Aus dem Institut für Arbeitsmedizin

der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Untersuchungen zur Resorption von Arbeits- und Umweltschadstoffen aus Bodenproben im Modell der isolierten, hämoperfundierten Schweineextremität

zur Erlangung des akademischen Grades

Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

Johannes Jakob Clemens Godt

aus Hannover

Gutachter: 1. Prof. Dr. med. D. Groneberg

2. Prof. Dr. med. T. Tschernig

3. Prof. Dr. med. H. Rüden

Datum der Promotion: 23.09.2007

Für meine Familie

Inhaltsübersicht

Inhaltsübersicht

Inhaltsübersicht	4
Inhaltsverzeichnis	5
Abbildungsverzeichnis	8
Tabellenverzeichnis	10
Abkürzungsverzeichnis	11

Inhaltsverzeichnis

Inhaltsverzeichnis

1 E	INLEITUNG	13
1.1	Einführung	13
1.2	Cadmium als Gefahrstoff für den Menschen	13
1.2.	1 Verwendung und Vorkommen von Cadmium	13
1.2.2	2 Aufnahme von Cadmium durch den Menschen	14
1	.2.2.1 Gastrointestinale und pulmonale Resorption	14
1	.2.2.2 Dermale Resorption von Cadmium	15
1.2.	3 Toxizität und Metabolismus von Cadmium	16
1.2.4	4 Arbeitsmedizinische Relevanz	18
1.2.	5 Cadmiumbelastung von Böden	19
1.3	Die isolierte, hämoperfundierte Schweineextremität als Ersatzmetho	
Tierve	rsuche	20
1.3.	1 In-vitro-Hautmodelle zur Resorptionsprüfung von Substanzen	22
1.4	Ziel der Arbeit	24
2 N	MATERIAL UND METHODEN	25
2.1	Versuchsorgane und Versuchsgruppeneinteilung	25
2.2	Organgewinnung und -vorbereitung	26
2.2.	1 Organgewinnung	26
2.2.2	2 Blutgewinnung	27
2.3	Versuchsaufbau zur Organperfusion	27
2.4	Herstellung und Applikation der Prüfsubstanzen	30
2.4.	1 Applikationsweg der Prüfsubstanzen	31
2.5	Versuchsablauf und Perfusionstechnik	33
2.5.	1 Vorbereitung des Perfusionsaufbaues	33
2.5.2	2 Anschluß der Extremität an das System, Versuchsablauf	33
2.5.3	3 Gabe von Substanzen	36
2.6	Probengewinnung und Analytik	36
2.6.	1 Klinisch-chemische Analysen	36
2.6.2	2 Atom-Absorptions-Spektroskopie zur Cadmiumbestimmung	37

2.7 Statistik		tatist	tik	38
3	ERG	GEB	BNISSE	39
3.1	С	admi	iumresorption	39
3	.1.1	Hau	ptversuche: Cadmiumkonzentration im Blut	39
	3.1.1	1.1	Gruppe wet	39
	3.1.1	1.2	Gruppe dry	40
	3.1.1	1.3	Gruppe gre	41
	3.1.1	1.4	Vergleich der Gruppen untereinander	42
3	.1.2	Hau	ptversuche: Cadmiumkonzentration im Dialysat	43
	3.1.2	2.1	Gruppe wet	43
	3.1.2	2.2	Gruppe dry	44
	3.1.2	2.3	Gruppe gre	45
	3.1.2	2.4	Vergleich der Gruppen untereinander	46
3	.1.3	Ges	samtresorptionsmenge zu Versuchsende, Hauptversuche	47
3	.1.4	Vor	versuche: Cadmiumkonzentration im Blut	47
3	.1.5	Vor	versuche: Cadmiumkonzentration im Dialysat	48
3.2	Н	aupt	versuche: Physiologische Parameter	49
3	.2.1	Hän	nodynamik	49
	3.2.1	1.1	Mittlerer arterieller Perfusionsdruck	49
	3.2.1	1.2	Arterieller Perfusionsfluss	50
	3.2.1	1.3	Organwiderstand	51
3	.2.2	Gev	vichtszunahme der Extremitäten	52
3	.2.3	Blut	temperatur	53
3	.2.4	Sau	erstoffverbrauch	54
3	.2.5	Arte	erieller pH-Wert	55
3	.2.6	Klini	ische-Chemische Analysen	56
	3.2.6	6.1	Arterieller Hämatokrit	56
	3.2.6	6.2	Arterielles freies Hämoglobin	57
	3.2.6	6.3	Arterielle Natriumkonzentration	58
	3.2.6	6.4	Arterielle Kaliumkonzentration	59
	3.2.6	6.5	Laktatkonzentration im venösen Blut	60
	3.2.6	6.6	Arterieller Gesamtproteingehalt	61
	3.2.6	6.7	Arterielle Albuminkonzentration	62
	3.2.6	8.8	Glukoseverbrauch	63
4	DIS	KUS	SSION	64
11	F	infüh	oruna	64

