
Chapter 1

Fundamentals:

The single site method

The term ”single site” refers to the fact that only data of one magnetotelluric station

is required for this simplest of all processing techniques. I will use it in the following

to demonstrate in detail how the solution of a transfer function equation is obtained

(section 1.1). Furthermore, the way from measured time series to spectra providing

the input for the obtained solution will be documented for the code mainly applied in

this work (section 1.2). Third, there will be discussed how different kinds of noise can

affect transfer functions in section 1.3.

1.1 The impedance equation and its solution

In general, transfer functions are operators that, when applied to a measured quantity,

yield another measured quantity. In magnetotellurics they are complex-valued func-

tions of the frequency ω depending also on the station’s position.

In case of a single site, two transfer functions can be determined: the impedance Z, a

tensor of the shape

Z =

 Zxx Zxy

Zyx Zyy

 (1.1)

and the tipper with the elements (Tx, Ty).
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The impedance transfers the horizontal magnetic field "Bh =
(

Bx By

)T

(T denotes

the transpose) to the horizontal electric field "E =
(

Ex Ey

)T

:

"E = Z "Bh, (1.2)

or

Ex = ZxxBx + ZxyBy, (1.3)

Ey = ZyxBx + ZyyBy (1.4)

respectively, when written in detail. Impedances are usually presented as curves of

apparent resistivity

ρa =
µ0

2π
|Zxx|2 T (1.5)

and phase

φ = arctan
ImZxx

ReZxx
(1.6)

over the period T = 2π/ω. This holds for the other components of Z as well. Since in

magnetotellurics, "E is measured in mV/km and "B in nT , the unit of our “impedance”is

km/s. In order to get Ω, the proper impedance unit, one would have to construct the

impedance via "H = µ0µ"B instead of just via "B. µ is thereby a material constant and

µ0 = 4π ∗ 10−7V s/Am. The units of ω, T , and ρa are as expected Hz, s, and Ωm.

The tipper is the transfer function from horizontal to vertical magnetic field

Bz = TxBx + TyBy, (1.7)

and the induction arrow constructed from its elements to display it

arrow =

 Tx

Ty

 (1.8)

shows the horizontal direction connected to the maximal vertical magnetic field.

The equations (1.3, 1.4, 1.7) of these transfer functions have a very similar shape and

are solved in an analogous way. This will be shown for the example of equation 1.3.

Along general lines, I am following the argumentation of Buttkus [1998] here.

Ex = ZxxBx + ZxyBy (1.9)
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is an equation with two unknown variables1 (Zxx and Zxy), thus impossible to solve just

in an algebraic way by rearranging its terms. Instead of this, one can take advantage of

the means of linear regression since there is the possibility to get not only one, but many

data examples holding this equation. For this purpose, one divides the measured time

series into N segments and calculates the Fourier coefficients Exi, Bxi, Byi, i = 1..N

at the given frequency for each of them (see section 1.2 for details about this steps).

Permitting errors δExi which reflect the parts of Exi that are not includable in the

transfer functions, one obtains the equation
Ex1

Ex2

...

ExN

 = Zxx


Bx1

Bx2

...

BxN

 + Zxy


By1

By2

...

ByN

 +


δEx1

δEx2

...

δExN

 . (1.10)

Demanding now that Zxx and Zxy have to assume a shape that prompts the square of

all errors together to become minimum2,

N∑
i=1

δExiδE
∗
xi = min (1.11)

(a superscript * denotes the conjugate complex value), one has already set up the

conditions that have to be fulfilled to solve the equation for the transfer functions:

∂
(∑N

i=1 δExiδE∗
xi

)
∂Zxx

= 0 (1.12)

and
∂

(∑N
i=1 δExiδE∗

xi

)
∂Zxy

= 0. (1.13)

Note that from equation 1.10 follows

δExiδE
∗
xi = (Exi − ZxxBxi − ZxyByi)(E

∗
xi − Z∗

xxB
∗
xi − Z∗

xyB
∗
yi) (1.14)

and that the derivative with respect to a complex function means, e.g.

