
Chapter 3

Inspecting the evil:

Larsen’s Signal-Noise Separation

In this chapter, a modern method to cope with magnetotelluric data containing a high

level of correlated noise is introduced and evaluated. It has been published by Larsen

et al. in 1996. The requirement to develop such a method occurred in connection with

audiomagnetotelluric measurements in Italy, where railways are driven by DC current,

too, and data are accordingly noisy.

I have told already in section 1.3.3, that correlated noise is so dangerous because it

possesses features enabling it to get into transfer functions, what makes it nearly

impossible to keep it away from the impedances and induction arrows with the

single-site method only. Larsen et al. [1996] make a virtue of that necessity. They

acknowledge the affinity of correlated noise to transfer functions providing it in their

approach with extra impedances and induction arrows, where it can get into without

biasing the magnetotelluric ones, and then solving the whole problem simultaneously.

In section 3.1 I will show how this is done in detail.

This approach has two important consequences. First, it is possible to obtain

information from the transfer functions of correlated noise about the location of its

origin. Second, since the correlated noise goes into its own transfer functions instead

of into the residual of the magnetotelluric ones, the latter are better determined than

with the Remote Reference method, according to Larsen et al. [1996] and some of their

followers. This claim opened a certain debate among the contemporary authorities of

magnetotelluric data processing about whether that can really be true or not. Section

3.2 is dedicated to that question.
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3.1 Description of the method

First, I have to emphasize that I do not the same as Larsen et al. do in their code.

I calculate spectra as described in section 1.2 and solve equations as it will be shown

in the following. None of the procedures referred to as “independent of conditional

equations”in the introduction of this thesis is present in my code.

3.1.1 Discerning signal and noise

The nomenclature and derivation in this description follows Oettinger et al. [2001] with

small modifications.

Just as in the Remote Reference technique, the property of correlated noise to have

vanished at a distant remote site is used here to distinguish between relevant magne-

totelloric signal and irrelevant noise, the latter may be correlated or not. Concerning

the required distance, the same criteria as described in section 2.3 hold for selection of

the remote site or its appropriateness, respectively. However, there hold stricter rules

for statistic noise in the remote channels: It is forbidden here. Furthermore, in con-

trast to the Remote Reference technique, the Separation tensor (cf. eq. 2.5), which is

used there only for derivation and indirectly, for error estimation, is applied here very

explicitly: With its help that signal is reconstructed which would be measured on the

horizontal magnetic channels of the local site if there was no noise. This is done very

simply by multiplying the noise-free remote horizontal magnetic signal BR (eq. 2.3)

with the Separation tensor T. Since the obtained signal is just the base for undistorted

magnetotelluric (MT) transfer functions, this quantity gets the index MT:

BMT = BRTT, (3.1)

where

BMT =


BMT

x1 BMT
y1

BMT
x2 BMT

y2

...
...

BMT
xN BMT

yN

 . (3.2)

The background for this step is the following:

In general (i.e. if noise is absent) the horizontal magnetic field components of two sta-

tions differ only, if there are lateral conductivity anomalies close-by or even in-between

them. In one-dimensional cases (i.e. if the subsurface consists only of horizontal layers),
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they would be equal, T would be the unity matrix, and the effort of reconstructing

would be unnecessary. This holds approximately, too, if the stations are very close

to each other, as already mentioned in section 2.3. On the other hand, we need re-

mote sites that are far away from the source of the given correlated noise, and the

real world is hardly one-dimensional. But in lateral conductivity anomalies, there are

induced currents having anomalous magnetic fields on their part and causing that the

horizontal magnetic field becomes different in their proximity. Such differences are

covered by the Separation tensor. So T will differ from unity according to the given

lateral conductivity anomalies. “According to lateral conductivity anomalies”means

that the Separation tensor possesses properties which are typical for induction pro-

cesses and exist in an analogous manner also in the impedance tensor, or rather its

imaging representatives ρa and φ, like:

• 2× 2 tensor where, in general, all elements are different from zero,

• complex-valued,

• typical interdependency between modulus and phase,

• continuous, only slowly changing function of period.