4.2	e D	iskussion der Methodik	64
	4.2.1	Spezies	65
	4.2.2	Perfusat	66
	4.2.3	Organgewinnung	67
	4.2.4	Ischämie und Reperfusion, Ödembildung	67
	4.2.5	Vitalitätsparameter	68
4.3	s c	admiumresorption	71
5	ZU	SAMMENFASSUNG	77
6	LIT	ERATURVERZEICHNIS	79
7	LE	BENSLAUF	90
8	DA	NKSAGUNG	91
9	ΔN	HANG	92

Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung 1: Passage von Substanzen durch die Haut	21
Abbildung 2: Skizze des Perfusionsaufbaus	28
Abbildung 3: Versuchsaufbau	30
Abbildung 4: Versuchsaufbau mit Toxic release chamber (Applikation dry)	32
Abbildung 5: Box and Whisker-Plot	38
Abbildung 6: Cadmiumkonzentration im venösen Blut (CdV) in [µg/l], Gruppe wet	39
Abbildung 7: Cadmiumkonzentration im venösen Blut (CdV) in [µg/l], Gruppe dry	40
Abbildung 8: Cadmiumkonzentration im venösen Blut (CdV) in [µg/l], Gruppe gre	41
Abbildung 9: Cadmiumkonzentration im venösen Blut (CdV) in [µg/l], Hauptversuche	42
Abbildung 10: Cadmiumkonzentration im Dialysat (CdD) in [μg/l], Gruppe wet	43
Abbildung 11: Cadmiumkonzentration im Dialysat (CdD) in [μg/l], Gruppe dry	44
Abbildung 12: Cadmiumkonzentration im Dialysat (CdD) in [μg/l], Gruppe gre	45
Abbildung 13: Cadmiumkonzentration im Dialysat (CdD) in [μg/l], Hauptversuche	46
Abbildung 14: Mittlerer Arterieller Perfusionsdruck in mmHg, Hauptversuche	49
Abbildung 15: Arterieller Perfusionsfluss in ml/min, Hauptversuche	50
Abbildung 16: Organwiderstand in mmHg x min/ml, Hauptversuche	51
Abbildung 17: Gewicht der Extremitäten vor / nach Perfusion in kg, Hauptversuche	52
Abbildung 18: Bluttemperatur, arteriell in °C, Hauptversuche	53
Abbildung 19: Sauerstoffverbrauch der Extremitäten, Hauptversuche	54
Abbildung 20: Arterieller pH-Wert, Hauptversuche	55
Abbildung 21: Arterieller Hämatokritwert in %, Hauptversuche	56
Abbildung 22: Freies Hämoglobin, arterielles Blut in mg/dl, Hauptversuche	57
Abbildung 23: Arterieller Natriumgehalt in mmol/l, Hauptversuche	58
Abbildung 24: Arterieller Kaliumgehalt in mmol/l, Hauptversuche	59
Abbildung 25: Laktatkonzentration im venösen Blut in mg/dl. Hauptversuche	60

Abbildungsverzeichnis

Abbildung 26: Arterielle Gesamtproteingehalt in g/dl, Hauptversuche	61
Abbildung 27: Arterieller Albumingehalt in g/dl, Hauptversuche	62
Abbildung 28: Glukoseverbrauch der Extremitäten in μg/min/100g, Hauptversuche	63
Abbildung 29: Methoden zur Prüfung der dermalen Resorption von Substanzen	65

Tabellenverzeichnis

Tabellenverzeichnis

Tabelle 1: In-vitro-Modelle zur perkutanen Resorption	23
Tabelle 2: Vorversuche, Versuchsanordnungen	25
Tabelle 3: Hauptversuche, Versuchsanordnungen	26
Tabelle 4: Zusammensetzung der Dialysatflüssigkeit	28
Tabelle 5: Grenzwerte der Einstellungen der Perfusionsapparatur	29
Tabelle 6: Vitalitätsparameter der Extremitätenperfusionen	35
Tabelle 7: Gesamtresorptionsmengen bei Versuchsende, Hauptversuche	47
Tabelle 8: Vorversuche, Cadmiumkonzentrationen im Blut in [μg/l]	47
Tabelle 9: Vorversuche mit purem Cadmium, Cadmiumkonz. im Blut in [mg/l]	48
Tabelle 10: Vorversuche, Cadmiumkonzentrationen im Dialysat in [μg/l]	48
Tabelle 11: Vorversuche mit purem Cadmium, Cadmiumkonz. im Dialysat in [mg/l]	48
Tabelle 12: Gewichtszunahme der Extremitäten	52