∂ (δExiδE∗
xi)

∂Zxx
=

∂ (δExiδE∗
xi)

∂ReZxx
+ i

∂ (δExiδE∗
xi)

∂ImZxx
. (1.15)

With 1.14 and 1.15 applied to equations 1.12 and 1.13 one obtains

N∑
i=1

ExB
∗
x = Zxx

N∑
i=1

BxB
∗
x + Zxy

N∑
i=1

ByB
∗
x (1.16)

1We refer to this as a ”bivariate problem” in this context.
2For this condition the method is called ”Least Square”.
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and
N∑

i=1

ExB
∗
y = Zxx

N∑
i=1

BxB
∗
y + Zxy

N∑
i=1

ByB
∗
y . (1.17)

From this follows

Zxx =

∑N
i=1 ExiB∗

xi

∑N
i=1 ByiB∗

yi −
∑N

i=1 ExiB∗
yi

∑N
i=1 ByiB∗

xi∑N
i=1 BxiB∗

xi

∑N
i=1 ByiB∗

yi −
∑N

i=1 BxiB∗
yi

∑N
i=1 ByiB∗

xi

(1.18)

and

Zxy =

∑N
i=1 ExiB∗

yi

∑N
i=1 BxiB∗

xi −
∑N

i=1 ExiB∗
xi

∑N
i=1 BxiB∗

yi∑N
i=1 BxiB∗

xi

∑N
i=1 ByiB∗

yi −
∑N

i=1 BxiB∗
yi

∑N
i=1 ByiB∗

xi

(1.19)

So it is known how to estimate Zxx and Zxy now.

It is shorter, more elegant, and for programming applications more practical to write

this formula completely with vectors and matrices following Oettinger et al. [2001].

First, there are defined

"Ex =


Ex1

Ex2

...

ExN

 (1.20)

and

B =


Bx1 By1

Bx2 By2

...
...

BxN ByN

 . (1.21)

Then there can be written simply(
"Zx

)T

=
(
B†B

)−1
(

"Ex
†
B

)
(1.22)

where a † indicates the Hermitean transpose. The detailed notation (where
∑N

i=1 is

abbreviated with
∑

for reasons of space)

 Zxx

Zxy

 =

 ∑
BxiB∗

xi

∑
ByiB∗

xi∑
BxiB∗

yi

∑
ByiB∗

yi

−1  ∑
E∗

xiBxi∑
E∗

xiByi

 =
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1∑
BxiB∗

xi

∑
ByiB∗

yi −
∑

BxiB∗
yi

∑
ByiB∗

xi

 ∑
E∗

xiBxi

∑
ByiB∗

yi −
∑

E∗
xiByi

∑
ByiB∗

xi∑
E∗

xiByi

∑
BxiB∗

xi −
∑

E∗
xiBxi

∑
BxiB∗

yi


shows that 1.22 is equivalent to equations 1.18 and 1.19.

Analogically hold (
"Zy

)T

=
(

Zyx Zyy

)
=

(
B†B

)−1
(

"Ey
†
B

)
(1.23)

with
"Ey = (Ey1, Ey2 . . . EyN)T (1.24)

for the rest of the elements of the impedance tensor and(
Tx Ty

)
=

(
B†B

)−1
(

"Bz
†
B

)
(1.25)

with
"Bz = (Bz1, Bz2 . . . BzN)T (1.26)

for the tipper.

