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THE ROAD TO WISDOM

The road to wisdom? - Well, it’s
plain and simple to express:

Err
and err
and err again,
but less
and less
and less.

(A Grook by Piet Hein)
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Introduction

Among the main objects in convex geometry are the convex polytopes, which are simply called
polytopes throughout this thesis. Polytopes have already been studied by the ancient Greeks
(like the Platonic solids), but it was not until Euler discovered the relation between the face
numbers of polytopes (see Equation 1) that there was much progress on the combinatorics of
polytopes, and still until the middle of the 19th century the focus was on the three dimensional
case. However, since then a lot of new theory has been developed, which is partially due to the
different fields where polytopes naturally occur. Among these applications for polytopes the
probably best known is linear programming, which is, in short, maximising (or minimising)
a linear functional over a set bounded by hyperplanes (so, the feasible region of the linear
program is a polyhedron). The foundation of the modern theory of convex polytopes was laid
by Grünbaum in his book [35], which also contains a wider overview over the history of the
field. Also to mention is the book by Ziegler [76]. Both books are the reference for the basic
concepts presented here.

A d-dimensional polytope (for short d-polytope) is the convex hull of finitely many points
in Euclidean space such that the dimension of a smallest affine subspace containing it is d.
Equivalently, one can define a d-polytope to be the intersection of finitely many halfspaces in
Rd with the extra conditions that this intersection is full-dimensional and bounded. If this
intersection is allowed to be unbounded, we call it a polyhedron.

For a d-polytope P we can define its faces as P itself, the empty set, as well as the
intersections P ∩ H, where H is a supporting hyperplane of P (i.e. a hyperplane such that
P ⊂ H+). Clearly, all faces are polytopes as well. They have dimensions ranging from −1
(empty face) to d (P itself). The 0-faces are called vertices, the 1-faces are edges, the (d− 2)-
faces are ridges, and the (d− 1)-faces are called facets. The set of faces ordered by inclusion
forms the face lattice of the polytope P . We say two polytopes P and Q are combinatorially
equivalent if there is an inclusion-preserving bijection between their face lattices.

Basic examples of polytopes are the d-simplices, which are the convex hulls of d+1 affinely
independent points. This means that a 1-simplex is a line segment, the 2-simplex is a triangle,
and the 3-simplex is a tetrahedron. In a certain sense the d-simplex is the smallest d-polytope,
since no other d-polytope can have less than or equally many vertices. The simplices also have
a special face structure: Every combination of vertices yields a face of the simplex, and all
faces are again simplices. If all facets of a polytope P are simplices we call it simplicial. They
define an important subclass of polytopes, as they are in many cases easier to study than
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2 PHILIP BRINKMANN, f -VECTOR SPACES

general polytopes (see g-Theorem in Section 1.1). The dual polytopes to simplicial polytopes
are called simple polytopes, and can be characterised as having all vertex degrees d. The
simplices and the polygons are the only polytopes that are both simplicial and simple.

One important combinatorial invariant of a d-polytope P is its f -vector

f(P ) := (f−1(P ), f0(P ), . . . , fd−1(P ), fd(P )),

where fi(P ) is the number of i-dimensional faces of P . Since every d-polytope has exactly
one face of dimension −1 and d, we have f−1(P ) = fd(P ) = 1, and these values are often
omitted. We also often write fi instead of fi(P ) when the polytope is clear. One relation
between the f -numbers is Euler’s equation, which reads

f0 − f1 + . . .+ (−1)d−1fd−1 = 1− (−1)d. (1)

To encode more information about the combinatorics of a polytope we can extend the
f -vector to the flag-vector , which we denote by fl(P ). The entries of the flag-vector are
indexed by the sets S ⊂ {0, . . . , d− 1} and are defined as

fS(P ) := |{Fi1 ⊂ · · · ⊂ Fis ⊂ P : S = {i1, . . . , is}, dimFij = ij}|, (2)

which is the number of ascending chains (flags) of faces of P with dimensions prescribed
through the elements of S. Here, f∅ = f−1 and f{i} = fi. For convenience, we will often just
write fi1···is instead of f{i1,...,is}.

For simplicial polytopes we can define another useful combinatorial invariant: the g-vector,
which was introduced by McMullen &Walkup [50]. (It is useful, since it makes formulas nicer.)
In order to define it, the notion of the h-vector of a simplicial d-polytope comes in handy.
The h-vector (h0, h1, . . . , hd), which was introduced by McMullen [48] and related to toric
varieties by Stanley [63], is defined as

hk :=
k∑

i=0
(−1)k−i

(
d− i
d− k

)
fi−1. (3)

With this, the g-vector (g0, g1, . . . , gbd/2c) is defined as

g0 := h0, gi := hi − hi−1, 1 ≤ i ≤
⌊
d

2

⌋
. (4)

The Dehn–Sommerville relations (Dehn [29], Sommerville [60], see also [35, Ch. 9])

hi = hd−i (5)

assert that for a simplicial polytope only half of the f -, resp. h-vector is needed to describe
the entire one – and this explains why the g-vector is only defined for i ≤ bd/2c. For d = 4
the g-vector reads:

g0 = 1, (6)
g1 = f0 − 5, (7)
g2 = f1 − 4f0 + 10. (8)
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In general we get

gj = fj−1 +
j−1∑
i=0

(−1)j−i

(
d+ 1− i
d+ 1− j

)
fi−1. (9)

Due to Stanley [65] we can also define h- and g-vectors for general polytopes, but this
is a bit more involved than in the simplicial case. These vectors are also called toric h-,
resp. g-vector and denoted by htor, resp. gtor. We will follow Bayer [12] to give Stanley’s
combinatorial formula [65]. Let P be a d-polytope. Define htor(P, t) := ∑d

i=0 h
tor
i td−i and

gtor(P, t) := ∑bd/2c
i=0 gtor

i ti, where htor(P ) := (htor
0 , . . . , htor

d ), gtor(P ) := (gtor
0 , . . . , gtor

bd/2c) are
the htor-, resp. gtor-vector of P . Furthermore, we have the recursion

gtor(∅, t) = htor(∅, t) = 1, (10)
htor(P, t) =

∑
G$P face

gtor(G, t)(t− 1)d−1−dim G, (11)

and the definition gtor
0 := htor

0 , gtor
i := htor

i −htor
i−1 for 1 ≤ i ≤ bd/2c. Bayer [12] gives also a nice

algorithm to compute the htor-vector, but we will just state those values (of the gtor-vector)
that are most important for this thesis (here, the dimension is d = 4):

gtor
0 = 1, (12)
gtor

1 = f0 − 5, (13)
gtor

2 = f1 + f02 − 3f2 − 4f0 + 10. (14)

Note that if P is simplicial, the definitions of the h- and g-vectors coincide with those of the
htor- and gtor-vectors.

Now that we have defined these combinatorial invariants for polytopes, the next question is
which values these can obtain. Let us denote by Pd (Pd

s ) the set of all combinatorial types of
(simplicial) d-polytopes. The set of all f -vectors of d-polytopes is denoted by f(Pd), and that
of flag-vectors by f`(Pd). Their analogues for the simplicial case are then f(Pd

s ), resp. f`(Pd
s ).

The first interesting case d = 3 was solved by Steinitz [66] in 1906 (cf. Theorem 1.1.1), but
already for d = 4 we are somehow stuck. In 1987 Bayer [11] collected the known inequalities
for f`(P4) (see Theorems 1.1.14 and 1.1.15). However, there are flag-vectors that satisfy all
known inequalities, but that do not occur for any 4-polytope (cf. Höppner & Ziegler [39]).

In the case of simplicial (and dually simple) d-polytopes things look different: In 1971
McMullen [49] stated the g-Conjecture, which was later proven by Billera & Lee [15, 16] and
Stanley [61]. This conjecture, now known as the g-Theorem (cf. Theorem 1.1.10), describes
the set f(Pd

s ) ∼= f`(Pd
s ) entirely.

Viewed from a combinatorial perspective, another interesting question concerns the relation
of the sets of f - and flag-vectors of (simplicial) d-polytopes compared to those of more general
objects such as strongly regular (d − 1)-spheres, Eulerian (d − 1)-manifolds, and strongly
connected Eulerian lattices of rank (d+ 1).

A strongly regular complex is a pure finite regular CW complex with the intersection
property (for an introduction to complexes see e.g. [18, Sec. 4.7], or [28]). If the underlying
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space of the complex is a (d − 1)-sphere, then we will call it strongly regular (d − 1)-sphere.
A cell complex is regular if all closed cells are homeomorphic to unit balls. A complex K
has the intersection property if the intersection of any two cells of K is again a cell of K
(i.e. any two cells intersect in a common face). A cellular manifold is a strongly regular
complex, where the underlying space is a connected manifold and where all vertex links are
PL-spheres. For convenience, we simply call it manifold as well. If the manifold satisfies
Euler’s equation (1), then we call it Eulerian (with the natural definition of f -vector; see also
below). Clearly, every odd-dimensional (d − 1)-manifold and every strongly regular (d − 1)-
sphere is an Eulerian (cellular) (d− 1)-manifold.

Now, letM be an Eulerian (d−1)-manifold, and L be the set of faces ofM given as sets of
vertices (including the empty face) together with the set containing all vertices of M . There
is a natural partial order <L on L given by set-inclusion. Therefore, (L,<L) forms a poset,
which is even a lattice. This lattice is called face lattice of M , analogous to the face lattice of
a polytope. Since M is Eulerian, L is Eulerian as well (i.e. L is ranked and every interval has
the same number of elements of even and odd rank). Moreover, by the connectedness of M it
follows that every interval I of L of length l(I) ≥ 3 has a connected atom-coatom-graph. In
general, we will call a lattice with this property strongly connected. See Stanley [64] for more
about posets and lattices. The following example motivates the notion of strongly connected
Eulerian lattices.

Example. Let P be the face lattice of the d-simplex, d even, and construct a new Eulerian
lattice Q of rank (d+1) by taking n copies of P and identifying the least, resp. largest elements
(0̂ and 1̂) with each other. Since the atom-coatom-graph of Q is not connected, Q is not the
face lattice of an Eulerian manifold. Moreover, this example works in all even dimensions,
resp. odd rank. The case of two triangles is shown in Figure 1. Since the product of two
Eulerian lattices is again an Eulerian lattice, we can easily construct Eulerian lattices from
this example where the atom-coatom-graph of the entire lattice is connected, but not that of
every interval. Still these lattices cannot appear as face lattices of Eulerian manifolds.

Analogous to the polytope case, define Sd−1,Md−1
e , resp. ELd+1 to be the sets of all com-

binatorial types of strongly regular (d− 1)-spheres, Eulerian (d− 1)-manifolds, resp. strongly
connected Eulerian lattices of rank d + 1. If we add an “s” as in Sd−1

s the respective set is
restricted to the simplicial case. By the face structures of spheres and manifolds, and via the
ranks of the elements of an Eulerian lattice, we can naturally extend the notions of f -, and
flag-vectors to strongly regular spheres, Eulerian manifolds and strongly connected Eulerian
lattices. Again, the terms f(·) and f`(·) refer to the sets of f -, resp. flag-vectors of the respec-
tive set of objects. Since every polytope boundary is a sphere, which is in turn an Eulerian
manifold, and the face lattice of every Eulerian manifold is an Eulerian lattice, it is clear that

f(Pd) ⊂ f(Sd−1) ⊂ f(Md−1
e ) ⊂ f(ELd+1), (15)

f`(Pd) ⊂ f`(Sd−1) ⊂ f`(Md−1
e ) ⊂ f`(ELd+1). (16)

The question is now whether these inclusions are strict or not (resp. in which cases).
Clearly, for d ≤ 2 there is no difference. A first non-trivial result is Steinitz’ Theorem
(Theorem 0.1) from which it follows that all strongly connected Eulerian lattices of rank 4
are face lattices of 3-polytopes, so equality in (15) for d = 3 follows.
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Figure 1: The Hasse diagram of the Eulerian lattice obtained by taking twice the face lattice
of a triangle and identifying the 0̂, 1̂ resp. This lattice is not strongly connected.

Theorem 0.1 (Steinitz’ Theorem [67], see also [76]). A graph G is the graph of a 3-polytope
if and only if it is simple, planar and 3-connected.

Proposition 0.2. Every strongly connected Eulerian lattice of length d + 1 = 4 is the face
lattice of a d-polytope.

Proof. Let E be such an Eulerian lattice. Then E is the face lattice of a connected 2-
manifold of Euler characteristic 2, so we have a sphere. The lattice property corresponds
to what Steinitz calls “Bedingung des Nichtübergreifens” [68, S. 179], which is exactly the
intersection property for a 2-sphere. Steinitz’s Theorem 0.1 yields that every such 2-sphere
can be realized as a convex polytope.

In the simplicial case (15) refers to the g-Conjecture for spheres (cf. Section 1.1), which is
still open. For general polytopes and spheres and higher dimensions there are a lot of results
showing that Pd $ Sd−1 for all d ≥ 4. For example there are the upper bounds on the numbers
of combinatorial types of polytopes by Goodman & Pollack [33] as well as lower bounds for
spheres by Kalai [41], Pfeifle & Ziegler [57], and Nevo, Santos & Wilson [52]. However, all the
non-polytopal 3-spheres studied so far turned out to have an f -vector (and even flag-vector)
that is also the f - (resp. flag-) vector of some 4-polytope: This was observed repeatedly,
from the first examples (such as the Brückner and Barnette spheres, see e.g. Grünbaum [35,
Sect. 11.5] and Ewald [31, Sect. III.4]) to the systematic enumerations of spheres with few
vertices by Altshuler et al. (see e.g. [6] as well as [35, p. 96b]).

The aim of this thesis is to study the relations in (15) in more detail. For this Section 1.1
collects known results on the shape of the sets of f - and flag-vectors of polytopes, spheres and
lattices. Furthermore, we will show there that simplicial strongly connected Eulerian lattices
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are Eulerian pseudomanifolds (Theorem 1.1.7), with which we can extend the Lower Bound
Theorem (Theorem 1.1.3). Moreover, we will show that every strongly connected Eulerian
lattices of rank 5 is the face lattice of some Eulerian 3-manifold (Theorem 1.1.8). Finally,
we will show there that strongly connected Eulerian lattices and Eulerian manifolds have
strictly larger sets of f -vectors than polytopes (Theorem 1.1.11). In Section 1.2 we will show
new bounds for the sets of f - and flag-vectors of certain classes of strongly regular 3-spheres
(Propositions 1.2.3 and 1.2.7, Lemma 1.2.8, and Corollary 1.2.9). Chapter 2 reports on some
new enumeration results of 3-manifolds, which we will use in Chapter 3 to prove the main
results of this thesis:
Theorem 3.1. There is a unique strongly regular 3-sphere, but no convex 4-polytope, with
flag-vector given by

(f0, f1, f2, f3; f02) = (12, 40, 40, 12; 120).

Thus, the set of flag-vectors of 4-polytopes is a proper subset of the set of flag-vectors of
strongly regular 3-spheres:

f`(P4) $ f`(S3).

Moreover, this is the smallest 2s2s flag-vector for which there is a 3-sphere but no 4-polytope.

Theorem 3.2. The set of f -vectors of 4-polytopes is a strict subset of that of f -vectors of
strongly regular 3-spheres:

f(P4) $ f(S3).

In particular, there are strongly regular 3-spheres, but no 4-polytopes, with the f -vectors

(f0, f1, f2, f3) = (10, 32, 33, 11),
(f0, f1, f2, f3) = (11, 33, 32, 10),
(f0, f1, f2, f3) = (10, 33, 35, 12),
(f0, f1, f2, f3) = (12, 35, 33, 10),
(f0, f1, f2, f3) = (11, 35, 35, 11),
(f0, f1, f2, f3) = (12, 40, 40, 12).

Moreover, the f -vectors (10, 32, 33, 11) and (11, 33, 32, 10) are the smallest ones with that
property and there are no other f -vectors of size size(f) := f0 + f3 − 10 ≤ 12 for which there
are 3-spheres but no 4-polytopes other than the listed ones.

Finally, Section 3.3 reports on connections between the different notions of realisability of a
sphere (cf. Conjecture 2) and proves some non-implications (Proposition 3.3.3).



Chapter 1

Bounds on f - and flag-vectors

1.1 Sets of f - and flag-vectors

In this section we will collect known results on the shape of the sets of f - and flag-vectors of
polytopes, spheres and lattices. Furthermore, we will show that simplicial strongly connected
Eulerian lattices are Eulerian pseudomanifolds (Theorem 1.1.7), with which we can extend the
lower Bound Theorem (Theorem 1.1.3). Moreover, we will show that every strongly connected
Eulerian lattice of rank 5 is the face lattice of some Eulerian 3-manifold (Theorem 1.1.8).
Finally, we will show that strongly connected Eulerian lattices and Eulerian manifolds have
strictly larger sets of f -vectors than polytopes (Theorem 1.1.11).

Theorem 1.1.1 (Steinitz [66], see also [35], [68]). The set of f -vectors of 3-polytopes is the
set of all integer points in a 2-dimensional cone with apex at (4, 6, 4), the f -vector of the
tetrahedron:

f(P3) = {(f0, f1, f2) ∈ Z3 : f0 − f1 + f2 = 2, f0 ≤ 2f2 − 4, f2 ≤ 2f0 − 4}.

Moreover, the set of f -vectors of simplicial 3-polytopes is given by

f(P3
s ) = {((f0, f1, f2) ∈ Z3 : f1 = 3f0 − 6, f2 = 2f0 − 4, f0 ≥ 4}.

Since the flag-vector of a 3-polytope is completely determined by the f -vector, this result
extends to f`(P3). Moreover, Steinitz’ Theorem (Theorem 0.1) implies that S2 = P3, and so
Theorem 1.1.1 also describes f(S2) and f`(S2).

For higher dimensions the question of how to completely describe f(Pd), f`(Pd), f(Sd−1),
and f`(Sd−1) remains open. However, there are some partial results. Grünbaum [35, p. 131]
showed that the Euler equation (1) is the only linear equation that holds for all f -vectors of
d-polytopes, so the affine hull of f(Pd) is a hyperplane in Rd (dim aff(f(Pd)) = d − 1). For
simplicial polytopes the Dehn–Sommerville relations (see Equation 5) imply that only half of
the f -vector is needed to know the entire f -vector (dim aff(f(Pd

s )) = bd/2c). These relations
were generalised by Bayer & Billera to the flag-vectors of Eulerian posets:

7
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Theorem 1.1.2 (Generalised Dehn−Sommerville relations, Bayer & Billera [13]). For all
rank d+ 1 Eulerian posets, the flag-vector satisfies

k−1∑
j=i+1

(−1)j−i−1fS∪{j} = (1− (−1)k−i−1)fS

whenever i, k ∈ S ∪ {−1, d} with i ≤ k − 2 and S ∩ {i+ 1, . . . , k − 1} = ∅.

In particular, for d = 4 we get:

(i) S = {3}, i = −1, k = 3, f03 − f13 + f23 = 2f3;

(ii) S = {2}, i = −1, k = 2, f02 − f12 = 0;

(iii) S = {2}, i = 2, k = 4, f23 = 2f2;

(iv) S = {1}, i = 1, k = 4, f12 − f13 = 0;

(v) S = {0}, i = 0, k = 4, f01 − f02 + f03 = 2f0.

From the theorem follows dim aff(f`(Pd)) = Fd−1 [13], where Fd is the d-th Fibonacci number
(F1 = F2 = 1, Fn = Fn−1 + Fn−2). In particular, dim aff(f`(P4)) = 4.

Another important result on the f -vectors of simplicial polytopes is Barnette’s Lower
Bound Theorem (LBT) [7, 9], which gives lower bounds on the numbers fi of i-faces in terms
of the number of vertices f0. Billera & Lee [15] extended this theorem in proving that equality
holds for d > 3 if and only if the polytope is stacked, and Kalai [40] and Tay [70] extended it
to pseudomanifolds. A pseudomanifold is a pure simplicial complex, where every ridge is in
exactly two facets and which dual graph (with the facets as vertices and ridges as edges) is
connected (see [14] for more).

Theorem 1.1.3 (Lower Bound Theorem (LBT)). For a (d− 1)-dimensional pseudomanifold
∆ with f0 = n vertices,

fi(∆) ≥
{ (d

i

)
n−

(d+1
i+1
)
i for 1 ≤ i ≤ d− 2

(d− 1)n− (d− 2)(d+ 1) for i = d− 1.

Moreover, for d ≥ 4 equality holds if and only if ∆ is isomorphic to the boundary complex of
a stacked d-polytope.

A textbook version of the proof for polytopes can be found in [27] and a different approach
via shellings was used by Blind & Blind [19]. The LBT was later generalised to all d-polytopes
as well as to triangulated manifolds with boundary.

Theorem 1.1.4 (Generalised LBT (gLBT), Kalai [40], Whiteley [73]). For a d-polytope P
with f0 = n vertices

f1(P ) +
∑
k≥3

(k − 3)fk
2 (P ) ≥ dn−

(d+1
2
)
,

where fk
2 (P ) denotes the number of k-gonal 2-faces of P .
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Remark. In terms of the toric g-vector, Theorem 1.1.4 states that gtor
2 ≥ 0 for all polytopes.

Theorem 1.1.5 (LBT for triangulated manifolds with boundary, Björner [17] and Kalai [40]).
For a triangulated (d − 1)-dimensional manifold ∆, d ≥ 3, with nb boundary vertices and ni

interior vertices,

fi(∆) ≥
{ (d−1

i

)
nb +

(d
i

)
ni −

( d
i+1
)
k for 1 ≤ i ≤ d− 2

nb + (d− 1)ni − (d− 1) for i = d− 1.

Moreover, if equality holds for some i, then ∆ is a stacked (d− 1)-ball.

We will now extend the LBT to simplicial strongly connected Eulerian lattices by showing
that they are actually pseudomanifolds. For this define the dual graph of an Eulerian lattice
L to be the graph with vertices corresponding to the elements of corank 1 and corank 2, and
edges between two vertices if one of the two is larger than the other in L.

Proposition 1.1.6. Let L be a finite, graded, strongly connected lattice. Then the dual graph
of L is connected.

Proof. Let x, y ∈ L be of corank 1 or of corank 2, and let x = x0, . . . , xn = y be a path P
in the Hasse diagram of L, where for all i = 0, . . . , n either xi covers xi−1 or the other way
around and no xi is 0̂, or 1̂. Such a path exists by L being strongly connected. Now, let xk

be of least rank in the path. If xk has corank 2, we are done. Otherwise, consider the interval
[xk, 1̂] in L. Its atom-coatom-graph is connected, hence there is a path P ′ in [xk, 1̂] from xk−1
to xk+1 avoiding xk and 1̂. Substitution of xk in P by P ′ will give a new path from x to y
with one element less of rank rk(xk). Iteration yields the desired result, namely a path from
x to y using only coatoms and elements of corank 2, which will translate to a path between
x and y in the dual graph.

Theorem 1.1.7. Let L be a strongly connected Eulerian lattice of rank d+ 1 and let L−{1̂}
be simplicial. Then L is the face lattice of an Eulerian pseudomanifold of dimension d− 1.

Proof. Construct the simplicial complex ∆ as follows:

(i) the atoms of L are the vertices of ∆;

(ii) an element x ∈ L−{1̂} corresponds to the face of ∆ with the vertices corresponding to
the atoms smaller than x.

Since L−{1̂} is simplicial, this gives a simplicial complex. Since L is graded, ∆ is pure, and,
since L is Eulerian, every ridge of ∆ is in exactly 2 facets. By Proposition 1.1.6 the dual
graph of ∆ is connected.

Now, consider the link of some element x ∈ L − {1̂}. This is lk(x) = {y ∈ L : y ≥ x} =
[x, 1̂]. Since L is Eulerian, this has the right Euler characteristic. Therefore, L is also Eulerian
as a pseudomanifold.



10 PHILIP BRINKMANN, f -VECTOR SPACES

This theorem would extend to the non-simplicial case, if we would not have defined pseu-
domanifolds to be simplicial. Since strongly connected Eulerian lattices of rank d ≤ 4 are
face lattices of polytopes (cf. Steinitz’ Theorem 0.1), we directly get:

Theorem 1.1.8. If L is a strongly connected Eulerian lattice of rank 5, then L is the face
lattice of an Eulerian 3-manifold.

A somehow “dual” result to the Lower Bound Theorem is the Upper Bound Theorem
(UBT) for polytopes due to McMullen [48]. A textbook version of this can be found in
Ziegler [76]. Stanley [62] extended the UBT to spheres, and Novik [53] showed that it holds
for Eulerian manifolds.

Theorem 1.1.9 (Upper Bound Theorem (UBT) for Eulerian manifolds). The f -vector of an
Eulerian (d− 1)-manifold M with f0(M) = n vertices is componentwise bounded from above
by the f -vector of a d-dimensional cyclic polytope on n vertices:

fk(M) ≤ fk(Cycd(n)), 1 ≤ k ≤ d.

A remarkable combination of the Lower and Upper Bound Theorem is McMullen’s g-
Conjecture [49], which characterises the sets of f -vectors of simplicial d-polytopes f(Pd

s ) for
all d. This conjecture was later proven by Billera & Lee [15, 16] and Stanley [61]. For more
details and explanation of M -sequences, see Ziegler [76, Lecture 8].

Theorem 1.1.10 (g-Theorem). A sequence g = (g0, g1, . . . , gb d
2 c

) is the g-vector of a simpli-
cial d-polytope if and only if it is an M -sequence. In particular, this means

gi ≥ 0.

Remark. Combining LBT and UBT one can see directly that the g-Theorem also holds for
d-spheres with d ≤ 5. For simplicial spheres of dimension d − 1 ≥ 5 the g-Conjecture is still
open. For an overview over the different g-Conjectures see [69].

Theorem 1.1.11. The f -vector spaces of d-polytopes and (d− 1)-manifolds do not coincide
for d ≥ 6. In particular, there are simplicial (Eulerian) (d − 1)-manifolds that violate the
g-Theorem for all d ≥ 6:

f(Pd
s ) $ f(Md−1

s ).

For d ≥ 6 even:
f(Pd

s ) $ f(Md−1
e,s ).

For d ≥ 7 odd:
f(Pd) $ f(ELd+1).

Proof. Frank Lutz’ thesis [45, pp. 56-58] lists a triangulation of the 5-manifold S4 × S1 with
the f -vector (13, 78, 195, 260, 195, 65). The corresponding g-vector is (1, 6, 21,−35). Hence,
it violates the g-Theorem, and so this f -vector cannot occur for a 6-polytope. In general we
can construct such manifolds as follows (d ≥ 6):
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(i) Take a stacked d-polytope P that has two facets F0, F1 s.t. no facet of P intersects both
of them; the g-vector is then g(P ) = (1, f0(P )− d− 1, 0, . . . , 0);

(ii) Identify F0 with F1 to obtain a (d − 1)-manifold M with f -vector given by fi(M) =
fi(P ) − fi(∆d−1), 0 ≤ i ≤ d − 2, and fd−1(M) = fd−1(P ) − 2, where ∆d−1 is the
(d− 1)-simplex; with (9) we then get for k 6= 1:

gk(M) = gk(P )− fk−1(∆d−1)−
k−1∑
i=0

(−1)k−i

(
d+ 1− i
d+ 1− k

)
fi−1(∆d−1)

= gk(P )−
(
d

k

)
−

k∑
i=1

(−1)k−i

(
d+ 1− i
k − i

)(
d

i

)
.

Since

gk(∆d−1) =
(
d

k

)
+

k∑
i=0

(−1)k−i

(
d+ 1− i
k − i

)(
d

i

)
= δ0,k

we get for k ≥ 1

gk(M) = gk(P ) + (−1)k

(
d+ 1
k

)
,

which is negative for odd k ≥ 3.

Since in even dimensions the resulting manifold M is Eulerian, we get the first two claims.
For the third one take the product of the face lattice ofM with the 2-element Eulerian lattice
(suspension with a point) to get a manifold M ′ with fi(M ′) = fi(M) + fi−1(M), i ≥ 1:

gk(M ′) = fk−1(M) + fk−2(M) +
k−1∑
i=0

(−1)k−i

(
d+ 2− i
d+ 2− k

)
fi−1

+
k−1∑
i=1

(−1)k−i

(
d+ 2− i
d+ 2− k

)
fi−2

= fk−1(M) +
k−1∑
i=0

(−1)k−i

(
d+ 2− i
d+ 2− k

)
fi−1 +

k−1∑
i=0

(−1)k−i+1
(
d+ 2− (i+ 1)
d+ 2− k

)
fi−1

= fk−1(M) +
k−1∑
i=0

(−1)k−i

((
d+ 2− i
d+ 2− k

)
−
(
d+ 1− i
d+ 2− k

))
fi−1

= fk−1(M) +
k−1∑
i=0

(−1)k−i

(
d+ 1− i
d+ 1− k

)
fi−1

= gk(M).

Again, for odd k ≥ 3 this is negative if M is as constructed above.

Besides extending the g-Theorem to simplicial spheres or other manifolds, one can also
ask for a similar result on the toric g-vectors for general polytopes. Theorem 1.1.4 ensures
the non-negativity of gtor

2 . For the general case, this is due to Karu [42]:
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Theorem 1.1.12. The toric g-vector of a d-polytope P is non-negative, i.e.

gtor
k (P ) ≥ 0 ∀ 0 ≤ k ≤

⌊
d

2

⌋
.

Again one can ask for generalisations to spheres. See Section 1.2 for some results in the
case d = 4.

Another direction in which there has been some progress, is to restrict the dimension
d. The following theorems give restrictions to the sets of f -, and flag-vectors of 4-polytopes,
strongly regular 3-spheres, and Eulerian 3-manifolds. With the generalised Dehn–Sommerville
relations we can write:

f2 = f3 + f1 − f0, f01 = 2f1, f02 = f12 = f13 = f03 − 2f0 + 2f1. (1.1)

Therefore, instead of taking the entire flag-vector it suffices to consider the values f0, f1, f2,
and f02, or f0, f1, f3, and f03. Note that the precise choice of necessary parameters is rather
arbitrary. Since depending on the context, each of the two has its advantages, we will give
some of the inequalities for flag-vectors in both versions.

Theorem 1.1.13 (Barnette [8]). Let M be an Eulerian 3-manifold with f -vector f(M) =
(f0, f1, f2, f3). Then,

(i) f2 ≤ 3
2f3 + 1

4(f2
0 − 3f0),

(ii) f2 ≤ 1
2f0 + 1

4(f2
3 + f3),

(iii) f2 ≥ 1
8(3f0 − 10 + 15f3),

(iv) f2 ≥ 1
8(7f0 − 10 + 11f3).

Remark. Barnette proved this theorem for 4-polytopes, but he uses only the fact that all
facets are 3-polytopes, and a lower bound inequality for simplicial polytopes that Walkup [71]
actually proved for all simplicial 3-manifolds. Therefore, this theorem is valid for all 3-
manifolds.

Theorem 1.1.14 (Bayer [11]). Flag-vectors (f0, f1, f2, f3; f02, f03) of 4-polytopes satisfy

(i) f02 − 3f2 ≥ 0, resp. −f0 + f1 + 3f3 − f03 ≤ 0,

(ii) f02 − 3f1 ≥ 0, resp. 2f0 + f1 − f03 ≤ 0,

(iii) f02 − 3f2 + f1 − 4f0 ≥ 10, resp. 3f0 + 3f3 − f03 ≤ 10,

(iv) 6f1 − 6f0 − f02 ≥ 0, resp. 4f0 − 4f1 + f03 ≤ 0,

(v) f0 ≥ 5,

(vi) f3 ≥ 5.
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Except for (iii), all of these are knwon to hold for strongly connected Eulerian lattices of rank
5 in general.

In addition to the linear inequalities, Bayer also proved some quadratic constraints. She
proved them for 4-polytopes, but again the reasoning is valid for strongly connected Eulerian
lattices of rank 5 in general.

Theorem 1.1.15 (Bayer [11]). Flag-vectors (f0, f1, f2, f3; f02, f03) of strongly connected Eu-
lerian lattices of rank 5 satisfy

(i) 2(f02 − 3f2) + f1 ≤
(f0

2
)
, resp. 2f0 − f1 − 6f3 + 2f03 ≤

(f0
2
)
,

(ii) 2(f02 − 3f1) + f1 ≤
(f2−f1+f0

2
)
, resp. −5f0 − f1 + f3 + 2f03 ≤

(f3
2
)
,

(iii) f02 − 4f2 + 3f1 − 2f0 ≤
(f0

2
)
, resp. f1 − 4f3 + f03 ≤

(f0
2
)
,

(iv) f02 + f2 − 2f1 − 2f0 ≤
(f2−f1+f0

2
)
, resp. −5f0 + f1 + f3 + f03 ≤

(f3
2
)
.

Additionally, there are some (families of) inequalities that are proven only for the sets of
flag-vectors of 4-polytopes (the proof relies at some point on the geometry).

Theorem 1.1.16 (Ling [43]). Flag-vectors (f0, f1, f2; f02) of 4-polytopes satisfy

(i) (k − 1)f02 −
(k+1

2
)
f2 + f1 + 1 ≤

(f0
2
)
, for any integer k ≥ 4,

(ii) f02(f02 − 3f2) ≤ 2f2
[(f0

2
)
− f1

]
,

(iii) 2(k − 1)f02 − k(k + 1)f2 + (k2 − 3k + 4)f1 − k(k − 3)f0 ≤ 4
(f0

2
)
, for any integer k,

(iv) (2f02 − f2 − 3f1 + 3f0)2 − 8(f2 − f1 + f0)
[
2
(f0

2
)

+ f02 − 2f1
]
≤ (f2 − f1 + f0)2,

as well as the dual versions of these.

All of these theorems restrict the set of f -, resp. flag-vectors further: While there are 171
potential f -vectors with f0 = 9 satisfying the trivial bounds (

(f0
2
)
≥ f1 ≥ 2f0, f2 ≥ 2f3,(f0

4
)
≥ f3 ≥ 5), Theorem 1.1.13 reduces their number to 81. Out of these, one can con-

struct 4692 potential flag-vectors satisfying the trivial bounds (4f3 ≤ f03 ≤ (f0 − 1)f3).
With Theorems 1.1.14 and 1.1.15 there are only 392 potential flag-vectors with f0 = 9 left.
Theorem 1.1.16 reduces their number to 365. However, not all vectors that satisfy all these in-
equalities are f -, resp. flag-vectors of 4-polytopes (see Höppner & Ziegler [39] and Chapters 2,
3).
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1.2 Fatness and Complexity

Two parameters that might help to distinguish between the f -vector spaces of 4-polytopes and
3-spheres are the fatness, which has been introduced by Eppstein et. al. [30] and Ziegler [74],
and the complexity. We will use the definitions from Ziegler [74].

Definition 1.2.1. The fatness of a strongly regular 3-sphere is

F (S) := f1(S) + f2(S)− 20
f0(S) + f3(S)− 10 . (1.2)

The complexity of a strongly regular 3-sphere is

C(S) := f03(S)− 20
f0(S) + f3(S)− 10 . (1.3)

Note that the constants in both parameters are designed in a way that for the simplex, both
the numerator and denominator vanish. Therefore, they are not defined for the 4-simplex or
its boundary.

Remark. Since the f -vector of the dual of a polytope or a strongly regular sphere is the
reversed vector of the primal, the fatness and the complexity are invariant under taking
duals.

The two parameters are linked via

C ≤ 2F − 2, F ≤ 2C − 2, (1.4)

which follows from the generalised Dehn−Sommerville relations and the inequalities Theo-
rem 1.1.14 (i) and (ii). Moreover, Theorem 1.1.14 (iii) is equivalent to

C ≥ 3, (1.5)

which holds for 4-polytopes and simple resp. simplicial strongly regular 3-spheres. With (1.4)
it easily follows that

F ≥ 5
2 . (1.6)

Therefore, finding a 3-sphere with complexity C < 3 or fatness F < 5
2 would result in an

example of a flag-, resp. f -vector that occurs for spheres but not for polytopes. In the
remainder of this section we will see some negative results in this direction, meaning that for
some classes of 3-spheres a lower bound on the fatness of F ≥ 5

2 will be established. But let
us start with some easier bounds.

Proposition 1.2.2 (Trivial Bound). For any strongly regular 3-sphere S the complexity and
fatness satisfy

C(S) ≥ 2, F (S) ≥ 2.

Proof. This follows directly from f1 ≥ 2f0, f2 ≥ 2f3, and the first inequality in (1.4). These
are obtained since any 2-face is contained in exactly two facets, and both facets contain
at least four 2-faces. On the other hand, any edge contains two vertices and any vertex is
contained in at least four edges.
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Remark. Equality holds if and only if the sphere S is both simple and simplicial, which is the
case only if S is the boundary of the 4-simplex, for which the complexity and fatness are not
defined, so C,F > 2.
Remark. We obtain another quite simple lower bound for large values of f03. If S is a 3-sphere
with f03 ≥ 6 ·max{f0, f3}, then Theorem 1.1.14 (iii) holds trivially. Therefore, we have C ≥ 3
and F ≥ 5

2 for S. With the same argument, we can also show that C ≥ 3 and F ≥ 5
2 hold

if min{f0, f3} ≤ 10 and f03 ≥ 5 ·max{f0, f3}. However, there are potential flag-vectors with
few vertices that do not satisfy these conditions.

For spheres with f0 ≤ 8 (or, dually, f3 ≤ 8) there are classifications by Barnette [10] and
Altshuler & Steinberg [5, 6]. With these, we can easily verify that Theorem 1.1.14 (iii) holds
for strongly regular 3-spheres with f0 ≤ 81.

With Theorem 1.1.13 we can prove a lower bound on the fatness of some 3-spheres.

Proposition 1.2.3. Let S be a strongly regular 3-sphere with f -vector f(S) = (f0, f1, f2, f3).
If 3f0 − f3 ≤ 20 (or, dually, 3f3 − f0 ≤ 20) then the fatness of S is

F (S) ≥ 5
2 .