Abkürzungsverzeichnis

Abkürzungsverzeichnis

AAS Atom-Absorptions-Spektroskopie

ALS Amyotrophische Lateralsklerose

ARDS Acute respiratory distress syndrom

AGW Arbeitsplatzgrenzwert

BAT Biologischer Arbeitsstofftoleranzwert

BBodSchV Bundes-Bodenschutz- und Altlastenverordnung

°C Grad Celsius

Cd Cadmium

CdCl₂ Cadmiumchlorid

CdV Cadmiumkonzentration im venösen Blut

CdD Cadmiumkonzentration im Dialysat

DCT Divalent-Cation Transporter

EDTA Ethylene diamine tetraacetic acid (Äthylendiamintetraessigsäure)

HKL Hohlkathodenlampe

HBM Humanbiomonitoring

IARC International Agency for Research on Cancer

I.E. Internationale Einheiten

MAK Maximale Arbeitsplatzkonzentration

MAP Mittlerer arterieller Perfusionsdruck

MT Metallothionein

ppb Parts per billion

PVC Polyvinylchlorid

R Organwiderstand

RBP Retinol-Bindendes Protein

Abkürzungsverzeichnis

REACH Registrierung, Evaluierung und Autorisierung von Chemikalien

TRK Technische Richtkonzentration

TRGS Technische Regeln für Gefahrstoffe

TTS Transdermales therapeutisches System

STIFF Stiffness-Index

Zusammenfassung

5 ZUSAMMENFASSUNG

In der Humanmedizin spielen Arbeits- und Umweltschadstoffe bei der Pathogenese vieler Krankheitsbilder eine wichtige Rolle. In-vitro-Modelle zur Untersuchung der Resorption von toxischen Substanzen unter Verzicht auf Tierversuche sind in diesem Zusammenhang nicht zuletzt aus ethischen Gründen von besonderem Interesse. Dabei erweist sich das Modell der isolierten, hämoperfundierten Schweineextremität als ein experimentelles System, in dem Resorptionsprüfungen unter Ausschaltung von Metabolisierung durch andere Organe oder Umverteilung im Organismus durchgeführt werden können. Im Gegensatz zu anderen Hautmodellen wie Zellkulturen oder Diffusionszellen findet eine kontinuierliche Perfusion des Gewebes statt. In der vorliegenden Arbeit wurde am Beispiel von Cadmium die Resorption aus Bodenbestandteilen unter Verwendung von Cadmiumchlorid Aguariumsand geprüft. Cadmium hat durch seine Verwendung in vielen Produkten, zum Beispiel Batterien, eine große Bedeutung als Umweltschadstoff. Es ist durch Industrieabwässer und Düngemittel auch in Deutschland in einigen Gebieten in hoher Konzentration im Boden vorhanden. Als toxische Substanz schädigt Cadmium beim Menschen unter anderem Lunge, Niere und Knochen. Über seine dermale Resorption stehen bislang nur wenige Untersuchungen zur Verfügung.

Die Extremitäten wurden in der Tierexperimentellen Einrichtung der Charité-Universitätsmedizin Berlin von Schweinen der deutschen Landrasse-Hybriden nach Tötung durch Entbluten entnommen und anschließend über eine Versuchslänge von 210 Minuten perfundiert. Kontaktzeiten dieser Länge entstehen zum Beispiel beim Spielen von Kindern in kontaminierten Gebieten. 8 Vorversuche wurden ohne Cadmiumapplikation durchgeführt. Alle Versuche mit Cadmium wurden unter umfangreichen Sicherheitsmaßnahmen durchgeführt. Es wurde eine Applikationskammer entwickelt und in 7 Vorversuchen mit verschiedenen Dosierungen zwischen 1 und 100mg Cadmium/100g Sand sowie 1g purem Cadmium erprobt. Die Hauptversuche wurden mit Cadmium in einer Konzentration von 10mg/100g Sand in verschiedenen Applikationsformen durchgeführt. Es wurden drei Gruppen gebildet: Sand und Cadmium (dry, n=5), feuchter Sand und Cadmium (wet, n=5) sowie Sand, Creme und Cadmium (gre, n=3). Aus Blut und Dialysat wurden über den Versuchsverlauf Proben entnommen und der Cadmiumgehalt mittels Atom-Absorptionsspektroskopie bestimmt. Parallel dazu wurden Vitalitätsparameter der