It is important to note that there are some assumptions included in this ap-

proach that can cause problems when they are not fulfilled. So equation 1.10 implies

that errors occur only in Exi, but neither in Bxi nor in Byi
3. In this context the

error-free Bxi and Byi are called independent variables or input channels, whereas the

Exi, that are allowed to be afflicted with errors, are referred to as a dependent variable

or output channel. So it becomes plausible that this method tolerates a certain amount

of noise in the output channels quite well, whereas it reacts to noise in the input

channels rather sensitively with distorted transfer function results. This will be shown

in detail in sections 1.3.1 and 1.3.2. Another restriction is that the transfer functions

that would be obtained from single data segments (or, since we face a bivariate

problem, rather from two neighboring ones) have to be Gaussian-distributed. This

expires, for instance, if a near-by artificial source of an intermittent electromagnetic

signal temporarily suggests a different relationship between the measured quantities

(cf. section 1.3.3).

3In fact, it holds for LMT (long-period magnetotellurics) that noise in the electric channels is larger
than in the magnetic ones because of instabilities of the electrodes in this period range. However,
in AMT (audiomagnetotellurics) circumstances are rather contrary, and so there occurs the inverse
approach, too, e.g. in Brasse [1993].

13



1.2 On cascade decimation, Fourier coefficients,

spectra, and instruments’ responses

In this section there will be shown how the quantities (i.e. spectra, see text below)

used in the formulas 1.22, 1.23, and 1.25 are obtained. Being aware of the fact that

there is more than one way to do it4, I use this opportunity to introduce the solution

implemented in my own code. This section is rather technical and contributes very

little to an understanding of the effects of different equations used in processing

approaches. Thus it is recommended that readers mainly interested in that effects

neglect this part.

The program has been written in the script language Perl. Ill-willed people refer to it

as a ”write-only” language, because the syntax admitting many approaches to solve

a problem is, in fact, easier to compose than to understand. A certain disadvantage

is the relative slowness compared to executable programs of compiled languages:

processing the entire data set of a station having regard to two reference sites can take

a dozen minutes. On the other hand, the process of developing even complex code

is much easier and the result more stringent than with the mentioned alternatives:

The single site version of my code contains only 850 lines, although it includes 18

subroutines.

The program reads input data of the binary time series format TRD, which is used by

default at the Institute of Geophysics of the Polish Academy of Sciences, since there is

excellent software5 available for contemplating, appraising, and editing time series in

this format (see figs. 1.4, 1.5, and many similar ones in this work). The reading takes

place in a way that only the maximum 2n (where n ε N) samples of the given record

and – if remote sites are used – only synchronous parts of data are included. The data

length of 2n samples is required for the Fast Fourier Transform (FFT, see later on in

this section), which is carried out by means of the Perl module (i. e. program library)

Math-FFT. The second module used is Time-Local providing conversions between

time strings and epoch seconds (cf. Christiansen and Torkington [2003]). It is very

helpful for finding overlapping records of different stations.

The Fourier transform is so important, because it transfers the data from time domain,

where they have been measured, to frequency domain, where the desired relationship

4The sentence serves a bit as a transition, since it’s the slogan of Perl (cf. Christiansen and
Torkington [2003]).

5VTRD developed by K. Nowożyński
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between e. g. electric and magnetic field assumes a simple linear shape.6 For certain

advantages concerning calculating time and memory requirements, in connexion with

computer issues usually the FFT is applied. It is given for a real discrete function

y(i), i = 0, . . . , N − 1 where N = 2n and i, n ε N, by the formulas

A(f) =
1

N

N−1∑
i=0

y(i)cos

(
2πfi

N

)
(1.27)

and

B(f) =
1

N

N−1∑
i=0

y(i)sin

(
2πfi

N

)
, (1.28)

where f = 1/T is the frequency for which the complex coefficient FC = A + iB is

taken. The FFT program of the Perl library returns an array of 2n values, the Fourier

coefficients (real and imaginary part written in tandem) for 2n−1 periods. The first

period (or rather its coefficient) corresponds to a constant value, the second one to the

entire length of the input time series, the third one to a half of it, the fourth one to a

third and so on. The shortest period provided with a Fourier coefficient has the length

of two sampling intervals. Its reciprocal is called Nyquist frequency.