In contrast to the impedance tensor, here the main-diagonal elements are of greater sig-

nificance, or illustrative meaning, respectively. An exemplary Separation tensor demon-

strating all the characteristics listed above is shown in fig. 3.1. It might be interesting

to mention that the Separation tensor is an adequate transfer function that allows

to derive information about the conductivity distribution of the subsurface and that

can be modeled, as happened in Soyer [2002] and Varentsov and EMTESZ-Pomerania

Working Group [2006]. However, for our requirements it is only important that with

its help, the induction-produced and exclusively MT-relevant horizontal magnetic field

at a disturbed site can be reconstructed. The mentioned properties of the Separation

tensor can help to see whether the determination of it has succeeded or failed due to

some problems. Returning to our reconstructed MT-data for the horizontal magnetic

field of the local station, we can now calculate the residual to the measured field B

(cf. eq. 1.21). It gets the index CU since it consists of correlated and of statistic,

uncorrelated noise:

BCU = B−BMT = B−BRTT (3.3)
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Figure 3.1: The Separation tensor which translates the horizontal magnetic field of
site KUZ into that of site GRA (cf. fig. 1) stabilized by WIA in the way described
in chapter 4, demonstrates that this tensor can assume also shapes far from the real
unity matrix. However, it shows that the period-dependency remains induction-like
with slow changes and modulus extremal values at zero transitions in phase. In
this case, the local site KUZ was located on the resistive, uplifted Czaplinek Block
belonging to the anticline of the inverted Polish trough, whereas the reference GRA
was measuring in the corresponding syncline filled with very conductive sediments.
The block-like subsurface of KUZ probably explains the odd off-diagonal phases
transgressing all quadrants, while the conductivity contrast is reflected by the big
extent of Txx. For geological background, see Dobracka and Piotrowski [2002].
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Of course, BCU is of the shape

BCU =


BCU

x1 BCU
y1

BCU
x2 BCU

y2

...
...

BCU
xN BCU

yN

 (3.4)

as well.

Thereby the horizontal magnetic field B measured at the local site could be separated

into a magnetotelluric and a noise part. In the next section, both BMT and BCU will

play an important and equitable role. It may be called unusual, interesting, or even

ingenious that onto a residual is laid such a meaning, too.

3.1.2 A transfer function for correlated noise

With the separation of the horizontal magnetic channels the base has been created for

the introduction of a new transfer function. It is supposed to translate the noise from

the input variables BCU
x and BCU

y into a part of the output variable E, if we stay with

the impedance example first. The problem is regarded now in a way, that the measured

output channel, e.g. Ex consists of a MT-relevant part EMT
x , a part due to correlated

noise ECN
x , and a residual part δEx not correlated with anything:

$Ex = $EMT
x + $ECN

x + $δEx (3.5)

$EMT
x is determined by the independent variables BMT

x and BMT
y , and connected to

them via ZMT
xx and ZMT

xy . Similarly, ZCN
xx and ZCN

xy transfer BCU
x and BCU

y into $ECN
x .

Altogether, it holds

$Ex = ZMT
xx

$BMT
x + ZMT

xy
$BMT
y + ZCN

xx
$BCU
x + ZCN

xy
$BCU
y + $δEx, (3.6)

and analogous

$Ey = ZMT
yx

$BMT
x + ZMT

yy
$BMT
y + ZCN

yx
$BCU
x + ZCN

yy
$BCU
y + $δEy (3.7)

and

$Bz = TMT
x

$BMT
x + TMT

y
$BMT
y + TCN

x
$BCU
x + TCN

y
$BCU
y + $δT (3.8)
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for the tipper. Equations 3.6, 3.7, and 3.8 can be subsumed and written in matrix

form:


Ex1 Ey1 Bz1

...
...

...

ExN EyN BzN

 =


BMT

x1 BMT
y1 BCU

x1 BCU
y1

...
...

...
...