Zusammenfassung

Perfusionen gemessen, um Stoffwechsellage und Hämodynamik der perfundierten charakterisieren. Ergebnisse Präparate zu Die zeigten gegenüber dem Ausgangswert vor Versuchsbeginn in der Gruppe wet nach 210 Minuten einen signifikanten Anstieg des Cadmiumgehaltes im Blut (0,28±0,18 vs. 5,3±6,72 µg/l), in den Gruppen dry $(0.34\pm0.08 \text{ vs. } 0.21\pm0.15 \text{ } \mu\text{g/l})$ und gre $(0.28\pm0.15 \text{ vs. } 0.43\pm0.25 \text{ }$ μg/l) war dies nicht der Fall. Im Dialysat wurde in keiner der Gruppen ein signifikanter Anstieg festgestellt. Die Vorversuche boten ein ähnliches Bild. Eine adäquate hämodynamische und metabolische Situation der perfundierten Präparate war jeweils gewährleistet.

Insgesamt erweist sich das Modell als zu Überprüfung von toxischen Substanzen aus Bodenproben als geeignet. Zukünftige Studien können mittels Analyse von Muskelund Hautbiopsien weitere Kompartimente mit einbeziehen und machen somit weitere Resorptionsprüfungen möglich, ohne auf Tierversuche zurückgreifen zu müssen.

Lebenslauf

7 LEBENSLAUF

Der Lebenslauf wird aus Datenschutzgründen in der elektronischen Version der Arbeit nicht mit veröffentlicht.

Danksagung

8 DANKSAGUNG

Herrn Prof. Dr. med. David Groneberg danke ich herzlich für die Überlassung des Themas und seine intensive und freundschaftliche Betreuung während der gesamten Zeit.

Herrn PD. Dr. med. vet. Christian Grosse-Siestrup danke ich ebenso für die umfangreiche Unterstützung, Organisation und unschätzbar wertvolle Hilfe in der Tierexperimentellen Einrichtung der Charité, Campus Virchow-Klinikum. Durch seine umfangreichen Tätigkeiten für den Tierschutz, die im Jahr 2006 mit dem Bundesverdienstkreuz ausgezeichnet wurden, sind die vorliegenden Studien initiiert worden.

Herrn Karsten Wienecke danke ich ganz herzlich für die fachlichen Ratschläge und technischen Hilfestellungen im Bereich der Analytik.

Den Mitarbeiterinnen und Mitarbeitern der Tierexperimentellen Einrichtung, insbesondere Herrn Dr. med. vet. Michael Meißler, Frau Vildan Oyanik und Frau Tamara Baskaeva danke ich dafür, dass sie mich stets umfangreich und geduldig unterstützt haben.

Herrn Dipl.-Ing. Volker Unger danke ich für die zahlreichen Ratschläge zu statistischen Fragestellungen.

Frau Dr. med. Eva Peters, Charité-Universitätsmedizin Berlin und Herrn Trygve Bull-Njaa, Aker Sykehus, Oslo gilt mein Dank für die freundliche Überlassung von Bildmaterial für die Diskussion.

Hilde-Kristin Reed, Vera Esche, Ira Maschmann, Franziska Scheidig, Benjamin Oelkers, June Lystad und Ferdinande Addicks gebührt ebenfalls Dank für ihre Hilfe und Ratschläge.

Abschließend möchte ich meinen Eltern Christiane und Hans-Peter sowie meinen Brüdern Christian und Matthias Godt für Ihre Unterstützung während des Studiums und der Anfertigung dieser Arbeit danken. Ihnen ist diese Arbeit gewidmet.

Anhang

9 ANHANG

Formeln:

1. Sauerstoffverbrauch in µmol/min x 100g Organgewicht:

((1,34 x 10000 x (art.Hb x art.O2-Sättigung-art.Hb x ven.O2-Sättigung))+

(0,024 x 760 x (art.pO2-ven.pO2))) x Blutfluss x 1000/22,4 x Extremitätengewicht)

Umrechnung von µmol/min x 100g Organgewicht auf ml/min x 100g Organgewicht mittels der allgemeinen Gasgleichung, Vm (molares Volumen) von Sauerstoff bei 37 Grad Celsius: 25,4.

2. Glukoseverbrauch in µg/min/100g Organgewicht:

(Gluc_art-Gluc_ven) x Blutfluss/Extremitätengewicht

Anhang

Erklärung

Ich, Johannes Jakob Clemens Godt, erkläre, dass ich die vorgelegte Dissertationsschrift mit dem Thema: "Untersuchungen zur Resorption von Arbeitsund Umweltschadstoffen aus Bodenproben im Modell der isolierten,
hämoperfundierten Schweineextremität" selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, ohne die (unzulässige) Hilfe Dritter verfasst und auch in Teilen keine Kopien anderer Arbeiten dargestellt habe.

Johannes Jakob Clemens Godt