This consideration shows two problems that have to be solved when adapting a FFT

to processing purposes. First, the time series has to be divided into many segments

(and the FFT applied to all of them) to get a big number of coefficients for each period

as signified in equation 1.10. Second, if coefficients for long periods are desired, the

time series segments must be as long as possible. These requirements are somewhat

contradicting since, to avoid redundant information, the segments should not overlap.

An obvious solution is to execute the segmentation via a cascade decimation, i. e. in

my case that the time series is successively cut into halves. These subsequent steps

are called decimation levels. Before the FFT is applied to the actual segment, the

latter is subjected to some procedures reducing unwanted effects in the FFT due to

its fragmentation, i. e. constant values and linear trends are removed and the series is

weighted with a Hanning window H according to

H = 0.54− 0.46 cos

(
2πi

N − 1

)
(1.29)

where N is the length of the actual segment and i the index of the sample.

6However, there are processing approaches carrying out the most essential steps in time domain,
for example Nowożyński [2004].
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Figure 1.1: The table demonstrates for which period Fourier coefficients are taken
depending on the actual decimation level during the cascade decimation for a 6 days
long time series sampled with a 2 s interval.

Now, the FFT yields coefficients for a different set of periods shortening with each

decimation level. Only a part of them is included into further usage. Concretely, it is

the assemblage referring to the periods

N

i
, i = 4, 5, . . . , 15 (1.30)

where N is, again, the length of the actual segment. Fig. 1.1 demonstrates that pattern

for a case study of a 218 samples long time series. This kind of selecting coefficients

has a somewhat funny consequence: Certain periods occur on two decimation levels

and are thus more frequently represented in the resulting collection than neighboring

ones. Their number of coefficients aggregates to the threefold compared to single-level

periods. Fig. 1.2 illustrates that distribution of coefficients over the period.

It may be added that the lowest period for which coefficients are obtained is slightly

above the octuple sampling interval and the longest one further used is one sixteenth

of the maximum record length.

The obtained Fourier coefficients have to be corrected for the response function of the

instrument (e.g. caused by filters) that has measured the given channel. This would

not be necessary if all devices involved in the data acquisition for a transfer function

had the same one. Fig. 1.3 shows that this is not the case. The difference between

the responses of telluric and magnetic recording systems would distort impedances,
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Figure 1.2: Histogram of coefficients obtained by the applied cascade decimation
for the example given in fig. 1.1.
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Figure 1.3: Typical instruments’ responses of the LMT devices used for the profile
on fig. 1. MAGSON marks German fluxgate magnetometer, RAP – German telluric
amplifier, TWG – Polish telluric amplifier, PSM – Polish quartz torsion magnetome-
ter, and LEMI – a Polish fluxgate magnetometer of Ukrainian origin.

and inter-station magnetic transfer functions measured between different magnetome-

ter types would suffer, as well.

Often the result of a Fourier transform is displayed not in form of coefficients, but as

spectra. These values are obtained by multiplying a coefficient with its complex conju-

gate. This operation yields a zero imaginary part and the square of the amplitude at the
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given period in the real part. Figs. 1.4 and 1.5 show time series and the corresponding

spectra, respectively. More correctly, the spectra are called auto(power)spectra in this

context. In contrast, the product of a Fourier coefficient with the complex conjugate

of the coefficient of another measured channel7 is called cross spectra.

Since all expressions used in the equations for the transfer functions (1.22, 1.23, 1.25)

are acquired now, the latter can be evaluated. The results are stored in edi8 files. Fig.

1.6 shows processing results obtained with the described method (left hand side) and,

for comparison, with the well-established algorithm after Egbert and Booker [1986]

(right hand side). In this example, the data are from site DRE (cf. fig 1), which has

time series of high quality. Obviously, the developed code serves its purpose, at least

under convenient circumstances.