BMT
xN BMT

yN BCU
xN BCU

yN




ZMT
xx ZMT

yx TMT
x

ZMT
xy ZMT

yy TMT
y

ZCN
xx ZCN

yx TCN
x

ZCN
xy ZCN

yy TCN
y



+


δEx1 δEy1 δBz1

...
...

...

δExN δEyN δBzN

 , (3.9)

or, with the symbols

E =


Ex1 Ey1 Bz1

...
...

...

ExN EyN BzN

 , (3.10)

B =


BMT

x1 BMT
y1 BCU

x1 BCU
y1

...
...

...
...

BMT
xN BMT

yN BCU
xN BCU

yN

 =
(

BMT BCU
)

, (3.11)

Z =


ZMT

xx ZMT
xy ZCN

xx ZCN
xy

ZMT
yx ZMT

yy ZCN
yx ZCN

yy

TMT
x TMT

y TCN
x TCN

y

 =
(

ZMT ZCN
)

, (3.12)

and

δE =


δEx1 δEy1 δBz1

...
...

...

δExN δEyN δBzN

 (3.13)

it can be written shorter

E = BZT + δE. (3.14)

The solution for Z is, analogous to e.g. 1.22 (cf. Oettinger et al. [2001])

ZT =
(
B†B

)−1 B†E. (3.15)

The CN transfer functions are quasi the essence of the bias in single-site processed

data that contain correlated noise. An example is shown in fig. 3.2. More about their

meaning will follow in section 4.3.
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Figure 3.2: Apparent resistivities and phases for correlated noise obtained with
the Signal-Noise Separation technique for synthetic data. Correlated noise exists
between Bx, Ex, and Ey, hence Zxx and Zyx are concerned. They show the typical
near-field behavior to be constant with period, manifesting itself in 0o phases and a
45o rise of ρa in an equidistant log-log plot.
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Figure 3.3: Separated time series for channels By and Ex of station MOS (cf. fig.
1). The scales are 11.1 nT and 6.7 mV/km, respectively, the window length, again,
34 minutes. The original records contain events with features typical for natural
magnetic pulsations as well as for artificial noise. Obviously, the separation has
classified them correctly.

3.1.3 Some general consequences

The distinction of magnetotelluric (MT) signal and noise in the magnetic data as well

as the extra transfer functions for correlated noise (CN) offer the interesting possibility

to separate time series, too. This is done by applying the Separation tensor onto the

Fourier coefficients of the entire horizontal magnetic time series of the remote site (in-

stead of, as in equation 3.1, onto those Fourier coefficients only that are supplied by the

cascade decimation). This provides the Fourier coefficients of the magnetic MT series.

Subtracting this from the local measured ones (i.e. again, the Fourier coefficients of

the entire time series) gives the magnetic CU time series. The electric ones can be

obtained by multiplying them with the corresponding MT and CN impedances. After

transformation back into time domain the separated time series can be admired as in

fig. 3.3.

The aesthetic look of those time series can mislead to the suggestion to use the

“cleaned”MT time series as input for a further processing step, and to improve the

results thereby in a quasi iterative way. Although the idea that “clean”looking time
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series lead to better processing results than noisy ones is very convincing, it does not

work. Correlated noise exists not longer in the MT time series, they contain only what

has already been recognized as correlated to the remote site. A processing method

counting on presence of correlated noise would cope even worse with such an input. It

is important to note that not the noise is identified and eliminated by the Signal-Noise

Separation method, but rather the MT signal. This means that it’s possible that there

remains some unidentified part of the MT signal in the elements of the system of equa-

tions that are declared as belonging to correlated noise, whereas no “original”correlated

noise can remain in the MT elements. Hence, it is imaginable that a repeated appli-

cation of the SNS method onto the CN time series would improve the CN transfer

functions. But nobody will do this in magnetotellurics, since the transfer functions of

the correlated noise are only of marginal interest.

However, an iterative estimation of only T with BMT instead of B is, in my opinion,

not a hopeless idea. It could stabilize the sometimes scattering results, so an attempt

could be worthwhile.