Remark. Since we use in the proof only inequalities that hold for the f -vectors of all Eulerian
3-manifolds, this proposition would extend to 3-manifolds as well. However, we have not
defined fatness in that context.

Proof. We will use f2 ≥ 1
8(3f0 − 10 + 15f3) from Theorem 1.1.13 (iii). So we can deduce

3f0 − f3 ≤ 20
⇒ 20f0 + 20f3 − 200 ≤ 14f0 + 22f3 − 180

⇒ 5(f0 + f3 − 10) ≤ 2(7
4f0 + 11

4 f3 −
90
4 ) = 2(f0 − f3 − 20 + 23f0 − 10 + 15f3

8 )

⇒ 5(f0 + f3 − 10) ≤ 2(f0 + 2f2 − f3 − 20)

⇒ 5
2 ≤ f0 + 2f2 − f3 − 20

f0 + f3 − 10 = f1 + f2 − 20
f0 + f3 − 10 = F (S).

The proof for the case 3f3 − f0 ≤ 20 follows from duality.

In the following we will mainly consider 2-simple 2-simplicial 3-spheres, which were first
studied by Grünbaum [35].

Definition 1.2.4. A 3-sphere S ⊂ R4 is 2-simplicial (2-simple) if all 2-faces are triangles (all
edges are in precisely three facets). The sphere S is 2-simple 2-simplicial (abbreviated with
2s2s) if it is both 2-simple and 2-simplicial.

Lemma 1.2.5 (see [75]). Every 2s2s 3-sphere has a symmetric f-vector, that is f0 = f3 and
f1 = f2.

1 The papers refer to enumerations of all strongly regular 3-spheres with 8 vertices. The potential flag-
vectors with fewer vertices that violate the gLBT can be reduced to the case of 8 vertices by stacking.
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Remark. Since every 2-face of a 2s2s 3-sphere S is a triangle, we have that f02(S) = 3f2, and
since every edge is in exactly three facets, we get f13(S) = 3f1.

Proposition 1.2.6 (see [75]). The flag-vector of a 3-sphere S satisfies the inequality

2f03 ≥ (f1 + f2) + 2(f0 + f3).

Moreover, equality holds if and only if S is 2s2s.

Proof. This inequality is equivalent to F ≤ 2C− 2 from (1.4). The equality case follows from
combining f0 = f3 and f1 = f2 for 2s2s 3-spheres and Theorem 1.1.14 (ii).

With the lower bounds for simplicial spheres we can now show a lower bound on the fatness
for 2-simplicial resp. 2-simple spheres.

Proposition 1.2.7. Let S be a strongly regular 3-sphere with f03 ≤ 2f2, or dually with
f03 ≤ 2f1. Then the fatness of S is

F (S) ≥ 5
2 .

In particular, this assumption holds if S is 2-simplicial and so F (S) ≥ 5
2 for strongly regular

2-simplicial 3-spheres and for strongly regular 2-simple 3-spheres.

Proof. If S is a 2-simplicial 3-sphere, then f02 = 3f2 and by Theorem 1.1.14 (iv) we get that
f03 ≤ 2

3f02. Therefore, f03 ≤ 2f2.

Let us subdivide S to get a simplicial sphere, for which the above theorem gives a lower
bound on the fatness. To do this, we triangulate every 2-face without introducing new vertices.
This adds f02− 3f2 edges and substitutes the 2-faces by f02− 2f2 triangles. In a second step,
we add a vertex inside every cell and cone to the boundary. This adds f3 vertices, f03 edges
and f13 + f123− 3f23 = 3f02− 6f2 triangles and replaces the cells by f023− 2f23 = 2f02− 4f2
tetrahedra.

Denote the new simplicial sphere by S′. It has the f -vector

f(S′) = (f0(S′), f1(S′), f2(S′), f3(S′))
= (f0 + f3, f1 + f02 − 3f2 + f03, 4f02 − 8f2, 2f02 − 4f2) (1.7)
= (f0 + f3, f0 − 3f3 + 2f03,−8f3 + 4f03,−4f3 + 2f03).

Therefore, the fatness of S′ is
5
2 ≤ F (S′) = f0 − 11f3 + 6f03 − 20

f0 − 3f3 + 2f03 − 10 . (1.8)

Since f03 ≤ 2f2 = 2f1 + 2f3 − 2f0, we have

5(f0 − 3f3 + 2f03 − 10) ≤ 2(f0 − 11f3 + 6f03 − 20)
⇔ 3f0 + 7f3 − 2f03 − 10 ≤ 0 (1.9)
⇒ −4f0 + 4f1 + 4f3 ≥ 2f03 ≥ 3f0 + 7f3 − 10
⇒ 4f1 ≥ 7f0 + 3f3 − 10. (1.10)
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Adding Euler’s equation −2f1 + 2f2 = −2f0 + 2f3 we get

2f1 + 2f2 − 40 ≥ 5f0 + 5f3 − 50. (1.11)

Therefore,
F (S) = f1 + f2 − 20

f0 + f3 − 10 ≥
5
2 . (1.12)

However, this does not prove that a 2-simplicial, resp. 2-simple strongly regular 3-sphere
S satisfies the same bounds on flag-vectors as 4-polytopes, since the complexity C(S) could
still be less than three, which would violate the g-Theorem. Indeed, there are 28 potential
flag-vectors of 2-simplicial strongly regular 3-spheres with f0 = 9 and C < 3. With f0 = 10
there are 45 such vectors. The following lemma reduces the number of potential flag-vectors
to 12 resp. 20. Table 1.1 lists all potential flag-vectors of 3-spheres with C < 3 but still
satisfying the following lemma. The results of Chapter 2 give that there are no spheres with
these flag-vectors.

Lemma 1.2.8. Let S be a strongly regular 3-sphere with flag-vector fl(S) = (f0, f1, f3; f03).

(i) If f03 ≤ 4f3 + 2, then C(S) ≥ 3.

(ii) Let l ≤ f02−3f2 = f0−f1−3f3 +f03 denote the number of non-triangular 2-faces, then

2f0 + f1 + 10f3 − 3f03 ≤ 3f0 + 7f3 − 2f03 − l ≤ 10.

Proof. If f03 = 4f3, then S is simplicial, for which the statement is already proven. So, let
f03 = 4f3 + 1. Thus, there is exactly one facet F which has five vertices whereas all other
facets have four vertices. Therefore, all facets except F are tetrahedra and S is 2-simplicial.
Since the only simplicial 3-polytope with five vertices is the bipyramid over the triangle, F
has these combinatorics and we can triangulate it by introducing one 2-face, replacing F by
two tetrahedra. The new sphere has complexity C ≥ 3 and hence,

3(f0 + f3 + 1− 10) ≤ 4(f3 + 1)− 20 ⇒ 3f0 + 3f3 − f03 ≤ 10,

which is equivalent to C(S) ≥ 3.

Next, let f03 = 4f3 + 2. In this case, S has either one or two non-tetrahedral facets, which
are then a simplicial 3-polytope with six vertices, two bipyramids over the triangle, or two
pyramids over the square. In the first case S has a facet that is a 3-polytope with f -vector
(6, 12, 8). If we insert a vertex inside this facet and cone to the boundary, we get a simplicial
3-sphere S′ with flag-vector (f0 + 1, f1 + 6, f3 + 7; f03 + 21). Hence, by C(S′) ≥ 3, we get
10 ≥ 3(f0 + 1) + 3(f3 + 6)− (f03 + 21) = 3f0 + 3f3 − f03, so C(S) ≥ 3.
In the second case, triangulating the two bipyramids via introducing one new triangle in each
one will increase f3 by two and f03 by six, giving a simplicial sphere for which C ≥ 3 is known.
So, 10 ≥ 3f0 + 3(f3 + 2)− (f03 + 6) = 3f0 + 3f3 − f03.
In the third case, note that the two pyramids have the quadrilateral in common, so removing
both pyramids from S will give a simplicial ball with f3 − 2 tetrahedra, nb = 6 boundary
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f0 = 9
(9, 19, 19, 9; 37) (9, 20, 21, 10; 41) (9, 21, 23, 11; 45) (9, 22, 25, 12; 49)
(9, 19, 19, 9; 38) (9, 20, 21, 10; 42) (9, 21, 23, 11; 46) (9, 23, 26, 12; 50)
(9, 20, 20, 9; 38) (9, 21, 21, 9; 39) (9, 22, 23, 10; 43) (9, 23, 27, 13; 53)
(9, 20, 20, 9; 39) (9, 21, 22, 10; 42) (9, 22, 24, 11; 46) (9, 24, 29, 14; 57)

f0 = 10
(10, 21, 21, 10; 41) (10, 22, 23, 11; 47) (10, 24, 24, 10; 44) (10, 25, 27, 12; 51)
(10, 21, 21, 10; 42) (10, 23, 23, 10; 43) (10, 24, 25, 11; 47) (10, 25, 28, 13; 54)
(10, 21, 21, 10; 43) (10, 23, 23, 10; 44) (10, 24, 26, 12; 50) (10, 25, 29, 14; 57)
(10, 22, 22, 10; 42) (10, 23, 24, 11; 46) (10, 24, 26, 12; 51) (10, 25, 29, 14; 58)
(10, 22, 22, 10; 43) (10, 23, 24, 11; 47) (10, 24, 27, 13; 53) (10, 26, 29, 13; 55)
(10, 22, 23, 11; 45) (10, 23, 25, 12; 49) (10, 24, 27, 13; 54) (10, 26, 30, 14; 58)
(10, 22, 23, 11; 46) (10, 23, 25, 12; 50) (10, 25, 26, 11; 48) (10, 26, 31, 15; 61)

Table 1.1: This is a complete list of potential flag-vectors (f0, f1, f2, f3; f03) of 3-spheres with
nine and ten vertices that violate Theorem 1.1.14 (iii), but satisfy Lemma 1.2.8. The results
of Chapter 2 give that there are no spheres with these flag-vectors.

vertices and ni = f0− 6 interior vertices. So, with Theorem 1.1.5 (the ball is not stacked) we
have f3 − 2 > 6 + 3(f0 − 6) − 3 = 3f0 − 15, so 3f0 ≤ f3 + 12. With f03 = 4f3 + 2 it follows
that

3f0 + 3f3 − f03 ≤ 4f3 + 12− 4f3 − 2 = 10,

which shows C(S) ≥ 3.

For the general case, let F1, . . . , Fk, Tk+1, . . . , Tf3 be the facets of S, where the Fi’s are not
tetrahedra, but the Tj ’s are. Let us triangulate the Fi’s by introducing a vertex inside every
non-triangular 2-face and connecting it to all vertices of this 2-face to get a simplicial F ′i with
f0(Fi) + li vertices and 2f0(Fi) + 2li− 4 2-faces. Next, we add a vertex in the interior of each
Fi and cone to the boundary. This adds l + k vertices and replaces the k facets F1, . . . , Fk

by 2∑k
i=1(f0(Fi) + li − 4) tetrahedra. Since n = f03 − 4f3 is the number of vertex-facet-

incidences that S has more than a simplicial sphere with the same number of facets, the sum
of the vertices of the Fi’s is ∑k

i=1 f0(Fi) = 4k + n. Moreover, the sum of all non-triangular
2-faces of the Fi’s is ∑k

i=1 li = 2l by double-counting. Therefore, the triangulated sphere S′
has f0(S′) = f0 + k + l vertices and f3(S′) = f3 + 3k + 4l+ 2n facets. Again, with the gLBT
for simplicial spheres, we get that

10 ≥ 3f0(S′) + 3f3(S′)− f03(S′)
= 3(f0 + k + l) + 3(f3 + 3k + 4l + 2n)− (4f3 + 12k + 16l + 8n)
= 3f0 + 3f3 − f03 − l − n.

Finally, with l ≤ f0 − f1 − 3f3 + f03 and n = f03 − 4f3 we get 2f0 + f1 + 10f3 − 3f03 ≤
3f0 + 7f3 − 2f03 − l.

Table 1.2 shows the fatness and complexity for (classes of) 2s2s 3-spheres that are described
in the literature. The data from this table suggests the following conjecture:
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Source, description (f0, f1; f03) F C

simplex (5, 10; 20)
hypersimplex (10, 30; 50) 4 3
glued hypersimplex (14, 48; 76) 42

9 31
9

24-cell (24, 96; 144) 410
19 3 5

19
[34] 720-cell (720, 3600; 5040) 4142

143 3 53
143

[30] (54n− 30, 252n− 156; 360n− 216) 416
17 31

3
[56] (10 + 4n, 30 + 18n; 50 + 26n) 41

2 31
4

[55] W9 (9, 26; 44) 4 3
[55] W10 (10, 30; 50) 4 3
[55] P11 (11, 34; 56) 4 3
[55] I2(I1(P9;S)n)m (9 + 4n+ 5m, 26 + 16n+ 20m; 4 3

44 + 24n+ 30m)
[55] I2(I1(P10;S)n)m (10 + 4n+ 5m, 30 + 16n+ 20m; 4 3

50 + 24n+ 30m)
[55] I2(I1(P11;S)n)m (11 + 4n+ 5m, 34 + 16n+ 20m; 4 3

56 + 24n+ 30m)
[72], Sec. 2.1; W 39

12 (12, 39; 63) 41
7 3 1

14
[72], Fig. 3.40; W 40

12 (12, 40; 64) 42
7 31

7

Table 1.2: This table shows the flag-vectors of some 2s2s 3-spheres and their fatness and
complexity (for families of examples only the limits are shown).
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Conjecture 1. The fatness of 2s2s 3-spheres other than the boundary of the simplex is
bounded from below by F ≥ 4.

If this conjecture holds, then C ≥ 3 would hold for 2s2s 3-spheres as well. In the remainder
of this Section we will prove a partial result.

Corollary 1.2.9. A 2s2s 3-sphere S other than the simplex has fatness

F (S) ≥ 3.

Proof. The proof follows directly from Proposition 1.2.13 and Theorem 1.2.16 below.

For the proof of this theorem, we will need the notion of pseudo-balls, since we will show
it for these first, and then extend the result to 2s2s 3-spheres.

Definition 1.2.10. A pseudo-ball B is a 3-dimensional strongly regular cell complex, where
no ridge is in three or more facets, with a specified vertex v0, and a facet ordering F1, F2, . . . , Fk

so that the intermediate complexes Bj := ⋃j
i=1 Fi for 1 ≤ j ≤ k satisfy:

(i) There is r ≥ 4 such that Br is homeomorphic to the 3-dimensional ball, v0 is in the
interior of Br, and v0 is the intersection of the facets F1, . . . , Fr;

(ii) The intersection Fj+1 ∩ Bj is 2-dimensional and does not coincide with ∂Fj+1 for 1 ≤
j ≤ k − 1.

Note that in this definition the last property of part (i) implies that v0 is the only interior
vertex of Br, and that part (ii) implies that pseudo-balls are strongly connected.

Definition 1.2.11. A pseudo-ball B is called 2s2s if:

(i) The facets F1, . . . , Fk of B have the combinatorics of simplicial 3-polytopes;

(ii) Each edge e is in at most three facets and the facets containing an edge e intersect
pairwise in distinct 2-dimensional faces.

Definition 1.2.12. The extended flag-vector of a 2s2s-pseudo-ball is

f = (f0, f1, f2, f3; f03, f13, f23; f r
0 , f

r1
1 , f r2

1 , f r
2 ), (1.13)

where f r
0 are the boundary vertices, f r1

1 , f r2
1 are the boundary edges in one, respectively two

3-cells, and f r
2 are the boundary triangles. Here, boundary refers to the subcomplex consisting

of the triangles which are in exactly one 3-cell, and their faces. The faces not on the boundary
are called interior faces.

Define the fatness of a 2s2s-pseudo-ball B other than ∂∆\F (the boundary of the simplex
without one facet) as

F (B) :=
f1(B) + f2(B)− 2

3f
r1
1 (B)− 20

f0(B) + f3(B)− 9 . (1.14)
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The following proposition shows the connection between pseudo-balls and 3-spheres, which
gives the motivation to look at the fatness of pseudo-balls.

Proposition 1.2.13. Let S be a strongly regular 3-sphere and F ⊂ S a facet. Then S \ F is
a pseudo-ball. If S is 2s2s other than the boundary of the 4-simplex, then also S \ F is 2s2s
and has fatness F (S \ F ) = F (S).

Proof. First, check the conditions of the pseudo-ball definition. Since S is a strongly regular
3-sphere, all ridges of S are in exactly two facets. To get the facet ordering, proceed in reverse
order:

• If (i) of the definition is satisfied for k = r, one is done;

• Otherwise there is an interior vertex v0 and a facet Fj not containing v0 but with a
2-face on the boundary; remove Fj and iterate with B′ = B − Fj .

The first condition guarantees that Definition 1.2.10 (ii) is satisfied for 1 ≤ j ≤ r: Since Br

is strongly connected, it can be labelled appropriately by finding a spanning tree in its dual
graph and deleting and labelling a leaf in any step from r to 1.

The fatness of S \ F coincides with the fatness of S in the case that S is 2s2s other than
∂∆ as f r1

1 (S \ F ) = 0 and f3(S \ F ) = f3(S)− 1.

Now, let us examine the structure of 2s2s-pseudo-balls a bit more in detail.

Lemma 1.2.14. Let B be a 2s2s-pseudo-ball. If, additionally, B is simplicial (every facet is
a simplex), then B = ∂∆ \ F .

Proof. Let F1, . . . , Fk be the facet ordering of B, and let r ≥ 4 be such that Br is homeo-
morphic to the 3-ball with ⋂r

i=1 Fi = v0. Now, since all Fi’s are tetrahedra, only three among
F2, . . . , Fr can intersect F1 in a facet, call them Fi1 , Fi2 , Fi3 . On the other hand, since B is
2s2s, every edge is in at most three facets, so the Fij have to intersect pairwise in a facet,
too. But then these four facets already form a 3-ball, which is combinatorically the bound-
ary of the simplex without one facet. Therefore, r = 4 and all boundary edges of Br are
of type r2 (contained in two facets). Hence, B cannot have other facets than F1, . . . , F4, so
B = B4 = ∂∆ \ F .

Lemma 1.2.15. Let B be a 2s2s-pseudo-ball with facet ordering F1, . . . , Fk.

(i) The intersection Ac := Fj+1 ∩ Bj has only pure 0- and 2- dimensional components for
all j = 1, . . . , k − 1.

(ii) The edges in the boundary of the 2-dimensional components of Ac are of type r1 in Bj

(i.e. contained in exactly one facet).



22 PHILIP BRINKMANN, f -VECTOR SPACES

(iii) Denote by A := ∂Fj+1 \Ac the part of the boundary of Fj+1 which is also part of the
boundary of Bj+1. Then,

f1(intA) = f0(intA) + f2(intA)− l,

f2(intA) = f1(∂A)− 2l + 2f0(intA),
f1(∂A) ≥ 3l,

where l is the number of components of intA.

Proof. Every edge of the boundary of Bj is either of type r1 or of type r2, since B is 2s2s.
If an edge e of type r2 is in the intersection Ac, then Fj+1 has to intersect both facets
of Bj that contain e in a 2-face according to Definition 1.2.10 (ii). Therefore, e is in the
interior of some 2-dimensional component of Ac. If, in turn, e is of the type r1, then, again
by Definition 1.2.10 (ii), Fj+1 has to intersect the facet of Bj which contains e in a 2-face.
Hence, e is in the boundary of some 2-dimensional component of Ac, which proves part (i) of
the statement.

The second part follows from the fact that the argument for edges of type r1 can be
reversed in the sense that an edge in the boundary of some 2-dimensional component of Ac

is only contained in one 2-face of Ac and so cannot be of type r2 in Bj .

For the third part assume that intA has only one component. Otherwise do the same argu-
mentation for every component and sum up. Note that Ac 6= ∂Fj+1 and therefore dim(A) = 2.
Hence, f1(∂A) ≥ 3. Moreover, since

f0(intA) = f0(Fj+1)−
∑

C⊂Ac

2-dim. comp.

f0(C)− ]0-dimensional components

and additional components of Ac only increase the number of egdes and 2-faces in the interior
of A without increasing the number of vertices there, we may assume that the number of
components of Ac is 1. Now, proceed by induction on n = f0(intA), the number of interior
vertices of A. If n = 0, then, since A is triangulated,

f1(intA) = 0 + f2(intA)− 1 = f0(intA) + f2(intA)− 1

and
f2(intA) = f1(∂A)− 2 = f1(∂A)− 2 + 2f0(intA).

So, assume that the statement is true for n ≤ k for some k ∈ N and let f0(intA) = k+1. Pick
some interior vertex v ∈ A. Its link is a polygon whose vertices are exactly the neighbours
of v, since A is triangulated. We can remove v from A and triangulate the polygon without
new vertices which will reduce the number of vertices by one, the number of edges by three
and the number of triangles by two. Moreover, since A was triangulated before, this is still
regular. Therefore, the induction hypothesis applies to the new complex, and we get

f2(intA) = f1(∂A)− 2 + 2k + 2 = f1(∂A)− 2 + 2f0(intA),

f1(intA) = k + f1(∂A)− 2 + 2k − 1 + 3 = f0(intA) + f2(intA)− 1.
This completes the proof of the lemma.
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Theorem 1.2.16. Let B be a 2s2s-pseudo-ball other than ∂∆ \ F . Then

F (B) ≥ 3.

Proof. We will proceed by induction on the number k of facets of B, but we will start with
Br = ⋃r

i=1 Fi, which contains exactly one interior vertex v0 = ⋂r
i=1 Fi.

Since Br is a 2s2s-pseudo-ball, every Fi has the combinatorics of a simplicial 3-polytope,
and thus f(Fi) = (ni, 3ni − 6, 2ni − 4). Denote by f int

1 (Br) the number of interior edges and
by f int

2 (Br) the number of interior triangles of Br.

The number f0(Br) of vertices of Br is the sum over all vertices of the cells F1, . . . , Fr,
where we count the interior vertex r times and the other endpoints of the interior edges three
times. Hence,

f0(Br) =
r∑

i=1
ni − (r − 1)− 2f int

1 (Br). (1.15)

The number f1(Br) of edges of Br is the sum over all edges of the cells F1, . . . , Fr, where
we counted the interior edges three times and the boundary edges that are in two cells two
times. Thus,

f1(Br) = 3
r∑

i=1
ni − 6r − 2f int

1 (Br)− f r2
1 (Br). (1.16)

The number f2(Br) of 2-faces of Br is the sum over all 2-faces of the cells F1, . . . , Fr, where
we counted the interior triangles twice. Therefore,

f2(Br) = 2
r∑

i=1
ni − 4r − f int

2 (Br). (1.17)

Furthermore, f1(Br) = f int
1 (Br) + f r1

1 (Br) + f r2
1 (Br) and, hence,

f r1
1 (Br) = f1(Br)− f int

1 (Br)− f r2
1 (Br). (1.18)

By construction of Br every interior triangle has exactly one edge on the boundary and so
we have that

f r2
1 (Br) = f int

2 (Br). (1.19)
To calculate f int

1 (Br) and f int
2 (Br) let us intersect Br with a small sphere around v0. This

results in a polytopal sphere with v = f int
1 (Br) vertices, e = f int

2 (Br) edges and f = r 2-faces.
Since all interior edges of Br have degree 3, all vertices of the polytopal sphere have degree
3. Thus, 3v = 2e. Moreover, from the Euler equation v − e+ f = 2 we get

f int
2 (Br) = e = 3r − 6; f int

1 (Br) = v = 2r − 4. (1.20)

Therefore, with N := ∑r
i=1 ni, we get that

f0(Br) (1.15)= N − r + 1− 2f int
1

(1.20)= N − 5r + 9;

f1(Br) (1.16)= 3N − 6r − 2f int
1 − f r2

1
(1.19), (1.20)= 3N − 13r + 14; (1.21)

f2(Br) (1.17)= 2N − 4r − f int
2

(1.20)= 2N − 7r + 6;

f r1
1 (Br) (1.18)= f1 − f int

1 − f r2
1

(1.19), (1.20), (1.21)= 3N − 18r + 24;
f3(Br) = r.
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Hence, the fatness of Br is

F (Br) =
f1(Br) + f2(Br)− 2

3f
r1
1 (Br)− 20

f0(Br) + f3(Br)− 9 = 3N − 8r − 16
N − 4r . (1.22)

Since the Fi are simplicial 3-polytopes, they have ni ≥ 4 vertices. But if all Fi were tetrahedra,
then Br would be the simplex without one facet by Lemma 1.2.14. Thus, N ≥ 4r+ 1 and so
the fatness in (1.22) is defined. Since r ≥ 4, we get that

F (Br) (1.22)= 3N − 8r − 16
N − 4r ≥ 3N − 12r

N − 4r ≥ 3.

For the induction step, we assume that the theorem holds for all 2s2s-pseudo-balls with k ≥ r
facets and at least one interior vertex. Let Bk+1 = ⋃k+1

i=1 Fi be a 2s2s-pseudo-ball, such that
Bk = ⋃k

i=1 Fi is also a 2s2s-pseudo-ball with interior vertex. Denote with A := ∂Bk+1∩Fk+1 ⊂
∂Fk+1 the part of Fk+1 which is on the boundary of Bk+1. Thus, the faces in the “interior”
of A and the cell itself are the ones added. Moreover, the edges in ∂A are of type r1 in Bk

and of type r2 in Bk+1 by Lemma 1.2.15. Therefore,

f0(Bk+1) = f0(Bk) + f0(intA),
f1(Bk+1) = f1(Bk) + f1(intA),
f2(Bk+1) = f2(Bk) + f2(intA),
f r1

1 (Bk+1) = f r1
1 (Bk)− f1(∂A) + f1(intA);

f3(Bk+1) = f3(Bk) + 1.

Hence, the fatness of Bk+1 is
F (Bk+1) =

f1(Bk) + f2(Bk)− 2
3f

r1
1 (Bk)− 20 + 1

3f1(intA) + f2(intA) + 2
3f1(∂A)

f0(Bk) + f3(Bk)− 9 + f0(intA) + 1 .

Since the fatness of Bk is bounded by F (Bk) ≥ 3, it suffices to show

1
3f1(intA) + f2(intA) + 2

3f1(∂A)
f0(intA) + 1 ≥ 3

in order to prove F (Bk+1) ≥ 3. But with Lemma 1.2.15 (iii) this follows immediately.



Chapter 2

Enumeration of manifolds

In the previous chapter we focused on the inequalities that hold for the sets of f -, resp. flag-
vectors, in order to find differences in those sets for polytopes, spheres and Eulerian lattices.
Another approach, which we will be following here to find differences between the sets f(P4)
and f(S3), resp. f`(P4) and f`(S3), is to exhibit an f -, resp. flag-vector for which there are
strongly regular 3-spheres, but no 4-polytopes. In order to do so, we need to enumerate all
strongly regular 3-spheres for a given f -, resp. flag-vector. This has been done already exten-
sively for simplicial 4-polytopes, 3-spheres, and 3-manifolds with up to 10 vertices (cf. [36],
[10], [2], [3], [4], [45], [46]), for general 4-polytopes and 3-spheres with up to eight vertices
(cf. [5], [6]), and for 2s2s 4-polytopes with up to 11 vertices [72]. In this chapter we will
enumerate Eulerian 3-manifolds and strongly regular 3-spheres for certain f -vectors with up
to 12 vertices.

As seen in Section 1.2, 2s2s 3-spheres (and 2s2s 3-manifolds) have a lot of combinatorial
properties which make them easier to handle than general spheres. Therefore, in Section 2.1
we will describe an algorithm to enumerate 2s2s 3-manifolds with a given flag-vector. With
this algorithm we will be able to show f`(P4) $ f`(S3) (Theorem 3.1). In order to extend
this result to f(P4) $ f(S3) (Theorem 3.2), we introduce in Section 2.2 another algorithm
that enumerates all Eulerian 3-manifolds with a given f -vector. Although the latter produces
much stronger results and can also be used to reproduce the results of the former, both
algorithms are presented here, since both have their particular strengths: The flag-vector
algorithm is much faster than the f -vector algorithm and, therefore, one can obtain results
for higher numbers of vertices f0. The f -vector algorithm is stronger, since it enables results
regarding the sets of f -vectors.

In this chapter we will only describe the enumeration algorithms and results of the enu-
meration, while in Chapter 3 we will give constructions and/or coordinates for polytopes with
various f -vectors, as well as we will proof non-polytopality of all spheres with some special
f -, resp. flag-vectors.

25
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(0, 8, 4, 0) (1, 6, 5, 0) (2, 4, 6, 0) (3, 2, 7, 0) (4, 0, 8, 0) (0, 9, 2, 1)
(1, 7, 3, 1) (2, 5, 4, 1) (3, 3, 5, 1) (4, 1, 6, 1) (0, 10, 0, 2) (1, 8, 1, 2)
(2, 6, 2, 2) (3, 4, 3, 2) (4, 2, 4, 2) (5, 0, 5, 2) (2, 7, 0, 3) (3, 5, 1, 3)
(4, 3, 2, 3) (5, 1, 3, 3) (4, 4, 0, 4) (5, 2, 1, 4) (6, 0, 2, 4) (6, 1, 0, 5)

Table 2.1: These are the 24 p3-vectors (p3
4, p

3
5, p

3
6, p

3
7) that are possible for the flag-vector

(12, 40, 40, 12; 120).

2.1 Enumeration of 2s2s 3-manifolds with given flag-vector

This section is based on the paper [25], which is joint work with Günter M. Ziegler.

Definition 2.1.1. Let M be a strongly regular 3-manifold. Then the p3-vector of M is
p3(M) = (p3

4, p
3
5, . . .), where p3

i is the number of facets of M with i vertices.

This is the analog to the p-vector for 3-polytopes as introduced by Grünbaum [35]. For
any 2s2s 3-manifold with flag-vector (f0, f1, f2, f3; f02) = (n,m,m, n; 3m) we have p3

i = 0 for
2i − 4 ≥ n, since a facet with i vertices is a simplicial 3-polytope with 2i − 4 faces and thus
has 2i − 4 neighboring facets. In particular, for n = 12 we have p3

i = 0 for i > 7. Moreover,
we have ∑i≥4 p

3
i = n, and ∑i≥4(2i−4)p3

i = 2m. This yields a finite list of possible p3-vectors
for any possible flag-vector. For example, for f = (12, 40, 40, 12; 120) there are exactly 24
potential p3-vectors that satisfy the three restrictions (see Table 2.1). To enumerate all 2s2s
3-manifolds with n vertices, note that

2n ≤ m ≤ 1
4n(n+ 3). (2.1)

While the lower bound is trivial, the upper bound stems from Theorem 1.1.15 (iii).

The idea of the algorithm to enumerate all Eulerian 3-manifolds with a given flag-vector
is to produce, for each p3-vector, one symmetry representative of each set system (of vertex
sets of facets) that has the given p3-vector and is proper w.r.t. the given flag-vector. The
resulting lists are then checked whether they correspond to Eulerian lattices of rank 5.

Definition 2.1.2. Let f = (f0, f1, f2, f3; f02) = (n,m,m, n; 3m) be a flag-vector. A set
system F is proper w.r.t. f , if it consists of exactly f3 sets Fi (facets) that are subsets of the
vertex set {0, . . . , f0 − 1}, and if it satisfies the following conditions:

(I1) The intersection of two facets contains either 0, 1 or 3 vertices,

(I2) The intersection of three facets contains at most 2 vertices, and

(I3) The intersection of four facets contains at most 1 vertex.

This is where we crucially use the fact that we are looking for 2s2s 3-manifolds only: every
edge is in preciseley three facets that intersect pairwise in triangles, whence the intersection
of two facets cannot contain preciseley two vertices, and four facets cannot intersect in a
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common egde; moreover, since all 2-faces are triangles, the intersection of two facets contains
at most three vertices.

The idea for symmetry breaking in the enumeration, and thus to avoid producing re-
labelled versions of the same facet lists too often, is to fix the labelling of the vertex set of a
facet of maximal size i, and then to assign step by step vertex labels to a remaining facet of
maximal size. It turns out that in some cases even more facets can be fixed, or at least up to
re-labelling have only few distinct possibilities. In particular this is the case whenever p3

7 > 0.

Algorithm 2.1.3. find_facet_lists(p3)
INPUT: p3-vector (p3

4, p
3
5, . . .)

OUTPUT: the facet lists of all 2s2s rank 5 Eulerian lattices with this p3-vector, up to combi-
natorial equivalence

(1) ind = max{i : p3
i > 0}

(2) facet_list = {{0, . . . , ind− 1}}

(3) p3
ind = p3

ind − 1

(4) ind = max{i : p3
i > 0}

(5) stc = {{i0, . . . , iind} : intersection with facet_list is proper}

(6) for F ∈ stc:

(7) facet_list = facet_list ∪{F}

(8) recursively add new facets to the list

(9) evaluate whenever there are enough (= ∑
p3

i ) facets in the list

(10) facet_list = facet_list \ {F}

After roughly two weeks of computation on standard linux workstations with altogether
45 kernels, the algorithm had enumerated all connected 2s2s rank 5 Eulerian lattices with up
to 12 vertices. This produced exactly the face lattices of the spheres listed in Theorem 2.1.4,
and thus proves that theorem as well as the second part of Theorem 3.1.

Theorem 2.1.4. The following is a complete list of combinatorial types of 2-simple 2-
simplicial strongly connected Eulerian lattices of rank 5 with at most 12 vertices.

f0 name flag vector reference (realisation as) polytope
5 ∆5 (5, 10, 10, 5; 30) simplex
9 W9 (9, 26, 26, 9; 78) [72] [72, Thm. 4.2.2]
10 W10 (10, 30, 30, 10; 90) [55, Sect. 4.1] [55, Sect. 4.1]

∆4(2) (10, 30, 30, 10; 90) [35, p. 65] hypersimplex ∆4(2)
∆4(2)∗ (10, 30, 30, 10; 90) dual of ∆4(2)

11 P11 (11, 34, 34, 11; 102) [55, Sect. 4.1] [55, Sect. 4.1]
12 W 39

12 (12, 39, 39, 12; 117) [72, Tbl. 7.1 right] [51, Sect. 4.2]
W 40

12 (12, 40, 40, 12; 120) [72, Tbl. 7.1 left] no: Theorem 3.2.9
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All of these are 3-spheres, and, except for the hypersimplex and its dual, are self-dual.

We refer to the works by Paffenholz and Werner [54, 55, 72] for information and data on
2s2s 4-polytopes with more than 12 vertices.

2.2 Enumeration of 3-manifolds with given f -vector

This section is based on the paper [26], which is joint work with Günter M. Ziegler. For the
enumeration algorithm presented here, we will introduce some more notation and strengthen
some known inequalities for Eulerian 3-manifolds for special cases. However, this is not needed
in order to understand and implement the algorithm; only to speed it up.

2.2.1 Bayer’s inequality

In [11] Bayer proved some inequalities that hold for the set of flag-vectors of Eulerian 3-
manifolds f`(M3

e) (see Theorems 1.1.14, 1.1.15), among which is

f02 − 4f2 + 3f1 − 2f0 ≤
(
f0
2

)
. (2.2)

With this we get for an Eulerian 3-manifold with symmetric f -vector (n,m,m, n):

3m ≤ f02 ≤
n2 + 3n

2 +m. (2.3)

In order to understand Bayer’s proof and to sharpen her result, we need some notation.

Definition 2.2.1. Let F be a 3-polytope. Then mb(F ) is the number of pairs of vertices
contained in some 2-face of F , but not forming an edge of F (boundary non-edges), andmi(F )
is the number of pairs of vertices not contained in the same 2-face of F (interior non-edges).
Similarly, if M is an Eulerian 3-manifold, then mi(M) is the number of pairs of vertices not
forming an edge of M , but not lying in a common facet of M .

The proof of (2.2) relies on the following lemma:

Lemma 2.2.2 ([11, Lemma 3]). If F is a 3-polytope, then

1
2mb(F ) +mi(F ) ≥ 1

2(f2(F )− 4) + 1
2(f02(F )− 3f2(F )). (2.4)

A look into the proof of this lemma reveals that the inequalities are not tight, so we can
strengthen the result a bit.



CHAPTER 2. ENUMERATION OF MANIFOLDS 29

Lemma 2.2.3. In the same notation as before we have for a 3-polytope F with f0(F ) ≥ 7
and for the simplex

1
2(mb(F ) +mi(F )− f02(F ) + 3f2(F )) ≥ 1

2(f02(F )− 2f2(F )− 4).

Proof. First, note that the inequality holds with equality for the simplex, since both sides are
0. For f0(F ) ≥ 7 we follow Bayer’s proof of Lemma 3 in [11] to obtain

mi(F s) ≥ f02(F )− 2f2(F )− 4. (2.5)
Here, F s is a simplicial polytope obtained from F by pulling vertices. Moving back to F ,
we see that some of the edges from mi(F s) move to mb(F ) and that the f02(F ) − 3f2(F )
edges that appeared in F s to triangulate the 2-faces of F now are in mb(F ). Therefore,
mi(F s) = mi(F ) +mb(F )− f02(F ) + 3f2(F ). The claim follows.

Moreover, going through the list of the nine combinatorial types of 3-polytopes with five
or six vertices [35] gives that inequality (2.4) from Lemma 2.2.2 is tight for those with five
vertices, while the left hand side is larger by one than the right hand side in the case of six
vertices, except for the pyramid over the pentagon, where it is larger by 0.5.

With this stronger lemma we can now also strengthen Bayer’s inequality (2.2).
Proposition 2.2.4. Let M be an Eulerian 3-manifold with flag vector (f0, f1, f2, f3; f02),
then

f02 − 4f2 + 3f1 − 2f0 ≤
(
f0
2

)
−mi(M)− 1

2
∑

F facet

f0(F )≥7

(mi(F ) + f02(F )− 3f2(F ))

−#facets with 6 vertices + 1
2#pyramids over pentagon.