Figure 1.4: Time series of site DRE (cf. fig. 1) for channels Ex (1), By (2), Ey (3),
and Bx (4). The length of the window is 25 minutes. The scale is 20 mV/km for
telluric channels and 25 nT for magnetic ones.

7Of course, it has to be taken for the same period and must stem from the same time segment.
8The edi format is an international standard for electronic data interchange purposes, see

http://www.geophysics.dias.ie/mtnet/docs/ediformat.txt
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Figure 1.5: Spectra corresponding to time series in fig. 1.4. Marks refer to the
same channels. The amplitude is normalized to 1. Note the correlation between Ex

and By and between Ey and Bx.
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Figure 1.6: Processing results for station DRE, left hand site obtained with the
described code, right after Egbert and Booker [1986]. It strikes that the phases are
shifted by ±180o, so they appear interchanged. That’s a matter of convention and
not tangent to their meaning. The results look alike.

20



1.3 Noise

Initially, noise is everything, that is present in the measured data, but has nothing to

do with the relationship between different field components that is used in magnetotel-

lurics. However, since the least-square estimation produces a consistent relationship

between data measured for those components, the transfer functions resulting from

that estimation are not necessarily appropriate for the further magnetotelluric evalu-

ation. In this section there will be explained how disturbed transfer functions can be

recognized and which kind of noise causes such disturbances.

Noise can have miscellaneous reasons. Concerning the electric channels, instabilities

of the electrodes play a role as well as emissions from grounded power cables, if the

station is installed close to a consumer load (e.g. a household). Magnetic channels also

suffer from a certain instruments’ noise, which is especially visible in a period range

< 20s at the MAGSON fluxgates. Furthermore, there are disturbances in the magnetic

channels caused by close-by moving magnetic objects. Nearby artificial sources of elec-

tromagnetic signals like DC railways, corrosion protected gas pipelines, and pasture

fences, produce correlated noise in electric and magnetic channels (cf. Szarka [1988],

Junge [1996]). In many cases, noise can easily be recognized in the time series by its

shape. Magnetotelluric signals are always sinusoidal, smooth, and correlated between

certain channels. Everything else, like especially peaks, spikes, jumps, transient-like

forms, and rectangular signals (even if somehow softened), is noise.

A non-robust single-site processing is the simplest, least sophisticated, and hence least

stable method in the matter of noise. Therefore the negative consequences of different

kinds of noise can be demonstrated very well considering it as example. This will be

done in the following. The degree to which more elaborated methods are able to deal

with that negative consequences of noise will be essential to evaluate their capability

in subsequent chapters of this work.

1.3.1 Statistic noise in output channels

As already mentioned in section 1.1, electric channels and Bz are the output channels

in a single-site context, and the least square approach copes best with noise in just

these channels. A not too high degree of output noise leaves the estimated transfer

functions nearly untouched and increases only their error bars, the latter being thereby

a practical measure for such noise. However, if that degree is exceeded, the obtained

transfer function will scatter and become unusable. But at least it is immediately
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clear that the processing has failed in such a case9 and that the results are not to

be included in further work. In this respect, noise on output channels is relatively

harmless.

In the following I will explain origin and significance of error bars and show two case

studies, where the mentioned noise is still compensated or leads the processing into

failure, respectively. The common instrument against such noise is robust procedures.

My error estimation follows Meju [1994] along general lines. It contains two important

steps. First, there is determined the sum of square errors, referring to ”error” as the

difference between measured output data and those reconstructed with the estimated

transfer functions, devided by the difference of the number of data and the number of

independent variables. If we stay with the example given by equation 1.10, we get

χ2 =

∑N
i=1 (Exi − ZxxBxi − ZxyByi)

(
E∗

xi − Z∗
xxB

∗
xi − Z∗

xyB
∗
yi

)
N − 2

(1.31)