There is yet another feature in Larsen’s processing that has to be mentioned, although

is has not been investigated here primarily. This processing approach differs from other

methods not only due to “robust procedures”as mentioned in the introduction and the

system of equations described above, but also due to a step taking place prior to all

others: The rotation of time series.

This is a rather complicated technique which in the article (Larsen et al. [1996]) is

described not exactly enough to allow a reprogramming beyond doubt. My attempts

ended up in trivial results, so I abandoned that implementation. On the other hand,

the rotation of time series is not causeless, and the possible need for it throws a first

light on facts that will require our attention later on in chapter 4: The introduction of

additional transfer functions does not only potentially improve the results and offer the

possibility to obtain information about the CN source unaccessible without them, it

also can create problems that did not exist before. Again, it is a matter of a condition

sine qua non for the success of the linear regression, which is not fulfilled.

This condition says: In a multivariate linear regression (i. e. there is more than one

input channel determining the output) these input channels must not be linearly corre-

lated with each other. This is probably the deeper meaning of the term “independent

variables”. If this condition is breached, there is no unique solution of the problem. The

results get instable or even impossible. An extreme example would be a Bx completely

correlated with By in the single-site case. Then there would hold∑
i

BxiB
∗
xi

∑
i

ByiB
∗
yi =

∑
i

BxiB
∗
yi

∑
i

ByiB
∗
xi, (3.16)
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and the denominator in, e. g., equation 1.19 would become zero.

The situation will never get so bad in the real world, since the natural variations of

the Earth’s magnetic field providing the magnetotelluric source signal are sufficiently

independent in x and y direction. However, if there are close-by artificial sources of

electromagnetic signals that are not orientated N-S or E-W, than the disturbing signal

will be correlated not only between output channels and horizontal magnetic field, but

also between Bx and By, the per definitionem independent variables. According to

my experiments, this correlation is too weak against the independency of the natural

variations to cause any harm if BMT and BCU are treated as a unit, as it happens in

the single-site and the Remote Reference method. However, after splitting up both

components in the Signal-Noise Separation, one gets with BCU
x and BCU

y two highly

correlated input channels. This can fail, especially for the correlated-noise transfer

functions which can get very instable.

The rotation of time series prior to processing provides that the correlated noise is lo-

cated completely on one of the polarizations, which can, however, hardly be called x or

y since they are twisted against each other in a complicated manner. This is compen-

sated after determination of the impedances in Larsen’s code. Again, I emphasize that

the time series’ rotation is not implemented in my code. Maybe, it is due to this, that

my best results for correlated-noise transfer functions stem from the railways running

between BLE and SAR and between BAK and DAB, cf. fig. 1. Their course is almost

N-S or E-W, respectively, so the correlated noise is located mainly on one component

even without rotation.

3.2 Comparison with Remote Reference

This section is a discussion of statements made by other MT workers, partly themselves

creators of processing methods, about the question Signal-Noise Separation (SNS)

versus Remote Reference (RR) method, i.e. which technique is the superior one. In

this debate, the pure least-square solution of both problems plays an important role.

So my code will be used to make a (hopefully clarifying) contribution to that discussion.
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3.2.1 The debate and open questions

Reading the works of Larsen and Oettinger one gets the clear impression that their

claim is to outclass the RR technique with the SNS method.

So there is in Larsen et al. [1996] and in Oettinger [1999] a table connecting several

processing methods with the noise regime in which they are able to yield unbiased

transfer functions. Therein these authors disallow the ability of RR to cope with

correlated noise. According to them, this ability is limited to several versions of the

SNS method, as some citations may show:

“If there is correlated noise at the local site then the single-source method [meaning

single site and RR] yields an estimate of the MT transfer function that combines

ZMT (ω) and ZC(ω)1 and is therefore wrong in both amplitude and phase. It is therefore

important to use the two-source relationship [SNS] whenever the correlated noise is

large.”(Larsen et al. [1996], italic parts by me),

“If most or all time-series contain correlated noise [...] the RR method yields wrong

estimates of the MT transfer function.”(Oettinger et al. [2001]).

