of extracellular metabolites present in limited amounts
& denotes the set of enzymes

2 denotes the set of quota compounds

Irr denotes the set of irreversible reactions

G and TH denote glycogen and trehalose respectively

S denotes the stoichiometric matrix

v denotes the steady-state flux vector

v(t) denotes the flux vector at time point ¢
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V(T) denotes the average flux vector over the time period [0, T']
v denotes the average flux v(T) for T — oo

Vgee denotes the enzyme production fluxes inferred using a machine
learning model

c denotes the steady-state metabolite concentration vector
c(t) denotes the metabolite concentration vector at time point ¢

€(T) denotes the average metabolite concentration vector over the time
period [0, T']

¢ denotes the average metabolite concentration vector €(T) for T — oo
e denotes the steady-state enzyme concentration vector
e(7) denotes the enzyme concentration vector at time point ¢

€(T) denotes the average enzyme concentration vector over the time pe-
riod [0, T

€ denotes the average enzyme concentration vector &(T) for T — co

n denotes the steady-state vector of molar amounts of both metabolites
and enzymes, i.e., n:= (n_y4,ng)’

n(t) denotes the vector of molar amounts of both metabolites and en-
zymes at time point ¢

1, u denote the constant lower and upper flux bounds vectors respectively

1(#),u(t) denote the lower and upper flux bounds vectors at time point ¢
respectively

f(,-) denotes deterministic kinetic rate laws
K,s denotes the Michaelis constant

kcqar denotes the turnover rate, with the variations k', and k., for the

cat cat
forward and reverse directions respectively
V(t) denotes the volume of the cell population at time point ¢
1 denotes the constant steady-state growth rate of a cell population
w(t) denotes the growth rate at time point ¢
T, denotes the division time

R denotes the ribosome



Glossary

diauxic shift Also known as diauxie, describes the growth phases of a microor-
ganism in batch culture as it metabolizes a mixture of two sugars. Rather
than metabolizing the two available sugars simultaneously, microbial cells
commonly consume them in a sequential pattern, resulting in two sepa-
rate growth phases.

diurnal Property of plant or animal behavior characterized by activity during
the day, with a period of sleeping, or other inactivity, at night.

doubling time The period of time required for a population to double in size.

EC number Enzyme Commision number, a numerical classification scheme for
enzymes, based on the chemical reactions they catalyze.

enzyme Biological macromolecule that acts as catalyst and thus increases the
rate of a reaction.

exchange reaction Reaction that represents the transport of a metabolite from
the environment to the cell or vice versa.

external metabolite Metabolite present in the environment of the cell.

gene-reaction mapping Mapping between reactions and the genes whose
products are involved in the catalysis of those reactions.

glycogen Multibranched polysaccharide of glucose that serves as a form of en-
ergy storage.

growth rate The rate at which the number of individuals in a population in-
creases.

heterotrophic organism Organism that cannot manufacture its own food, but
relies on organic substances in the environment for growth and survival.

internal metabolite Metabolite present inside the cell.
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Glossary

internal reaction Reaction happening inside the cell.

kinetic rate law Equation that links the reaction rate with the concentrations of
reactants, catalysts, and constant kinetic parameters.

macromolecule Very large molecule, such as protein, commonly created by
polymerization of smaller subunits (monomers).

metabolic network Directed hypergraph that describes the biochemical reac-
tions happening inside a cell.

metabolite concentration The molar amount of a metabolite divided by the
volume of the cell.

nonlimiting extracellular metabolite Metabolite considered to be present at
saturation in the medium and whose amount is not modeled explicitly.

overflow metabolism Seemingly wasteful strategy in which cells incompletely
oxidize their growth substrate instead of using the more energetically-
efficient respiratory pathway, even in the presence of oxygen.

photoautotrophic growth Growth of an organism using only sunlight as source
of energy to synthesize organic compounds.

quota metabolite Metabolite or macromolecule that has no immediate
catalytic role, but whose production should nevertheless be enforced.

reaction rate Also known as flux, it is the speed at which the reactants are trans-
formed into products.

respiro-fermentation Strategy for metabolizing sugars under aerobic condi-
tions that uses both the respiratory and the fermentative pathway.

ribosome Complex molecular machine, found within all living cells, that serves
as the site of biological protein synthesis.