Therewith, a measure for the success of the minimization according to equation 1.11 is

already given. However, χ2 carries the (squared) unit of the output channel and does

not yield any information about how to distribute the error among the both transfer

functions contained in equation 1.10. Thus, a second step is required. It bases on the

term of the covariance matrix. If one has an arbitrary linear inverse problem

"d = G"m + δ"d (1.32)

with the data "d (here: Exi), the data kernel matrix G, the error δ"d, and the desired

model parameters "m (here: Zxx and Zxy), then the covariance matrix COV is (Meju

[1994])

COV ∝ (
GTG

)−1
, (1.33)

where the residual square sum from eq. 1.31 can be taken as constant of proportionality

after Eadie et al. [1971], p. 164/165. So the covariance matrix for our problem is

COV = χ2
(
B†B

)−1
. (1.34)

The covariance matrix is real, square, and of the dimension of the number of model

parameters. Its diagonal elements are the variances σ2 of the model parameters, which

in this form are written to the edi file. The off-diagonal elements are in the ideal case

9It’s a matter of common knowledge that ”correct” magnetotelluric transfer functions are continous
and, by nature, smooth.
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Figure 1.7: Typical time series of sites PRZ and KUZ. The scale for Ey is 10.5
mV/km, for Bx 7 nT. The window length is 34 min. See text for comments.

Figure 1.8: Normalized spectra of time series in fig. 1.7. 1 corresponds to Ey

(PRZ), 2 to Ey (KUZ), and 3 to Bx (KUZ). See text for comments.

close to zero. They indicate to what extent the model parameters are correlated with

each other. The value used for plotting is the standard deviation σ. Added positively

and negatively to the given impedance value, it forms its error bar.

Fig. 1.7 shows time series of the stations KUZ and PRZ (cf. fig. 1). The first
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one is occasionally disturbed on channel Ey, the latter almost permanently. Since the

disturbances of both stations are, obviously, not correlated and the magnetic channel

Bx of KUZ looks untouched, the stations are suited for the problem treated of here.

Fig. 1.8 shows the spectra of these time series. Although Bx and Ey of site KUZ

diverge strongly at high frequencies, some correlation between them is visible. The

electric channel of PRZ lacks such correlation10. Already from this can be guessed that

stable transfer functions will be found for KUZ but not for PRZ. For the following

diagram a three days long11 record of both stations has been processed. This led to

1024 Fourier coefficients at the period 32s. After estimating the impedance from them,

the square errors between measured and reconstructed Ey have been calculated for all

1024 cases. Their distribution is displayed in fig. 1.9. It becomes clear that almost all

errors are minimum for KUZ. This holds for PRZ for a majority, too. However, more

than one third of the PRZ errors is - partly significantly - larger. This is a further

hint on convergence problems during the determination of transfer functions Zyx and

Zyy for PRZ. Fig. 1.10 confirms the suspicion. The processing results for KUZ are

exemplary12. In contrast, there couldn’t be obtained curves for PRZ. The values are so

scattered that the processing has to be regarded as failed. However, a robust single-site

approach like Egbert and Booker [1986] does not encounter scattering difficulties even

with such a poor data quality.

Figure 1.9: Distribution of errors in Ey among the 1024 data examples at 32 s for
the case study described in the text. KUZ appears to be well determined, but for
PRZ more than 1/3 of the examples doesn’t support the correct value where the
error is minimum.

10Indeed, Bx of PRZ is not displayed, but it is not very different from that of KUZ, since the sites
are close to each other, cf. fig. 1.

11This corresponds to 217 samples with a 2s sampling interval.
12These curves do not differ from the results obtained with the robust code by Egbert and Booker

[1986].
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Figure 1.10: Processing results for off-diagonal impedances of sites KUZ (left)
and PRZ (middle and right). For KUZ the non-robust single-site processing has
succeeded. For PRZ (middle) it failed. In contrast, the robust version by Egbert
and Booker [1986] was able to estimate stable transfer functions (right).
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1.3.2 Statistic noise in input channels

In this single-site example, input channels are always Bx and By. Noise on them

hits a sore spot of the described processing method. It is not compensated by

statistics, and so a small number of affected time series segments is already able to

cause distortions of the transfer functions. These distortions manifest themselves

as a certain ”dropping behavior” (i.e. a continuous down-weighting) of the appar-

ent resistivity curves at short periods. In other words, the error does not consist in

scattering, but in a systematic shift in one direction. Such errors are referred to as bias.