Proof. Bayer showed in the proof of Theorem 1.1.15 (iii) that for every Eulerian 3-manifold
M (she actually showed it for 4-polytopes, but her proof is valid in this more general context,
since it only uses the intersection property and the fact that the faces have the combinatorics
of polytopes)

f02(M)− 4f2(M) + 3f1(M)− 2f0(M) = f1(M) + 1
2
∑

F ⊂M

facet

(f02(F )− 2f2(F )− 4). (2.6)

Applying the two lemmas above and the observation that 1
2
∑

F ⊂M

facet
mb(F ) = ∑

G⊂M

ridge
mi(G)

(half the number of missing boundary edges of the facets is the number of missing interior
edges of the ridges) yields
f02(M)− 4f2(M) + 3f1(M)− 2f0(M) ≤ f1(M) +

∑
F ⊂M

facet

mi(F ) +
∑

G⊂M

ridge

mi(G) +mi(M)(2.7)

−mi(M)− 1
2

∑
F facet

f0(F )≥7

(mi(F ) + f02(F )− 3f2(F ))

−#facets with 6 vertices

+1
2#pyramids over pentagon.
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Note that the first line of the right hand side of this inequality is the sum of the number of
edges of M , the number of missing interior edges of M , the number of missing interior edges
of the facets of M , and the number of missing interior edges of the ridges of M . Hence, it is(f0

2
)
, the number of possible edges of M .

Now, by inserting the f -vector (n,m,m, n) into the inequality from Proposition 2.2.4, we
can strengthen inequality (2.3) to

3m ≤
∑

G⊂M

ridge

f0(G) = f02(M) ≤ n2 + 3n
2 +m− 1

2
∑

F facet

f0(F )≥7

(mi(F ) + f02(F )− 3f2(F ))

−mi(M)−#facets with 6 vertices (2.8)

+1
2#pyramids over pentagon.

2.2.2 Excluding polygons and 3-polytopes as faces

In order to make the enumeration of all Eulerian 3-manifolds with a given f -vector faster, we
want to exclude as many lower dimensional polytopes as faces as possible. Since for smaller
numbers of vertices and edges, the enumeration is fast anyway (cf. Table 2.3), we will focus
on the higher numbers in this section.

Proposition 2.2.5. An Eulerian 3-manifold M with f -vector (10,m,m, 10), m 6= 25, cannot
have ridges (2-faces) with 8 or more vertices, or facets with nine vertices.

Proof. The only possibility to have a facet with 9 vertices is that M is the boundary of the
pyramid over this facet. In this case the facet would also have 9 2-faces due to the symmetry
of the f -vector. Hence, the facet has 16 edges, and M has 25 edges. Since an 8-gon can only
occur in a facet with at least nine vertices, these cannot occur in M either.

Proposition 2.2.6. An Eulerian 3-manifold M with f -vector (11,m,m, 11), m ≥ 29, cannot
have facets with 10 or more vertices, or ridges (2-faces) with 8 or more vertices.

Proof. An Eulerian 3-manifoldM with symmetric f -vector and n = 11 vertices can only have
a facet with 10 vertices if M is the boundary of the pyramid over this facet and this facet has
itself 10 2-faces. Therefore, the facet has 18 edges according to Theorem 1.1.1, and M has
m = 28 edges.

Such a manifold also cannot have a ridge with 8 vertices: since there cannot be a facet
with more than 9 vertices, the two facets containing the 8-gon would be pyramids. Since this
is also true in the dual, the two apices that are in at least 9 facets anyway would be in at
most 9 facets as well. Hence, both are in an edge that is contained in all neighbours of their
respective pyramid. In the dual this edge corresponds to an 8-gon, of which there can only be
one by f0(M∗) = 11. Therefore, the two apices are joined by an edge. Thus, every neighbour
of one of the two pyramids would contain the edge between the two apices, and would be
neighbouring the other pyramid too. Hence, there would only be 10 facets in total.
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Proposition 2.2.7. An Eulerian 3-manifold M with f -vector (12,m,m, 12), m ≥ 40, cannot
have facets with 10 or more vertices, or ridges (2-faces) with 8 or more vertices.

Proof. We proceed case by case.

(i) k-gon with k ≥ 11 and 3-polytope F with f0(F ) ≥ 12: since f0(S) = 12.

(ii) k-gon with k = 9, 10: since f0(S) = 12, there are
(12

2
)

= 66 potential edges in M , but
already a 9-gon has

(9
2
)
− 9 = 27 missing edges. Hence, f1(S) ≤ 39. Therefore, there

cannot be a 9- or 10-gon in M .

(iii) 3-polytope F with f0(F ) = 11: since f0(S) = 12, F would be neighbouring all other
facets. Hence, it would have f -vector (11, 20, 11). But with the last vertex we can add
at most 11 edges, which gives a total of 31 edges for M .

(iv) 3-polytope F with f0(F ) = 10: F would have at most 19 edges, but the remaining
two vertices cannot both be connected to all other vertices. Moreover, there needs to
be at least one 2-face of F of which the vertices are connected to only one of the two
remaining vertices, since otherwise all facets of S that contain one of the two vertices
would contain both. Therefore, there would be at most 39 edges in M .

(v) k-gon with k = 8: since there cannot be a facet with more than 9 vertices, the two
facets containing the 8-gon would be pyramids. Since this is also true in the dual,
the two apices that are in at least 9 facets anyway would be in at most 9 facets as
well. Hence, both are in an edge that is contained in all neighbours of their respective
pyramid. In the dual this edge corresponds to an 8-gon, of which there can only be
one by f0(M∗) = 12. Therefore, the two apices are joined by an edge. Thus, every
neighbour of one of the two pyramids would contain the edge between the two apices,
and would be neighbouring the other pyramid too. Hence, there would only be 10 facets
in total.

Now, to exclude more faces, such as 7-gons and facets with 9 vertices, we classify 3-
polytopes according to their p-vector (p3, p4, p5, . . .), where pi counts the number of i-gonal
faces of the polytope. With this we can calculate mi, and f02 − 3f2 in terms of the p-vector.
So, let F be a 3-polytope with f0(F ) vertices and pi(F ) = 0 for all i ≥ 8. Then mi(F ) is
the number of possible edges between the vertices minus the number of edges of F and the
numbers mi(G), where G ⊂ F is a 2-face of F . Therefore,

mi(F ) =
(
f0(F )

2

)
− f1(F )− 14p7 − 9p6 − 5p5 − 2p4. (2.9)

With Euler’s formula f0(F )− f1(F ) + f2(F ) = 2 and f2(F ) = f2(F s)− 4p7 − 3p6 − 2p5 − p4,
we obtain

mi(F ) = 1
2f0(F )2 − 7

2f0(F ) + 6− 10p7 − 6p6 − 3p5 − p4. (2.10)
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Here again F s is the simplicial polytope obtained from F by pulling vertices, and the coef-
ficients of the pi are simply the numbers of new 2-faces that appear for any i-gon in that
process. Therefore, we get

f0(F ) = 9 : mi(F ) = 15− 10p7 − 6p6 − 3p5 − p4, (2.11)
f0(F ) = 8 : mi(F ) = 10− 10p7 − 6p6 − 3p5 − p4, (2.12)
f0(F ) = 7 : mi(F ) = 6− 6p6 − 3p5 − p4. (2.13)

For every 3-polytope F the term f02 − 3f2 reads

f02(F )− 3f2(F ) =
∑
i≥3

(i− 3)pi, (2.14)

so in our case we have f02(F )− 3f2(F ) = p4 + 2p5 + 3p6 + 4p7.

Now, let us examine inequality (2.8). This gives

3m ≤
∑
G⊂S

ridge

f0(G) ≤ n2 + 3n
2 +m− 1

2
∑

F facet

f0(F )≥7

(mi(F ) + f02(F )− 3f2(F )) (2.15)

and for a single facet F ⊂ S with f0(F ) ≥ 7 we get from (2.15)

p4(F ) + 2p5(F ) + 3p6(F ) + 4p7(F ) + 1
2(mi(F ) + f02(F )− 3f2(F )) ≤

(
n

2

)
+ 2n− 2m. (2.16)

So, for the case f0(F ) = 9 we obtain the following system determining the allowed p-vectors:

10p7 + 6p6 + 3p5 + p4 ≤ 15, (2.17)
2p7 + 3p6 + 3p5 + 2p4 ≤ n2 + 3n− 4m− 15, (2.18)
p7 + p6 + p5 + p4 + p3 ≥ 7, (2.19)
p7 + p6 + p5 + p4 + p3 ≤ n− 1, (2.20)

5p7 + 4p6 + 3p5 + 2p4 + p3 = 14, (2.21)
p7 = 1 ⇒ p5 = p6 = 0. (2.22)

Here, inequality (2.17) stems from mi(F ) ≥ 0 and (2.11); inequality (2.18) is a combination
of (2.11), (2.14), and (2.16); inequality (2.19) simply is the lower bound on the number of
2-faces of a 3-polytope with 9 vertices (see Theorem 1.1.1); inequality (2.20) reflects that we
want the 3-manifold M to have f3(M) = n, so no facet of M can have more than n − 1
neighbours; equation (2.21) is a re-writing of 14 = f2(F s) = f2(F ) + 4p7 + 3p6 + 2p5 + p4; the
implication (2.22) comes from the fact that whenever a 3-polytope F with 9 vertices has a
7-gon as 2-face, then every potential pentagon would intersect this 7-gon in at least 3 vertices.
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Similarly, for f0(F ) = 8 we obtain:

10p7 + 6p6 + 3p5 + p4 ≤ 10, (2.23)
2p7 + 3p6 + 3p5 + 2p4 ≤ n2 + 3n− 4m− 10, (2.24)
p7 + p6 + p5 + p4 + p3 ≥ 6, (2.25)
p7 + p6 + p5 + p4 + p3 ≤ n− 1, (2.26)

5p7 + 4p6 + 3p5 + 2p4 + p3 = 12, (2.27)
p7 = 1 ⇒ p4 = p5 = p6 = 0, p3 = 7, (2.28)
p6 = 1 ⇒ p5 = 0, p4 ≤ 2. (2.29)

p5 ≤ 2 (2.30)

Here, inequality (2.23) stems from mi(F ) ≥ 0 and (2.12); inequality (2.24) is a combination
of (2.12), (2.14), and (2.16); inequality (2.25) simply is the lower bound on the number of
2-faces of a 3-polytope with 8 vertices (see Theorem 1.1.1); inequality (2.26) reflects that
we want the 3-manifold M to have f3(M) = n, so no facet of S can have more than n − 1
neighbours; equation (2.27) is a re-writing of 14 = f2(F s) = f2(F ) + 4p7 + 3p6 + 2p5 + p4; the
implications (2.28) and (2.29) and inequality (2.30) come from the fact that f0(F ) = 8.

For f0(F ) = 7 we get:

6p6 + 3p5 + p4 ≤ 6, (2.31)
3p6 + 3p5 + 2p4 ≤ n2 + 3n− 4m− 6, (2.32)

p6 + p5 + p4 + p3 ≥ 6, (2.33)
p6 + p5 + p4 + p3 ≤ 10, (2.34)

4p6 + 3p5 + 2p4 + p3 = 10, (2.35)
p6 = 1 ⇒ p4 = p5 = 0, p3 = 6, (2.36)

p5 ≤ 1, (2.37)
p5 = 1 ⇒ p4 ≤ 2. (2.38)

Here, inequality (2.31) stems from mi(F ) ≥ 0 and (2.13); inequality (2.32) is a combination of
(2.13), (2.14), and (2.16); inequality (2.33) resp. (2.34) simply is the lower resp. upper bound
on the number of 2-faces of a 3-polytope with 7 vertices (see Theorem 1.1.1); equation (2.35)
is a re-writing of 10 = f2(F s) = f2(F ) + 3p6 + 2p5 + p4; the implications (2.36) and (2.38)
and inequality (2.37) come from the fact that f0(F ) = 7.

Finally, for f0(F ) = 6 the system reads:

2p5 + p4 ≤ n2 + 3n
2 − 2m− 1

2 , (2.39)

p5 + p4 + p3 ≥ 5, (2.40)
p5 + p4 + p3 ≤ 8, (2.41)

3p5 + 2p4 + p3 = 8, (2.42)
p5 ≤ 1, (2.43)

p5 = 1 ⇒ p4 = 0, p3 = 5. (2.44)
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Here, inequality (2.39) is inequality (2.8) for a single facet with six vertices; the inequalities
(2.40) and (2.41) are the lower and upper bound on the number of 2-faces of a 3-polytope with
6 vertices (see Theorem 1.1.1); equation (2.42) is a re-writing of 8 = f2(F s) = f2(F )+2p5+p4;
inequality (2.43) and implication (2.44) come from the fact that f0(F ) = 6.

Table 2.2 contains all p-vectors (pi)i≥3 for 3-polytopes F with 4 ≤ f0(F ) ≤ 9, f2 ≤ 11,
3 ≤ i ≤ 7, satisfying inequality (2.16), and the p-vector satisfying the respective system of
restrictions for at least one of the (n,m)-pairs with n = 10 and m ≥ 29, or n = 11 and
m ≥ 34, or n = 12 and m ≥ 40. Moreover, some values necessary for the inequalities above
are provided.

Proposition 2.2.8. An Eulerian 3-manifold M with f -vector (10,m,m, 10), m ≥ 30, or
(11, 36, 36, 11) cannot have a facet with 8 vertices.

Proof. This follows from inequality (2.8) and the values of 1
2(mi+f02−3f2)+4p7+3p6+2p5+p4

for the facets with 8 vertices from Table 2.2.

Proposition 2.2.9. An Eulerian 3-manifold M with f -vector (12,m,m, 12), m ≥ 40, or
(11,m,m, 11), m ≥ 34, or (10,m,m, 10), m 6= 25, cannot have a facet F ⊂ S with f0(F ) = 9,
or a ridge G ⊂ S with f0(G) = 7.

Proof. Facets with nine vertices can only occur for n = 12 and m = 40, resp. n = 11 and
m = 34 according to Proposition 2.2.5, Table 2.2, and inequality (2.18). For this case, note
that all possible facets of M with 9 vertices would reduce the gap between lower and upper
bound on f02 from inequality (2.8) to at most 1.5, but will also require at least one other
facet with at least 6 vertices. Comparison of the values from Table 2.2 yields that the only
possibility for a facet with f0 = 9 vertices exists for n = 12 and m = 40: combine a facet of
type F{9,10,2} with one of type F{8,8,5}. However, since they reduce the gap of inequality (2.8)
to 0, all other facets can have at most 5 vertices. Hence, the total number of 2-faces of M
would be at most 1

2(10 + 8 + 10 · 6) = 39 < 40 (these two facets together with 10 bipyramids
over a triangle, type F{5,6,1}). Therefore, this combination is not possible and we see that no
facet with 9 vertices can occur.

Now, assume M would have a 7-gon G as a 2-face. Since all facets have at most 8 vertices,
the two facets F1, F2 containing G have to be pyramids. The two apices of these pyramids,
a1, resp. a2, will be in F1, resp. F2 and at least 7 other facets each (the neighbours of Fi at
the triangles). However, all the restrictions toM hold also for the dual manifold, so no vertex
of M can be in more than 8 facets. Hence, all facets that contain the apex a1 of F1 also have
to contain some edge from this apex to some vertex not in F1. Since these two edges are dual
to a 7-gon of which there can only be one in the dual manifold, these edges are actually the
same and a1, a2 are joined by an edge and all neighbours of F1 are also neitghbours of F2.
Hence M has 9 facets: F1, F2 and the 7 tetrahedra containing an edge of G and both a1 and
a2.
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f0 f2 (p3, p4, p5, p6, p7) f02 − 3f2 = mi
1
2(mi + f02 − 3f2)+ label

2f0 − f2 − 4 4p7 + 3p6 + 2p5 + p4
4 4 (4, 0, 0, 0, 0) 0 0 F{4,4,1}
5 5 (4, 1, 0, 0, 0) 1 0 F{5,5,1}

6 (6, 0, 0, 0, 0) 0 1 F{5,6,1}
6 5 (2, 3, 0, 0, 0) 3 0 F{6,5,1}

6 (4, 2, 0, 0, 0) 2 1 F{6,6,1}
(5, 0, 1, 0, 0) 2 0 F{6,6,2}

7 (6, 1, 0, 0, 0) 1 2 F{6,7,1}
8 (8, 0, 0, 0, 0) 0 3 F{6,8,1}

7 6 (2, 4, 0, 0, 0) 4 2 7 F{7,6,1}
(3, 2, 1, 0, 0) 4 1 6.5 F{7,6,2}

7 (4, 3, 0, 0, 0) 3 3 6 F{7,7,1}
(5, 1, 1, 0, 0) 3 2 5.5 F{7,7,2}
(6, 0, 0, 1, 0) 3 0 4.5 F{7,7,3}

8 (6, 2, 0, 0, 0) 2 4 5 F{7,8,1}
(7, 0, 1, 0, 0) 2 3 4.5 F{7,8,2}

9 (8, 1, 0, 0, 0) 1 5 4 F{7,9,1}
10 (10, 0, 0, 0, 0) 0 6 3 F{7,10,1}

8 6 (0, 6, 0, 0, 0) 6 4 11 F{8,6,1}
(1, 4, 1, 0, 0) 6 3 10.5 F{8,6,2}
(2, 2, 2, 0, 0) 6 2 10 F{8,6,3}

7 (2, 5, 0, 0, 0) 5 5 10 F{8,7,1}
(3, 3, 1, 0, 0) 5 4 9.5 F{8,7,2}
(4, 1, 2, 0, 0) 5 3 9 F{8,7,3}
(4, 2, 0, 1, 0) 5 2 8.5 F{8,7,4}

8 (4, 4, 0, 0, 0) 4 6 9 F{8,8,1}
(5, 2, 1, 0, 0) 4 5 8.5 F{8,8,2}
(6, 0, 2, 0, 0) 4 4 8 F{8,8,3}
(6, 1, 0, 1, 0) 4 3 7.5 F{8,8,4}
(7, 0, 0, 0, 1) 4 0 6 F{8,8,5}

9 (6, 3, 0, 0, 0) 3 7 8 F{8,9,1}
(7, 1, 1, 0, 0) 3 6 7.5 F{8,9,2}
(8, 0, 0, 1, 0) 3 4 6.5 F{8,9,3}

10 (8, 2, 0, 0, 0) 2 8 7 F{8,10,1}
(9, 0, 1, 0, 0) 2 7 6.5 F{8,10,2}

11 (10, 1, 0, 0, 0) 1 9 6 F{8,11,1}
9 9 (7, 1, 0, 0, 1) 5 4 9.5 F{9,9,1}

10 (8, 1, 0, 1, 0) 4 8 10 F{9,10,1}
(9, 0, 0, 0, 1) 4 5 8.5 F{9,10,2}

11 (9, 1, 1, 0, 0) 3 11 10 F{9,11,1}
(10, 0, 0, 1, 0) 3 9 9 F{9,11,2}

Table 2.2: The table of p-vectors of 3-polytopes and some combinatorial values needed in
the inequalities throughout this section. Column 6 shows for f0(F ) ≥ 7 the left hand side of
inequality (2.16). The last column gives a label for the respective facet type.
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2.2.3 Facet-type-vectors

Lemma 2.2.10. Let M be an Eulerian 3-manifold with f -vector (n,m,m, n). Then

mi(M) =
(
n

2

)
−m−

∑
F ⊂M

facet

mi(F )−
∑

G⊂M

ridge

mi(G).

Proof. Since M has n vertices, there are
(n

2
)
potential edges in M . Since f1(M) = m and

mi(M) is the number of pairs of vertices of M that do not form an edge, and do not lie in a
common facet, we get

mi(M) =
(
n

2

)
−m−

∑
F ⊂M

facet

mi(F )− 1
2
∑

F ⊂M

facet

mb(F ),

where mi(F ) counts the pairs of vertices in F that do not form an edge of F and do not
lie in a 2-face of F , and mb(F ) is the number of pairs of vertices of F that lie in a common
2-face of F , but do not form an edge of F . Here, the mb(F ) are counted with factor 0.5, since
every 2-face is in two facets and so counted twice. For the same reason, half the sum over the
mb(F ) is the sum over the mi(G).

Lemma 2.2.11. Let M be an Eulerian 3-manifold with f -vector (12,m,m, 12), m ≥ 40, or
(11,m,m, 11), m ≥ 34, or (10,m,m, 10), m 6= 25. Then

m− 2n = 1
2

∑
F facet

f0(F )≥7

(mi(F )− f02(F ) + 3f2(F )) +
∑

F facet

f0(F )≤6

mi(F )

+6p6(M) + 3p5(M) + p4(M)
−#facets with 6 resp. 8 vertices

+1
2#pyramids over pentagon.

Proof. With Proposition 2.2.9 we know thatM does not have facets with 9 or more vertices or
ridges with 7 or more vertices. Moreover, with Table 2.2 we see that Lemma 2.2.2 holds with
equality for all 3-polytopes with at most 5 vertices, the left hand side is by 0.5 larger than the
right hand side in the case of the pyramid over the pentagon, and by 1 in all other cases with
f0(F ) = 6. Similarly, we see that Lemma 2.2.3 is tight for f0(F ) = 7 and again the left hand
side is larger by 1 than the right hand side for f0(F ) = 8. Taking this and Lemma 2.2.10 into
account, the claim follows the same way we arrived at inequality (2.8).

Definition 2.2.12. Let M be an Eulerian 3-manifold with f -vector (n,m,m, n). The facet-
type-vector (ft-vector) of M is

ft(M) = (F{i,j,k})i,j,k,

where by abuse of notation F{i,j,k} counts the number of facets of M with label F{i,j,k} (see
Table 2.2). Note that i = f0(F ) and j = f2(F ) for any 3-polytope of type F{i,j,k}.
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The ft-vector of M satisfies the following system of linear equations and inequalities:∑
i,j,k

F{i,j,k} = n, (2.45)

∑
i,j,k

jF{i,j,k} = 2m, (2.46)

∑
i,j,k

(i+ j − 2)F{i,j,k} ≥ 3m, (2.47)

∑
i,j,k

(i+ j − 2)F{i,j,k} ≤
n2 + 3n

2 +m. (2.48)

Here, equation (2.45) is the condition f3(M) = n; equation (2.46) counts on the left hand
side the 2-faces of the facets, which is 2f2(M) = 2m; the inequalities (2.47), and (2.48) have
on their left hand side the sum over the numbers of edges of the facets, f13(M), which by
the generalised Dehn–Sommerville relations (5) is the same as f02(M), which we bounded in
(2.3).

With the ft-vectors we can now exclude even more possible faces for Eulerian 3-manifolds
with certain f -vectors.

Proposition 2.2.13. Let M be an Eulerian 3-manifold with f -vector (10, 29, 29, 10). Then
the only facet type with 8 vertices that can occur is F{8,9,3}.

Proof. Lemmas 2.2.10 and 2.2.11 together with the equalities/inequalities (2.8), (2.45)–(2.48)
and the non-negativity and integrality of the occuring numbers (the pi, mi(F ), mi(M)) give a
system of inequalities in the entries of the ft-vector ofM . Maximise the number of occurrences
of a given facet type for every facet type with 8 vertices over this IP to get the result (checked
with the sage MILP-solver).

Proposition 2.2.14. Let M be an Eulerian 3-manifold with f -vector (10, 32, 32, 10). Then
there is no feasible ft-vector.

Proof. Construct the IP as in Proposition 2.2.13. According to the sage MILP-solver this
system is infeasible.

Proposition 2.2.15. Let M be an Eulerian 3-manifold with f -vector (11, 34, 34, 11). Then

(i) f02(M) ≤ 107, p7(M), p6(M) ≤ 1.

(ii) p5(M) ≤ 2, p4(M) ≤ 4.

(iii) M has at most three facets with 7 vertices.

(iv) M has at most one facet with 8 vertices. In this case it is of one of the types F{8,7,3},
F{8,8,1}, F{8,8,2}, F{8,8,3}, F{8,9,1}, F{8,9,2}, F{8,9,3}, F{8,10,1}, or F{8,10,2}.
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Proof. Construct the IP as in Proposition 2.2.13 and maximise f02(M), resp. the number of
occurrences of a given facet type for every facet type with 7 or 8 vertices, or the numbers
p4(M), p5(M) to get the result (checked with the sage MILP-solver). Note that the upper
bound on f02(M) yields with f02(M) ≥ 3f2(M) = 102 the restrictions on the pi(M), i ≥ 6.

Proposition 2.2.16. Let M be an Eulerian 3-manifold with f -vector (11, 35, 35, 11). Then

(i) f02(M) ≤ 108, p7(M) = 0, p6(M), p5(M) ≤ 1.

(ii) p4(M) ≤ 2.

(iii) M has at most two facets with 7 vertices. Only the types F{7,7,3}, F{7,8,1}, F{7,8,2},
F{7,9,1}, F{7,10,1} can occur.

(iv) M has at most one facet with 8 vertices. In this case it is of type F{8,10,1}.

Proof. Construct the IP as in Proposition 2.2.13 and maximise f02(M), resp. the number of
occurrences of a given facet type for every facet type with 7 or 8 vertices, or the number
p4(M) to get the result (checked with the sage MILP-solver). Note that the upper bound on
f02(M) yields with f02(M) ≥ 3f2(M) = 105 the restrictions on the pi(M), i ≥ 5.

Proposition 2.2.17. Let M be an Eulerian 3-manifold with f -vector (11, 36, 36, 11). Then

(i) f02(M) ≤ 109, p7(M) = p6(M) = p5(M) = 0, p4(M) ≤ 1.

(ii) M has at most one facet with 7 vertices. In this case it is of type F{7,10,1}.

Proof. Construct the IP as in Proposition 2.2.13 and maximise f02(M), resp. the number
of occurrences of a given facet type for every facet type with 7 vertices to get the result
(checked with the sage MILP-solver). Note that the upper bound on f02(M) yields with
f02(M) ≥ 3f2(M) = 108 the restrictions on the pi(M).

Proposition 2.2.18. Let M be an Eulerian 3-manifold with f -vector (12, 40, 40, 12). Then

(i) f02(M) ≤ 124, p5(M) ≤ 2.

(ii) M has at most one facet with 8 vertices. In that case, f02(M) ≤ 122. Moreover, only
two types of facets with eight vertices can occur: F{8,10,2} and F{8,11,1}.

(iii) M has no 2-face with 6 vertices, i.e. p6(M)=0.

(iv) p4(M) ≤ 3, p4(M) + 2p5(M) ≤ 4.

Proof. Construct the IP as in Proposition 2.2.13. With suitable objective functions this can
be viewed as an LP problem, of which the solution gives the claims (checked with the sage
MILP-solver):
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(i) Maximisation of f02(M) yields an optimum of 124. The bound on p5(M) directly
follows.

(ii) Maximise the number of facets with 8 vertices to get the optimum 1. Fix this number
and maximise f02(M) to get the second part. To see that only the given two facet types
are valid, note that all except these two and F{8,10,1} are excluded by f02(S) ≤ 122.
Now, maximise p4(M) with the additional constraint that there has to be a facet with
eight vertices. The maximum is 1, but F{8,10,1} contains two squares, so this type is not
valid.

(iii) From (i) we know p6(M) ≤ 1, and from (ii) we get that if p6(M) = 1 neither M nor its
dual have a facet with eight vertices, since then 123 ≤ f02(M) = f02(M∗). Therefore,
the hexagon will be contained in two pyramids F1, F2 (with 7 vertices each) and the two
apices a1, a2 of these are only contained in the respective pyramid and its 6 neighbours.
Hence, the edge adjacent to a1 but not in F1 is contained in 6 facets, so it is dual to
a hexagon. This also holds for a2 and since the dual M∗ has at most one hexagon, it
follows that a1, a2 are joined by an edge, which is inside every neighbour of F1 and F2.
Thus, M would only have 8 facets.

(iv) Maximisation of p4(M) gives an optimum of 3, and maximisation of p4(M) + 2p5(M)
gives an optimum of 4.

Proposition 2.2.19. Let M be an Eulerian 3-manifold with f -vector (12, 41, 41, 12). Then

(i) M has no 2-face with 6 vertices, i.e. p6(M)=0, and no facet with 8 vertices.

(ii) f02(M) ≤ 125, p5(M) ≤ 1, and p4(M) ≤ 1.

(iii) M has at most two facets with 7 vertices.

(iv) M has at most eigth facets with 6 vertices.

(v) M has at most nine facets with 5 vertices.

(vi) M has at most three facets with 4 vertices.

Proof. As in Proposition 2.2.13 we can construct a system of linear inequalities and equalities
for the ft-vectors. All these bounds can be obtained from optimising suitable objective
functions over this system.

Proposition 2.2.20. Let M be an Eulerian 3-manifold with f -vector (12,m,m, 12). If m =
42, then M is 2s2s. For the case m = 43 there is no feasible ft-vector.

Proof. As in Proposition 2.2.13 we can construct a system of linear inequalities and equalities
for the ft-vectors. Mimimising f02 for the case m = 42 yields an objective value of 126 = 3m.
Therefore, any such manifold is 2s2s. For m = 43 this system is infeasible and so there is no
ft-vector for this case.
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To the above restrictions on ft-vectors we can also add some restrictions that reflect the
facts that pi(M) ≥ max(pi(F ), F ⊂ M) and that two facets cannot intersect in more than
one ridge. These are

F{7,7,1} = 1 ∨ F{6,5,1} = 1 ⇒


p4(S) ≥ 3, if n = 11,
p4(S) = 3, F{7,7,1} + F{6,5,1} = 1, if n = 12,
F{7,8,1} = 0, F{6,6,1} = 0, if n = 12,

(2.49)

F{7,6,2} = 1 ⇒ p4(S) ≥ 2, (2.50)
F{7,8,1} + F{6,6,1} = 2 ⇒ p4(S) ≥ 3, (2.51)
F{7,8,1} + F{6,6,1} = 1 ⇒ p4(S) ≥ 2. (2.52)

For the case (n,m) = (11, 34) these results give 527 possible ft-vectors, for (n,m) = (11, 35)
we get 82, for (n,m) = (11, 36) we get 8, for (n,m) = (12, 40) we get 201 and for (n,m) =
(12, 41) we get 21.

2.2.4 The algorithm

The algorithm presented here is the combination of our previous approach (Section 2.1) with
an algorithm developed together with Katy Beeler, Hannah Schäfer Sjöberg, and Moritz
Schmitt.

The rough idea of the algorithm is to construct the face lattices of the Eulerian 3-manifolds
(strongly connected Eulerian lattices of rank 5) systematically starting from the graph of the
manifold (vertices and edges), and then trying to find a family of facets that fits to this graph
and all other constraints. The algorithm has the following outline:

Algorithm 2.2.21. find_manifolds(f)
INPUT: f -vector (f0, f1, f2, f3)
OUTPUT: all Eulerian 3-manifolds with this f -vector

(i) enumerate all connected graphs on f0 vertices and f1 edges that are 4-connected;

(ii) for symmetric f -vectors: rule out all graphs of which the degree sequence does not fit to
any possible ft-vector (optional, we did not do this in all cases);

(iii) for the remaining graphs find all planar induced non-separating subgraphs that are the
graphs of 3-polytopes fitting to the possible facet types (optional, for those cases not
treated above we used all 3-polytopes with less than f0 vertices);

(iv) construct for every graph an integer program (IP) with binary variables corresponding
to the possible facets and ridges (faces of the facets), and with constraints given by the
f -vector, proper intersection, the Euler relation, and the graph;

(v) enumerate all feasible solutions of this IP;

(vi) check for every feasible solution whether it gives a manifold (resp. sphere, polytope) or
not.
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Proposition 2.2.22. Algorithm 2.2.21 enumerates all Eulerian 3-manifolds with given f -
vector (f0, f1, f2, f3).

Proof. Clearly, all graphs of Eulerian 3-manifolds satisfy (iii). The ft-vectors described in
the previous sections determine the dual graphs of the Eulerian 3-manifolds with the given
f -vectors. Since the f -vectors are symmetric, the dual of any Eulerian 3-manifolds with
such an f -vector will have the same f -vector and its graph is the dual graph of the original
manifold. Therefore, the ft-vectors also determine the graphs of the Eulerian 3-manifolds
with the given f -vectors. Hence, (iv) will not exclude any graph of an Eulerian 3-manifold.

By Theorem 0.1 a simple planar graph is the graph of a 3-polytope if and only if it is
3-connected. Thus, with Step (v) we find all possible facets that a manifold with the given
graph can have.

Given a graph G and a list F of potential facets, we can construct the list R of potential
ridges simply from the faces of the facets. We now construct the IP such that feasible solutions
will be Eulerian posets of rank 5 on this graph with f -vector (f0, f1, f2, f3), and such that
all face lattices of Eulerian 3-manifolds with this graph and f -vector are feasible solutions. If
the variables xi represent the facets Fi, and the variables yj the ridges Rj , then we get the
constraints ∑

i

xi = f3 (2.53)∑
j

yj = f2 (2.54)

2yj −
∑

Fi⊃Rj

xi = 0 (2.55)

xi, yj ∈ {0, 1}. (2.56)

Equations (2.53) and (2.54) enforce that the total number of facets and ridges is f3, resp. f2.
Equation (2.55) ensures that ridge Rj is in the poset if and only if precisely two facets
containing it are also in the poset. Line (2.56) simply says that all variables are binary,
which means that if a variable in the solution is 1 the corresponding face will be in the poset.
Similarly to these constraints, we get constraints from the Euler relation for the intervals
above the vertices and edges. Moreover, for every edge we get an inequality forcing the
number of faces containing it to be larger than zero. Finally, we get inequalities xi + xj ≤ 1
for pairs of facets Fi, Fj if their intersection is not proper (i.e. that not both can appear in a
Eulerian 3-manifold simultaneuosly).

Since all strongly connected Eulerian lattices of rank 5 (Eulerian 3-manifolds) with the
given f -vector satisfy the constraints of the IP for their graph, all of them will be in the
set of feasible solutions to these IPs. Therefore, with the last steps we can complete the
enumeration of all Eulerian 3-manifolds (strongly regular 3-spheres, 4-polytopes) with the
given f -vector.
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We implemented this algorithm in sage [59], using the geng-function of nauty [47] (this
is a built-in function of sage) to enumerate all graphs, and the MILP-library of sage to
check the IPs for feasibility and to enumerate all their solutions. We enumerated all feasible
solutions in a greedy way: given a feasible solution, store it and set the sum of the f3 variables
corresponding to the facets of this solution to be at most f3 − 1. Thus, we excluded with an
additional constraint preciseley the solution we just found and optimised again. By iterating
this until no feasible solution exists, we could enumerate all feasible solutions of the original
IP. All those solutions that turned out to be strongly connected Eulerian lattices of rank 5,
and thus Eulerian 3-manifolds, we triangulated and calculated with sage the Betti numbers
to filter out all homology spheres. Afterwards, with the help of BISTELLAR [44], we could
find for each of these spheres a certificate that it is PL-homeomorphic to the boundary of the
simplex. Finally, with the oriented matroid approach that will be explained in Chapter 3 we
could get certificates of non-polytopality for some of the spheres.

The results of the enumerations are shown in Table 2.3.