SBML Systems Biology Markup Language, a representation format based on
XML for communicating and storing computational models of biological
processes.

spontaneous reaction A reaction that does not need an enzyme for catalysis,
but occurs without being driven by any outside force..

steady-state assumption Assumption that production and consumption rates
for internal metabolites balance, and thus the level of internal metabolites
is constant.
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Glossary

stoichiometric matrix Matrix representation of a metabolic network, where
the rows correspond to internal metabolites, the columns to reactions,
and the entry at row i, column j gives the stoichiometry of metabolite i

in reaction j.
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Zusammenfassung

Diese Doktorarbeit ist ein Beitrag zur Systembiologie, wo grof3e biologische Systeme
wie der Metabolismus durch mathematische und rechnergestiitzte Modelle untersucht
werden. Diese Modelle sind vereinfachte Darstellungen der biologischen Systeme und
haben verschiedene Stufen von Granularitdat und Abstraktion, abhéngig von Formalis-
mus und ModellgroRe.

Viele der grofSten untersuchten Netzwerke in der Systembiologie beschreiben den Me-
tabolismus, welcher alle biochemischen Reaktionen innerhalb einer Zelle umfasst. Bis
vor kurzem wurden solche groen metabolischen Netzwerke vor allem nur isoliert und
unter stationdren Bedingungen untersucht, ohne die Umgebungsdynamik oder die en-
zymatischen Ressourcen zu beriicksichtigen, die notwendig sind, um alle biochemi-
schen Reaktionen zu katalysieren. Dies geschah vor allem durch constraintbasierte Me-
thoden und Optimierung. Wahrend diese Methodik sich bei der Vorhersage des zellu-
laren Verhaltens als sehr erfolgreich erwiesen hat, eignet sich dieser Ansatz nicht fiir
Mikroorganismen, die in Umgebungen leben, die stindig Verdanderungen ausgesetzt
sind. Ein Beispiel sind Cyanobakterien, deren Stoffwechsel an die tdglichen Verdnde-
rungen der Sonnenlichtverfiigbarkeit angepasst ist. Ein weiteres Beispiel sind Hefen,
die in groBen Bioreaktoren leben und sich in einem dynamisch verdndernden Umfeld
befinden, welches durch lokale Heterogenitdten bestimmt ist.

Diese Doktorarbeit basiert auf neuen Formalismen, die die dynamische Ressourcen-
allokation des Stoffwechsels modellieren und dabei die Methoden der dynamischen
Optimierung und Optimalsteuerung verwenden. Wir konzentrieren uns auf die Model-
lierung und das Verstdndnis der Ressourcenallokation in groflen (manchmal genom-
weiten) metabolischen Modellen.

Nach einer Ubersicht iiber die vorhandenen Methoden fiir das Studium der metaboli-
schen Ressourcenallokation prasentiert die Arbeit eine neue mathematische Ableitung
der weit verbreiteten Flussgleichgewichtsannahme fiir metabolische Netzwerke und
zeigt, wie dies dazu genutzt werden kann, um Obergrenzen fiir Losungen der dynami-
schen Ressourcenallokation zu bestimmen. In Vorbereitung auf die Fallstudien stellen
wir eine Methodik zur Erstellung eines dynamischen Ressourcenallokationsmodells
unter Verwendung von Informationen aus Online-Datenbanken dar. Dariiber hinaus
werden Leitlinien und niitzliche Problemtransformationen zur Losung dynamischer
Ressourcenallokationsprobleme vorgestellt. Diese Theorie wird dann in zwei Fallstudi-
en angewendet. Eine Studie betrachtet das Cyanobacterium Synechococcus elongatus
PCC 7942 und stellt die erste genomweite dynamische Ressourcenallokationsstudie dar.
Diese gibt Einblick in die zeitliche Organisation der Enzymsyntheseprozesse, die der
Lichtverfiigbarkeit folgen und zeigt, dass das lineare Muster der Glykogenakkumulation
wihrend der Tageszeit ein optimales Verhalten ist, welches als Kompromiss zwischen
mehreren widerspriichlichen Ressourcenallokationszielen entsteht. Die zweite Fall-
studie betrifft Hefe. Wir wollen verstehen, welche Mechanismen es ermdglichen, dass
einige der Zellen Umgebungsiiberginge iiberleben und andere nicht. Wir zeigen, dass
Uberlaufstoffwechsel und Diauxie, Phinomene die weit verbreitet in der Natur sind,
optimale Verhaltensweisen aus einer Ressourcenallokationsperspektive sind. Dariiber
hinaus untersuchen wir, wie man Ressourcenallokationsmodelle verwenden kann, um
zu verstehen, wie sich Hefe an Sauerstoff- und Nihrstoffverfiigbarkeitsdanderungen
anpasst. Wir enden mit einem Perspektivenkapitel, in dem wir einige vorldufige
Ergebnisse fiir die Verwendung von Zeitreihen aus dynamischen Ressourcenalloka-
tionsmodellen prédsentieren, um auf die regulatorischen Strukturen zu schlieflen, die
diese optimalen Verhaltensweisen implementieren.
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