Figure 1.11: Processing results for synthetic data of a 100Ωm homogeneous half-
space with artificially disturbed channel Bx. The ρa curve of Zyx ”drops” slightly in
a typical way at short periods.

Fig. 1.11 displays a slightly biased ρa-curve for the impedance element Zyx. The case

study bases on synthetic data of a 100 Ωm homogeneous half-space, where peaks of

16 nT height have been added to the Bx channel in a way, that 6.25 percent of the time

series segments used to obtain Fourier coefficients for the shortest periods are affected.
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This small amount is enough to shift the first ρa value by 20Ωm. Furthermore, this

happens without leading to warning error bars.

There is a definite reason for the specific form of the bias. The input channels go

into the denominator of the formulas of the transfer functions as auto spectra (see e.g.

equation 1.19). Uncorrelated noise increases the spectra by the auto spectra of the

noise, so if some signal S is contaminated with some statistic noise N :

[(S + N)(S + N)∗] = [SS∗ + SN∗ + NS∗ + NN∗] = [SS∗] + [NN∗] , (1.35)

where [XX∗] indicates an averaging over a number of spectra of type given in between.

Since a division by that too large value takes place then, the result is down-weighted.

Only ρa is concerned by this effect, but not the phase, since auto spectra are real-valued

and division by a real number does not change the ratio between imaginary and real

part of the result, which determines the phase (equation 1.6).

It is possible to rescue the transfer functions from such a noise situation by means of

the Remote Reference technique. The most important feature of it is the substitution

of auto spectra by cross spectra with the horizontal magnetic channels of another site

(see chapter 2). This works very well in practice. In methodic terms it is, maybe,

not very satisfying. The problem is the assumption that some measured channels are

noise-free, since measurements are always concerned with errors. The approach that

instrumentally acquired data must be the determinative quantity in the problem is

clearly transcended only by Egbert [1997].

1.3.3 Correlated noise

Correlated noise (CN) is especially dangerous. As the term suggests, it occurs on

input and output channels simultaneously, see fig. 1.12. Due to this it fulfills an

important condition for a magnetotelluric signal, remains undetected even by methods

capable of excluding statistic noise, e. g. via coherency criteria, and succeeds in going

into the processing results. Transfer functions affected by CN are not usable for an

induction-based interpretation. In serious cases, they carry only information about the

source producing the CN, but none about the Earth’s conductivity. Typical features

of a correlated-noise-induced distortion are ρa curves rising in an angle of 45o in an

equidistant log-log plot, very low phases and large parallel induction arrows with real

ones pointing towards the source. These features will be addressed in detail in section

4.3.

Fig. 1.13 shows such an example. Station SAR is situated 6.5 km from a DC railway

27



Figure 1.12: Time series of station SAR. The scales are 18 mV/km and 12nT ,
the window length is 34 min. The peaked features that are correlated between the
channels are produced by a DC railway 7 km off the site.

in the West. It becomes also clear that a robust code is just as powerless.

The solution is to use a remote site that must be so far away from the source of the

CN that it is beyond of its reach. Fortunately, such noise has the property to decrease

relatively fast with distance to the source.

In all subsequent chapters of this work there will be described methods that meet the

challenge of correlated noise.
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Figure 1.13: Processing results for station SAR. All transfer functions are heavily
affected by correlated noise, both by the non-robust (left) and the robust (Egbert
and Booker [1986], right) approach obtained. The differences below 100 s show the
effect of smoothing.
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