Table 2.3
f -vector # graphs CPU time # feas. IPs # feas. sltns #M3

e #S3 #np #P4

(8, 19, 19, 8) 94 13 sec 12 15∗ 13 13 0 13 [6]
(8, 20, 20, 8) 90 13 sec 13 14† 12 12 0 12 [6]
(8, 21, 21, 8) 66 9 sec 3 2† 2 2 0 2 [6]
(8, 19, 20, 9) 94 12 sec 1 1† 1 1 0 1 [6]
(8, 20, 21, 9) 90 18 sec 21 31† 31 31 0 31 [6]
(8, 22, 23, 9) 41 11 sec 4 7† 7 7 0 7 [6]
(8, 20, 22, 10) 90 12 sec 9 10† 7 7 0 7 [6]
(8, 21, 23, 10) 66 42 sec 31 71† 71 71 0 71 [6]
(8, 22, 24, 10) 41 1.5 min 20 57† 57 57 1 56 [6]
(8, 23, 25, 10) 20 16 sec 2 3† 3 3 0 3 [6]
(8, 21, 24, 11) 66 19 sec 17 30∗ 26 26 0 26 [6]
(8, 23, 26, 11) 20 6 min 14 54† 54 54 3 51 [6]
(8, 22, 26, 12) 41 1.5 min 25 75† 75 75 0 75 [6]
(8, 23, 27, 12) 20 6.5 min 15 133† 133 133 4 129 [6]
(8, 24, 28, 12) 10 13h 9 19† 19 19 2 17 [6]
(8, 24, 29, 13) 10 2.5h 9 97† 97 97 7 90 [6]

(8,m,m+ 6, 14) 344 24 sec 0 0 0 0 0 0 m ≤ 21
(8, 22, 28, 14) 41 6 sec 4 4∗ 3 3 0 3 [36]
(8, 23, 29, 14) 20 23 sec 13 159∗ 30 30 0 30 [6]
(8, 24, 30, 14) 10 12 min 9 1 712∗ 105 105 2 103 [6]
(8, 25, 31, 14) 5 10.5h 4 1 580∗ 35 35 5 30 [6]
(8, 26, 32, 14) 2 2.5h 2 0∗ 0 0 0 0

(8,m,m+ 6, 14) 2 2 sec 0 0 0 0 0 0 m ≥ 27
(9,m,m, 9) 15 470 4h 478 519 18 ≤ m ≤ 36
(9,m,m, 9) 170 0 0 0 0 m ≤ 19
(9, 20, 20, 9) 713 1 1 0 1 Section 3.1
(9, 21, 21, 9) 1 754 0 0 0 0
(9, 22, 22, 9) 2 770 129 129 ≥ 42 Section 3.1
(9, 23, 23, 9) 3 129 211 211 ≥ 2 ≥ 113∗ Figure 3.8
(9, 24, 24, 9) 2 723 118 118 ≥ 2 ≥ 81∗ Figure 3.8



Table 2.3 – continued from previous page
f -vector # graphs CPU time # feas. IPs # feas. sltns #M3

e #S3 #np #P4

(9, 25, 25, 9) 1 917 7 7 0 7∗ Figure 3.8
(9, 26, 26, 9) 1 154 1 1 0 1 W9 [72, Thm. 4.2.2]
(9,m,m, 9) 1 132 0 0 0 0 m ≥ 27

(9,m,m+ 1, 10) 2 673 9 min 0 0 0 0 0 0 m ≤ 21
(9, 22, 23, 10) 2 770 16 min 15 24∗ 12 12 ≥ 9∗ Section 3.1
(9, 23, 24, 10) 3 129 20 min 267 463∗ 398 398 ≥ 1 ≥ 78∗ Section 3.1
(9, 24, 25, 10) 2 723 20 min 470 1 125∗ 904 904 ≥ 7 ≥ 27∗ Figure 3.10
(9, 25, 26, 10) 1 917 15.5 min 286 762∗ 524 524 ≥ 15 ≥ 80∗ Section 3.1
(9, 26, 27, 10) 1 154 9.5 min 83 140∗ 67 67 ≥ 2 ≥ 62∗ Section 3.1
(9, 27, 28, 10) 610 5.5 min 15 0∗ 0 0 0 0
(9, 28, 29, 10) 294 2.5 min 4 0∗ 0 0 0 0
(9, 29, 30, 10) 133 1 min 1 0∗ 0 0 0 0

(9,m,m+ 1, 10) 95 51 sec 0 0 0 0 0 0 m ≥ 30
(9,m,m+ 2, 11) 5 443 35 min 0 0 0 0 0 0 m ≤ 22

(9, 23, 25, 11) 3 129 21.5 min 75 95∗ 66 66 ≥ 34 Section 3.1
(9, 24, 26, 11) 2 723 27 min 477 1 202∗ 1 188 1 188 ≥ 105 Section 3.1
(9, 25, 27, 11) 1 917 45 min 624 2 650† 2 650 2 650 ≥ 52 Section 3.1
(9, 26, 28, 11) 1 154 45.5 min 348 1 344† 1 344 1 344 ≥ 1 Figure 3.14
(9, 27, 29, 11) 610 40 min 104 125† 125 125 ≥ 60 Figure 3.15, Section 3.1
(9, 28, 30, 11) 294 45 min 20 3† 3 3 1 2 Figure 3.16
(9, 29, 31, 11) 133 35 min 3 0† 0 0 0 0

(9,m,m+ 2, 11) 103 66 sec 0 0 0 0 0 0 m ≥ 30
(9,m,m+ 3, 12) 5 443 33 min 0 0 0 0 0 0 m ≤ 22

(9, 23, 26, 12) 3 129 19 min 3 3† 3 3 0 3 Section 3.1
(9, 24, 27, 12) 2 723 20 min 207 419∗ 335 335 ≥ 129 Section 3.1
(9, 25, 28, 12) 1 917 1h 669 3 296∗ 3 275 3 275 ≥ 171 Section 3.1
(9, 26, 29, 12) 1 154 5h 560 5 929∗ 5 928 5 928 ≥ 276 Section 3.1
(9, 27, 30, 12) 610 10.5h 305 2 171† 2 171 2 171 ≥ 516 Figure 3.18, Section 3.1
(9, 28, 31, 12) 294 4.5 days 110 113† 113 113 ≥ 33 Figure 3.19, Section 3.1
(9, 29, 32, 12) 133 20.5 days 25 0† 0 0 0 0
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(9, 30, 33, 12) 59 8 min 5 0∗ 0 0 0 0
(9,m,m+ 3, 12) 44 45 sec 0 0 0 0 0 0 m ≥ 31
(9,m,m+ 4, 13) 8 536 53 min 0 0 0 0 0 0 m ≤ 23

(9, 24, 28, 13) 2 723 21.5 min 52 160∗ 33 33 ≥ 32∗ Section 3.1
(9, 25, 29, 13) 1 917 21 min 373 2 486∗ 1 223 1 223 ≥ 1 ≥ 387∗ Section 3.1
(9, 26, 30, 13) 1 154 1h 597 14 683∗ 7 677 7 677 ≥ 3 ≥ 309 Section 3.1
(9, 27, 31, 13) 610 43 min 390 24 970∗ 9 773 9 773 ≥ 32 ≥ 13 Section 3.1
(9, 28, 32, 13) 294 16.5 days 201 5 399] 2 136 2 136 ≥ 439 Section 3.1
(9, 29, 33, 13) 133 1 month 68 96] 27 27 ≥ 1 ≥ 9∗ Figure 3.20
(9, 30, 34, 13) 59 16.5h 16 0∗ 0 0 0 0

(9,m,m+ 4, 13) 44 4 min 0 0 0 0 0 0 m ≥ 31
(9, 23, 28, 14) 3 129 19 min 0 0 0 0 0 0
(9, 24, 29, 14) 2 723 20 min 0 0 0 0 0 0
(10,m,m, 10) 10 247 11h 0 0 0 0 0 0 m ≤ 22
(10, 23, 23, 10) 35 219 1.5 days 5 6† 4 4 0 4 Figure 3.21
(10, 24, 24, 10) 87 014 4 days 12 16† 16 16 ≥ 2∗ Section 3.1
(10, 25, 25, 10) 152 369 ≥ 296 Section 3.1
(10, 26, 26, 10) 203 469 9.5 days 3 502 5 550† 5 550 5 550 ≥ 69 ≥ 2∗ Figure 3.23
(10, 27, 27, 10) 217 596 10.5 days 3 463 5 561† 5 561 5 561 ≥ 204 ≥ 90∗ Section 3.1
(10, 28, 28, 10) 192 964 9.5 days 1 175 1 662† 1 662 1 662 ≥ 143 ≥ 13∗
(10, 29, 29, 10) 145 773 7.5 days 114 128† 128 128 ≥ 2 ≥ 21∗ Section 3.1
(10, 30, 30, 10) 95 827 5.5 days 3 3† 3 3 0 3 ∆4(2), its dual, and W10
(10, 31, 31, 10) 55 762 3.5 days 0 0 0 0 0 0
(10,m,m, 10) 53 718 0 0 0 0 m ≥ 32

(10,m,m+ 1, 11) 45 469 42h 0 0 0 0 0 0 m ≤ 23
(10, 24, 25, 11) 87 014 3.5 days 4 18∗ 6 6 ≥ 2∗ Section 3.1
(10, 25, 26, 11) 152 369 6.5 days 177 307∗ 136 136 ≥ 10∗ Figure 3.25
(10, 26, 27, 11) 203 469 8.5 days 4 476 7 351∗ 6 794 6 794 ≥ 11 ≥ 633 Section 3.1
(10, 27, 28, 11) 217 596 9.5 days 13 844 26 556∗ 24 915 24 915 ≥ 22 Section 3.1
(10, 28, 29, 11) 192 964 9.5 days 16 749 32 797∗ 30 355 30 355 ≥ 1 ≥ 159 Section 3.1
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(10, 29, 30, 11) 145 773 7.5 days 9 737 13 617∗ 11 916 11 916 ≥ 28 Section 3.1
(10, 30, 31, 11) 95 827 4.5 days 3 296 1 927∗ 1 441 1 441 ≥ 61 ≥ 1 Figure 3.27
(10, 31, 32, 11) 55 762 3 days 863 60∗ 35 35 ≥ 9 ≥ 20∗ Section 3.1
(10, 32, 33, 11) 29 199 1.5 days 214 6∗ 2 2 2 0
(10, 33, 34, 11) 13 981 19h 30 0∗ 0 0 0 0
(10, 34, 35, 11) 6 202 7.5h 3 0∗ 0 0 0 0
(10, 35, 36, 11) 2 600 3.5h 1 0∗ 0 0 0 0

(10,m,m+ 1, 11) 1 736 2.5h 0 0 0 0 0 0 m ≥ 36
(10,m,m+ 2, 12) 45 469 49h 0 0 0 0 0 0 m ≤ 23

(10, 24, 26, 12) 87 014 4 days 2 2∗ 2 2 ≥ 1 Section 3.1
(10, 25, 27, 12) 152 369 6.5 days 2 34∗ 2 2 ≥ 1 Figure 3.28
(10, 26, 28, 12) 203 469 9 days 1 039 2 008∗ 1 051 1 051 ≥ 178 Figure 3.29
(10, 27, 29, 12) 217 596 9.5 days 10 733 27 144∗ 23 884 23 884 ≥ 768 Section 3.1
(10, 28, 30, 12) 192 964 10.5 days 26 240 101 157∗ 91 727 91 727 ≥ 455 Section 3.1
(10, 29, 31, 12) 145 773 8.5 days 27 774 115 086∗ 112 266 112 266 ≥ 256 Section 3.1
(10, 30, 32, 12) 95 827 6.5 days 17 682 59 311∗ 47 141 47 141 ≥ 13 ≥ 1 Figure 3.30
(10, 31, 33, 12) 55 762 6.5 days 7 191 8 991∗ 5 943 5 943 ≥ 521 ≥ 368 Section 3.1
(10, 32, 34, 12) 29 199 20 days 618] 225 225 ≥ 7 Section 3.1
(10, 33, 35, 12) 13 981 3.5 days 393 4∗ 1 1 1 0
(10, 34, 36, 12) 6 202 2.5 days 45 0∗ 0 0 0 0
(10, 35, 37, 12) 2 600 4.5h 3 0∗ 0 0 0 0

(10,m,m+ 2, 12) 1 736 2.5h 0 0 0 0 0 0 m ≥ 36
(10, 24, 27, 13) 87 014 4.5 days 0 0 0 0 0 0
(10, 25, 28, 13) 152 369 7.5 days 1 1† 1 1 0 1 Section 3.1
(10, 26, 29, 13) 203 469 9.5 days 59 73∗ 43 43 ≥ 29 Section 3.1
(10, 25, 29, 14) 152 369 7.2 days 0 0 0 0 0 0
(10, 26, 30, 14) 203 469 6.5 days 0 0 0 0 0 0
(10, 26, 31, 15) 203 469 9.5 days 0 0 0 0 0 0
(10, 27, 32, 15) 217 596 10.5 days 12 12∗ 9 9 0 9 Section 3.1
(10, 27, 33, 16) 217 596 10.5 days 0 0 0 0 0 0
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(10, 28, 35, 17) 192 964 9.5 days 0 0 0 0 0 0
(11, 22, 22, 11) 265 6 min 0 0 0 0 0 0
(11, 23, 23, 11) 10 391 4.5h 0 0 0 0 0 0
(11, 24, 24, 11) 120 985 59h 0 0 0 0 0 0
(11, 25, 25, 11) 696 184 14.5 days 0 0 0 0 0 0
(11, 26, 26, 11) 2 504 998 53 days 28 56 21 21 ≥ 1 Section 3.1
(11, 27, 27, 11) 6 383 318 138 days 257 730 322 322 ≥ 1 Section 3.1
(11, 28, 28, 11) ≥ 2635 Section 3.1
(11, 29, 29, 11) ≥ 1 Figure 3.31
(11, 30, 30, 11) ≥ 1 Figure 3.32
(11, 31, 31, 11) ≥ 1 Figure 3.33
(11, 32, 32, 11) ≥ 104 Section 3.1
(11, 33, 33, 11) ≥ 1 Figure 3.34
(11, 34, 34, 11) 17 005 570 140 days∗ 19 784 39 193 100 100 ≥ 15 ≥ 1 P11
(11, 35, 35, 11) 11 561 155 86 days∗ 1 979 3 750 2 2 2 0
(11, 36, 36, 11) 7 134 337 7h∗ 18 33 0 0 0 0
(12, 39, 39, 12) ≥ 1 ≥ 1 ≥ 1 W 39

12
(12, 40, 40, 12) 2 997 683 218 16 years∗ 4 4 4 0
(12, 41, 41, 12) 2 037 876 411 160 days∗ 49 72 0 0 0 0
(12,m,m, 12) 0 0 0 0 m ≥ 42
Table 2.3: This table shows the results of the computation per f -vector: the numbers of graphs to check, CPU time needed for the
enumeration (those marked with ∗ are the cases where the ft-sequences were used to reduce running time), on how many graphs
there are feasible instances, how many solutions these have (those marked with ∗ are already reduced by the non-lattices, the ones
marked with † are furthermore reduced by isomorphic copies; those marked with ] were not enumerated entirely, since some instances
had too many feasible solutions), and the numbers of strongly regular 3-manifolds, strongly regular 3-spheres, non-polytopal spheres,
and 4-polytopes (the last two either show an exact number, or lower bounds, since we did not realise all of which we do not have a
certificate of non-polytopality; if it is a number with ∗, we have exact coordinates for at least one polytope and numerical coordinates
for the others, a number marked with † indicates that we only have numerical coordinates). The CPU times are rounded. Blank
spaces represent missing data (e.g. not enumerated or calculated).





Chapter 3

Special 4-Polytopes and 3-Spheres

In this chapter we will discuss some of the results of Chapter 2, i.e. for some of the f - and
flag-vectors of which we have enumerated all Eulerian 3-manifolds (strongly regular 3-spheres)
we will either give polytope coordinates (Section 3.1), or we will prove for all of them non-
realisability as polytopes (Section 3.2). Hence, we will establish the following two results:

Theorem 3.1. There is a unique strongly regular 3-sphere, but no convex 4-polytope, with
flag-vector given by

(f0, f1, f2, f3; f02) = (12, 40, 40, 12; 120).

Thus, the set of flag-vectors of 4-polytopes is a proper subset of the set of flag-vectors of
strongly regular 3-spheres:

f`(P4) $ f`(S3).

Moreover, this is the smallest 2s2s flag-vector for which there is a 3-sphere but no 4-polytope.

Here small refers to the sum of vertices and facets, shifted by the value for the simplex:
size(f) = f0 + f3 − 10.

Proof. Any strongly regular 3-sphere with the given flag-vector is 2-simple and 2-simplicial,
since f02 = 3f2 and f13 = f02 = 3f1. An example for such a sphere is W 40

12 (see Figure 3.40)
found by Werner [72]. That this sphere is unique with the given flag-vector and that the
flag-vector is the smallest for which there is a 3-sphere but no 4-polytope follows from The-
orem 2.1.4. Therefore, all we need to show is non-polytopality. This we will do in two
different ways: First, we show that it has no oriented matroid, and thus is not realisable
(Theorem 3.2.9); this proof was found by computer, but can be verified by hand. The second
proof is again a computer-based oriented matroid proof and shows that for exactly one of the
facets this sphere does not even have a diagram based on this facet (Proposition 3.2.10).

49
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Theorem 3.2. The set of f -vectors of 4-polytopes is a strict subset of that of f -vectors of
strongly regular 3-spheres:

f(P4) $ f(S3).

In particular, there are strongly regular 3-spheres, but no 4-polytopes, with the f -vectors

f0, f1, f2, f3) = (10, 32, 33, 11),
(f0, f1, f2, f3) = (11, 33, 32, 10),
(f0, f1, f2, f3) = (10, 33, 35, 12),
(f0, f1, f2, f3) = (12, 35, 33, 10),
(f0, f1, f2, f3) = (11, 35, 35, 11),
(f0, f1, f2, f3) = (12, 40, 40, 12).

Moreover, the f -vectors (10, 32, 33, 11) and (11, 33, 32, 10) are the smallest ones with that
property and there are no other f -vectors of size size(f) ≤ 12 for which there are 3-spheres
but no 4-polytopes other than the listed ones.

Proof. The enumeration results of Chapter 2 (Table 2.3) give that there are precisely

• two strongly regular 3-spheres with f -vector (10, 32, 33, 11) (Figure 3.35),

• one strongly regular 3-sphere with f -vector (10, 33, 35, 12) (Figure 3.37),

• two strongly regular 3-spheres with f -vector (11, 35, 35, 11) (Figure 3.38),

• and four strongly regular 3-spheres with f -vector (12, 40, 40, 12) (Figures 3.40, 3.41,
3.42, and 3.44).

We will prove non-polytopality of these spheres in the Theorems 3.2.1, 3.2.3, 3.2.5, 3.2.7,
3.2.9, 3.2.12, 3.2.14, and 3.2.16.

The results for the f -vectors (11, 33, 32, 10) and (12, 35, 33, 10) follow from dualising: they
are both the opposite f -vector of one of the other four and so a complete enumeration of
strongly regular 3-spheres (and even of the Eulerian lattices/3-manifolds) can be obtained
by dualising all those spheres (lattices/manifolds) that were found for the opposite f -vector.
The non-polytopality then follows from the fact that the dual of a polytope is a polytope
again.

That these results are the smallest follows from Section 3.1: There we will see constructions,
resp. give coordinates for polytopes for every f -vector f that has size size(f) ≤ 12 and at
least nine vertices and satisfies f0 ≤ f3. The polytopes and spheres with up to eight vertices
have been enumerated completely by others (Altshuler & Steinberg [5, 6], Barnette [10], and
Grünbaum & Sreedharan [36]) and do not yield an example of an f -vector that occurs for
3-spheres but not for 4-polytopes. The cases with f3 > f0 follow from duality.
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Figure 3.1: These are Schlegel diagrams of the tetrahedron, the 3-cube, and the 4-cube.

The first Theorem is from the paper [25], while the second is from [26]. Both papers are
joint work with Günter M. Ziegler.

Apart from realising spheres as polytopes, one can ask whether a given sphere has some
diagram, or is embeddable in some way. We will also study these properties and their rela-
tions (Section 3.3), as well as using their non-existence for non-polytopality proofs (Propo-
sitions 3.2.2, 3.2.4, 3.2.6, 3.2.10, 3.2.13, 3.2.15, 3.2.17). The description of these concepts is
based on Ewald [31].

The motivation for studying diagrams is that they enable us to visualise an n-sphere in
Rn. In particular, a diagram of a strongly regular 3-sphere lives in R3 and, therefore, can be
visualised. As often, this tool came up studying polytopes: imagine you have a 3-polytope
and can look through the facets into its interior. If you put the polytope with one facet close
enough in front of your eyes, you can see the rest of the polytope through (resp. inside) this
facet. Hence, you’ve got a two dimensional projection from your polytope. This projection is
called a Schlegel diagram (see Figure 3.1 for examples). In the following, we will define more
general the notion of diagrams of a polyhedral sphere (i.e. every face is a polytope). Roughly
speaking, a Schlegel diagram is a diagram of some polytope. A more precise definition can
be found in [31, Sec. III.4].

Definition 3.3. Let S be a polyhedral n-sphere, and F ∈ S a facet of S. A diagram of S
with base F is a polytopal complex C in Rn with

(i) underlying space |C| = F (where F is seen as a convex polytope),

(ii) every face G ∈ S \ {F} is a face of C,

(iii) the boundary faces of C are precisely the faces of F .

Sometimes the term n-diagram is used to clarify the dimension. One can also define a diagram
independent from a sphere S as a cell complex with the above notations, but every n-diagram
together with its base forms an n-sphere when viewed combinatorially.
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Since a polytope has a (Schlegel) diagram based on every facet, we can use the non-
existence of some diagrams as a proof of non-polytopality for spheres. Another question is,
whether a given sphere is embeddable (into Rd+1). A polyhedral embedding of a sphere S is a
continuous, injective map ϕ : |S| → Rk for some k, such that ϕ has a continuous inverse on
ϕ(|S|) and every face F ∈ S is mapped to a polytope in Rk.

Clearly, every simplicial d-sphere (and more general every simplicial d-complex) is polyhe-
drally embeddable, since it can be realised as a subcomplex of a (2d + 2)-dimensional cyclic
polytope. However, for general spheres this is not true (see Proposition 3.3.3).

A stronger form of embeddability for spheres is the star-shaped embedding. A d-sphere S
is star-shaped if it has a polyhedral embedding into Rd+1 such that there is a point p that
can see every point on S (i.e. that every ray from p through a point q ∈ S hits S only in q).
In other words, the fan consisting of the cones over the faces of S with apex p is a polyhedral
fan.

A weaker form of a star-shaped embedding is the fan-like embedding. A d-sphere S is fan-
like, if there exists a complete fan Σ together with an isomorphism that maps a face F ∈ S
to a cone posF ∈ Σ. In the simplicial case, both notions are equivalent, since given a fan-like
embedding of a sphere S all choices of vertices as representatives of the 1-dimensional cones
will give coplanar faces by the fact that all faces are simplices.

To show non-polytopality and non-existence of diagrams, fan-like embeddings, and star-
shaped embeddings, we will use oriented matroid theory. The following description of this
method is based on the paper [25], which is joint work with Günter M. Ziegler. The oriented
matroid approach is a standard method for proving the non-realisability of polytopes as well
as of polyhedral surfaces (see for example Bokowski & Sturmfels [23], Bokowski [20], Björner
et al. [18, Chap. 8]), however, it seems that this has almost always been applied to simplicial
polytopes or surfaces, and thus in a setting of uniform oriented matroids. An exception is
Bremner’s software package mpc [24], see Bokowski, Bremner & Gévay [21, Sect. 7].

The basic approach is as follows: Any set of points v0, . . . , vN ∈ Rd leads to an orientation
function χ : {v0, v1, . . . , vN}d+1 → {0,+1,−1} by setting

χ(vi0 , vi1 , . . . , vid
) := sign det

(
vi0 vi1 · · · vid

1 1 · · · 1

)
.

This map is a chirotope of rank d+ 1. In addition to the condition that its support has to be
a matroid (which we do not use; cf. [18, Thm. 3.6.2]), this means that

(C1) it is alternating, and

(C2) it satisfies the three term Grassmann–Plücker relations: For any d − 1 points λ =
(vi0 , . . . , vid−2) and four points va, vb, vc, vd the set{

χ(λ, va, vb) · χ(λ, vc, vd), −χ(λ, va, vc) · χ(λ, vb, vd),
χ(λ, va, vd) · χ(λ, vb, vc)

}
either equals {0} or contains {−1,+1}.
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If the points v0, . . . , vN are supposed to be the vertices of a d-dimensional polytope with a
prescribed facet list (F0, . . . , Fn), then the map must satisfy the following extra conditions:

(P1) If vi0 , . . . , vid
are contained in a facet Fj , then χ(vi0 , . . . , vid

) = 0.

(P2) If vi1 , . . . , vid
are contained in a facet Fj which does not contain va or vb, then

χ(va, vi1 , . . . , vid
) = χ(vb, vi1 , . . . , vid

).

In the case of realisability of strongly regular 3-spheres as polytopes, we need to choose
four vertices in a facet that will, in every (possible) realisation, form a tetrahedron and add a
fifth point not on that facet to get five points of which the value of χ is non-zero. Fixing a sign
for these five vertices, we can construct a partial chirotope. If we arrive at a contradiction,
this will give a certificate of non-realisability. Similarly, we can use this method in the case
of fan-like or star-shaped embeddings.

If we want to check existence of diagrams, then the realisation will be in R3 and we
construct a partial chirotope as follows:

• Take three points in a ridge and some other point on a facet that contains this ridge,
and choose a sign (+1 or −1) for the basis.

• Every ridge defines a plane that separates the two facets containing it. Therefore, the
sign of the chirotope does not change when we exchange points on the same side, and
flips otherwise. The only exception to this are the ridges on the boundary, which are
the facets of the convex hull of the diagram.

• Use the Grassmann–Plücker relations to determine further entries of the partial chiro-
tope.

However, the partial chirotope that we can construct with this method does not always directly
give a certificate of non-realisability (i.e. a contradiction to (C2), or (P2)). In that case we can
try to find a biquadratic final polynomial (bfp) (see [23, Ch. VII] for an introduction and [22]
for the algorithm). To find these bfps we used an implementation of the algorithm by Moritz
Firsching and Arnaul Padrol. If this still does not work, we can try to find a contradiction in
filling the chirotope via backtracking.

Once we have found a partial chirotope, and no certificate of non-realisatility, we can follow
an approach recently introduced by Firsching [32], and use SCIP [1] to find coordinates.
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(80
22,24)

F0 = {v0, v2, v4, v6}
F1 = {v0, v3, v5, v7}
F2 = {v1, v3, v5, v7}

F4 = {v1, v4, v5, v7}
F5 = {v1, v4, v6, v7}
F6 = {v0, v2, v4, v5, v7}
F3 = {v1, v3, v6, v7}

F7 = {v0, v3, v4, v6, v7}
F8 = {v1, v2, v4, v5, v6}
F9 = {v0, v1, v2, v3, v5, v6}

Figure 3.2: This is the facet list of a 4-polytope with f -vector (8, 22, 24, 10). This is one of
the nine 4-polytopes of the class 15A2 in the classification in [6].

3.1 4-Polytopes

In this section we will prove the “smallest” part of Theorem 3.2. Namely, we will show
constructions, resp. give coordinates for polytopes, if existent, for every f -vector f of size
size(f) ≤ 12 and with f0 ≤ f3. These are the vectors of the form (9,m,m, 9), (9,m,m +
1, 10), (9,m,m+ 2, 11), (9,m,m+ 3, 12), (9,m,m+ 4, 13), (10,m,m, 10), (10,m,m+ 1, 11),
(10,m,m + 2, 11), and (11,m,m, 11), where 2f0 ≤ m ≤

(f0
2
)
. The coordinates were mostly

found via the oriented matroid approach explained above, or via a randomised search. The
names of the polytopes are (AD

B,C), where A = f0 is the number of vertices, B = f1 is the
number of edges, C = f2 is the number of ridges (omitted if it is the same as B), and D is
the index of the polytope in the list of all spheres with this f -vector as it was given by our
enumeration. This data is not part of the written thesis, but will be provided for download
from a university server.

One non-standard construction of a polytope, which we will use, is the beneath/beyond-
method (cf. Grünbaum [35]). Let P be a 4-polytope, let F ⊂ P be a tetrahedron facet of P ,
and denote the vertices of F by v0, . . . , v3. Let v0 be non-simple, and assume furthermore
that the three neighbours F1, F2, F3 of F that meet F in the triangles {v0, v1, v2}, {v0, v1, v3},
resp. {v0, v2, v3} pairwise intersect only in the edges {v0, v1}, {v0, v2}, resp. {v0, v3} (i.e. these
edges are non-simple). Then the supporting hyperplanes of F1, F2, F3 meet in a line L that
meets P precisely in v0, i.e. P ∩L = {v0}. If we now place a point w onto L s.t. w is beyond
the supporting hyperplane of F and beneath the supporting hyperplanes of all other facets
of P except for F1, F2, F3, then the convex hull of P and w will be a 4-polytope P ′ with
one additional vertex w, four additional edges {w, vi}, i = 0, . . . , 3, three additional 2-faces
(there are six new triangles of the form w plus edge of F , but since w is in the hyperplane
supporting Fi, three previous triangles vanish), and without a new facet. Therefore, f(P ′) =
(f0(P ) + 1, f1(P ) + 4, f2(P ) + 3, f3(P )). We will call this operation beneath/beyond placing of
v0 on F .

3.1.1 Polytopes with f0 ≤ 8

The polytopes with up to eight vertices have been classified long ago (Altshuler & Stein-
berg [5, 6], Barnette [10], and Grünbaum & Sreedharan [36]), so we refer to these for proofs
of polytopality and further examples of polytopes with small vertex numbers. However, since
we need some examples later on, they are shown here.

(i) (8, 22, 24, 10): see Figure 3.2.
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(81
21,24)

F0 = {v0, v2, v4, v6}
F1 = {v0, v2, v5, v6}
F2 = {v0, v3, v5, v7}

F3 = {v0, v4, v6, v7}
F4 = {v0, v5, v6, v7}
F5 = {v1, v3, v5, v7}
F6 = {v1, v4, v6, v7}

F7 = {v1, v5, v6, v7}
F8 = {v0, v1, v3, v4, v7}
F9 = {v1, v2, v4, v5, v6}
F10 = {v0, v1, v2, v3, v4, v5}

Figure 3.3: This is the facet list of a 4-polytope with f -vector (8, 21, 24, 11). This is one of
the two 4-polytopes of the class 4 in the classification in [6].

(815
23,26)

F0 = {v0, v2, v4, v6}
F1 = {v0, v3, v4, v6}
F2 = {v0, v3, v4, v7}

F3 = {v0, v3, v5, v7}
F4 = {v1, v2, v5, v7}
F5 = {v1, v3, v4, v6}
F6 = {v1, v3, v4, v7}

F7 = {v1, v3, v5, v7}
F8 = {v0, v2, v4, v5, v7}
F9 = {v1, v2, v4, v6, v7}
F10 = {v0, v1, v2, v3, v5, v6}

Figure 3.4: This is the facet list of a 4-polytope with f -vector (8, 23, 26, 11). This is one of
the four 4-polytopes of the class A2C in the classification in [6].

(80
23,27)

F0 = {v0, v2, v4, v5}
F1 = {v0, v2, v4, v6}
F2 = {v0, v2, v5, v7}
F3 = {v0, v2, v6, v7}

F4 = {v0, v3, v6, v7}
F5 = {v1, v3, v6, v7}
F6 = {v1, v4, v6, v7}
F7 = {v2, v4, v6, v7}

F8 = {v0, v1, v3, v5, v7}
F9 = {v1, v2, v4, v5, v7}
F10 = {v0, v3, v4, v5, v6}
F11 = {v1, v3, v4, v5, v6}

Figure 3.5: This is the facet list of a 4-polytope with f -vector (8, 23, 27, 12). This is one of
the 42 4-polytopes of the class 1A2 in the classification in [6].

(88
24,28)

F0 = {v0, v2, v4, v7}
F1 = {v0, v3, v4, v6}
F2 = {v0, v3, v4, v7}
F3 = {v1, v3, v4, v6}
F4 = {v1, v3, v4, v7}
F5 = {v1, v3, v5, v7}
F6 = {v1, v4, v6, v7}
F7 = {v2, v4, v6, v7}
F8 = {v0, v2, v4, v5, v6}
F9 = {v0, v2, v3, v5, v7}
F10 = {v0, v1, v3, v5, v6}
F11 = {v1, v2, v5, v6, v7}

Figure 3.6: These are the facet list of a 4-polytope with f -vector (8, 24, 28, 12), as well as a
Schlegel diagram of it based on F11. This is one of the 17 4-polytopes of the class A4 in the
classification in [6].
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(81
24,29)

F0 = {v0, v3, v4, v6}
F1 = {v0, v3, v4, v7}
F2 = {v0, v3, v5, v7}
F3 = {v0, v4, v5, v6}
F4 = {v1, v3, v4, v6}
F5 = {v1, v3, v4, v7}
F6 = {v1, v3, v5, v7}
F7 = {v1, v4, v6, v7}
F8 = {v2, v4, v5, v6}
F9 = {v2, v4, v6, v7}
F10 = {v0, v1, v3, v5, v6}
F11 = {v0, v2, v4, v5, v7}
F12 = {v1, v2, v5, v6, v7}

Figure 3.7: These are the facet list of a 4-polytope with f -vector (8, 24, 29, 13), as well as a
Schlegel diagram of it based on F12. This is one of the 56 4-polytopes of the class A3 in the
classification in [6].

(ii) (8, 21, 24, 11): see Figure 3.3.

(iii) (8, 23, 26, 11): see Figure 3.4.

(iv) (8, 23, 27, 12): see Figure 3.5.

(v) (8, 24, 28, 12): see Figure 3.6.

(vi) (8, 24, 29, 13): see Figure 3.7.

3.1.2 Polytopes with f-vector (9, m, m, 9)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and
hence no 4-polytopes, with the f -vector (9,m,m, 9) for m ≤ 19, m = 21, and m ≥ 27. The
remaining cases are:

(i) (9, 20, 20, 9): There is a unique strongly regular 3-sphere with this f -vector, which
can be realised as a 4-polytope by taking the bipyramid over the tetrahedron (gives
f = (6, 14, 16, 8)) and truncate a simple vertex (one of the two apices).

(ii) (9, 22, 22, 9): Take any 3-polytope with f -vector (8, 14, 8) and build a pyramid over it.
This way we can construct 42 4-polytopes with f -vector (9, 22, 22, 9).

(iii) (9, 23, 23, 9): There are 211 strongly regular 3-spheres with this f -vector. A realisation
of one of these as a 4-polytope is (92

23) in Figure 3.8.

(iv) (9, 24, 24, 9): There are 118 strongly regular 3-spheres with this f -vector. A realisation
of one of these as a 4-polytope is (90

24) in Figure 3.8.
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Figure 3.8

(92
23)

F0 = {v0, v3, v7, v8}
F1 = {v0, v4, v7, v8}
F2 = {v2, v5, v7, v8}
F3 = {v1, v4, v5, v7, v8}
F4 = {v2, v3, v6, v7, v8}
F5 = {v1, v2, v5, v6, v7}
F6 = {v1, v2, v5, v6, v8}
F7 = {v0, v1, v3, v4, v6, v7}
F8 = {v0, v1, v3, v4, v6, v8}

F8

v0 = (0, 0, 0, 0)
v1 = (7758/5, 7686/5, 7932/5, 7932/5)
v2 = (1582, 1577, 1591, 1591)
v3 = (261, 253, 246, 246)
v4 = (258, 257, 269, 269)
v5 = (39394/25, 15733/10, 15939/10, 15939/10)
v6 = (1614, 7871/5, 7787/5, 7787/5)
v7 = (1137271811/721818, 5684532109/3609090, 15881/10, 15881/10)
v8 = (146, 146, 170, 170)

(90
24)

F0 = {v1, v2, v4, v7, v8}
F1 = {v1, v3, v5, v7, v8}
F2 = {v2, v3, v6, v7, v8}
F3 = {v0, v1, v4, v5, v7}
F4 = {v0, v1, v4, v5, v8}
F5 = {v0, v2, v4, v6, v7}
F6 = {v0, v2, v4, v6, v8}
F7 = {v0, v3, v5, v6, v7}
F8 = {v0, v3, v5, v6, v8}

v0 = (0, 0, 0, 0)
v1 = (2888/15, 2842/15, 191, 191)
v2 = (−20,−41/2,−18,−18)
v3 = (88, 84, 175/2, 175/2)
v4 = (76, 80, 78, 78)
v5 = (152, 148, 150, 150)
v6 = (−26,−27,−25,−25)
v7 = 1/146460∗(−941172,−2149963,−3092890,−3092890)
v8 = (130, 128, 136, 136)

F6
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(90
25)

F0 = {v2, v4, v6, v7}
F1 = {v3, v5, v6, v7}
F2 = {v0, v2, v4, v6, v8}
F3 = {v1, v2, v4, v7, v8}
F4 = {v0, v3, v5, v6, v8}
F5 = {v1, v3, v5, v7, v8}
F6 = {v2, v3, v6, v7, v8}
F7 = {v0, v1, v4, v5, v8}
F8 = {v0, v1, v4, v5, v6, v7}

v0 = (76, 87, 77, 82)
v1 = (82, 82, 82, 54)
v2 = (47158/553, 44700/553, 43909/553, 81)
v3 = (4582/57, 1465/19, 86, 81)
v4 = (83, 85, 75, 68)
v5 = (75, 84, 84, 68)
v6 = (79, 78, 79, 87)
v7 = (85, 73, 84, 59)
v8 = (85, 87, 85, 99)

F6

Figure 3.8: These are the facet list, coordinates, and a diagram for 4-polytopes with the
f -vectors (9,m,m, 9), 23 ≤ m ≤ 25. The upper index is the index of the polytope in the list
of all 3-spheres with that f -vector that were found by our enumeration.
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(933
23,24)

F0 = {v0, v3, v6, v8}
F1 = {v0, v5, v6, v8}
F2 = {v1, v3, v6, v8}
F3 = {v1, v3, v7, v8}
F4 = {v1, v5, v6, v8}
F5 = {v2, v4, v7, v8}
F6 = {v0, v3, v4, v7, v8}
F7 = {v0, v2, v4, v5, v8}
F8 = {v1, v2, v5, v7, v8}
F9 = {v0, v1, v2, v3, v4, v5, v6, v7}

Figure 3.9: On the left hand side is the facet list of a 4-polytope with f -vector (9, 23, 24, 10).
It is the pyramid over the 3-polytope with f -vector (8, 15, 9) shown on the right hand side.

(9558
24,25)

F0 = {v4, v5, v6, v7}
F1 = {v2, v4, v5, v7, v8}
F2 = {v0, v2, v4, v7}

F3 = {v0, v3, v4, v6, v7}
F4 = {v0, v1, v2, v3, v4, v8}
F5 = {v0, v1, v2, v3, v6, v7}
F6 = {v1, v3, v4, v6}

F7 = {v1, v4, v5, v6, v8}
F8 = {v1, v2, v5, v6, v7}
F9 = {v1, v2, v5, v8}

v0 = (0, 0, 0, 0)
v1 = (2, 2, 1, 1)
v2 = (0, 2, 0, 0)

v3 = (0, 2, 0, 0)
v4 = (0, 2, 2, 2)
v5 = (1, 0, 2, 2)

v6 = (2, 2, 0, 0)
v7 = (1, 2, 0, 0)
v8 = (2, 0, 2, 2)

Figure 3.10: These are the facet list and coordinates of a 4-polytope with f -vector
(9, 24, 25, 10). This is polytope p11166 in the list of polytopes provided by Höppner as data
from her diploma thesis [38].

(v) (9, 25, 25, 9): There are 7 strongly regular 3-spheres with this f -vector. For all of them
we found numerical coordinates for a realisation as 4-polytope. One of these with exact
values is (90

25) in Figure 3.8.

(vi) (9, 26, 26, 9): There is a unique strongly regular 3-sphere W9 with this f -vector, which
was realised as 4-polytope in [72, Thm. 4.2.2].