In fact, there has been found evidence that in a concrete case of very noisy data,

Larsen’s method yields better results than Egbert’s (Egbert [1997], another method

that claims to improve RR estimates) by Müller and Haak [2004].

Egbert’s answer is a derivation showing that if the RR and SNS equations are solved

solely by least-squares, the MT transfer functions obtained are equal.

Obviously, not all statements can be true in such a situation. I summarize below the

contradictions that will have to be clarified in the following:

So if RR and SNS yield in principle (i.e. when solved by least-squares) the same result,

• how can SNS be destined to cope with correlated noise and RR fail with it?

• how can SNS results in practice be better than RR ones?

• why does Larsen’s method require a noise-free reference and RR not?

1corresponds to our ZCN . ω = 2π
T is the angular frequency.
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3.2.2 Answers from a consistent least-square point of view

I will outline Egbert’s derivation here first, since it is not published2, but has rather

extensive implications.

Its “linchpin”is the fact that

BCU†
BMT = 0. (3.17)

Egbert shows this convincingly by substituting BCU and BMT by its definitions to

the point of T, and simplifying. However, (3.17) can also be proven by a simple

contemplation of the origin of both quantities (cf. section 3.1.1): BMT is that part

of B, which can be projected onto BR. BCU is the residual part of B, which can

not at all be correlated with BR. The quantity dividing B into BCU and BMT is

T, determined by the method of least squares. It is the main feature of this method

that the “distance”3 between original output variables and their reconstruction via

input variables and the solution obtained is minimized. Therefore it is inevitable that

reconstruction and residual are orthogonal to each other. That’s what is expressed

by equation 3.17. By the way, this property of the separated magnetic signals holds

always with least-squares, even if the separation itself is doubtful due to some noise in

BR (K. Nowożyński, pers. comm.).

Rewriting equation 3.15 into the shape

 (ZMT)T

(ZCN)T

 =

  BMT†

BCU†

 (
BMT BCU

) −1  BMT†

BCU†

E (3.18)

and carrying out the matrix multiplications taking (3.17) into account, one gets with

 (ZMT)T

(ZCN)T

 =

 BMT†BMT 0

0 BCU†BCU

−1  BMT†E

BCU†E

 (3.19)

the proof, that ZMT is completely independent of BCU and ZCN of BMT.

This has the maybe deflating consequence, that the simultaneous solution for ZMT and

ZCN is not necessary; two subsequent bivariate procedures each with either BMT or

BCU as input would yield the same results for ZMT and ZCN.

2This derivation is mentioned in Larsen et al. [1996]. I got it in form of a written pers. comm.
between A. Müller and G. Egbert (2001).

3This quantity is also referred to as L2-norm.
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Further it follows with equation 3.1

(ZMT)T = (BMT†BMT)−1BMT†E

=
{
(BRTT)†BRTT

}−1
(BRTT)†E

=
{
T∗BR†BRTT

}−1
T∗BR†E

= (TT)−1
(
BR†BR

)−1
(T∗)−1T∗BR†E

= (TT)−1
(
BR†BR

)−1
BR†E

=
(
TT

)−1
ZIT. (3.20)

The last line is exactly the definition of the Remote Reference impedance we have

introduced in equation 2.8. The line before last has been transformed using equation

2.2. Thereby, the equality of SNS and RR transfer function results following Egbert

has been stated.

Equipped with this confirmation, I return to the questions raised up in section 3.2.1

now.

The first one can be treated of shortest: the information that the RR technique is not

able to deal with correlated noise in a local site is simply not true. The only way to

get a biased transfer function after a RR processing is to use a reference site within

the reach of the correlated noise. I have demonstrated this in chapter 2 as well as

the success of that technique with local data containing correlated noise. Larsen et al.

[1996] themselves acknowledge this facility in the conclusions: “[...] correlated noise

[...] requires use of [...] the remote-reference single-source method ”contradicting

thereby former statements in the same article.

Concerning the second question, better practical results of the SNS method are not

verifiable in the least-square solution. The results of the SNS method shown in fig.

