Verzeichnis der Abbildungen

Abbildung 1: Molekulare Struktur des Vasopressins	7
Abbildung 2: Diagnostik des Diabetes Insipidus (in Anlehnung an ⁴⁷)	24
Abbildung 3: Idealtypische Darstellung der Urin-Osmolalität während des	
Durstversuches bei Gesunden und verschiedenen Patientengruppen	25
Abbildung 4: Graphische Darstellung der Relation des Plasma-Vasopressins	
gegenüber der Plasma-Osmolalität: Exakte Differentialdiagnose zwischen	
zentralem Diabetes Insipidus (z. D. I.) und primärer Polydipsie	26
Abbildung 5: Molekularer Aufbau des Desmopressins	28
Abbildung 6: Vergleich der Bestimmung des Vasopressins im Urin mit und ohne	
Präzipitation (Nichols [®] Kit)	36
Abbildung 7: Bestimmung der Sensitivität des Nichols® Kit zur Bestimmung von	
Vasopressin im Urin über die Standardkurve.	38
Abbildung 8: Darstellung der Intra-Assay-Variabilität (Nichols [®] Kit)	39
Abbildung 9: Darstellung der Inter-Assay-Variabilität (Nichols [®] Kit)	39
Abbildung 10: Korrelation der gefundenen Werte (Abszisse) und erwarteten Werte	
(Ordinate) bei der analytischen Wiederfindung (Nichols® Kit)	41
Abbildung 11: Darstellung der Bestimmung des Urin-Vasopressins auf zwei	
verschiedene Arten (nach Morton und mit Nichols [®] Kit)	51
Abbildung 12: Urin-Vasopressin (Nichols®) versus Plasma-Vasopressin (Morton)	52
Abbildung 13: Korrelation Vasopressin-Ausscheidungsrate und Vasopressin-	
Konzentration im Urin	53
Abbildung 14: Vasopressin-Konzentration im Urin in den verschiedenen	
Patientengruppen	54
Abbildung 15: Absolute Vasopressin-Menge im Urin pro Zeit in den verschiedenen	
Patientengruppen	54
Abbildung 16: Grafische Darstellung des Plasma-Vasopressins gegenüber der	
Plasma-Osmolalität	58
Abbildung 17: Darstellung Urin-Osmolalität gegen Plasma-Vasopressin	59
Abbildung 18: Darstellung des Urin-Vasopressins gegenüber der Plasma-	
Osmolalität	61

Abbildung 19: Darstellung des Urin-Vasopressins x Urin-Osmolalität gegenüber der	n
Plasma-Osmolalität	62
Abbildung 20: Darstellung der Urin-Osmolalität gegenüber dem Urin-Vasopressin.	63
Abbildung 21: Diagnostik der Polyurie/Polydipsie über Vasopressin im Urin	64
Abbildung 22: Logarithmische Darstellung der verschiedenen Patientengruppen	
durch die Gleichung 1	68
Abbildung 23: Logarithmische Darstellung der Ergebnisse nach Anwendung der	
Gleichung 2.	69
Abbildung 24: Logarithmische Darstellung der Ergebnisse von Gleichung 3	70
Abbildung 25: Logarithmische Darstellung der Trennung der verschiedenen	
Patientengruppen durch Gleichung 4.	71
Abbildung 26: Logarithmische Darstellung der Trennung der Patientengruppen durc	h
Gleichung 5.	72