3.1.3 Polytopes with f-vector (9, m, m + 1, 10)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and
hence no 4-polytopes, with the f -vector (9,m,m + 1, 10) for m ≤ 21, and m ≥ 27. The
remaining cases are:

(i) (9, 22, 23, 10): Again, take the bipyramid over the tetrahedron, but this time truncate
one of the tetrahedra-vertices (they have valence 5). The new facet will be a bipyramid
over the triangle, hence we get a 4-polytope with f -vector (10, 23, 22, 9). If we dualise,
we get a 4-polytope with f -vector (9, 22, 23, 10). We obtain two more polytopes with this
f -vector by taking the pyramid over one of the two 3-polytopes with f -vector (7, 11, 6)
and then stack one of the tetrahedra facets.
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(90
23,25)

F0 = {v1, v3, v5, v7}
F1 = {v0, v3, v5, v7}
F2 = {v0, v5, v7, v8}

F3 = {v0, v1, v3, v5, v6}
F4 = {v1, v3, v4, v6, v7}
F5 = {v2, v5, v7, v8}
F6 = {v1, v2, v4, v5, v7}

F7 = {v0, v2, v5, v8}
F8 = {v0, v1, v2, v4, v5, v6}
F9 = {v0, v2, v7, v8}
F10 = {v0, v2, v3, v4, v6, v7}

Figure 3.11: This is the facet list of a 4-polytope with f -vector (9, 23, 25, 11) that we obtained
from stacking onto a 4-polytope with f -vector (8, 19, 19, 8).

(ii) (9, 23, 24, 10): Take any 3-polytope with f -vector (8, 15, 9) and build a pyramid over it.
In this way we can construct 74 4-polytopes with f -vector (9, 23, 24, 10). One of these,
(933

23,24), is shown in Figure 3.9.

(iii) (9, 24, 25, 10): The facet list and vertex coordinates for one 4-polytope with this f -vector
are in Figure 3.10.

(iv) (9, 25, 26, 10): We want to perform the beneath/beyond operation explained at the be-
ginning of this section. For this take for example the prism over the triangle, triangulate
two of the quadrilateral faces, and stack onto one of the triangles. We can do this in
a way that the resulting 3-polytope P has only two simple vertices v1, v2, and so that
P has at least two triangles without a simple vertex. Moreover, f(P ) = (7, 14, 9),
and f(pyr(P )) = (8, 21, 23, 10). Denote the apex of pyr(P ) by w and the two tetra-
hedra above the triangles without a simple vertex with F1, F2. Then we can place
w beneath/beyond on Fi for any i ∈ {1, 2}. The resulting 4-polytope has f -vector
(9, 25, 26, 10). Starting from different polytopes, we can construct 79 4-polytopes in
this way.

(v) (9, 26, 27, 10): We will perform a beneath/beyond operation with the polytope (80
22,24)

from Figure 3.2. The facet F2 = {v1, v3, v5, v7} of this polytope is a tetrahedron, the
vertex v7 is non-simple, and the edges {v1, v7}, {v3, v7}, and {v5, v7} are in four facets
each. Therefore, we can place v7 beneath/beyond on F2 and obtain a 4-polytope with f -
vector (9, 26, 27, 10). Starting from different polytopes, we can construct 35 4-polytopes
in this way.

3.1.4 Polytopes with f-vector (9, m, m + 2, 11)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and
hence no 4-polytopes, with the f -vector (9,m,m + 2, 11) for m ≤ 22, and m ≥ 29. The
remaining cases are:

(i) (9, 23, 25, 11): There are 13 4-polytopes with f -vector (8, 19, 19, 8), eight of which are
pyramids. All of these have at least one tetrahedron as a facet on which we can stack
to get a 4-polytope with f -vector (9, 23, 25, 11). In total, this construction yields 34
polytopes. The facet list of one of them is shown in Figure 3.11.
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(911
24,26)

F0 = {v0, v2, v4, v8}
F1 = {v0, v2, v5, v8}
F2 = {v0, v4, v6, v8}
F3 = {v1, v3, v6, v8}
F4 = {v1, v3, v7, v8}
F5 = {v1, v4, v6, v8}
F6 = {v2, v5, v7, v8}
F7 = {v3, v5, v7, v8}
F8 = {v0, v3, v5, v6, v8}
F9 = {v1, v2, v4, v7, v8}
F10 = {v0, v1, v2, v3, v4, v5, v6, v7}

Figure 3.12: On the left hand side is the facet list of a 4-polytope with f -vector (9, 24, 26, 11).
It is the pyramid over the 3-polytope with f -vector (8, 16, 10) shown on the right hand side.

(91900
25,27)

F0 = {v0, v2, v4, v6, v8}
F1 = {v0, v2, v5, v6}
F2 = {v0, v3, v5, v7}

F3 = {v4, v6, v7, v8}
F4 = {v0, v5, v6, v7, v8}
F5 = {v1, v3, v5, v7}
F6 = {v1, v4, v6, v7}

F7 = {v1, v5, v6, v7}
F8 = {v0, v1, v3, v4, v7, v8}
F9 = {v1, v2, v4, v5, v6}
F10 = {v0, v1, v2, v3, v4, v5}

Figure 3.13: This is the facet list of a 4-polytope with f -vector (9, 25, 27, 11) that we obtained
from stacking onto a 4-polytope with f -vector (8, 23, 23, 8).

(9500
26,28)

F0 = {v0, v2, v7, v8}
F1 = {v0, v3, v6, v7, v8}
F2 = {v2, v3, v5, v6, v7, v8}

F3 = {v0, v1, v2, v3, v4, v7}
F4 = {v0, v1, v2, v8}
F5 = {v3, v4, v5, v6}
F6 = {v0, v1, v4, v5, v6, v8}

F7 = {v0, v3, v4, v6}
F8 = {v1, v2, v4, v5}
F9 = {v2, v3, v4, v5}
F10 = {v1, v2, v5, v8}

v0 = (0, 0, 2, 2)
v1 = (0, 2, 0, 0)
v2 = (0, 2, 1, 1)

v3 = (1, 0, 0, 0)
v4 = (1, 0, 1, 1)
v5 = (2, 2, 2, 2)

v6 = (2, 0, 0, 0)
v7 = (2, 0, 1, 1)
v8 = (2, 0, 2, 2)

Figure 3.14: These are the facet list and coordinates of a 4-polytope with f -vector
(9, 26, 28, 11). This is polytope p12197 in the list of polytopes provided by Höppner as data
from her diploma thesis [38].

(953
27,29)

F0 = {v0, v2, v4, v6, v8}
F1 = {v0, v3, v6, v8}
F2 = {v0, v3, v4, v7, v8}

F3 = {v0, v3, v5, v7}
F4 = {v1, v2, v5, v7}
F5 = {v1, v3, v4, v6, v8}
F6 = {v1, v3, v4, v7}

F7 = {v1, v3, v5, v7}
F8 = {v0, v2, v4, v5, v7}
F9 = {v1, v2, v4, v6, v7}
F10 = {v0, v1, v2, v3, v5, v6}

Figure 3.15: This is the facet list of a 4-polytope with f -vector (9, 27, 29, 11) that we obtained
via the beneath/beyond operation on the 4-polytope (815

23,26).
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(91
28,30)

F0 = {v0, v4, v5, v7}
F1 = {v1, v3, v5, v7}
F2 = {v1, v3, v6, v8}

F3 = {v0, v3, v5, v6, v7}
F4 = {v0, v2, v4, v6, v7}
F5 = {v0, v2, v4, v5, v8}
F6 = {v0, v2, v3, v6, v8}

F7 = {v1, v4, v5, v7, v8}
F8 = {v1, v3, v4, v6, v7}
F9 = {v0, v1, v3, v5, v8}
F10 = {v1, v2, v4, v6, v8}

v0 = (−922,−914,−907,−912)
v1 = 1/63639437031882044478059 · (44014566644863746739836668,

44487118764012306544495746,
41361085165253401203569137,
42754407461261313797050764)

v2 = 1/3122848251738002380153709 · (−2480856471587274394858533908,
−2621230595546114386738899314,
−2578943788345226207724590497,
−2513102051852548364761443316)

v3 = 1/25452430514683067 · (21554745511127058338, 21236217599707481018,
21463612388041103607, 21741658090235972176)

v4 = (−810,−826,−805,−826)
v5 = (−755,−675,−687,−742)
v6 = (196, 150, 204, 210)
v7 = (215, 278, 347, 243)
v8 = (122, 119, 58, 94)

(92
28,30)

F0 = {v0, v2, v4, v7}
F1 = {v0, v4, v6, v8}
F2 = {v1, v3, v7, v8}

F3 = {v0, v2, v4, v5, v8}
F4 = {v0, v2, v5, v6, v7}
F5 = {v1, v3, v4, v6, v8}
F6 = {v1, v3, v5, v6, v7}

F7 = {v0, v1, v4, v6, v7}
F8 = {v1, v2, v4, v7, v8}
F9 = {v0, v3, v5, v6, v8}
F10 = {v2, v3, v5, v7, v8}

v0 = (−1116085454470691691057583/1499741338601751219428,
−1205082269831604704216927/1499741338601751219428,
−2292003296124442906991331/2999482677203502438856,
−2376668700774594767633373/2999482677203502438856)

v1 = 1/11993337569901975395257 · (4344412408881811740455546,
4813076216923154903095099,
4705302911577940153316394,
4512506781405412738039474)

v2 = 1/373440771851165 · (136044681970166693, 118413719696992144,
119898969135186327, 129453910329366809)

v3 = (−393,−366,−370,−377)
v4 = (−938,−953,−960,−972)
v5 = (511, 452, 477, 503)
v6 = (456, 439, 523, 452)
v7 = (938, 922, 927, 937)
v8 = (−953,−940,−960,−956)

Figure 3.16: These are the facet lists and coordinates of the two 4-polytopes with f -vector
(9, 28, 30, 11). The sphere (90

28,30) with the same f -vector is non-polytopal.
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(92147
26,29)

F0 = {v0, v3, v5, v7}
F1 = {v1, v3, v5, v7}
F2 = {v0, v2, v6, v8}
F3 = {v0, v2, v3, v6, v7}

F4 = {v1, v3, v6, v7}
F5 = {v2, v4, v6, v8}
F6 = {v0, v4, v6, v8}
F7 = {v0, v2, v4, v8}

F8 = {v0, v2, v4, v5, v7}
F9 = {v1, v2, v4, v6, v7}
F10 = {v0, v1, v3, v4, v5, v6}
F11 = {v1, v4, v5, v7}

Figure 3.17: This is the facet list of a 4-polytope with f -vector (9, 26, 29, 12) that we obtained
by stacking one 4-polytope with f -vector (8, 22, 23, 9).

(ii) (9, 24, 26, 11): Take any of the 76 3-polytopes with f -vector (8, 16, 10) and build a
pyramid over it. In this way we can construct 76 4-polytopes with f -vector (9, 24, 26, 11).
One of these is shown in Figure 3.12. Additionally we could stack one of the 12 4-
polytopes with f -vector (8, 20, 20, 8), which yields 29 different 4-polytopes with f -vector
(9, 24, 26, 11).

(iii) (9, 25, 27, 11): There are two 4-polytopes with f -vector (8, 21, 21, 8). Both have a tetra-
hedron as facet on which we can stack to get a 4-polytope with f -vector (9, 25, 27, 11).
In total, we can construct four different polytopes in this way.
We also can perform a beneath/beyond operation with the polytope (81

21,24) from Fig-
ure 3.3. The facet F3 = {v0, v4, v6, v7} of this polytope is a tetrahedron, the vertex
v0 is non-simple, and the edges {v0, v4}, {v0, v6}, and {v0, v7} are in four facets each.
Therefore, we can place v0 beneath/beyond on F3 and obtain a 4-polytope (91900

25,27) with
f -vector (9, 25, 27, 11). The facet list of (91900

25,27) is shown in Figure 3.13. Starting from
different polytopes, we can construct 48 different 4-polytopes in this way.

(iv) (9, 26, 28, 11): The facet list and vertex coordinates for one 4-polytope with this f -vector
are in Figure 3.14.

(v) (9, 27, 29, 11): We will perform a beneath/beyond operation with the polytope (815
23,26)

from Figure 3.4. The facet F1 = {v0, v3, v4, v6} of this polytope is a tetrahedron, the
vertex v4 is non-simple, and the edges {v0, v4}, {v3, v4}, and {v4, v6} are in four facets
each. Therefore, we can place v4 beneath/beyond on F1 and obtain a 4-polytope (953

27,29)
with f -vector (9, 27, 29, 11). The facet list of (953

27,29) is shown in Figure 3.15. Starting
from different polytopes, we can construct 60 different 4-polytopes in this way.

(vi) (9, 28, 30, 11): There are precisely three strongly regular 3-spheres with this f -vector,
two of which are polytopes (see Figure 3.16), and one is non-polytopal.

3.1.5 Polytopes with f-vector (9, m, m + 3, 12)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and
hence no 4-polytopes, with the f -vector (9,m,m + 3, 12) for m ≤ 22, and m ≥ 29. The
remaining cases are:

(i) (9, 23, 26, 12): There is one 4-polytope with f -vector (8, 19, 20, 9). Since it has a tetra-
hedral facet, we can stack on it to obtain a 4-polytope with f -vector (9, 23, 26, 12). In
total, we get three different 4-polytopes in this way.



64 PHILIP BRINKMANN, f -VECTOR SPACES

(91363
27,30)

F0 = {v0, v2, v4, v5, v8}
F1 = {v0, v2, v4, v6}
F2 = {v2, v5, v7, v8}
F3 = {v0, v2, v6, v7, v8}

F4 = {v0, v3, v6, v7}
F5 = {v1, v3, v6, v7}
F6 = {v1, v4, v6, v7}
F7 = {v2, v4, v6, v7}

F8 = {v0, v1, v3, v5, v7, v8}
F9 = {v1, v2, v4, v5, v7}
F10 = {v0, v3, v4, v5, v6}
F11 = {v1, v3, v4, v5, v6}

Figure 3.18: This is the facet list of a 4-polytope with f -vector (9, 27, 30, 12) that we obtained
via the beneath/beyond operation on the polytope (80

23,27).

(9100
28,31)

F0 = {v0, v2, v4, v7}
F1 = {v0, v3, v6, v8}
F2 = {v0, v3, v4, v7, v8}
F3 = {v1, v3, v4, v6, v8}

F4 = {v1, v3, v4, v7}
F5 = {v1, v3, v5, v7}
F6 = {v1, v4, v6, v7}
F7 = {v2, v4, v6, v7}

F8 = {v0, v2, v4, v5, v6, v8}
F9 = {v0, v2, v3, v5, v7}
F10 = {v0, v1, v3, v5, v6}
F11 = {v1, v2, v5, v6, v7}

Figure 3.19: This is the facet list of a 4-polytope with f -vector (9, 28, 31, 12) that we obtained
via the beneath/beyond operation on the polytope (88

24,28).

(ii) (9, 24, 27, 12): There are 31 4-polytopes with f -vector (8, 20, 21, 9), 11 of which are
pyramids. All of these have a tetrahedron as facet on which we can stack to get in total
129 4-polytopes with f -vector (9, 24, 27, 12).

(iii) (9, 25, 28, 12): Take any 3-polytope with f -vector (8, 17, 11) and build a pyramid over it.
In this way we can construct 38 4-polytopes with f -vector (9, 25, 28, 12). Additionally,
we can stack one of the 37 4-polytopes with f -vector (8, 21, 22, 9) to get in total 133
more 4-polytopes with f -vector (9, 25, 28, 12).

(iv) (9, 26, 29, 12): There are 7 4-polytopes with f -vector (8, 22, 23, 9). All of these have
a tetrahedron as a facet on which we can stack to get a 4-polytopes with f -vector
(9, 26, 29, 12). In total, we can construct 19 different 4-polytopes in this way. One of
these is (92147

26,29) from Figure 3.17. We can construct 257 more 4-polytopes with this
f -vector using the beneath/beyond operation.

(v) (9, 27, 30, 12): We will perform a beneath/beyond operation with the polytope (80
23,27)

from Figure 3.5. The facet F2 = {v0, v2, v5, v7} of this polytope is a tetrahedron, the
vertex v0 is non-simple, and the edges {v0, v2}, {v0, v5}, and {v0, v7} are in four facets
each. Therefore, we can place v0 beneath/beyond on F2 and obtain a 4-polytope (91363

27,30)
with f -vector (9, 27, 30, 12). The facet list of (91363

27,30) is shown in Figure 3.18. Starting
from different polytopes, we can construct 516 different 4-polytopes in this way.

(vi) (9, 28, 31, 12): We will perform a beneath/beyond operation with the polytope (88
24,28)

from Figure 3.6. The facet F1 = {v0, v3, v4, v6} of this polytope is a tetrahedron, the
vertex v4 is non-simple, and the edges {v0, v4}, {v3, v4}, and {v4, v6} are in four, resp. five
facets each. Therefore, we can place v4 beneath/beyond on F1 and obtain a 4-polytope
(9100

28,31) with f -vector (9, 28, 31, 12). The facet list of (9100
28,31) is shown in Figure 3.19.

Starting from different polytopes, we can construct 33 different 4-polytopes in this way.
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(912
29,33)

F0 = {v0, v2, v5, v7}
F1 = {v0, v2, v5, v8}
F2 = {v1, v3, v5, v7}
F3 = {v1, v3, v6, v8}
F4 = {v1, v4, v5, v7}
F5 = {v1, v4, v5, v8}
F6 = {v0, v3, v5, v6, v7}

F7 = {v0, v2, v3, v6, v8}
F8 = {v1, v3, v4, v6, v7}
F9 = {v2, v4, v5, v7, v8}
F10 = {v0, v2, v4, v6, v7}
F11 = {v0, v1, v3, v5, v8}
F12 = {v1, v2, v4, v6, v8}

v0 = (28574669507189857/142389477734700, 1,
70362818914253729/427168433204100,−1/15)

v1 = 1/(2906174546969107751227005708493894695769551685845617661127281 . . .
. . . 79024416552592282533261128099556063950529673098081411700512800566)

(32085158087776258058045888620150233254570379065210318758085901152766378 . . .
. . . 15596564269841164435345132717629134372308786352736119328135,

2906174546969107751227005708493894695769551685845617661127281790244 . . .
. . . 165525922825332611280995560639505296730980814117005128005660,
−417272899338216949986458526045253495207966159341763383283871132910 . . .
. . . 511909534503287071497319314242430053875436989382812178802167015,

136467747643726275112950854318717320467947934353074278262617302582 . . .
. . . 027792141663832830138193306411683834653926236507295871167420)

v2 = (0, 10000, 0, 0)
v3 = (0, 0, 10000, 0)
v4 = (63930, 63883, 97033, 1023)
v5 = (60080, 6003,−73830, 202)
v6 = (14913, 26356, 60991, 404)
v7 = 1/395398363810664287814134416285797682302052060408

(27201761817661733024575227627355147750283515250634675,
23219768914781260301885043596383468893188007247459800,
29410584565662149434808695278669115389644772909729775,
383421658626273968987848530747849554217744421927200)

v8 = 1/10397330064439359167693859514512013200094
(−113469957294796154054280100230844295901007599,
−90758294132491166174799699702175363223620526,
−354323856463965163406904105220181439476568375,
−3053984025792300101255826707619970282837500)

Figure 3.20: These are the facet list and coordinates of a 4-polytope with f -vector
(9, 29, 33, 13).
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3.1.6 Polytopes with f-vector (9, m, m + 4, 13)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and
hence no 4-polytopes, with the f -vector (9,m,m + 4, 13) for m ≤ 23, and m ≥ 30. The
remaining cases are:

(i) (9, 24, 28, 13): There are seven 4-polytopes with f -vector (8, 20, 22, 10). All of these
have a tetrahedron as a facet on which we can stack to get in total ten 4-polytopes with
f -vector (9, 24, 28, 13).

(ii) (9, 25, 29, 13): There are 71 4-polytopes with f -vector (8, 21, 23, 10), eight of which are
pyramids. All of these have a tetrahedron as facet on which we can stack to get in total
354 4-polytopes with f -vector (9, 25, 29, 13).

(iii) (9, 26, 30, 13): Take any 3-polytope with f -vector (8, 18, 12) and build a pyramid over it.
In this way we can construct 14 4-polytopes with f -vector (9, 26, 30, 13). Additionally,
we can stack one of the 56 4-polytopes with f -vector (8, 22, 24, 10) to get in total 295
more 4-polytopes with f -vector (9, 26, 30, 13).

(iv) (9, 27, 31, 13): There are three 4-polytopes with f -vector (8, 23, 25, 10). All of these
have a tetrahedron as facet on which we can stack to get in total 13 4-polytopes with
f -vector (9, 27, 31, 13).

(v) (9, 28, 32, 13): We will perform a beneath/beyond operation with the polytope (80
24,29)

from Figure 3.7. The facet F0 = {v0, v3, v4, v6} of this polytope is a tetrahedron, the
vertex v4 is non-simple, and the edges {v0, v4}, {v3, v4}, and {v4, v6} are in four, resp. five
facets each. Therefore, we can place v4 beneath/beyond on F0 and obtain a 4-polytope
with f -vector (9, 28, 32, 13). Starting from different polytopes, we can construct 470
different 4-polytopes in this way.

(vi) (9, 29, 33, 13): One polytope with this f -vector can be found in Figure 3.20.

3.1.7 Polytopes with f-vector (10, m, m, 10)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and hence
no 4-polytopes, with the f -vector (10,m,m, 10) for m ≤ 22 and m ≥ 31. The remaining cases
are:

(i) (10, 23, 23, 10): There are precisely four strongly regular 3-spheres with this f -vector,
all of which are polytopes. The facet lists and coordinates are in Figure 3.21.

(ii) (10, 24, 24, 10): Take a prism over the triangle and triangulate such that a vertex remains
simple (there is one combinatorial type of this; it has two simple vertices that cannot
be distinguished: see Figure 3.22). This 3-polytope P has f -vector (6, 12, 8). Now,
take the pyramid over P , the two simple vertices remain simple (now in the 4-polytope
pyr(P )); the pyramid has f -vector (7, 18, 20, 9), and we can truncate one of the simple
vertices to get a 4-polytope with f -vector (10, 24, 24, 10).
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Figure 3.21
(100

23)
F0 = {v0, v3, v5, v7}
F1 = {v1, v4, v6, v8}
F2 = {v1, v4, v6, v9}
F3 = {v1, v4, v8, v9}
F4 = {v2, v6, v8, v9}
F5 = {v4, v6, v8, v9}
F6 = {v0, v2, v3, v5, v8, v9}
F7 = {v0, v1, v3, v7, v8, v9}
F8 = {v0, v1, v2, v5, v6, v7, v8}
F9 = {v1, v2, v3, v5, v6, v7, v9}

v0 = (1000, 1000, 1000, 0)
v1 = (0, 1000, 0, 0)
v2 = (1000, 0, 0, 0)
v3 = (1000, 1000, 1000, 1000)
v4 = (−960, 10, 19, 9)
v5 = (2000, 1000, 0, 0)
v6 = (0, 0, 0, 0)
v7 = (1000, 2000, 0, 0)
v8 = (0, 0, 1000, 0)
v9 = (0, 0, 1000, 1000)

F8
v0 = (1500, 1500, 1000)
v1 = (0, 1000, 0)
v2 = (1000, 0, 0)
v3 = (1000, 1000, 500)
v4 = (250, 500, 375)
v5 = (2000, 1000, 0)
v6 = (0, 0, 0)
v7 = (1000, 2000, 0)
v8 = (500, 500, 1000)
v9 = (500, 500, 500)
(101

23)
F0 = {v0, v3, v5, v8}
F1 = {v0, v3, v6, v8}
F2 = {v1, v4, v7, v9}
F3 = {v2, v4, v7, v9}
F4 = {v0, v1, v3, v5, v7, v9}
F5 = {v0, v2, v3, v6, v7, v9}
F6 = {v0, v1, v4, v5, v7, v8}
F7 = {v0, v2, v4, v6, v7, v8}
F8 = {v1, v3, v4, v5, v8, v9}
F9 = {v2, v3, v4, v6, v8, v9}

v0 = (0, 0, 10, 0)
v1 = (10, 10, 10, 90)
v2 = (0, 0, 0, 100)
v3 = (0, 10, 0, 0)
v4 = (10, 0, 0, 100)
v5 = (10, 10, 10, 10)
v6 = (0, 0, 0, 0)
v7 = (0, 0, 10, 100)
v8 = (10, 0, 0, 0)
v9 = (0, 10, 0, 100)
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(102
23)

F0 = {v6, v7, v8, v9}
F1 = {v0, v3, v4, v5}
F2 = {v1, v2, v4, v5}
F3 = {v2, v3, v4, v5}
F4 = {v0, v1, v2, v3, v4}
F5 = {v0, v1, v2, v3, v5}
F6 = {v0, v4, v5, v6, v8, v9}
F7 = {v1, v4, v5, v7, v8, v9}
F8 = {v0, v1, v4, v6, v7, v8}
F9 = {v0, v1, v5, v6, v7, v9}

v0 = (0, 0, 0, 0)
v1 = (100, 0, 0, 0)
v2 = (100, 100, 0, 0)
v3 = (0, 100, 0, 0)
v4 = (50, 50, 40, 0)
v5 = (50, 50, 40,−100)
v6 = (40, 12, 26,−20)
v7 = (60, 12, 26,−20)
v8 = (50, 22, 34,−20)
v9 = (50, 22, 34,−40)

F4
v0 = (0, 0, 0)
v1 = (100, 0, 0)
v2 = (100, 100, 0)
v3 = (0, 100, 0)
v4 = (50, 50, 40)
v5 = (50, 50, 100)
v6 = (40, 20, 25)
v7 = (60, 20, 25)
v8 = (30, 50, 33)
v9 = (30, 50, 45)
(103

23)
F0 = {v0, v6, v7, v8}
F1 = {v1, v4, v5, v6, v8, v9}
F2 = {v2, v3, v4, v5}
F3 = {v0, v6, v7, v9}
F4 = {v2, v4, v5, v7, v8, v9}

F5 = {v1, v3, v4, v5}
F6 = {v0, v6, v8, v9}
F7 = {v0, v7, v8, v9}
F8 = {v1, v2, v3, v4, v6, v7, v8}
F9 = {v1, v2, v3, v5, v6, v7, v9}

Figure 3.21: These are the 4-polytopes with f -vector (10, 23, 23, 10) found by our enumeration.
(102

23) and (103
23) are dual to each other, the other two are self-dual. We show here the facet

lists and coordinates for a realisation as convex polytope. Additionally there are a diagram
each of (100

23) and (103
23) with coordinates given and a drawing of (102

23). This is basically the
prism over the bipyramid over the triangle, but with the apices wiggled, so four tetrahedra
appear. The triangles with the same colouring and style are matched by a prism over a
triangle.
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Figure 3.22: This figure shows a triangulation of the prism over the triangle with simple
vertices (A,D).

(101
26)

F0 = {v0, v4, v8, v9}
F1 = {v1, v6, v7, v9}
F2 = {v0, v2, v6, v8, v9}

F3 = {v3, v4, v7, v8, v9}
F4 = {v0, v4, v6, v7, v8}
F5 = {v0, v4, v6, v7, v9}
F6 = {v1, v2, v5, v6, v9}

F7 = {v1, v3, v5, v7, v9}
F8 = {v2, v3, v5, v8, v9}
F9 = {v1, v2, v3, v5, v6, v7, v8}

v0 = (787, 3170, 30, 30)
v1 = (1000, 0, 1000, 1000)
v2 = (0, 0, 0, 0)
v3 = (0, 1000, 1000, 1000)

v4 = (787, 3250, 110, 110)
v5 = (0, 0, 1000, 1000)
v6 = (1000, 0, 0, 0)

v7 = (1000, 1000, 1000, 1000)
v8 = (0, 1000, 0, 0)
v9 = (1400, 8500, 100, 100)

Figure 3.23: These are the facet list and coordinates for one of the 4-polytopes with f -vector
(10, 26, 26, 10) found by our enumeration. The coordinates were found with the oriented
matroid approach (SCIP gave numerical coordinates, the exact ones had to be obtained by
hand from these).

(10913
28 )

F0 = {v0, v1, v2, v3, v4, v5}
F1 = {v0, v3, v5, v7}
F2 = {v0, v1, v2, v6, v8}

F3 = {v0, v1, v3, v4, v6, v7, v8}
F4 = {v2, v6, v8, v9}
F5 = {v4, v6, v8, v9}
F6 = {v1, v2, v4, v5, v6, v9}

F7 = {v4, v7, v8, v9}
F8 = {v0, v2, v5, v7, v8, v9}
F9 = {v3, v4, v5, v7, v9}

v0 = (0, 0, 1, 2)
v1 = (0, 1, 2, 1)
v2 = (0, 1, 2, 2)
v3 = (1, 0, 1, 1)

v4 = (1, 1, 2, 0)
v5 = (2, 2, 2, 1)
v6 = (1, 1, 2, 2)

v7 = (1, 2, 2, 0)
v8 = (2, 0, 0, 1)
v9 = (2, 2, 1, 0)

Figure 3.24: These are the facet list and coordinates of a 4-polytopes with f -vector
(10, 28, 28, 10). The coordinates were found by a randomised approach that has also been
used in [38].
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(1070
25,26)

F0 = {v0, v1, v2, v3}
F1 = {v0, v2, v3, v4, v5, v6, v7}
F2 = {v0, v1, v2, v8}

F3 = {v0, v2, v4, v6, v8}
F4 = {v0, v1, v8, v9}
F5 = {v0, v1, v3, v9}
F6 = {v1, v2, v3, v8, v9}

F7 = {v0, v4, v5, v8, v9}
F8 = {v2, v3, v6, v7, v8, v9}
F9 = {v4, v5, v6, v7, v8, v9}
F10 = {v0, v3, v5, v7, v9}

v0 = (0, 0, 2, 1)
v1 = (0, 1, 1, 2)
v2 = (0, 2, 0, 1)
v3 = (0, 2, 2, 1)

v4 = (1, 1, 1, 0)
v5 = (1, 1, 2, 0)
v6 = (1, 2, 0, 0)

v7 = (1, 2, 2, 0)
v8 = (2, 0, 1, 2)
v9 = (2, 0, 2, 2)

Figure 3.25: These are the facet list and coordinates of a 4-polytopes with f -vector
(10, 25, 26, 11). The coordinates were found by a randomised approach that has also been
used in [38].

(109078
28,29)

F0 = {v0, v2, v4, v9}
F1 = {v0, v2, v5, v8, v9}
F2 = {v0, v4, v6, v8, v9}

F3 = {v1, v3, v6, v8}
F4 = {v1, v3, v7, v8}
F5 = {v1, v4, v6, v8}
F6 = {v2, v5, v7, v8}

F7 = {v3, v5, v7, v8}
F8 = {v0, v3, v5, v6, v8}
F9 = {v1, v2, v4, v7, v8, v9}
F10 = {v0, v1, v2, v3, v4, v5, v6, v7}

Figure 3.26: This is the facet list of the 4-polytopes with f -vector (10, 28, 29, 11) that we
obtained via the beneath/beyond operation on the polytope (911

24,26).

(iii) (10, 25, 25, 10): Take any 3-polytope with f -vector (9, 16, 9) and build a pyramid over
it. This way we can construct 296 4-polytopes with f -vector (10, 25, 25, 10).

(iv) (10, 26, 26, 10): One example of a 4-polytope with this f -vector is shown in Figure 3.23.

(v) (10, 27, 27, 10): We will perform a beneath/beyond operation with the polytope (933
23,24)

from Figure 3.7. The facet F0 = {v0, v3, v6, v8} of this polytope is a tetrahedron, the
vertex v8 is non-simple, and the edges {v0, v8}, {v3, v8}, and {v6, v8} are in four, resp. five
facets each. Therefore, we can place v8 beneath/beyond on F0 and obtain a 4-polytope
with f -vector (10, 27, 27, 10). Starting from different polytopes, we can construct 82
different 4-polytopes in this way.

(vi) (10, 28, 28, 10): One example of a 4-polytope with this f -vector is shown in Figure 3.24.
With the beneath/beyond operation we can construct six other 4-polytopes with this
f -vector.

(vii) (10, 29, 29, 10): We can do a second beneath/beyond operation as described at the begin-
ning of this section to the 4-polytope we have constructed with f -vector (9, 25, 26, 10),
since we had two independent choices of tetrahedra for the first beneath/beyond op-
eration. Therefore, we get a 4-polytope with f -vector (10, 29, 29, 10). Starting from
different polytopes, we can construct 7 different 4-polytopes in this way.

(viii) (10, 30, 30, 10): There are three 3-spheres with this f -vector, all of which are polytopes:
the hypersimplex ∆4(2) (see [35, p. 65]), its dual, and W10 (see [55, Sect. 4.1]).
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(101
30,31)

F0 = {v0, v2, v5, v9}
F1 = {v0, v4, v6, v8}
F2 = {v1, v4, v6, v9}

F3 = {v0, v2, v4, v6, v9}
F4 = {v1, v3, v6, v7, v9}
F5 = {v1, v3, v4, v6, v8}
F6 = {v2, v3, v5, v7, v9}

F7 = {v1, v2, v4, v7, v9}
F8 = {v1, v3, v5, v7, v8}
F9 = {v0, v3, v5, v6, v8, v9}
F10 = {v0, v1, v2, v4, v5, v7, v8}

v0 = (20521463681081/3252460630, 6601, 6132, 6523)
v1 = (−2307,−2668,−1675,−2181)
v2 = (4509622001/568217, 4519939375/568217, 8278, 8206)
v3 = (−25985124705405339698607404154044818563734760975365399977935389700058672756339419680240887662

7665957967058336312675469132729542295056596238654494448931729243628806419286565814185751 ,
−76417836445276352492618413986580094568747996547330322448796134579361017742165212434281373534

22997873901175008938026407398188626885169788715963483346795187730886419257859697442557253 ,
−25930717387931103036322580668138542421907225376988584086395659750605758514936833539976222227

7665957967058336312675469132729542295056596238654494448931729243628806419286565814185751 ,
−74612002567221463603584858340733930142608203423739211535177957825233625971274084834331283598

22997873901175008938026407398188626885169788715963483346795187730886419257859697442557253 )
v4 = (4668, 4294, 4532, 3902)
v5 = (9475961739/2601286, 5018450138/1300643, 3779, 4090)
v6 = (2603599275391153672679434478789192841633

7539747500910099177820275104966257880 , 189,−250,
−1402120313474421031643372033021/2318167184366532725046475076)

v7 = (−43,−293, 582, 214)
v8 = (−26, 404,−539, 177)
v9 = (5120, 5058, 5187, 4970)

Figure 3.27: These are the facet list and coordinates of one of the 4-polytopes with f -vector
(10, 30, 31, 11) that was found by our enumeration.

3.1.8 Polytopes with f-vector (10, m, m + 1, 11)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and
hence no 4-polytopes, with the f -vector (10,m,m + 1, 11) for m ≤ 23 and m ≥ 33. The
remaining cases are:

(i) (10, 24, 25, 11): Take the pyramid over the bipyramid over the triangle. This 4-polytope
P has simple vertices (the apices of the bipyramid) as well as tetrahedral facets (the
pyramids over the triangular faces of the bipyramid). If we perform one truncation and
one stacking operation on P , then we get a 4-polytope P ′ with f -vector (10, 24, 25, 11).
Since there are two simple vertices and six tetrahedral facets, we have several options
to perform these operations.

(ii) (10, 25, 26, 11): One example of a 4-polytope with this f -vector is shown in Figure 3.25.

(iii) (10, 26, 27, 11): Take any 3-polytope with f -vector (9, 17, 10) and build a pyramid over
it. In this way we can construct 633 4-polytopes with f -vector (10, 26, 27, 11).

(iv) (10, 27, 28, 11): We will perform a beneath/beyond operation with the polytope (90
23,25)

from Figure 3.11. The facet F1 = {v0, v3, v5, v7} of this polytope is a tetrahedron, the
vertex v7 is non-simple, and the edges {v0, v7}, {v3, v7}, and {v5, v7} are in at least four
facets each. Therefore, we can place v7 beneath/beyond on F1 and obtain a 4-polytope
with f -vector (10, 27, 28, 11). Starting from different polytopes, we can construct 22
different 4-polytopes in this way.
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(100
25,27)

F0 = {v0, v2, v4, v6}
F1 = {v1, v3, v5, v7}
F2 = {v0, v2, v4, v8}
F3 = {v0, v2, v6, v8}

F4 = {v0, v1, v3, v6, v7, v8}
F5 = {v2, v4, v8, v9}
F6 = {v0, v3, v4, v5, v7, v8, v9}
F7 = {v2, v6, v8, v9}

F8 = {v2, v4, v6, v9}
F9 = {v0, v4, v6, v9}
F10 = {v0, v1, v5, v6, v7, v9}
F11 = {v1, v3, v5, v6, v8, v9}

v0 = (0, 0, 0, 1)
v1 = (0, 0, 1, 0)
v2 = (0.2, 0.1, 0.5, 1.3)
v3 = (1, 0, 0, 0)

v4 = (0.25, 0.25, 0, 1.5)
v5 = (0, 1, 0, 0)
v6 = (0, 0, 1, 1)

v7 = (0, 0, 0, 0)
v8 = (1, 0, 0, 1)
v9 = (0, 1, 0, 1)

Figure 3.28: These are the facet list and coordinates of a 4-polytopes with f -vector
(10, 25, 27, 12). The coordinates were found by a randomised approach that has also been
used in [38].

(v) (10, 28, 29, 11): We will perform a beneath/beyond operation with the polytope (911
24,26)

from Figure 3.12. The facet F0 = {v0, v2, v4, v8} of this polytope is a tetrahedron, the
vertex v8 is non-simple, and the edges {v0, v8}, {v2, v8}, and {v4, v8} are in at least four
facets each. Therefore, we can place v8 beneath/beyond on F0 and obtain a 4-polytope
with f -vector (10, 28, 29, 11). Starting from different polytopes, we can construct 159
different 4-polytopes in this way.