3.4 are the same as for the RR technique displayed in fig. 3.5 at the synthetic data

example used. With real data that are used in chapter 4, one can sometimes observe

even the opposite of the expected effect: Single points of the SNS transfer function

lie far off the general curves giving a scattered picture, whereas the RR curves are

relatively smooth (of course, with most of the values still being equal), cf. figs. 4.3

and 4.2 for station DAM with Belsk as reference. I explain such differences with

difficulties at the inversion of the 4 × 4 matrix in equation 3.19, if the BCU part is

rather small. Then the matrix becomes almost singular and the inversion result can

get numerically unstable. On the other hand, there is a point of view allowing the

statement that SNS results are “better”than RR ones. The latter possess larger error

bars. As explained in section 1.3.1, error bars, or variances, respectively, depend on the

residual. In fact, the residual is significantly smaller with the SNS method, because the

62



correlated-noise part of the electric field is covered by a corresponding transfer function

there and only an uncorrelated rest δE goes into the residual. However, in the RR case

the residual is enlarged by ECN. Fig. 3.6 shows that difference for the synthetic

data example. Larsen et al. [1996] observe something similar applying their original

code. They write “the robust remote-reference single-source estimates tend to track

the MT transfer function but give much larger errors than the robust least-squares two-

source estimates.”Obviously, the contradictions between statements concerning results

of Larsen’s original code and those obtained after Egbert’s least-square derivation can

be attenuated.

There remains the third question: If RR transfer functions are relatively insensitive

to noise in the remote data and if SNS and RR results are equal, why do Larsen et al.

[1996] insist on the requirement of a noise-free reference? A synthetic experiment with

noisy remote data shows, that the SNS result for the MT part indeed hardly suffers

from that noise (fig. 3.8). However, both Separation tensor (fig. 3.7) and CN transfer

function (fig. 3.9) are significantly biased downwards, what is not unexpected according

to the analysis in section 1.3.2 and the fact that the true BCU is enlarged by a part

of the MT signal due to the down-weighted Separation tensor. It is probably these

obvious errors that make Larsen et al. insist on that noise-free reference. In the next

chapter I will describe a way to obtain unbiased T and CN transfer functions in spite

of noisy references.

Concluding for this chapter, one can say that Larsen’s extended equations (“two-

source”) do not improve the results of the obtained MT transfer functions compared

to the RR technique. If the output of Larsen’s code is better than results of other

standard processing methods, it is not a merit of the method described here, but of

other features of Larsen’s code.
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Figure 3.4: Processing results obtained with the Signal-Noise Separation for mag-
netotelluric transfer functions for synthetic data. The same data processed with the
Remote Reference technique are displayed in fig. 3.5. The corresponding correlated-
noise transfer functions have been shown in fig. 3.2.
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Figure 3.5: Processing results obtained with the Remote Reference technique. The
data is the same as in the Signal-Noise Separation example shown in fig. 3.4. The
results are equal except for the error bars.
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Figure 3.6: Variances of Zyx of Remote Reference and Separation results for the
synthetic data example shown in figs. 3.4 and 3.5. The RR transfer function has
clearly higher variances due to the included ECN , which is defined for periods up to
1000 s. The unit of the y axis is km2/s2.
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Figure 3.7: Disturbances in the remote site (here 128 synthetic peaks of 64nT

height on channel Bx) can heavily bias the Separation tensor downwards. Due to the
laws of least-squares (cf. text), this has hardly consequences for the MT Separation
result (fig. 3.8), but is harmful for the CN transfer function (fig. 3.8). The unbiased
tensor is the unity matrix.
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Figure 3.8: Although scattering a bit wider than in fig. 3.4 where the reference
was noise-free, the magnetotelluric transfer functions obtained by the SNS method
do somehow cope with the noisy remote records.
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Figure 3.9: The transfer functions of the correlated noise have been biased down-
wards due to the noisy reference site in ρa. The Zyx phase is distorted as well. Confer
the “proper”results in fig. 3.2.
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