(vi) (10, 29, 30, 11): We will perform a beneath/beyond operation with the polytope (91900
25,27)

from Figure 3.13. The facet F7 = {v1, v5, v6, v7} of this polytope is a tetrahedron, the
vertex v5 is non-simple, and the edges {v1, v5}, {v5, v6}, and {v5, v7} are in four facets
each. Therefore, we can place v5 beneath/beyond on F7 and obtain a 4-polytope with
f -vector (10, 29, 30, 11). Starting from different polytopes, we can construct 28 different
4-polytopes in this way.

(vii) (10, 30, 31, 11): The facet list and coordinates for one 4-polytope with this f -vector are
in Figure 3.27.

(viii) (10, 31, 32, 11): We will perform a beneath/beyond operation with the polytope (953
27,29)

from Figure 3.15. The facet F6 = {v1, v3, v4, v7} of this polytope is a tetrahedron, the
vertex v7 is non-simple, and the edges {v1, v7}, {v3, v7}, and {v4, v7} are in four facets
each. Therefore, we can place v7 beneath/beyond on F6 and obtain a 4-polytope with
f -vector (10, 31, 32, 11). Starting from different polytopes, we can construct 7 different
4-polytopes in this way.

(ix) (10, 32, 33, 11): The two strongly regular 3-spheres with this f -vector are non-polytopal
(Theorems 3.2.1 and 3.2.3).

3.1.9 Polytopes with f-vector (10, m, m + 2, 12)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and
hence no 4-polytopes, with the f -vector (10,m,m + 2, 12) for m ≤ 23 and m ≥ 34. The
remaining cases are:
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(10240
26,28)

F0 = {v0, v1, v2, v3, v4, v5}
F1 = {v0, v1, v2, v7}
F2 = {v1, v2, v5, v7}
F3 = {v0, v1, v6, v7}

F4 = {v1, v5, v6, v7}
F5 = {v0, v1, v4, v5, v6, v8}
F6 = {v5, v6, v7, v8, v9}
F7 = {v2, v3, v5, v7, v9}

F8 = {v0, v4, v6, v7, v8, v9}
F9 = {v4, v5, v8, v9}
F10 = {v3, v4, v5, v9}
F11 = {v0, v2, v3, v4, v7, v9}

v0 = (1, 0, 2, 0)
v1 = (1, 0, 2, 1)
v2 = (1, 1, 1, 0)
v3 = (1, 2, 1, 0)

v4 = (1, 2, 2, 0)
v5 = (1, 2, 2, 2)
v6 = (2, 0, 2, 1)

v7 = (2, 1, 0, 0)
v8 = (2, 1, 2, 1)
v9 = (2, 2, 0, 0)

Figure 3.29: These are the facet list and coordinates of a 4-polytopes with f -vector
(10, 26, 28, 12). The coordinates were found by a randomised approach that has also been
used in [38].

(107373
30,32)

F0 = {v0, v1, v2, v3, v4, v5}
F1 = {v1, v2, v3, v5, v7}
F2 = {v1, v3, v6, v7}
F3 = {v0, v2, v4, v8}

F4 = {v1, v6, v7, v8}
F5 = {v0, v1, v2, v7, v8}
F6 = {v6, v7, v8, v9}
F7 = {v0, v1, v3, v6, v8, v9}

F8 = {v0, v3, v4, v9}
F9 = {v3, v4, v5, v6, v7, v9}
F10 = {v2, v4, v5, v7, v8, v9}
F11 = {v0, v4, v8, v9}

v0 = (1, 1, 1, 3)
v1 = (1, 2, 0, 3)
v2 = (1, 2, 3, 3)
v3 = (1, 3, 0, 2)

v4 = (1, 3, 3, 1)
v5 = (1, 3, 3, 2)
v6 = (2, 3, 1, 2)

v7 = (2, 3, 3, 3)
v8 = (3, 1, 3, 3)
v9 = (3, 3, 3, 1)

Figure 3.30: These are the facet list and coordinates of a 4-polytopes with f -vector
(10, 30, 32, 12). The coordinates were found by a randomised approach that has also been
used in [38].
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(i) (10, 24, 26, 12): The 4-polytope with f -vector (9, 20, 20, 9) described above has a simplex
facet. Stack on it to obtain a 4-polytope with f -vector (10, 24, 26, 12).

(ii) (10, 25, 27, 12): Take the 4-polytope with f -vector (9, 20, 20, 9) (the stacked prism over
the tetrahedron). Let us now place a new vertex beyond one of the tetrahedron facets,
onto one of the hyperplanes defined by the facets that are triangular prisms, and beneath
all other facet defining hyperplanes. The new polytope has an additional vertex, four
additional edges, and replaces the tetrahedron by three new tetrahedra, while enlarging
one of the triangular prisms. Therefore, the new polytope has f -vector (9, 20, 19, 8).
If we now place a tenth vertex beyond of two of the new tetrahedra, but beneath all
other facets, we get a polytope P with an additional vertex, five additional edges, and
we replace the two tetrahedra by six new tetrahedra. Hence, we obtain a polytope P ′
with f -vector (10, 25, 27, 12).
The facet list and coordinates of this polytope, obtained by our construction, can be
found in Figure 3.28.

(iii) (10, 26, 28, 12): One example of a 4-polytope with this f -vector is shown in Figure 3.29.
By stacking onto 4- olytopes with f -vector (9, 22, 22, 9) we can construct in total 177
additional 4-polytopes with f -vector (10, 26, 28, 12).

(iv) (10, 27, 29, 12): Take any 3-polytope with f -vector (9, 18, 11) and build a pyramid over
it. In this way we can construct 768 4-polytopes with f -vector (10, 27, 29, 12).

(v) (10, 28, 30, 12): Take the bipyramid over the cube as one example. By stacking op-
erations we can construct 204 more 4-polytopes with this f -vector, and with the be-
neath/beyond operation we get another 250 polytopes.

(vi) (10, 29, 31, 12): The 4-polytope W9 has a simplex facet. If we stack on that, we obtain a
4-polytope with f -vector (10, 29, 31, 12). In total we can construct 17 4-polytopes with
f -vector (10, 29, 31, 12) in this way. Another 239 we get out of the beneath/beyond
operation.

(vii) (10, 30, 32, 12): One example of a 4-polytope with this f -vector is shown in Figure 3.30.

(viii) (10, 31, 33, 12): We will perform a beneath/beyond operation with the polytope (91363
27,30)

from Figure 3.18. The facet F4 = {v0, v3, v6, v7} of this polytope is a tetrahedron,
the vertex v6 is non-simple, and the edges {v0, v6}, {v3, v6}, and {v6, v7} are in four,
resp. five facets each. Therefore, we can place v6 beneath/beyond on F4 and obtain
a 4-polytope with f -vector (10, 31, 33, 12). Starting from different polytopes, we can
construct 368 different 4-polytopes in this way.

(ix) (10, 32, 34, 12): We will perform a beneath/beyond operation with the polytope (9100
28,31)

from Figure 3.19. The facet F4 = {v1, v3, v4, v7} of this polytope is a tetrahedron, the
vertex v7 is non-simple, and the edges {v1, v7}, {v3, v7}, and {v4, v7} are in four facets
each. Therefore, we can place v7 beneath/beyond on F4 and obtain a 4-polytope with f -
vector (10, 32, 34, 12). Starting from different polytopes, we can construct 7 4-polytopes
in this way.

(x) (10, 33, 35, 12): The unique strongly regular 3-sphere with this f -vector is non-polytopal
(Theorem 3.2.5).
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F0 = {v0 , v2 , v4 , v5 , v6 , v7 }
F1 = {v0 , v1 , v2 , v3 , v5 , v7 }
F2 = {v0 , v1 , v4 , v5 , v8 }
F3 = {v4 , v5 , v6 , v7 , v9 }
F4 = {v4 , v5 , v8 , v9 }
F5 = {v0 , v1 , v2 , v3 , v8 , v10}
F6 = {v2 , v3 , v7 , v10}
F7 = {v1 , v3 , v5 , v7 , v8 , v9 , v10}
F8 = {v4 , v6 , v8 , v9 , v10}
F9 = {v0 , v2 , v4 , v6 , v8 , v10}
F10 = {v2 , v6 , v7 , v9 , v10}

v0 = (0, 0, 1, 0)
v1 = (0, 0, 2, 1)
v2 = (0, 2, 1, 0)
v3 = (0, 2, 2, 1)
v4 = (1, 0, 1, 0)
v5 = (1, 0, 2, 0)
v6 = (1, 1, 1, 0)
v7 = (1, 1, 2, 0)
v8 = (2, 0, 2, 2)
v9 = (2, 1, 2, 1)
v10 = (2, 2, 2, 2)

Figure 3.31: These are the facet list and coordinates of a 4-polytopes with f -vector
(11, 29, 29, 11). The coordinates were found by a randomised approach that has also been
used in [38].

3.1.10 Polytopes with other f-vectors and f0 = 10

(i) (10, 25, 28, 13): We will start with the prism over the tetrahedron, which has f -vector
(8, 16, 14, 6). Now, we stack one of the two tetrahedra, to get a 4-polytope P with f -
vector (9, 20, 20, 9). Finally, we can place a vertex v beyond two of the new facets of P
and beneath all others. This adds another five edges, and substitutes the two tetrahedra
beyond whom we placed v by six new tetrahedra. In total, we get a 4-polytope P ′ with
f -vector (10, 25, 28, 13).

(ii) (10, 26, 29, 13): Take for example one of the 4-polytopes with f -vector (9, 22, 23, 10) we
constructed earlier. At least one of them has a tetrahedron as facet. Stack on this to
obtain a 4-polytope with f -vector (10, 26, 29, 13). In total we get 29 4-polytopes in this
way.

(iii) (10, 27, 32, 15): Take the 4-polytope with f -vector (9, 23, 26, 12) we constructed earlier.
This has a tetrahedron as facet on which we can stack to obtain a 4-polytope with
f -vector (10, 27, 32, 15). With this method we can construct nine 4-polytopes with this
f -vector.

3.1.11 Polytopes with f-vector (11, m, m, 11)

As a result of the enumeration in Chapter 2, there are no strongly regular 3-spheres, and hence
no 4-polytopes, with the f -vector (11,m,m, 11) for m ≤ 25 and m ≥ 36. The remaining cases
are:

(i) (11, 26, 26, 11): Take the prism over the pyramid over the square, which has f -vector
(10, 21, 18, 7), and stack inside one of the pyr(square)-facets. The resulting 4-polytope
has f -vector (11, 26, 26, 11).
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F0 = {v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 }
F1 = {v0 , v1 , v2 , v3 , v8 }
F2 = {v0 , v1 , v6 , v8 , v9 }
F3 = {v0 , v6 , v7 , v9 }
F4 = {v0 , v2 , v5 , v7 , v8 , v9 , v10}
F5 = {v6 , v7 , v9 , v10}
F6 = {v2 , v3 , v5 , v8 , v10}
F7 = {v1 , v4 , v6 , v8 , v9 , v10}
F8 = {v1 , v3 , v4 , v8 , v10}
F9 = {v3 , v4 , v5 , v7 , v10}
F10 = {v4 , v6 , v7 , v10}

v0 = (0, 0, 0, 2)
v1 = (0, 0, 1, 0)
v2 = (0, 0, 1, 2)
v3 = (0, 0, 2, 1)
v4 = (0, 1, 2, 0)
v5 = (0, 1, 2, 2)
v6 = (0, 2, 1, 0)
v7 = (0, 2, 2, 2)
v8 = (2, 0, 1, 0)
v9 = (2, 1, 1, 0)
v10 = (2, 1, 2, 0)

Figure 3.32: These are the facet list and coordinates of a 4-polytopes with f -vector
(11, 30, 30, 11). The coordinates were found by a randomised approach that has also been
used in [38].

F0 = {v0 , v1 , v2 , v5 }
F1 = {v0 , v1 , v3 , v6 }
F2 = {v0 , v1 , v4 , v5 , v6 , v7 }
F3 = {v1 , v2 , v5 , v8 }
F4 = {v0 , v2 , v4 , v5 , v8 }
F5 = {v0 , v3 , v4 , v6 , v9 }
F6 = {v0 , v4 , v8 , v9 }
F7 = {v0 , v1 , v2 , v3 , v8 , v9 , v10}
F8 = {v1 , v3 , v6 , v7 , v9 , v10}
F9 = {v4 , v5 , v6 , v7 , v8 , v9 , v10}
F10 = {v1 , v5 , v7 , v8 , v10}

v0 = (0, 2, 0, 0)
v1 = (0, 2, 2, 2)
v2 = (1, 2, 0, 2)
v3 = (1, 2, 2, 0)
v4 = (2, 0, 0, 0)
v5 = (2, 0, 0, 2)
v6 = (2, 0, 2, 0)
v7 = (2, 0, 2, 1)
v8 = (2, 2, 2, 1)
v9 = (2, 2, 0, 2)
v10 = (2, 2, 2, 0)

Figure 3.33: These are the facet list and coordinates of a 4-polytopes with f -vector
(11, 31, 31, 11). The coordinates were found by a randomised approach that has also been
used in [38].

F0 = {v0 , v1 , v2 , v3 , v4 , v5 }
F1 = {v0 , v1 , v3 , v6 }
F2 = {v0 , v1 , v2 , v6 , v7 , v8 }
F3 = {v0 , v2 , v4 , v8 }
F4 = {v1 , v2 , v5 , v9 }
F5 = {v1 , v2 , v7 , v8 , v9 }
F6 = {v3 , v4 , v5 , v10}
F7 = {v1 , v3 , v5 , v6 , v7 , v9 , v10}
F8 = {v6 , v7 , v8 , v9 , v10}
F9 = {v0 , v3 , v4 , v6 , v8 , v10}
F10 = {v2 , v4 , v5 , v8 , v9 , v10}

v0 = (0, 0, 1, 2)
v1 = (0, 0, 2, 0)
v2 = (0, 0, 2, 1)
v3 = (0, 1, 0, 2)
v4 = (0, 1, 1, 2)
v5 = (0, 2, 1, 1)
v6 = (2, 0, 0, 1)
v7 = (2, 0, 1, 0)
v8 = (2, 0, 1, 1)
v9 = (2, 1, 1, 0)
v10 = (2, 2, 0, 1)

Figure 3.34: These are the facet list and coordinates of a 4-polytopes with f -vector
(11, 33, 33, 11). The coordinates were found by a randomised approach that has also been
used in [38].
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(ii) (11, 27, 27, 11): Take the pyramid over the square and stack on a triangle to get a 3-
polytope P with f -vector (7, 14, 9) and a simple vertex (the new vertex). The pyramid
pyr(P ) has f -vector (8, 21, 23, 10) and contains a simple vertex. Truncate this vertex to
get a 4-polytope with f -vector (11, 27, 27, 11).

(iii) (11, 28, 28, 11): Take any 3-polytope with f -vector (10, 18, 10) and build a pyramid over
it. This way we can construct 2635 4-polytopes with f -vector (11, 28, 28, 11).

(iv) (11, 29, 29, 11): One example of a 4-polytope with this f -vector is shown in Figure 3.31.

(v) (11, 30, 30, 11): One example of a 4-polytope with this f -vector is shown in Figure 3.32.

(vi) (11, 31, 31, 11): One example of a 4-polytope with this f -vector is shown in Figure 3.33.

(vii) (11, 32, 32, 11): We will perform a beneath/beyond operation with the polytope (109078
28,29)

from Figure 3.26. The facet F3 = {v1, v3, v6, v8} of this polytope is a tetrahedron, the
vertex v8 is non-simple, and the edges {v1, v8}, {v3, v8}, and {v6, v8} are in four facets
each. Therefore, we can place v8 beneath/beyond on F3 and obtain a 4-polytope with
f -vector (11, 32, 32, 11). Starting from different polytopes, we can construct 104 4-
polytopes in this way.

(viii) (11, 33, 33, 11): One example of a 4-polytope with this f -vector is shown in Figure 3.34.

(ix) (11, 34, 34, 11): The polytope P11 from [55, Sect. 4.1] has this f -vector.

(x) (11, 35, 35, 11): The two strongly regular 3-spheres with this f -vector are non-polytopal
(Theorem 3.2.7).

3.2 3-Spheres

In this section we will show non-polytopality of some of the strongly regular 3-spheres that
were found in the enumeration of Chapter 2. We will do this via the oriented matroid approach
explained at the beginning of this chapter.

3.2.1 The spheres with f-vector (10, 32, 33, 11)

The enumeration from Chapter 2 gives that there are preciseley two strongly regular 3-spheres
with this f -vector. Since the f -vector is non-symmetric, they cannot be duals. Therefore, we
have to check non-polytopality of both.

Theorem 3.2.1. The sphere (100
32,33) is non-polytopal.
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Figure 3.35
(100

32,33)
F0 = {v0 , v2 , v4 , v5 , v9 }
F1 = {v0 , v2 , v4 , v6 , v8 }
F2 = {v1 , v3 , v6 , v7 , v9 }
F3 = {v1 , v3 , v4 , v6 , v8 }
F4 = {v0 , v2 , v5 , v7 , v8 }

F5 = {v1 , v3 , v5 , v7 , v8 }
F6 = {v0 , v1 , v4 , v6 , v9 }
F7 = {v2 , v3 , v5 , v7 , v9 }
F8 = {v1 , v2 , v4 , v7 , v8 }
F9 = {v1 , v2 , v4 , v7 , v9 }
F10 = {v0 , v3 , v5 , v6 , v8 , v9 }

F0
v0 = (1000, 0, 0)
v1 = (2392813869/13207550, 381, 276)
v2 = (2090, 170, 9922)
v3 = (6424, 8503, 7556)
v4 = (0, 0, 0)
v5 = (8777, 9816, 9824)
v6 = (824, 986, 741)
v7 = (2853, 5415, 5279)
v8 = (1626, 1854, 1794)
v9 = (2475, 9921, 173)

F1
v0 = (7981, 7859, 3376)
v1 = (5371881977/730222, 7122, 7709)
v2 = (0, 0, 0)
v3 = (7754, 7611, 7158)
v4 = (7844, 7087, 8215)
v5 = (5684, 5640, 4911)
v6 = (7847, 7653, 7106)
v7 = (1930, 1923, 2023)
v8 = (7640, 8545, 8112)
v9 = (7318, 7134, 6591)

F2
v0 = (906, 197, 915)
v1 = (228623/5810, 18, 986)
v2 = (90, 942, 119)
v3 = (983, 18, 10)
v4 = (485, 502, 941)
v5 = (448, 647, 296)
v6 = (974, 18, 908)
v7 = (18, 977, 14)
v8 = (665, 333, 592)
v9 = (983, 990, 985)

F3
v0 = (703, 448, 352)
v1 = (708266/17855, 10, 983)
v2 = (880, 90, 57)
v3 = (91, 974, 981)
v4 = (985, 18, 22)
v5 = (84, 906, 802)
v6 = (989, 983, 981)
v7 = (58, 485, 497)
v8 = (14, 983, 9)
v9 = (407, 665, 666)
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Figure 3.35
F4
v0 = (1246, 1435, 392)
v1 = (247090199/211895, 1147, 2340)
v2 = (0, 0, 0)
v3 = (1364, 1586, 1319)
v4 = (974, 390, 500)
v5 = (1671, 3216, 1296)
v6 = (1291, 1293, 446)
v7 = (1139, 1306, 2761)
v8 = (3126, 1046, 1277)
v9 = (1242, 1444, 807)

F5
v0 = (4899, 4062, 4834)
v1 = (6032911744/1202089, 7287, 2570)
v2 = (4891, 4775, 5244)
v3 = (4267, 2905, 3485)
v4 = (5164, 6695, 3058)
v5 = (4691, 3910, 4916)
v6 = (5052, 5091, 3653)
v7 = (3331, 4668, 6618)
v8 = (6697, 4400, 4280)
v9 = (4711, 4234, 4649)

F6
v0 = (15912, 7963, 10803)
v1 = (6927, 23734, 19696)
v2 = (7858, 8406, 1158)
v3 = (14951, 14410, 15415)
v4 = (1, 7, 222)
v5 = (15331, 8769, 9222)
v6 = (24766, 13072, 28804)
v7 = (82639117319/10873358, 21326, 16203)
v8 = (14794, 10433, 12426)
v9 = (23451, 23521, 2)

F7
v0 = (56526, 53907, 72852)
v1 = (60147, 64874, 50685)
v2 = (63121, 32157, 95245)
v3 = (56822, 74239, 49380)
v4 = (61846, 35512, 90754)
v5 = (55365, 67804, 73783)
v6 = (54606, 72640, 49095)
v7 = (3321754766/35161, 58527, 56600)
v8 = (58315, 65444, 59285)
v9 = (30376, 70655, 44286)

(101
32,33)

F0 = {v0 , v3 , v5 , v6 , v8 }
F1 = {v0 , v4 , v5 , v7 , v8 }
F2 = {v0 , v3 , v4 , v6 , v7 }
F3 = {v0 , v1 , v3 , v5 , v7 }
F4 = {v1 , v3 , v5 , v8 , v9 }
F5 = {v1 , v3 , v6 , v7 , v9 }
F6 = {v0 , v2 , v4 , v6 , v8 }
F7 = {v2 , v4 , v6 , v7 , v9 }
F8 = {v2 , v4 , v5 , v8 , v9 }
F9 = {v1 , v4 , v5 , v7 , v9 }
F10 = {v2 , v3 , v6 , v8 , v9 }

fan
v0 = (100, 0, 0, 0)
v1 = (0, 100, 0, 0)
v2 = (0, 0, 100, 100)
v3 = (0, 0, 0, 0)
v4 = (108, 45, 64, 64)
v5 = (−53,−54,−130,−130)
v6 = (103, 2, 125, 125)
v7 = (141, 135, 20, 20)
v8 = (−83,−159,−23,−23)
v9 = (−74, 98, 114, 114)
o = (−2, 8, 24, 24)

F0
v0 = (11, 10, 26)
v1 = (13, 16, 10)
v2 = (9, 10, 11)
v3 = (16, 8, 10)
v4 = (9, 11, 14)
v5 = (12, 24, 9)
v6 = (11, 9, 11)
v7 = (11, 14, 16)
v8 = (5, 10, 8)
v9 = (11, 13, 10)
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Figure 3.35

F1
v0 = (196, 203, 529)
v1 = (232, 378, 286)
v2 = (417, 212, 239)
v3 = (243, 295, 401)
v4 = (234, 235, 241)
v5 = (296, 510, 214)
v6 = (308, 214, 398)
v7 = (191, 348, 296)
v8 = (484, 190, 230)
v9 = (321, 296, 261)

F2
v0 = (98, 98, 97)
v1 = (7, 90, 64)
v2 = (68, 7, 30)
v3 = (1, 91, 97)
v4 = (96, 1, 1)
v5 = (68, 92, 74)
v6 = (3, 1, 97)
v7 = (3, 98, 1)
v8 = (90, 64, 66)
v9 = (26, 46, 44)

F3
v0 = (3, 96, 96)
v1 = (97, 2, 2)
v2 = (56, 43, 43)
v3 = (2, 1, 97)
v4 = (72, 83, 69)
v5 = (2, 97, 1)
v6 = (30, 27, 83)
v7 = (98, 97, 97)
v8 = (16, 69, 27)
v9 = (82, 17, 17)
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F4
v0 = (234, 309, 255)
v1 = (541, 194, 423)
v2 = (213, 249, 239)
v3 = (157, 115, 352)
v4 = (324, 265, 291)
v5 = (195, 548, 120)
v6 = (212, 175, 317)
v7 = (434, 215, 371)
v8 = (91, 447, 113)
v9 = (228, 193, 246)

F5
v0 = (110, 191, 118)
v1 = (27, 0, 354)
v2 = (206, 76, 71)
v3 = (50, 459, 69)
v4 = (151, 85, 116)
v5 = (69, 52, 265)
v6 = (147, 278, 35)
v7 = (141, 78, 109)
v8 = (116, 134, 160)
v9 = (280, 15, 17)

F6
v0 = (19, 15, 37)
v1 = (14, 15, 16)
v2 = (17, 11, 15)
v3 = (21, 12, 36)
v4 = (2, 14, 0)
v5 = (10, 25, 7)
v6 = (28, 6, 55)
v7 = (9, 13, 11)
v8 = (9, 32, 4)
v9 = (15, 13, 15)

F7
v0 = (28, 38, 41)
v1 = (52, 53, 30)
v2 = (43, 32, 56)
v3 = (41, 62, 41)
v4 = (3, 0, 37)
v5 = (41, 37, 39)
v6 = (36, 70, 46)
v7 = (22, 33, 25)
v8 = (40, 35, 50)
v9 = (72, 63, 27)

F8
v0 = (33, 40, 33)
v1 = (19, 20, 23)
v2 = (50, 18, 24)
v3 = (32, 28, 23)
v4 = (27, 30, 53)
v5 = (21, 58, 30)
v6 = (43, 22, 26)
v7 = (25, 25, 40)
v8 = (36, 71, 26)
v9 = (13, 2, 14)

F9
v0 = (256, 233, 270)
v1 = (185, 146, 345)
v2 = (253, 225, 183)
v3 = (197, 183, 307)
v4 = (301, 248, 153)
v5 = (127, 400, 160)
v6 = (232, 206, 245)
v7 = (317, 205, 293)
v8 = (207, 278, 184)
v9 = (255, 202, 182)

F10
v0 = (105, 191, 219)
v1 = (337, 127, 99)
v2 = (113, 188, 180)
v3 = (123, 107, 316)
v4 = (134, 186, 179)

v5 = (139, 285, 94)
v6 = (40, 61, 417)
v7 = (216, 125, 190)
v8 = (36, 425, 35)
v9 = (502, 44, 49)

Figure 3.35: These are the two 3-spheres with f -vector (10, 32, 33, 11). Both spheres are non-
polytopal. The first does not have a diagram based on one of the facets F8, F9, or F10, and
has no fan-like embedding. The second sphere has all diagrams, is fan-like, but we couldn’t
decide the existence of a star-shaped embedding.
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Figure 3.36: These are the facets of the sphere (100
32,33) from F0 (top left) to F10 (bottom

right).
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Proof. Since five points in a common facet are colinear, we get:

χ(v3, v5, v6, v8, v9) F10= 0. (3.1)

From facet F0 we may choose χ(v0 , v2 , v4 , v9 , vi ) = 1 (see Figure 3.36 for an image of
F0), where vi 6∈ F0. With this we can derive:

χ(v0, v1, v2, v4, v9) = −1 F9⇒ χ(v1, v2, v4, v5, v9) = 1 F0⇒ χ(v2, v4, v5, v8, v9) = −1, (3.2)

χ(v0, v2, v4, v8, v9) = −1 F1⇒ χ(v0, v1, v2, v4, v8) = 1 F8⇒ χ(v1, v2, v4, v6, v8) = −1
F1⇒ χ(v2, v4, v6, v8, v9) = −1, (3.3)

χ(v0, v2, v4, v8, v9) = −1 F1⇒ χ(v0, v2, v4, v7, v8) = 1 F8⇒ χ(v2, v4, v7, v8, v9) = 1, (3.4)

χ(v0, v2, v4, v8, v9) = −1 F1⇒ χ(v0, v2, v4, v5, v8) = 1 F4⇒ χ(v0, v2, v5, v6, v8) = −1
F1⇒ χ(v0, v2, v3, v6, v8) = −1 F10⇒ χ(v0, v1, v3, v6, v8) = −1
F3⇒ χ(v1, v3, v6, v8, v9) = −1 F10⇒ χ(v2, v3, v6, v8, v9) = −1, (3.5)

χ(v0, v2, v4, v6, v9) = −1 F1⇒ χ(v0, v1, v2, v4, v6) = 1 F6⇒ χ(v0, v1, v4, v6, v8) = 1
F3⇒ χ(v1, v4, v6, v8, v9) = 1, (3.6)

χ(v0, v2, v4, v5, v8) = 1 F4⇒ χ(v0, v2, v3, v5, v8) = 1 F10⇒ χ(v0, v3, v5, v7, v8) = 1
F4⇒ χ(v0, v1, v5, v7, v8) = 1 F5⇒ χ(v1, v5, v7, v8, v9) = 1, (3.7)

χ(v0, v1, v2, v4, v6) (3.6)= 1 F6⇒ χ(v0, v1, v3, v4, v6) = 1 F3⇒ χ(v1, v3, v4, v6, v9) = 1
F2⇒ χ(v0, v1, v3, v6, v9) = 1 F10⇒ χ(v0, v3, v6, v7, v9) = 1
F2⇒ χ(v3, v6, v7, v8, v9) = −1, (3.8)

χ(v0, v1, v3, v6, v9) (3.8)= 1 F6⇒ χ(v0, v1, v6, v7, v9) = −1 F2⇒ χ(v1, v6, v7, v8, v9) = 1, (3.9)

χ(v0, v2, v3, v6, v8) (3.5)= −1 F10⇒ χ(v0, v3, v4, v6, v8) = 1 F3⇒ χ(v3, v4, v6, v8, v9) = 1, (3.10)

χ(v0, v2, v4, v7, v8) (3.4)= 1 F4⇒ χ(v0, v1, v2, v7, v8) = −1 F8⇒ χ(v1, v2, v5, v7, v8) = −1
F4⇒ χ(v2, v5, v7, v8, v9) = −1, (3.11)

χ(v0, v1, v2, v7, v8) (3.11)= −1 F8⇒ χ(v1, v2, v3, v7, v8) = −1 F5⇒ χ(v1, v3, v7, v8, v9) = 1,(3.12)

χ(v0, v3, v5, v7, v8) (3.7)= 1 F5⇒ χ(v3, v5, v7, v8, v9) = 1, (3.13)
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With these values for the partial chirotope, we can find some new values of χ using the
Grassmann-Plücker-relations:

{χ(v7, v8, v9, v1, v3)χ(v7, v8, v9, v5, v6), χ(v7, v8, v9, v1, v5)χ(v7, v8, v9, v3, v6),
χ(v7, v8, v9, v1, v6)χ(v7, v8, v9, v3, v5)}

(3.12),(3.7),(3.8),(3.9),(3.13)= {1 · χ(v7, v8, v9, v5, v6), −1 · (−1),
1 · 1},

⇒ χ(v7, v8, v9, v5, v6) = −1, (3.14)

{χ(v6, v8, v9, v2, v3)χ(v6, v8, v9, v5, v7), χ(v6, v8, v9, v2, v5)χ(v6, v8, v9, v3, v7),
χ(v6, v8, v9, v2, v7)χ(v6, v8, v9, v3, v5)}

(3.5),(3.14),(3.8),(3.1)= {(−1) · 1, −χ(v6, v8, v9, v2, v5) · 1,
0},

⇒ χ(v6, v8, v9, v2, v5) = −1, (3.15)

{χ(v6, v8, v9, v1, v3)χ(v6, v8, v9, v4, v7), χ(v6, v8, v9, v1, v4)χ(v6, v8, v9, v3, v7),
χ(v6, v8, v9, v1, v7)χ(v6, v8, v9, v3, v4)}

(3.5),(3.6),(3.8),(3.9),(3.10)= {(−1) · χ(v6, v8, v9, v4, v7), −1 · (−1),
(−1) · 1},

⇒ χ(v6, v8, v9, v4, v7) = −1, (3.16)

{χ(v6, v8, v9, v3, v4)χ(v6v8, v9, v5, v7), χ(v6, v8, v9, v3, v5)χ(v6, v8, v9, v4, v7),
χ(v6, v8, v9, v3, v7)χ(v6, v8, v9, v4, v5)}

(3.10),(3.14),(3.1),(3.8)= {1 · 1, 0,
1 · χ(v6, v8, v9, v4, v5)},
⇒ χ(v6, v8, v9, v4, v5) = −1, (3.17)

{χ(v5, v8, v9, v2, v4)χ(v5, v8, v9, v6, v7), χ(v5, v8, v9, v2, v6)χ(v5, v8, v9, v4, v7),
χ(v5, v8, v9, v2, v7)χ(v5, v8, v9, v4, v6)}

(3.2),(3.14),(3.15),(3.11),(3.17)= {(−1) · (−1), −1 · χ(v5, v8, v9, v4, v7),
(−1) · (−1)},

⇒ χ(v5, v8, v9, v4, v7) = 1, (3.18)

Finally, we get the Grassmann-Plücker-relation

{χ(v4, v8, v9, v2, v5)χ(v4, v8, v9, v6, v7), χ(v4, v8, v9, v2, v6)χ(v4, v8, v9, v5, v7),
χ(v4, v8, v9, v2, v7)χ(v4, v8, v9, v5, v6)}

(3.2),(3.16),(3.3),(3.18),(3.4),(3.17)= {1 · 1, −1 · (−1),
(−1) · (−1)}, (3.19)
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which is neither {0}, nor contains {−1, 1}. Therefore, the Grassmann-Plücker-relations cannot
be satisfied, whence the sphere (100

32,33) does not support an oriented matroid. Hence, it is
non-polytopal.

Proposition 3.2.2. The sphere (100
32,33) has a diagram based on each of the facets F0, F1,

F2, F3, F4, F5, F6, and F7, but not based on one of F8, F9, or F10. Moreover, it is not
fan-like.

Proof. We construct partial chirotopes as explained at the beginning of the chapter for each
of the cases and solve with SCIP. The coordinates of diagrams based on each of the facets F0,
F1, F2, F3, F4, F5, F6, and F7 can be found in Figure 3.35.

In the other cases we get certificates of non-realisability:

• F8 and F9: the partial chirotope obtained from orienting and the Grassmann–Plücker
relations has a bfp;

• F10: backtracking reveals that every partial chirotope, and hence every oriented matroid,
fails the Grassmann–Plücker relations.

For the case of the fan-like embedding, we constructed a partial chirotope and tested via
backtracking all partial chirotopes with a size of at least 15% of the size of an oriented
matroid for this case (

(11
5
)

= 462) for the existence of a bfp and all of them turned out to
have one. Therefore, there is no oriented matroid for this case and (100

32,33) has no fan-like
embedding.

Theorem 3.2.3. The sphere (101
32,33) is non-polytopal.

Proof. From facet F0 we may choose χ(v0 , v3 , v5 , v6 , vi ) = 1, where vi 6∈ F0 (see Fig-
ure 3.35 for a picture of F0). Furthermore, we can get the signs

χ(v0, v5, v6, v7, v8) = 1, (3.20)
χ(v3, v5, v6, v7, v8) = −1, (3.21)

by extending the orientation inside F0. With this we can derive:

χ(v0, v3, v5, v6, v7) = 1 F2⇒ χ(v0, v3, v6, v7, v8) = 1, (3.22)

χ(v0, v3, v5, v6, v7) = 1 F2⇒ χ(v0, v3, v6, v7, v9) = 1 F5⇒ χ(v3, v6, v7, v8, v9) = −1,(3.23)

χ(v0, v3, v5, v6, v7) = 1 F2⇒ χ(v0, v1, v3, v6, v7) = −1 F5⇒ χ(v1, v3, v4, v6, v7) = −1
F2⇒ χ(v3, v4, v6, v7, v8) = −1, (3.24)

χ(v0, v3, v5, v6, v7) = 1 F3⇒ χ(v0, v3, v4, v5, v7) = −1 F1⇒ χ(v0, v4, v5, v6, v7) = −1
F2⇒ χ(v0, v4, v6, v7, v9) = −1 F7⇒ χ(v4, v6, v7, v8, v9) = 1,(3.25)

χ(v0, v3, v4, v5, v7) (3.25)= −1 F1⇒ χ(v0, v1, v4, v5, v7) = −1 F9⇒ χ(v1, v4, v5, v7, v8) = −1
F1⇒ χ(v4, v5, v6, v7, v8) = −1, (3.26)

χ(v0, v4, v5, v6, v7) (3.25)= −1 F2⇒ χ(v0, v4, v6, v7, v8) = −1, (3.27)
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With these values for the partial chirotope, we can find some new values of χ using the
Grassmann-Plücker-relations:

{χ(v6, v7, v8, v3, v4)χ(v6, v7, v8, v5, v9), χ(v6, v7, v8, v3, v5)χ(v6, v7, v8, v4, v9),
χ(v6, v7, v8, v3, v9)χ(v6, v7, v8, v4, v5)}

(3.24),(3.21),(3.25),(3.23),(3.26)= {(−1) · χ(v6, v7, v8, v5, v9), −(−1) · (−1),
1 · (−1)},

⇒ χ(v6, v7, v8, v5, v9) = −1, (3.28)

{χ(v6, v7, v8, v0, v4)χ(v6, v7, v8, v5, v9), χ(v6, v7, v8, v0, v5)χ(v6, v7, v8, v4, v9),
χ(v6, v7, v8, v0, v9)χ(v6, v7, v8, v4, v5)}

(3.27),(3.28),(3.20),(3.25),(3.26)= {(−1) · (−1), −1 · (−1),
χ(v6, v7, v8, v0, v9) · (−1)},
⇒ χ(v6, v7, v8, v0, v9) = 1, (3.29)

Finally, we get the Grassmann-Plücker-relation

{χ(v6, v7, v8, v0, v3)χ(v6, v7, v8, v5, v9), χ(v6, v7, v8, v0, v5)χ(v6, v7, v8, v3, v9),
χ(v6, v7, v8, v0, v9)χ(v6, v7, v8, v3, v5)}

(3.22),(3.28),(3.20),(3.23),(3.29),(3.21)= {1 · (−1), −1 · 1,
1 · (−1)}, (3.30)

which is neither {0}, nor contains {−1, 1}. Therefore, the Grassmann-Plücker-relations cannot
be satisfied, whence the sphere (101

32,33) does not support an oriented matroid. Hence, it is
non-polytopal.

Proposition 3.2.4. The sphere (101
32,33) has a diagram based on every facet and has a fan-like

embedding.

Proof. We construct partial chirotopes as explained at the beginning of the chapter for each
of the cases and solve with SCIP. The coordinates can be found in Figure 3.35.

Remark. The sphere (101
32,33) has an oriented matroid for the star-shaped embedding, but we

couldn’t find coordinates, so this case remains open.

3.2.2 The spheres with f-vector (10, 33, 35, 12)

The enumeration from Chapter 2 gives that there is a unique strongly regular 3-spheres with
this f -vector.

Theorem 3.2.5. The sphere (1033,35) is non-polytopal.



CHAPTER 3. SPECIAL 4-POLYTOPES AND 3-SPHERES 87

Figure 3.37
(1033,35)
F0 = {v1 , v4 , v7 , v9 }
F1 = {v2 , v4 , v7 , v9 }
F2 = {v0 , v2 , v4 , v5 , v8 }
F3 = {v0 , v2 , v4 , v6 , v9 }
F4 = {v1 , v3 , v6 , v7 , v8 }
F5 = {v1 , v3 , v4 , v6 , v9 }

F6 = {v0 , v2 , v5 , v7 , v9 }
F7 = {v1 , v3 , v5 , v7 , v9 }
F8 = {v0 , v1 , v4 , v6 , v8 }
F9 = {v1 , v2 , v4 , v7 , v8 }
F10 = {v2 , v3 , v5 , v7 , v8 }
F11 = {v0 , v3 , v5 , v6 , v8 , v9 }

F2
v0 = (1306, 2451, 4264)
v1 = (2471, 990, 1976)
v2 = (2881, 3713, 856)
v3 = (1412, 2367, 1947)
v4 = (2812, 766, 2282)
v5 = (1451, 2517, 2110)
v6 = (1965, 1505, 2347)
v7 = (1772, 2235, 976)
v8 = (636, 941, 864)
v9 = (1612, 2283, 2145)

F3
v0 = (251, 200, 593)
v1 = (210, 223, 145)
v2 = (234, 510, 186)
v3 = (230, 181, 246)
v4 = (70, 171, 153)
v5 = (246, 270, 275)
v6 = (219, 163, 280)
v7 = (237, 447, 175)
v8 = (223, 218, 271)
v9 = (370, 114, 99)

F4
v0 = (4180, 8229, 2205)
v1 = (0, 0, 0)
v2 = (4423, 900, 9533)
v3 = (1000, 0, 0)
v4 = (4832, 6300, 6118)
v5 = (4154, 2628, 7085)
v6 = (3419, 8273, 82)
v7 = (4255, 63, 9818)
v8 = (7681, 9940, 9900)
v9 = (3678, 4352, 4308)

F5
v0 = (7102, 4363, 5262)
v1 = (0, 0, 0)
v2 = (8692, 5055, 6983)
v3 = (0, 1000, 0)
v4 = (9482, 5345, 7160)
v5 = (478, 1478, 1687)
v6 = (9623, 4905, 884)
v7 = (1239, 1816, 4019)
v8 = (4195, 2920, 3030)
v9 = (727, 3700, 9685)

F6
v0 = (3006, 2643, 6791)
v1 = (4181, 5347, 1887)
v2 = (3239, 8185, 3576)
v3 = (3911, 3982, 3610)
v4 = (2712, 5287, 4419)
v5 = (4947, 1181, 5132)
v6 = (2846, 3348, 5999)
v7 = (4627, 5556, 1115)
v8 = (3526, 3796, 4671)
v9 = (1888, 2188, 5759)
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Figure 3.37
F7
v0 = (5600, 5977, 5306)
v1 = (0, 0, 0)
v2 = (5161, 6365, 4872)
v3 = (1000, 0, 0)
v4 = (593, 563, 703)
v5 = (5754, 6479, 4967)
v6 = (1776, 1482, 1811)
v7 = (5339, 9907, 2380)
v8 = (3707, 4125, 3207)
v9 = (5187, 391, 9908)

F8
v0 = (9829, 8194, 9859)
v1 = (0, 0, 0)
v2 = (3949, 2515, 1177)
v3 = (1145, 1213, 1810)
v4 = (9915, 3519, 146)
v5 = (7639, 6463, 7415)
v6 = (167, 2805, 9905)
v7 = (336, 252, 144)
v8 = (0, 1000, 0)
v9 = (2914, 2566, 3439)

F10
v0 = (2231, 1723, 1538)
v1 = (4624, 3492, 5230)
v2 = (0, 0, 0)
v3 = (3382, 2901, 3791)
v4 = (1599, 1014, 1096)

v5 = (0, 1000, 0)
v6 = (3809, 3016, 3718)
v7 = (2541, 3327, 7926)
v8 = (8340, 4590, 3386)
v9 = (3015, 2607, 3363)

Figure 3.37: This is the 3-sphere with f -vector (10, 33, 35, 12). This sphere is non-polytopal,
has no diagram based on one of the facets F0, F1, F9, or F11, and it has no fan-like embedding.

Proof. Since five points in a common facet are colinear, we get:

χ(v3, v5, v6, v8, v9) = 0. (3.31)

From the tetrahedron facet F0 we may choose χ(v1 , v4 , v7 , v9 , vi ) = 1, where vi 6∈ F0.
With this we can derive:

χ(v1, v4, v5, v7, v9) = 1 F7⇒ χ(v1, v5, v7, v8, v9) = 1, (3.32)

χ(v1, v4, v7, v8, v9) = −1 F9⇒ χ(v0, v1, v4, v7, v8) = −1 F8⇒ χ(v0, v1, v2, v4, v8) = 1
F9⇒ χ(v1, v2, v4, v5, v8) = −1 F2⇒ χ(v2, v4, v5, v8, v9) = −1, (3.33)

χ(v1, v4, v6, v7, v9) = 1 F5⇒ χ(v1, v2, v4, v6, v9) = 1 F3⇒ χ(v2, v4, v6, v8, v9) = −1, (3.34)

χ(v0, v1, v2, v4, v8) (3.33)= 1 F2⇒ χ(v0, v2, v4, v7, v8) = 1 F9⇒ χ(v2, v4, v7, v8, v9) = 1, (3.35)

χ(v1, v3, v4, v7, v9) = −1 F5⇒ χ(v1, v3, v4, v5, v9) = −1 F7⇒ χ(v1, v3, v5, v6, v9) = 1
F5⇒ χ(v1, v3, v6, v8, v9) = −1, (3.36)

χ(v1, v4, v6, v7, v9) (3.34)= 1 F5⇒ χ(v1, v4, v6, v8, v9) = 1, (3.37)

χ(v1, v4, v7, v8, v9) (3.33)= −1 F9⇒ χ(v1, v4, v6, v7, v8) = −1 F4⇒ χ(v0, v1, v6, v7, v8) = 1
F8⇒ χ(v0, v1, v3, v6, v8) = −1 F11⇒ χ(v0, v3, v6, v7, v8) = −1
F4⇒ χ(v3, v6, v7, v8, v9) = −1, (3.38)
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χ(v1, v4, v6, v7, v8) (3.38)= −1 F4⇒ χ(v1, v6, v7, v8, v9) = 1, (3.39)

χ(v1, v3, v5, v6, v9) (3.36)= 1 F5⇒ χ(v0, v1, v3, v6, v9) = 1 F11⇒ χ(v0, v3, v4, v6, v9) = −1
F5⇒ χ(v3, v4, v6, v8, v9) = 1, (3.40)

χ(v1, v3, v4, v7, v9) (3.36)= −1 F7⇒ χ(v1, v3, v7, v8, v9) = 1, (3.41)

χ(v0, v1, v2, v4, v8) (3.33)= 1 F2⇒ χ(v0, v2, v4, v8, v9) = −1 F3⇒ χ(v0, v2, v4, v5, v9) = −1
F2⇒ χ(v0, v2, v4, v5, v7) = −1 F6⇒ χ(v0, v2, v5, v7, v8) = −1
F10⇒ χ(v2, v5, v7, v8, v9) = −1, (3.42)

χ(v0, v2, v5, v7, v8) (3.42)= −1 F2⇒ χ(v0, v2, v3, v5, v8) = 1 F11⇒ χ(v0, v3, v5, v7, v8) = 1
F10⇒ χ(v3, v5, v7, v8, v9) = 1, (3.43)

χ(v1, v3, v6, v8, v9) (3.36)= −1 F11⇒ χ(v2, v3, v6, v8, v9) = −1, (3.44)

With these values for the partial chirotope, we can find some new values of χ using the
Grassmann-Plücker-relations:

{χ(v1, v3, v7, v8, v9)χ(v5, v6, v7, v8, v9), χ(v1, v5, v7, v8, v9)χ(v3, v6, v7, v8, v9),
χ(v1, v6, v7, v8, v9)χ(v3, v5, v7, v8, v9)}

(3.41),(3.32),(3.38),(3.39),(3.43)= {1 · χ(v5, v6, v7, v8, v9), −1 · (−1),
1 · 1},

⇒ χ(v5, v6, v7, v8, v9) = −1, (3.45)

{χ(v2, v3, v6, v8, v9)χ(v5, v6, v7, v8, v9), χ(v2, v5, v6, v8, v9)χ(v3, v6, v7, v8, v9),
χ(v2, v6, v7, v8, v9)χ(v3, v5, v6, v8, v9)}

(3.44),(3.45),(3.38),(3.31)= {(−1) · (−1), −χ(v2, v5, v6, v8, v9) · (−1),
1 · 0},

⇒ χ(v2, v5, v6, v8, v9) = −1, (3.46)

{χ(v1, v3, v6, v8, v9)χ(v4, v6, v7, v8, v9), χ(v1, v4, v6, v8, v9)χ(v3, v6, v7, v8, v9),
χ(v1, v6, v7, v8, v9)χ(v3, v4, v6, v8, v9)}

(3.36),(3.37),(3.38),(3.39),(3.40)= {(−1) · χ(v4, v6, v7, v8, v9), −1 · (−1),
1 · 1},

⇒ χ(v4, v6, v7, v8, v9) = 1, (3.47)

{χ(v3, v4, v6, v8, v9)χ(v5, v6, v7, v8, v9), χ(v3, v5, v6, v8, v9)χ(v4, v6, v7, v8, v9),
χ(v3, v6, v7, v8, v9)χ(v4, v5, v6, v8, v9)}

(3.40),(3.45),(3.31),(3.47),(3.38)= {1 · (−1), −0 · 1,
(−1) · χ(v4, v5, v6, v8, v9)},
⇒ χ(v4, v5, v6, v8, v9) = −1, (3.48)
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{χ(v2, v4, v5, v8, v9)χ(v5, v6, v7, v8, v9), χ(v2, v5, v6, v8, v9)χ(v4, v5, v7, v8, v9),
χ(v2, v5, v7, v8, v9)χ(v4, v5, v6, v8, v9)}

(3.33),(3.45),(3.46),(3.42),(3.48)= {(−1) · (−1), −(−1) · χ(v4, v5, v7, v8, v9),
(−1) · (−1)},

⇒ χ(v4, v5, v7, v8, v9) = −1, (3.49)

Finally, we get the Grassmann-Plücker-relation

{χ(v2, v4, v5, v8, v9)χ(v4, v6, v7, v8, v9), χ(v2, v4, v6, v8, v9)χ(v4, v5, v7, v8, v9),
χ(v2, v4, v7, v8, v9)χ(v4, v5, v6, v8, v9)}

(3.33),(3.47),(3.34),(3.49),(3.35),(3.48)= {(−1) · 1, −(−1) · (−1),
1 · (−1)}, (3.50)

which is neither {0}, nor contains {−1, 1}. Therefore, the Grassmann-Plücker-relations cannot
be satisfied, whence the sphere (1033,35) does not support an oriented matroid. Hence, it is
non-polytopal.

Proposition 3.2.6. The sphere (1033,35) has a diagram based on each of the facets F2, F3,
F4, F5, F6, F7, F8, and F10, but not based on one of F0, F1, F9, or F11. Moreover, it is not
fan-like.

Proof. We construct partial chirotopes as explained at the beginning of the chapter for each
of the cases and solve with SCIP. The coordinates can be found in Figure 3.37.

In the other cases we get certificates of non-realisability:

• F0 and F1: the partial chirotope obtained from orienting and the Grassmann–Plücker
relations has a bfp;

• F9 and F11: backtracking reveals that every partial chirotope, and hence every oriented
matroid, either has a bfp, or fails the Grassmann–Plücker relations.

For the case of the fan-like embedding, we constructed a partial chirotope and tested via
backtracking all partial chirotopes with a size of at least 15% of the size of an oriented
matroid for this case (

(11
5
)

= 462) for the existence of a bfp and all of them turned out to
have one. Therefore, there is no oriented matroid for this case and (1033,35) has no fan-like
embedding.
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(110
35)

F0 = {v1 , v2 , v4 , v6 , v9 }
F1 = {v3 , v5 , v7 , v8 , v9 }
F2 = {v0 , v6 , v7 , v8 , v10}
F3 = {v2 , v3 , v4 , v8 , v9 }
F4 = {v0 , v1 , v2 , v5 , v6 , v10}
F5 = {v3 , v4 , v7 , v8 , v10}
F6 = {v1 , v5 , v6 , v7 , v9 }
F7 = {v0 , v1 , v2 , v4 , v8 , v10}
F8 = {v3 , v5 , v6 , v7 , v10}
F9 = {v0 , v2 , v6 , v7 , v8 , v9 }
F10 = {v1 , v3 , v4 , v5 , v9 , v10}

(111
35)

F0 = {v2 , v4 , v7 , v9 }
F1 = {v0 , v4 , v6 , v7 , v10}
F2 = {v0 , v3 , v4 , v7 , v9 }
F3 = {v1 , v3 , v5 , v8 , v10}
F4 = {v0 , v3 , v5 , v7 , v10}
F5 = {v1 , v4 , v6 , v8 , v10}
F6 = {v0 , v2 , v4 , v6 , v8 , v9 }
F7 = {v1 , v2 , v5 , v6 , v8 , v9 }
F8 = {v1 , v2 , v3 , v5 , v7 , v9 }
F9 = {v0 , v1 , v3 , v6 , v9 , v10}
F10 = {v2 , v4 , v5 , v7 , v8 , v10}

F4
v0 = (0, 0, 0)
v1 = (6260, 6277, 6133)
v2 = (9696, 9708, 9758)
v3 = (1000, 0, 0)
v4 = (4738, 5466, 5515)

v5 = (908013392/92217, 9868, 9870)
v6 = (384, 508, 355)
v7 = (6167, 5314, 9780)
v8 = (9952112546/1102971, 9174, 9091)
v9 = (3089, 3051, 3074)
v10 = (6651, 9788, 4876)

F6
v0 = (0, 0, 0)
v1 = (1797, 1585, 512)
v2 = (2009, 2395, 1622)
v3 = (460, 1113, 648)
v4 = (0, 0, 1000)
v5 = (8565805/4137, 2055, 1316)
v6 = (2850, 426, 139)
v7 = (521, 1238, 853)
v8 = (2946124555/1064794, 1020, 770)
v9 = (423, 2580, 139)
v10 = (1161, 1055, 677)

Figure 3.38: These are the facet lists of the two 3-spheres with f -vector (11, 35, 35, 11). The
two spheres are dual to each other. Furthermore, this figure shows diagrams of (111

35) based
on F4 and F6.
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Figure 3.39: These are the facets of the sphere (111
35) from F0 (top left) to F10 (bottom right).

3.2.3 The spheres with f-vector (11, 35, 35, 11)

The enumeration from Chapter 2 gives that there are preciseley two strongly regular 3-spheres
with this f -vector. Since they are dual to each other, we only need to show non-polytopality
of one of them.

Theorem 3.2.7. The two spheres from Figure 3.38 are non-polytopal. In particular, they do
not have an oriented matroid.

Proof. To prove that neither sphere has an oriented matroid, we construct a partial chirotope
and derive a contradiction in the Grassmann–Plücker relations. Since the two spheres are dual
to each other, one non-polytopality proof suffices to show non-polytopality for both spheres.
Here, we will present a proof for the sphere (111

35) not having an oriented matroid.
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For an orientation of the vertices of the sphere (111
35) we may choose one sign that is

non-zero arbitrarily. Since facet F9 is an octahedron with opposite pairs v0/v1, v3/v6, and
v9/v10 (Figure 3.39), the vertices v1, v6, v9, v10 form a tetrahedron, so we can set

χ(v1, v6, v7, v9, v10) := 1. (3.51)

From this we can find orientations for the other tetrahedra in F9 and we get

χ(v1, v6, v8, v9, v10) = 1, (3.52)
χ(v1, v3, v8, v9, v10) = −1, (3.53)
χ(v0, v3, v7, v9, v10) = 1, (3.54)
χ(v0, v6, v7, v9, v10) = −1, (3.55)
χ(v0, v3, v6, v8, v9 ) = 1, (3.56)
χ(v0, v3, v6, v7, v10) = −1, (3.57)
χ(v0, v1, v4, v6, v10) = 1. (3.58)

Since five points in a facet lie on a hyperplane, we have from F9

χ(v1, v3, v6, v9, v10) = 0. (3.59)

Now, every time we have four vertices on a facet Fi while the fifth is not on that facet, we
can exchange that vertex with any other vertex not in Fi without changing the sign of the
determinant. Note that a permutation of the vertices (columns) changes the sign. Therefore,
we get (the “Fi” above the arrow indicates which facet is used)

χ(v0, v3, v6, v8, v9 ) = 1 F6⇒ χ(v0, v5, v6, v8, v9 ) = 1 F7⇒ χ(v5, v6, v8, v9, v10) = 1,(3.60)

χ(v0, v3, v6, v7, v10) = −1 F4⇒ χ(v0, v3, v4, v7, v10) = −1 F1⇒ χ(v0, v4, v5, v7, v10) = 1
F4⇒ χ(v0, v2, v5, v7, v10) = 1 F10⇒ χ(v1, v2, v5, v7, v10) = 1 (3.61)
F8⇒ χ(v1, v2, v5, v7, v8 ) = 1 F7⇒ χ(v1, v2, v3, v5, v8 ) = −1
F3⇒ χ(v1, v3, v5, v8, v9 ) = 1 F7⇒ χ(v1, v5, v8, v9, v10) = −1,

χ(v0, v3, v5, v6, v10) = 1 F4⇒ χ(v0, v3, v5, v8, v10) = 1 F3⇒ χ(v3, v5, v8, v9, v10) = −1,(3.62)

χ(v0, v1, v4, v6, v10) = 1 F5⇒ χ(v1, v4, v6, v7, v10) = −1 F1⇒ χ(v4, v6, v7, v9, v10) = 1,(3.63)

χ(v0, v1, v4, v6, v10) = 1 F1⇒ χ(v0, v2, v4, v6, v10) = 1 F6⇒ χ(v0, v2, v4, v6, v7 ) = 1
F1⇒ χ(v0, v4, v6, v7, v9 ) = −1 F7⇒ χ(v0, v4, v7, v9, v10) = −1,(3.64)

χ(v0, v3, v6, v7, v9 ) = 1 F2⇒ χ(v0, v2, v3, v7, v9 ) = −1 F8⇒ χ(v2, v3, v4, v7, v9 ) = −1
F2⇒ χ(v3, v4, v7, v9, v10) = −1. (3.65)

Note that we use all vertices and all facets except the facet F0 for this proof.



94 PHILIP BRINKMANN, f -VECTOR SPACES

Now, consider the following Grassmann–Plücker relations:

{χ(v8, v9, v10, v1, v3)χ(v8, v9, v10, v5, v6), −χ(v8, v9, v10, v1, v5)χ(v8, v9, v10, v3, v6),
χ(v8, v9, v10, v1, v6)χ(v8, v9, v10, v3, v5)}

(3.53),(3.60),(3.61),(3.52),(3.62)= {(−1) · 1, −(−1) · χ(v8, v9, v10, v3, v6),
1 · (−1)}, (3.66)

{χ(v7, v9, v10, v0, v3)χ(v7, v9, v10, v4, v6), −χ(v7, v9, v10, v0, v4)χ(v7, v9, v10, v3, v6),
χ(v7, v9, v10, v0, v6)χ(v7, v9, v10, v3, v4)}

(3.54),(3.63),(3.64),(3.55),(3.65)= {1 · 1, −(−1) · χ(v7, v9, v10, v3, v6),
(−1) · (−1)}. (3.67)

Since these sets either have to contain {−1, 1} or to be {0}, we can conclude

χ(v8, v9, v10, v3, v6) = 1, (3.68)
χ(v7, v9, v10, v3, v6) = −1. (3.69)

Therefore, we have the Grassmann–Plücker relation

{χ(v6, v9, v10, v1, v3)χ(v6, v9, v10, v7, v8), −χ(v6, v9, v10, v1, v7)χ(v6, v9, v10, v3, v8),
χ(v6, v9, v10, v1, v8)χ(v6, v9, v10, v3, v7)}

(3.59),(3.51),(3.68),(3.52),(3.69)= {0, −(−1) · (−1),
(−1) · 1}, (3.70)

which is neither {0} nor contains {−1, 1}. Hence, the sphere (111
35) does not have an oriented

matroid and thus is non-polytopal.

Proposition 3.2.8. The spheres (110
35) and (111

35) are not fan-like, hence have no star-shaped
embedding. Moreover, (110

35) does not have a diagram with base F6, F9, or F10, and sphere
(111

35) has a diagram based on each F4 and F6, but does not have a diagram with base F0, F1,
F3, F5, F9, or F10.

Proof. We construct partial chirotopes as explained at the beginning of the chapter.

The resulting partial chirotopes for the different facets as bases of a diagram give already
the signs of 131 to 276 elements out of

(11
4
)

= 330, which is the size of an oriented matroid
for a diagram of (110

35), resp. (111
35). With SCIP we can find coordinates for diagrams of

(111
35) with bases F4 and F6 (see Figure 3.38), while in the other cases we get certificates of

non-realisability:
(110

35)

• F6 and F9: the partial chirotope obtained from orienting and the Grassmann–Plücker
relations has a bfp;

• F10: backtracking reveals that every partial chirotope, and hence every oriented matroid,
either has a bfp, or fails the Grassmann–Plücker relations.
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(111
35)

• F1 and F3: the Grassmann–Plücker relations fail;

• F0: the partial chirotope obtained from orienting and the Grassmann–Plücker relations
has a bfp;

• F5, F9 and F10: backtracking reveals that every partial chirotope, and hence every
oriented matroid, either has a bfp, or fails the Grassmann–Plücker relations.

For the case of the fan-like embedding, we constructed (for each sphere) a partial chirotope
and tested via backtracking all partial chirotopes with a size of at least 15% of the size of an
oriented matroid for this case (

(12
5
)

= 792) for the existence of a bfp and all of them turned
out to have one. Therefore, there is no oriented matroid for this case and both spheres have
no fan-like embedding.

Remark. We could not decide the cases of diagrams for (110
35) with basis F0, F1, F2, F3, F4,

F5, F7, or F8, and the cases of diagrams for (111
35) with basis F2, F7, or F8, since there are

oriented matroids whithout bfps, but we could not find coordinates.

3.2.4 The spheres with f-vector (12, 40, 40, 12)

The work on the sphere W 40
12 is based on the paper [25], which is joint work with Günter

M. Ziegler.

According to Table 2.3 there are preciseley four strongly regular 3-spheres with f -vector
(12, 40, 40, 12), one of them (W 40

12 ) is even 2s2s and we showed in Theorem 2.1.4 that it is the
only sphere with flag-vector (12, 40, 40, 12; 120). The facet lists of these spheres can be found
in Figures 3.40, 3.41, 3.42, and 3.44.

Theorem 3.2.9. The sphere W 40
12 is non-polytopal.

Proof. The sphere W 40
12 is given as a list of facets in Figure 3.40. In order to prove non-

polytopality of this sphere, we will show that there is no chirotope compatible with its facet
list.

In the sphere, {v8, v9, v10} = F6 ∩ F9 is the vertex set of a triangle 2-face, so the vertices
{v7, v8, v9, v10} ⊂ F6 span a tetrahedron, while v2 /∈ F6. Thus, in any realisation, we have



96 PHILIP BRINKMANN, f -VECTOR SPACES

Figure 3.40
W 40

12
F0 = {v0 , v1 , v2 , v3 }
F1 = {v0 , v2 , v3 , v4 , v5 , v6 , v7 }
F2 = {v0 , v1 , v3 , v4 , v8 , v9 }
F3 = {v0 , v1 , v2 , v6 , v9 , v10}
F4 = {v0 , v4 , v7 , v8 }
F5 = {v0 , v5 , v6 , v10}
F6 = {v0 , v5 , v7 , v8 , v9 , v10}
F7 = {v1 , v2 , v3 , v4 , v10, v11}
F8 = {v2 , v5 , v6 , v8 , v10, v11}
F9 = {v1 , v8 , v9 , v10, v11}
F10 = {v1 , v4 , v5 , v7 , v8 , v11}
F11 = {v2 , v4 , v5 , v11}

fan
v0 = (9, 2, 4,−1)
v1 = (−3, 14,−16, 6)
v2 = (−8,−2,−4,−16)
v3 = (1, 23,−1,−9)
v4 = (−1, 12, 4,−1)
v5 = (−14,−11, 27,−11)
v6 = (−5,−9, 2,−16)
v7 = (−1, 2, 14,−1)
v8 = (−1, 2, 4, 9)
v9 = (9,−7,−12, 21)
v10 = (−6,−13,−5,−1)
v11 = (−14, 4, 1,−3)

F0
v0 = ( 77, 80, 42)
v1 = ( 71, 94, 91)
v2 = ( 92, 64, 81)
v3 = ( 57, 58, 76)
v4 = ( 62, 63, 73)
v5 = ( 74, 70, 67)
v6 = ( 88, 67, 74)
v7 = ( 70, 70, 64)
v8 = ( 70, 78, 71)
v9 = ( 74, 86, 67)
v10 = ( 79, 79, 77)
v11 = ( 74, 77, 75)

F1
v0 = ( 74, 20, 23)
v1 = ( 44, 70, 47)
v2 = ( 30, 60, 110)
v3 = ( 28, 100, 39)
v4 = ( 44, 120, 50)
v5 = ( 91, 88, 102)
v6 = ( 44, 40, 117)
v7 = (104, 97, 77)
v8 = ( 83, 76, 58)
v9 = ( 67, 45, 46)
v10 = ( 61, 44, 83)
v11 = ( 60, 71, 71)
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Figure 3.40
F2
v0 = ( 62, 66, 44)
v1 = ( 68, 95, 94)
v2 = ( 66, 79, 73)
v3 = ( 73, 90, 68)
v4 = ( 84, 86, 71)
v5 = ( 75, 68, 74)
v6 = ( 64, 73, 70)
v7 = ( 77, 67, 73)
v8 = ( 84, 63, 84)
v9 = ( 57, 65, 90)
v10 = ( 61, 69, 86)
v11 = ( 72, 76, 80)

F3
v0 = ( 76, 57, 100)
v1 = ( 65, 98, 80)
v2 = ( 87, 85, 72)
v3 = ( 72, 83, 85)
v4 = ( 71, 81, 82)
v5 = ( 74, 67, 73)
v6 = ( 86, 71, 70)
v7 = ( 71, 66, 78)
v8 = ( 61, 70, 71)
v9 = ( 53, 67, 70)
v10 = ( 72, 73, 48)
v11 = ( 71, 78, 72)

F4
v0 = ( 74, 90, 45)
v1 = ( 71, 81, 76)
v2 = ( 77, 75, 69)
v3 = ( 84, 86, 80)
v4 = ( 87, 86, 88)
v5 = ( 77, 60, 71)
v6 = ( 76, 72, 64)
v7 = ( 79, 54, 72)
v8 = ( 54, 73, 80)
v9 = ( 62, 79, 68)
v10 = ( 67, 74, 69)
v11 = ( 72, 75, 74)
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Figure 3.40

F5
v0 = ( 74, 95, 100)
v1 = ( 79, 81, 69)
v2 = ( 89, 66, 71)
v3 = ( 81, 75, 79)
v4 = ( 77, 73, 76)
v5 = ( 58, 60, 67)
v6 = ( 93, 61, 71)
v7 = ( 62, 66, 72)
v8 = ( 70, 77, 67)
v9 = ( 76, 89, 67)
v10 = ( 77, 87, 47)
v11 = ( 75, 75, 68)

F6
v0 = ( 62, 64, 47)
v1 = ( 65, 86, 78)
v2 = ( 68, 67, 78)
v3 = ( 68, 76, 66)
v4 = ( 74, 77, 68)
v5 = ( 87, 63, 74)
v6 = ( 68, 64, 78)
v7 = ( 86, 70, 65)
v8 = ( 87, 86, 78)
v9 = ( 61, 90, 79)
v10 = ( 68, 63, 99)
v11 = ( 75, 75, 78)

F7
v0 = ( 77, 79, 78)
v1 = ( 72, 97, 89)
v2 = ( 87, 59, 72)
v3 = ( 81, 86, 69)
v4 = ( 76, 84, 61)
v5 = ( 65, 69, 66)
v6 = ( 80, 63, 77)
v7 = ( 68, 74, 66)
v8 = ( 62, 70, 75)
v9 = ( 72, 75, 89)
v10 = ( 69, 67, 97)
v11 = ( 50, 65, 65)
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F8
v0 = ( 73, 68, 80)
v1 = ( 74, 87, 70)
v2 = ( 90, 65, 81)
v3 = ( 83, 76, 71)
v4 = ( 83, 79, 66)
v5 = ( 64, 57, 62)
v6 = ( 79, 63, 84)
v7 = ( 66, 65, 66)
v8 = ( 61, 78, 71)
v9 = ( 64, 80, 78)
v10 = ( 69, 87, 99)
v11 = ( 82, 95, 55)

F9
v0 = ( 78, 80, 62)
v1 = ( 90, 54, 75)
v2 = ( 79, 77, 80)
v3 = ( 82, 66, 70)
v4 = ( 79, 65, 71)
v5 = ( 68, 74, 70)
v6 = ( 78, 80, 78)
v7 = ( 67, 73, 68)
v8 = ( 54, 66, 67)
v9 = ( 81, 83, 55)
v10 = ( 77, 90, 98)
v11 = ( 71, 63, 88)
F10
v0 = ( 72, 69, 70)
v1 = ( 61, 64, 87)
v2 = ( 77, 86, 82)
v3 = ( 60, 77, 71)
v4 = ( 54, 81, 65)
v5 = ( 83, 80, 64)
v6 = ( 78, 82, 77)
v7 = ( 77, 72, 61)
v8 = ( 80, 57, 72)
v9 = ( 67, 63, 82)
v10 = ( 73, 76, 90)
v11 = ( 83, 92, 99)

Figure 3.40: These are the facet list of the 3-sphere W 40
12 , which was found by Werner and

described in [72, Table 7.1, left], together with the coordinates of a fan-like embedding and
diagrams based on the facets F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, and F10.
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χ(v7, v8, v10, v2, v9) 6= 0. Therefore, we may fix an orientation of the realisation by setting
χ(v7, v8, v10, v2, v9) := +1. Starting with this, we obtain the following implications:

χ(v7 , v8 , v10, v2 , v9 ) = 1 F6⇒ χ(v7 , v8 , v10, v11, v9 ) = 1
F9⇒ χ(v8 , v10, v11, v2 , v9 ) = −1 (3.71)
F8⇒ χ(v7 , v8 , v10, v11, v2 ) = −1, (3.72)

χ(v8 , v10, v11, v2 , v9 ) (3.71)= −1 F8⇒ χ(v4 , v8 , v10, v11, v2 ) = −1, (3.73)

χ(v7 , v8 , v10, v2 , v9 ) = 1 F6⇒ χ(v7 , v8 , v10, v4 , v9 ) = 1, (3.74)

χ(v7 , v8 , v10, v2 , v9 ) = 1 F6⇒ χ(v7 , v8 , v10, v1 , v9 ) = 1 (3.75)
F9⇒ χ(v8 , v10, v2 , v1 , v9 ) = 1
F3⇒ χ(v4 , v10, v2 , v1 , v9 ) = 1
F7⇒ χ(v4 , v8 , v10, v2 , v1 ) = −1, (3.76)

χ(v7 , v8 , v10, v1 , v9 ) (3.75)= 1 F9⇒ χ(v8 , v10, v0 , v1 , v9 ) = 1
F2⇒ χ(v8 , v7 , v0 , v1 , v9 ) = 1
F6⇒ χ(v8 , v7 , v0 , v4 , v9 ) = 1 (3.77)
F4⇒ χ(v8 , v7 , v0 , v4 , v5 ) = 1
F1⇒ χ(v11, v7 , v0 , v4 , v5 ) = 1
F10⇒ χ(v11, v7 , v2 , v4 , v5 ) = 1
F11⇒ χ(v11, v1 , v2 , v4 , v5 ) = 1
F7⇒ χ(v11, v1 , v2 , v4 , v8 ) = 1
F11⇒ χ(v4 , v8 , v10, v11, v1 ) = 1, (3.78)

χ(v8 , v7 , v0 , v4 , v9 ) (3.77)= 1 F4⇒ χ(v8 , v7 , v0 , v4 , v11) = 1
F10⇒ χ(v4 , v8 , v10, v7 , v11) = 1, (3.79)

χ(v8 , v7 , v0 , v4 , v9 ) (3.77)= 1 F4⇒ χ(v8 , v7 , v0 , v4 , v1 ) = 1
F10⇒ χ(v4 , v8 , v10, v7 , v1 ) = 1, (3.80)

Note that this chain of arguments uses all facets except for F0 and F5; all vertices occur
except for v3 and v6.

Given the values of χ that we have obtained, the contradiction appears in the three term
Grassmann–Plücker relations:
Let λ1 = (v7, v8, v10), a1 = v4, b1 = v11, c1 = v2, d1 = v9,
and λ2 = (v4, v8, v10), a2 = v7, b2 = v11, c2 = v2, d2 = v1.
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Then using the values of χ from above we get{
χ(λ1, a1, b1) · χ(λ1, c1, d1), −χ(λ1, a1, c1) · χ(λ1, b1, d1),

χ(λ1, a1, d1) · χ(λ1, b1, c1)
}

(3.79),(3.72),(3.74),(3.72)=
{
(−1) · (+1), −χ(v7, v8, v10, v4, v2) · (+1), (+1) · (−1)

}
;{

χ(λ2, a2, b2) · χ(λ2, c2, d2), −χ(λ2, a2, c2) · χ(λ2, b2, d2),
χ(λ2, a2, d2) · χ(λ2, b2, c2)

}
(3.73),(3.76),(3.78),(3.80),(3.73)=

{
(+1) · (−1), −χ(v4, v8, v10, v7, v2) · (+1), (+1) · (−1)

}
.

Thus, both sets contain −1, while by the alternating property of χ not both of them can
contain +1. Therefore, there is no chirotope, and hence no oriented matroid for the sphere
W 40

12 . This shows that it is non-polytopal.

Proposition 3.2.10. The sphere W 40
12 has a diagram based on each of the facets F0, F1, F2,

F3, F4, F5, F6, F7, F8, F9, and F10, but not based on F11.

Proof. We construct partial chirotopes as explained at the beginning of the chapter.

The resulting partial chirotopes for the different facets as bases give already the signs of
199 to 328 elements out of

(12
4
)

= 495, which is the size of an oriented matroid for a diagram
of W 40

12 . With SCIP we can find coordinates for the diagrams with bases F0, . . . , F10 (see
Figure 3.40), while in the case of the diagram with base F11 we used backtracking to find a
partial chirotope of size at least 435 (i.e. of roughly 87.5%) for every oriented matroid. For all
of these partial chirotopes we checked the existence of a bfp. The bfps for the partial chirotopes
will also be bfps for all oriented matroids that would complete this partial chirotope, so in
finding bfps at this stage we could decrease the size of the search tree by a factor of 260.
There were 6098 such partial chirotopes. To prove existence of the bfps for all these partial
chirotopes, we needed roughly one week of computing time on a usual Linux workstation.

Proposition 3.2.11. The sphere W 40
12 is fan-like, but not polyhedrally embeddable, and hence

it is not star-shaped.

Proof. The coordinates of a fan-like embedding of W 40
12 are in Figure 3.40 and were found as

described above.

The rest of the proof heavily depends on the structure ofW 40
12 , and establishes the following:

(i) If W 40
12 is polyhedrally embeddable into some Rk, k ≥ 4, then it is also polyhedrally

embeddable into R4.

(ii) IfW 40
12 is polyhedrally embedded into R4, then this is a polyhedral embedding as convex

polytope.
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Let us assume that W 40
12 is polyhedrally embedded in some Rk, that is, it is realised by a

polytopal complex Γ (where each of the facets is realised as a convex 3-polytope).

For (i) we note that v3 is a simple vertex, that is, a vertex that is contained in only 4
facets, or equivalently, in only 4 edges. The 4 facets are each contained in the affine span of 3
of these edges, so all 4 facets are contained in the affine span of the 4 edges. Moreover, each
of the 12 vertices of the sphere is contained in at least one of the 4 facets, which are F0, F1, F2
and F7. So the complete embedded sphere is contained in this affine 4-dimensional subspace
of Rk.

For (ii) note that the argument for (i) implies that in addition each of the facets F0, F1, F2
and F7 is also a facet of the convex hull of Γ, that is, all of Γ is contained in a closed halfspace
of the hyperplane spanned by the facet, while only the vertices of the facet lie on the boundary
hyperplane. Exactly the same arguments are valid for the other three simple vertices of W 40

12
and the facets they are contained in: the vertex v6 and the facets F1, F3, F5 and F8, the vertex
v7 and the facets F1, F4, F6 and F10, as well as the vertex v9 and the facets F2, F3, F6 and F9.
Thus, we have established for all facets Fi of Γ, except for the tetrahedron F11, that it is also
a facet of the convex hull of Γ. As mentioned above, F11 is special in the way that it is the
only facet that does not contain a simple vertex.

To see that also F11 is a facet of the convex hull of Γ, consider its neighbours F1, F7,
F8, and F10. Since these are all facets of the convex hull of Γ, they cannot lie in the same
hyperplane as F11. The facet F1 gives that the vertices v0, v3, v6, and v7 lie on the same side
of the hyperplane H11 spanned by F11. Now, the facet F7 contains v3, the facet F8 contains
v6, and the facet F10 contains v7, whence the points from these facets not in F11 are also all
on the same side of H11. Therefore, we have that all points, except possibly v9, lie in, say,
H+

11. Since F9 is a bipyramid over the triangle v1, v8, v10 with apices v9 and v11, and since v11
is in F11, it follows v9 ∈ H+

11. This completes the proof of (ii).

Theorem 3.2.12. The sphere (120
40) is non-polytopal.

Proof. The proof of this theorem works the same way as described above: we construct a
partial chirotope for the oriented matroid of the respective sphere starting out with one sign
we may choose, and derive a contradiction from that.

Since five points in a common facet are colinear, we get:

χ(v2 , v3 , v9 , v10, v11) F11= 0. (3.81)
(3.82)
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Figure 3.41
(120

40)
F0 = {v0 , v3 , v5 , v6 , v9 }
F1 = {v0 , v3 , v6 , v8 , v10}
F2 = {v1 , v4 , v5 , v7 , v11}
F3 = {v2 , v4 , v6 , v8 , v10}
F4 = {v2 , v4 , v7 , v10, v11}
F5 = {v1 , v3 , v5 , v9 , v11}

F6 = {v0 , v2 , v6 , v8 , v9 }
F7 = {v0 , v1 , v5 , v7 , v8 , v9 }
F8 = {v0 , v1 , v4 , v7 , v8 , v10}
F9 = {v0 , v3 , v5 , v7 , v10, v11}
F10 = {v1 , v2 , v4 , v8 , v9 , v11}
F11 = {v2 , v3 , v6 , v9 , v10, v11}

fan
v0 = (6112414565/6116143, 1, 1, 1)
v1 = (0, 1000, 0, 0)
v2 = (0, 0, 1000, 1000)
v3 = (−7039,−8138,−7583,−7583)
v4 = (−5446,−5189,−4988,−4988)
v5 = (−7835,−7713,−8073,−8073)

v6 = (−4748,−5199,−4854,−4854)
v7 = (−9340,−9008,−9408,−9408)
v8 = (−5113,−5255,−5021,−5021)
v9 = (−5653,−5930,−5776,−5776)
v10 = (−9145,−9575,−8834,−8834)
v11 = (−9736,−9931,−9836,−9836)
o = (−8540,−8572,−8407,−8407)

F0
v0 = (0, 0, 0)
v1 = (3663675077/823706, 4709, 7994)
v2 = (3398, 2004, 3990)
v3 = (0, 1000, 0)
v4 = (3024, 2760, 4663)
v5 = (79, 8760, 9935)
v6 = (1000, 0, 0)
v7 = (511, 7372, 8602)
v8 = (3488, 2474, 4898)
v9 = (9942, 1968, 8296)
v10 = (2301, 1993, 3245)
v11 = (2839, 2787, 4369)
F1
v0 = (0, 0, 0)
v1 = (23101429342/2712507, 8906, 8868)
v2 = (8521, 8542, 8393)
v3 = (5000, 0, 0)
v4 = (8996, 8976, 9106)
v5 = (8221, 8083, 8077)
v6 = (0, 5000, 0)
v7 = (8449, 8031, 8271)
v8 = (8016, 9420, 9026)
v9 = (8021, 8039, 7900)
v10 = (9866, 8741, 9326)
v11 = (8386, 8229, 8232)

F2
v0 = (6232, 8707, 42764)
v1 = (0, 0, 0)
v2 = (32864, 8157, 9543)
v3 = (59562, 11577, 7683)
v4 = (82130, 12399, 24586)
v5 = (0, 10000, 0)
v6 = (18874, 8520, 27912)
v7 = (81446107666/7665509, 13064, 99514)
v8 = (5354, 7569, 35414)
v9 = (1821, 5524, 1369)
v10 = (25201, 9550, 36358)
v11 = (98778, 12894, 11865)

F3
v0 = (7283, 6303, 7216)
v1 = (1637096393/1051950, 714, 750)
v2 = (0, 0, 0)
v3 = (5577, 4509, 5351)
v4 = (1000, 0, 0)
v5 = (4261, 3248, 3823)

v6 = (5084, 4532, 5178)
v7 = (3895, 2472, 3028)
v8 = (6909, 8614, 8644)
v9 = (4591, 3942, 4526)
v10 = (8672, 3555, 5902)
v11 = (3100, 2041, 2495)
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Figure 3.41

F4
v0 = (991, 1187, 1244)
v1 = (14125049/14795, 179, 227)
v2 = (0, 0, 0)
v3 = (397, 703, 1025)
v4 = (1000, 0, 0)
v5 = (739, 868, 1228)
v6 = (299, 442, 84)
v7 = (1155, 1192, 1542)
v8 = (631, 722, 161)
v9 = (377, 444, 622)
v10 = (0, 1891, 0)
v11 = (0, 0, 1286)

F5
v0 = (384, 345, 53)
v1 = (1410, 0, 1)
v2 = (230, 567, 862)
v3 = (0, 90, 486)
v4 = (947, 9, 543)
v5 = (0, 0, 0)
v6 = (320, 406, 385)
v7 = (9491655/22373, 15, 46)
v8 = (789, 689, 40)
v9 = (1, 1705, 1)
v10 = (329, 304, 436)
v11 = (18, 1, 1733)
F8
v0 = (0, 0, 0)
v1 = (34, 0, 30)
v2 = (55, 372, 2045/108)
v3 = (15, 373, 1)
v4 = (68, 338, 21)
v5 = (7, 67, 28)

v6 = (38, 299, 1)
v7 = (0, 0, 33)
v8 = (100, 0, 0)
v9 = (30, 216, 11)
v10 = (0, 848, 0)
v11 = (11, 186, 24)

F9
v0 = (0, 0, 0)
v1 = (401115135/174449, 1485, 1005)
v2 = (2781, 1654, 1816)
v3 = (1000, 0, 9332)
v4 = (2674, 1594, 1320)
v5 = (0, 1000, 0)
v6 = (1276, 737, 987)
v7 = (2732, 1924, 868)
v8 = (1287, 761, 706)
v9 = (1293, 801, 991)
v10 = (3454, 1458, 2371)
v11 = (2842, 1765, 2239)
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F10
v0 = (61588, 30185, 7355)
v1 = (1, 1,−1898048173/1624776653)
v2 = (71539, 37218, 136996)
v3 = (4893, 70116, 50009)
v4 = (6321, 100, 62535)
v5 = (8829, 69736, 7535)
v6 = (64999, 29956, 46275)
v7 = (14943, 24541, 5979)
v8 = (100000, 0, 0)
v9 = (4670, 151643, 137)
v10 = (41589, 30763, 58881)
v11 = (387, 38247, 87801)

Figure 3.41: These are the facet list, coordinates for a fan-like embedding, and the diagrams
(resp. coordinates for these) with bases F0, F1, F2, F3, F4, F5, F8, F9, and F10 of the first of
the three 3-spheres with f -vector (12, 40, 40, 12) that were found by our enumeration and not
described before. This sphere is self-dual and non-polytopal.

From facet F0 (see Figure 3.41 for a drawing) we may choose χ(v0 , v3 , v6 , v9 , vi ) = 1,
where vi 6∈ F0. With this we can derive:

χ(v0 , v3 , v6 , v9 , v10) = 1 F1⇒ χ(v0 , v3 , v6 , v7 , v10) = 1
F9⇒ χ(v0 , v3 , v7 , v8 , v10) = −1
F1⇒ χ(v0 , v1 , v3 , v8 , v10) = 1
F8⇒ χ(v0 , v1 , v8 , v9 , v10) = −1
F7⇒ χ(v0 , v1 , v2 , v8 , v9 ) = −1
F10⇒ χ(v1 , v2 , v7 , v8 , v9 ) = −1
F7⇒ χ(v1 , v3 , v7 , v8 , v9 ) = −1, (3.83)

χ(v0 , v2 , v3 , v6 , v9 ) = −1 F6⇒ χ(v0 , v2 , v5 , v6 , v9 ) = −1
F0⇒ χ(v0 , v1 , v5 , v6 , v9 ) = −1
F7⇒ χ(v0 , v1 , v5 , v9 , v11) = 1
F5⇒ χ(v1 , v2 , v5 , v9 , v11) = −1
F10⇒ χ(v1 , v2 , v3 , v9 , v11) = −1
F5⇒ χ(v1 , v3 , v7 , v9 , v11) = 1, (3.84)
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χ(v0 , v3 , v6 , v9 , v10) = 1 F1⇒ χ(v0 , v3 , v6 , v10, v11) = −1
F9⇒ χ(v0 , v2 , v3 , v10, v11) = 1
F11⇒ χ(v2 , v3 , v7 , v10, v11) = 1
F9⇒ χ(v3 , v7 , v9 , v10, v11) = 1, (3.85)

χ(v0 , v3 , v6 , v7 , v10) (3.83)= 1 F9⇒ χ(v0 , v3 , v4 , v7 , v10) = 1
F8⇒ χ(v0 , v2 , v4 , v7 , v10) = 1
F4⇒ χ(v1 , v2 , v4 , v7 , v10) = 1
F8⇒ χ(v1 , v3 , v4 , v7 , v10) = 1, (3.86)

χ(v2 , v3 , v7 , v10, v11) (3.85)= 1 F9⇒ χ(v3 , v4 , v7 , v10, v11) = −1, (3.87)

χ(v2 , v3 , v7 , v10, v11) (3.85)= 1 F9⇒ χ(v1 , v3 , v7 , v10, v11) = 1, (3.88)

χ(v0 , v1 , v8 , v9 , v10) (3.83)= −1 F7⇒ χ(v0 , v1 , v8 , v9 , v11) = −1
F10⇒ χ(v1 , v7 , v8 , v9 , v11) = 1, (3.89)

χ(v0 , v3 , v7 , v8 , v10) (3.83)= −1 F1⇒ χ(v0 , v3 , v8 , v9 , v10) = 1, (3.90)

χ(v1 , v2 , v7 , v8 , v9 ) (3.83)= −1 F7⇒ χ(v1 , v7 , v8 , v9 , v10) = 1, (3.91)

χ(v0 , v1 , v8 , v9 , v10) (3.83)= −1 F7⇒ χ(v0 , v1 , v6 , v8 , v9 ) = −1
F6⇒ χ(v0 , v6 , v7 , v8 , v9 ) = 1
F7⇒ χ(v0 , v7 , v8 , v9 , v10) = −1, (3.92)

χ(v0 , v3 , v6 , v10, v11) (3.85)= −1 F9⇒ χ(v0 , v3 , v9 , v10, v11) = −1
F11⇒ χ(v3 , v8 , v9 , v10, v11) = 1, (3.93)

χ(v0 , v2 , v4 , v7 , v10) (3.86)= 1 F4⇒ χ(v2 , v3 , v4 , v7 , v10) = −1, (3.94)

χ(v0 , v1 , v2 , v8 , v9 ) (3.83)= −1 F6⇒ χ(v0 , v2 , v8 , v9 , v11) = 1
F10⇒ χ(v2 , v8 , v9 , v10, v11) = −1, (3.95)

χ(v0 , v6 , v7 , v8 , v9 ) (3.92)= 1 F7⇒ χ(v0 , v7 , v8 , v9 , v11) = −1, (3.96)

χ(v0 , v2 , v8 , v9 , v11) (3.95)= 1 F10⇒ χ(v2 , v7 , v8 , v9 , v11) = −1, (3.97)

χ(v0 , v1 , v3 , v8 , v10) (3.83)= 1 F8⇒ χ(v0 , v1 , v8 , v10, v11) = 1, (3.98)

χ(v0 , v3 , v7 , v8 , v10) (3.83)= −1 F1⇒ χ(v0 , v3 , v8 , v10, v11) = −1, (3.99)

χ(v0 , v1 , v8 , v9 , v11) (3.89)= −1 F10⇒ χ(v1 , v8 , v9 , v10, v11) = 1, (3.100)

χ(v0 , v2 , v3 , v10, v11) (3.85)= 1 F11⇒ χ(v2 , v3 , v8 , v10, v11) = 1, (3.101)

χ(v0 , v1 , v2 , v8 , v9 ) (3.83)= −1 F6⇒ χ(v0 , v2 , v8 , v9 , v10) = 1, (3.102)
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χ(v0 , v3 , v7 , v8 , v10) (3.83)= −1 F1⇒ χ(v0 , v3 , v4 , v8 , v10) = −1
F8⇒ χ(v0 , v2 , v4 , v8 , v10) = −1
F3⇒ χ(v1 , v2 , v4 , v8 , v10) = −1
F8⇒ χ(v1 , v4 , v8 , v10, v11) = 1, (3.103)

χ(v0 , v2 , v4 , v8 , v10) (3.103)= −1 F3⇒ χ(v2 , v4 , v8 , v10, v11) = −1. (3.104)

χ(v0 , v3 , v6 , v7 , v10) (3.83)= 1 F9⇒ χ(v0 , v1 , v3 , v7 , v10) = −1
F8⇒ χ(v0 , v1 , v7 , v10, v11) = −1
F9⇒ χ(v0 , v2 , v7 , v10, v11) = −1
F4⇒ χ(v2 , v7 , v8 , v10, v11) = −1, (3.105)

χ(v0 , v1 , v3 , v7 , v10) (3.105)= −1 F8⇒ χ(v0 , v1 , v5 , v7 , v10) = −1
F7⇒ χ(v0 , v1 , v4 , v5 , v7 ) = −1
F2⇒ χ(v1 , v4 , v5 , v7 , v8 ) = −1
F7⇒ χ(v1 , v5 , v7 , v8 , v10) = 1
F8⇒ χ(v1 , v7 , v8 , v10, v11) = −1, (3.106)

χ(v0 , v2 , v4 , v7 , v10) (3.86)= 1 F4⇒ χ(v2 , v4 , v7 , v8 , v10) = −1
F8⇒ χ(v4 , v7 , v8 , v10, v11) = −1, (3.107)

With these values for the partial chirotope, we can find some new values of χ using the
Grassmann-Plücker-relations:
{χ(v8, v10, v11, v1, v2)χ(v8, v10, v11, v4, v7), χ(v8, v10, v11, v1, v4)χ(v8, v10, v11, v2, v7),

χ(v8, v10, v11, v1, v7)χ(v8, v10, v11, v2, v4)}
(3.107),(3.103),(3.105),(3.106),(3.104)= {χ(v1, v2, v8, v10, v11) · (−1),−1 · (−1),

(−1) · (−1)},
⇒ χ(v8, v10, v11, v1, v2) = 1 (3.108)

{χ(v8, v10, v11, v1, v2)χ(v8, v10, v11, v3, v9), χ(v8, v10, v11, v1, v3)χ(v8, v10, v11, v2, v9),
χ(v8, v10, v11, v1, v9)χ(v8, v10, v11, v2, v3)}

(3.108),(3.93),(3.95),(3.100),(3.101)= {1 · (−1),−χ(v8, v10, v11, v1, v3) · 1,
(−1) · 1},

⇒ χ(v1, v3, v8, v10, v11) = −1 (3.109)

{χ(v8, v10, v11, v0, v1)χ(v8, v10, v11, v3, v9), χ(v8, v10, v11, v0, v3)χ(v8, v10, v11, v1, v9),
χ(v8, v10, v11, v0, v9)χ(v8, v10, v11, v1, v3)}

(3.98),(3.93),(3.99),(3.100),(3.109)= {1 · (−1),−(−1) · (−1),
χ(v8, v10, v11, v0, v9) · (−1)},
⇒ χ(v8, v10, v11, v0, v9) = −1 (3.110)
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{χ(v8, v9, v10, v0, v2)χ(v8, v9, v10, v3, v11), χ(v8, v9, v10, v0, v3)χ(v8, v9, v10, v2, v11),
χ(v8, v9, v10, v0, v11)χ(v8, v9, v10, v2, v3)}

(3.102),(3.93),(3.90),(3.95),(3.110)= {1 · (−1),−1 · 1,
(−1) · χ(v8, v9, v10, v2, v3)},
⇒ χ(v8, v9, v10, v2, v3) = −1 (3.111)

{χ(v3, v9, v10, v2, v7)χ(v3, v9, v10, v8, v11), χ(v3, v9, v10, v2, v8)χ(v3, v9, v10, v7, v11),
χ(v3, v9, v10, v2, v11)χ(v3, v9, v10, v7, v8)}

(3.93),(3.111),(3.85),(3.81)= {χ(v3, v9, v10, v2, v7) · 1,−1 · 1,
0},

⇒ χ(v3, v9, v10, v2, v7) = 1 (3.112)

{χ(v8, v9, v11, v0, v2)χ(v8, v9, v11, v7, v10), χ(v8, v9, v11, v0, v7)χ(v8, v9, v11, v2, v10),
χ(v8, v9, v11, v0, v10)χ(v8, v9, v11, v2, v7)}

(3.95),(3.96),(3.95),(3.110),(3.97)= {1 · χ(v8, v9, v11, v7, v10),−(−1) · (−1),
1 · (−1)},

⇒ χ(v8, v9, v11, v7, v10) = 1 (3.113)

{χ(v3, v7, v10, v2, v4)χ(v3, v7, v10, v9, v11), χ(v3, v7, v10, v2, v9)χ(v3, v7, v10, v4, v11),
χ(v3, v7, v10, v2, v11)χ(v3, v7, v10, v4, v9)}

(3.94),(3.85),(3.112),(3.87),(3.85)= {1 · (−1),−1 · 1,
(−1) · χ(v3, v7, v10, v4, v9)},
⇒ χ(v3, v7, v10, v4, v9) = −1 (3.114)

{χ(v3, v7, v10, v1, v4)χ(v3, v7, v10, v9, v11), χ(v3, v7, v10, v1, v9)χ(v3, v7, v10, v4, v11),
χ(v3, v7, v10, v1, v11)χ(v3, v7, v10, v4, v9)}

(3.86),(3.85),(3.87),(3.88),(3.114)= {(−1) · (−1),−χ(v3, v7, v10, v1, v9) · (−1),
(−1) · (−1)},

⇒ χ(v3, v7, v10, v1, v9) = −1 (3.115)

{χ(v8, v9, v10, v0, v3)χ(v8, v9, v10, v7, v11), χ(v8, v9, v10, v0, v7)χ(v8, v9, v10, v3, v11),
χ(v8, v9, v10, v0, v11)χ(v8, v9, v10, v3, v7)}

(3.90),(3.113),(3.92),(3.93),(3.110)= {1 · (−1),−(−1) · (−1),
(−1) · χ(v8, v9, v10, v3, v7)},
⇒ χ(v8, v9, v10, v3, v7) = −1 (3.116)
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{χ(v7, v8, v9, v1, v3)χ(v7, v8, v9, v10, v11), χ(v7, v8, v9, v1, v10)χ(v7, v8, v9, v3, v11),
χ(v7, v8, v9, v1, v11)χ(v7, v8, v9, v3, v10)}

(3.83),(3.113),(3.91),(3.89),(3.116)= {(−1) · 1,−(−1) · χ(v7, v8, v9, v3, v11),
(−1) · 1},

⇒ χ(v7, v8, v9, v3, v11) = 1 (3.117)

Finally, we get the Grassmann-Plücker-relation

{χ(v3, v7, v9, v1, v8)χ(v3, v7, v9, v10, v11), χ(v3, v7, v9, v1, v10)χ(v3, v7, v9, v8, v11),
χ(v3, v7, v9, v1, v11)χ(v3, v7, v9, v8, v10)}

(3.83),(3.85),(3.115),(3.117),(3.84),(3.116)= {(−1) · 1,−1 · 1, (−1) · 1}, (3.118)

which is neither {0}, nor contains {−1, 1}. Therefore, the Grassmann-Plücker-relations cannot
be satisfied, whence the sphere (120

40) does not support an oriented matroid. Hence, it is non-
polytopal.

Proposition 3.2.13. The sphere (120
40) is fan-like and has a diagram based on each of the

facets F0, F1, F2, F3, F4, F5, F8, F9, and F10, but does not have a diagram based on F11.

Proof. We construct partial chirotopes as explained at the beginning of the chapter.

The resulting partial chirotopes for the different facets as bases of a diagram give already
the signs of 177 to 386 elements out of

(12
4
)

= 495, which is the size of an oriented matroid
for a diagram of (120

40). With SCIP we can find coordinates for the diagrams with bases F0,
F1, F2, F3, F4, F5, F8, F9, and F10, as well as for the fan-like embedding (see Figure 3.42),
while in the case F11 backtracking revealed that all chirotopes violate the Grassmann–Plücker
relations.

Remark. We could not decide the case of a star-shaped embedding, nor that of a diagram based
on F6, or F7, since in these cases oriented matroids exist, but we could not find coordinates.

Theorem 3.2.14. The sphere (121
40) is non-polytopal.

Proof. The proof of this theorem works the same way as described above: we construct a
partial chirotope for the oriented matroid of the respective sphere starting out with one sign
we may choose, and derive a contradiction from that.

From five points in a facet we get:

χ(v2 , v4 , v6 , v9 , v10) F10= 0. (3.119)
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(121
40)

F0 = {v0 , v5 , v7 , v10, v11}
F1 = {v1 , v4 , v5 , v9 , v11}
F2 = {v1 , v5 , v6 , v10, v11}
F3 = {v0 , v3 , v6 , v7 , v11}
F4 = {v2 , v4 , v5 , v8 , v9 }
F5 = {v2 , v6 , v7 , v10, v11}

F6 = {v1 , v3 , v6 , v9 , v11}
F7 = {v0 , v1 , v4 , v5 , v8 , v10}
F8 = {v2 , v3 , v6 , v7 , v8 , v9 }
F9 = {v0 , v3 , v5 , v8 , v9 , v11}
F10 = {v1 , v2 , v4 , v6 , v9 , v10}
F11 = {v0 , v2 , v3 , v4 , v7 , v8 , v10}

F5
v0 = (521, 4578, 4178)
v1 = (672, 1830, 3000)
v2 = (0, 0, 0)
v3 = (401, 6045, 1566)
v4 = (86, 380, 985)
v5 = (665, 2997, 3461)
v6 = (1000, 0, 0)
v7 = (489, 9490, 566)
v8 = (583973976764177/2663388909400,

3674158187655449/2130711127520, 1859)
v9 = (416, 1241, 1414)
v10 = (458, 561, 9801)
v11 = (689, 2862, 3212)
F6
v0 = (5836, 459, 9688)
v1 = (3027, 3506, 2175)
v2 = (1926, 1192, 1673)
v3 = (5839, 58, 9971)
v4 = (2793, 3230, 2045)
v5 = (4325, 5528, 3616)
v6 = (1000, 0, 0)
v7 = (3878, 136, 5878)
v8 = (4923105551293448/1175442365237,

1329420300780956/1175442365237, 6391)
v9 = (0, 0, 0)
v10 = (3047, 3422, 2253)
v11 = (7588, 9974, 6203)

F7
v0 = (0, 0, 0)
v1 = (4047, 2473, 5124)
v2 = (5674, 4092, 7945)
v3 = (1248, 1140, 1564)
v4 = (7991, 9933, 9605)
v5 = (1000, 0, 0)
v6 = (3748, 1615, 5027)
v7 = (2001, 176, 3252)
v8 = (221733789996629/79162757410,

418107710362426/39581378705, 357)
v9 = (3845, 2457, 4849)
v10 = (5770, 91, 9945)
v11 = (2604, 236, 3411)

Figure 3.42: These are the facet list and the diagrams (resp. coordinates for these) with
bases F5, F6, and F7 of the second of the three 3-spheres with f -vector (12, 40, 40, 12) that
were found by our enumeration and not described before. This sphere is self-dual and non-
polytopal.
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Figure 3.43: These are the facets of the sphere (121
40) from F0 (top left) to F11 (bottom right).
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From facet F0 (see Figure 3.43) we may choose χ(v0 , v5 , v10, v11, vi ) = 1, where vi 6∈ F0.
With this we can derive:

χ(v0 , v3 , v5 , v10, v11) = −1 F9⇒ χ(v0 , v3 , v5 , v6 , v11) = −1
F3⇒ χ(v0 , v3 , v6 , v8 , v11) = 1
F9⇒ χ(v0 , v3 , v4 , v8 , v11) = 1
F11⇒ χ(v0 , v3 , v4 , v5 , v8 ) = −1
F7⇒ χ(v0 , v2 , v4 , v5 , v8 ) = −1
F11⇒ χ(v0 , v2 , v4 , v8 , v9 ) = 1
F4⇒ χ(v2 , v4 , v6 , v8 , v9 ) = 1
F8⇒ χ(v2 , v6 , v8 , v9 , v10) = −1, (3.120)

χ(v0 , v1 , v5 , v10, v11) = −1 F7⇒ χ(v0 , v1 , v5 , v7 , v10) = 1
F0⇒ χ(v0 , v2 , v5 , v7 , v10) = 1
F11⇒ χ(v0 , v2 , v6 , v7 , v10) = 1
F5⇒ χ(v2 , v6 , v7 , v9 , v10) = −1
F10⇒ χ(v2 , v6 , v9 , v10, v11) = −1, (3.121)

χ(v0 , v4 , v5 , v10, v11) = −1 F7⇒ χ(v0 , v4 , v5 , v7 , v10) = 1
F11⇒ χ(v0 , v1 , v4 , v7 , v10) = −1
F7⇒ χ(v0 , v1 , v4 , v9 , v10) = −1
F10⇒ χ(v1 , v4 , v9 , v10, v11) = −1, (3.122)

χ(v0 , v5 , v6 , v10, v11) = 1 F2⇒ χ(v5 , v6 , v9 , v10, v11) = 1, (3.123)

χ(v0 , v3 , v5 , v10, v11) = −1 F9⇒ χ(v0 , v3 , v5 , v7 , v11) = −1
F0⇒ χ(v0 , v5 , v7 , v9 , v11) = −1
F9⇒ χ(v0 , v1 , v5 , v9 , v11) = 1
F1⇒ χ(v1 , v5 , v9 , v10, v11) = −1, (3.124)

χ(v0 , v1 , v5 , v10, v11) = −1 F7⇒ χ(v0 , v1 , v5 , v6 , v10) = 1
F2⇒ χ(v1 , v5 , v6 , v9 , v10) = −1
F10⇒ χ(v1 , v6 , v9 , v10, v11) = 1, (3.125)

χ(v0 , v5 , v7 , v9 , v11) (3.124)= −1 F9⇒ χ(v0 , v4 , v5 , v9 , v11) = 1
F1⇒ χ(v4 , v5 , v9 , v10, v11) = −1, (3.126)

χ(v0 , v3 , v6 , v8 , v11) (3.120)= 1 F9⇒ χ(v0 , v2 , v3 , v8 , v11) = −1
F11⇒ χ(v0 , v2 , v3 , v8 , v9 ) = −1
F8⇒ χ(v2 , v3 , v8 , v9 , v10) = −1, (3.127)
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χ(v0 , v2 , v4 , v8 , v9 ) (3.120)= 1 F4⇒ χ(v2 , v4 , v8 , v9 , v10) = 1, (3.128)

χ(v0 , v2 , v3 , v8 , v9 ) (3.127)= −1 F9⇒ χ(v0 , v3 , v6 , v8 , v9 ) = 1
F8⇒ χ(v3 , v6 , v8 , v9 , v10) = 1, (3.129)

χ(v0 , v2 , v4 , v5 , v8 ) (3.120)= −1 F4⇒ χ(v2 , v4 , v5 , v8 , v10) = −1
F11⇒ χ(v1 , v2 , v4 , v8 , v10) = −1
F7⇒ χ(v1 , v3 , v4 , v8 , v10) = −1
F11⇒ χ(v3 , v4 , v8 , v9 , v10) = 1, (3.130)

With these values for the partial chirotope, we can find some new values of χ using the
Grassmann-Plücker-relations:

{χ(v8, v9, v10, v2, v3)χ(v8, v9, v10, v4, v6), χ(v8, v9, v10, v2, v4)χ(v8, v9, v10, v3, v6),
χ(v8, v9, v10, v2, v6)χ(v8, v9, v10, v3, v4)}

(3.127),(3.128),(3.129),(3.120),(3.130)= {(−1) · χ(v8, v9, v10, v4, v6),−1 · 1,
(−1) · 1},

⇒ χ(v8, v9, v10, v4, v6) = −1, (3.131)

{χ(v9, v10, v11, v1, v4)χ(v9, v10, v11, v5, v6), χ(v9, v10, v11, v1, v5)χ(v9, v10, v11, v4, v6),
χ(v9, v10, v11, v1, v6)χ(v9, v10, v11, v4, v5)}

(3.122),(3.123),(3.124),(3.125),(3.126)= {(−1) · 1,−(−1) · χ(v9, v10, v11, v4, v6),
1 · (−1)},

⇒ χ(v9, v10, v11, v4, v6) = 1, (3.132)

Finally, we get the Grassmann-Plücker-relation

{χ(v6, v9, v10, v2, v4)χ(v6, v9, v10, v8, v11), χ(v6, v9, v10, v2, v8)χ(v6, v9, v10, v4, v11),
χ(v6, v9, v10, v2, v11)χ(v6, v9, v10, v4, v8)}

(3.119),(3.120),(3.132),(3.121),(3.131)= {0,−1 · (−1),
1 · 1}, (3.133)

which is neither {0}, nor contains {−1, 1}. Therefore, the Grassmann-Plücker-relations cannot
be satisfied, whence the sphere (121

40) does not support an oriented matroid. Hence, it is non-
polytopal.

Proposition 3.2.15. The sphere (121
40) has a diagram based on F5, F6, and F7, but does not

have a diagram based on one of the facets F0, F1, F3, F4, F8, F9, F10, and F11. Furthermore,
it is not fan-like.

Proof. We construct partial chirotopes as explained at the beginning of the chapter.
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The resulting partial chirotopes for the different facets as bases of a diagram give already
the signs of 177 to 386 elements out of

(12
4
)

= 495, which is the size of an oriented matroid
for a diagram of (121

40). With SCIP we can find coordinates for the diagrams with bases F5,
F6, and F7 (see Figure 3.42), while in the other cases we get certificates of non-realisability:

• F3 and F11: the Grassmann–Plücker relations fail;

• F0, F1, F8, and F9: the partial chirotope obtained from orienting and the Grassmann–
Plücker relations has a bfp;

• F4 and F10: backtracking reveals that every partial chirotope, and hence every oriented
matroid, either has a bfp, or fails the Grassmann–Plücker relations.

For the case of the fan-like embedding, we constructed a partial chirotope and tested via
backtracking all partial chirotopes with a size of at least 15% of the size of an oriented
matroid for this case (

(13
5
)

= 1287) for the existence of a bfp and all of them turned out to
have one. Therefore, there is no oriented matroid for this case and (121

40) has no fan-like
embedding.

Remark. We could not decide, whether the sphere (121
40) has a diagram based on F2, since in

that case oriented matroids without a bfp exist, but we coul not find coordinates.

Theorem 3.2.16. The sphere (122
40) is non-polytopal.

Proof. The proof of this theorem works the same way as described above: we construct a
partial chirotope for the oriented matroid of the respective sphere starting out with one sign
we may choose, and derive a contradiction from that.

From the tetrahedron facet F0 we may choose χ(v2 , v5 , v9 , v11, vi ) = −1, where vi 6∈ F0.
With this we can derive:

χ(v2 , v3 , v5 , v9 , v11) = 1 F11⇒ χ(v3 , v5 , v9 , v10, v11) = −1, (3.134)

χ(v1 , v2 , v5 , v9 , v11) = −1 F10⇒ χ(v0 , v1 , v2 , v5 , v11) = 1
F11⇒ χ(v0 , v1 , v5 , v6 , v11) = −1
F10⇒ χ(v1 , v5 , v6 , v8 , v11) = 1
F4⇒ χ(v1 , v6 , v8 , v9 , v11) = 1
F6⇒ χ(v6 , v8 , v9 , v10, v11) = −1, (3.135)

χ(v0 , v1 , v2 , v5 , v11) (3.135)= 1 F11⇒ χ(v0 , v1 , v4 , v5 , v11) = 1
F5⇒ χ(v0 , v1 , v3 , v4 , v11) = −1
F3⇒ χ(v0 , v3 , v4 , v9 , v11) = −1
F11⇒ χ(v0 , v3 , v6 , v9 , v11) = −1
F6⇒ χ(v3 , v6 , v9 , v10, v11) = 1, (3.136)
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Figure 3.44
(122

40)
F0 = {v2 , v5 , v9 , v11}
F1 = {v0 , v4 , v7 , v9 , v10}
F2 = {v0 , v3 , v8 , v9 , v10}
F3 = {v0 , v3 , v4 , v8 , v11}
F4 = {v1 , v4 , v6 , v8 , v11}
F5 = {v0 , v1 , v4 , v7 , v11}

F6 = {v2 , v3 , v6 , v8 , v9 , v11}
F7 = {v0 , v2 , v4 , v6 , v8 , v10}
F8 = {v2 , v5 , v7 , v8 , v9 , v10}
F9 = {v1 , v4 , v5 , v6 , v7 , v10}
F10 = {v1 , v2 , v5 , v6 , v10, v11}
F11 = {v0 , v1 , v3 , v5 , v7 , v9 , v11}

F4
v0 = (60, 109, 3)
v1 = (31291466/6900155,
24661781/6900155, 1/10)
v2 = (20, 52, 156)
v3 = (44, 146, 15)
v4 = (100, 0, 0)
v5 = (11, 8, 14)
v6 = (0, 0, 298)
v7 = (22, 7, 1)
v8 = (32, 89, 116)
v9 = (36, 103, 39)
v10 = (20, 14, 139)
v11 = (0, 305, 0)
F6
v0 = (1736, 8768, 2375)
v1 = (8998, 8341, 821)
v2 = (9878, 55, 9929)
v3 = (47, 9536, 872)
v4 = (4435, 9019, 4749)
v5 = (40929711125/8014191, 1294, 3878)
v6 = (9572, 9287, 9878)
v7 = (12907764250/2811809, 1959, 4041)
v8 = (114, 9938, 9934)
v9 = (130, 53, 69)
v10 = (6414, 3625, 6500)
v11 = (9961, 9938, 48)
F7
v0 = (0, 0, 0)
v1 = (156, 229, 296)
v2 = (107, 299, 262)
v3 = (5, 8, 18)
v4 = (100, 0, 0)
v5 = (3084285/37657, 274, 125)

v6 = (183, 311, 397)
v7 = (87781/1491, 235, 41)
v8 = (29, 28, 314)
v9 = (11, 89, 14)
v10 = (30, 394, 40)
v11 = (139, 193, 269)
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F8
v0 = (−900,−360, 390)
v2 = (−657, 1663, 59)
v4 = (−648,−392, 490)
v6 = (−650, 500, 250)
v8 = (−868, 262, 202)
v10 = (−600,−410, 2000)
v1 = (−29280086/12100455,
64710914/4033485, 1)
v3 = (−937, 30,−28)
v5 = (530,−470,−25)
v7 = (−300,−480, 360)
v9 = (−1194,−509,−769)
v11 = (−70, 190,−95)

Figure 3.44: These are the facet list and the diagrams (resp. coordinates for these) with bases
F4, F6, F7, and F8 of the third of the 3-spheres with f -vector (12, 40, 40, 12) that were found
by our enumeration and not described before. This sphere is self-dual and non-polytopal.

χ(v0 , v1 , v4 , v5 , v11) (3.136)= 1 F5⇒ χ(v0 , v1 , v4 , v8 , v11) = 1
F3⇒ χ(v0 , v2 , v4 , v8 , v11) = 1
F7⇒ χ(v0 , v2 , v3 , v4 , v8 ) = 1
F3⇒ χ(v0 , v3 , v4 , v8 , v10) = −1
F2⇒ χ(v0 , v2 , v3 , v8 , v10) = 1
F7⇒ χ(v0 , v2 , v8 , v9 , v10) = −1
F2⇒ χ(v0 , v5 , v8 , v9 , v10) = −1
F8⇒ χ(v5 , v8 , v9 , v10, v11) = −1, (3.137)

χ(v0 , v2 , v3 , v4 , v8 ) (3.137)= 1 F3⇒ χ(v0 , v3 , v4 , v8 , v9 ) = −1
F2⇒ χ(v0 , v2 , v3 , v8 , v9 ) = 1
F6⇒ χ(v2 , v3 , v8 , v9 , v10) = 1
F2⇒ χ(v3 , v8 , v9 , v10, v11) = 1, (3.138)

χ(v0 , v3 , v4 , v8 , v10) (3.137)= −1 F7⇒ χ(v0 , v4 , v8 , v9 , v10) = −1
F1⇒ χ(v0 , v4 , v6 , v9 , v10) = −1
F7⇒ χ(v0 , v4 , v5 , v6 , v10) = 1
F9⇒ χ(v4 , v5 , v6 , v10, v11) = 1
F10⇒ χ(v5 , v6 , v9 , v10, v11) = 1. (3.139)
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With these values for the partial chirotope, we get the Grassmann-Plücker-relation

{χ(v9, v10, v11, v3, v5)χ(v9, v10, v11, v6, v8), χ(v9, v10, v11, v3, v6)χ(v9, v10, v11, v5, v8),
χ(v9, v10, v11, v3, v8)χ(v9, v10, v11, v5, v6)}

(3.134),(3.135),(3.136),(3.137),(3.138),(3.139)= {(−1) · (−1),−1 · (−1),
1 · 1}, (3.140)

which is neither {0}, nor contains {−1, 1}. Therefore, the Grassmann-Plücker-relations cannot
be satisfied, whence the sphere (122

40) does not support an oriented matroid. Hence, it is non-
polytopal.

Proposition 3.2.17. The sphere (122
40) has a diagram based on F4, F6, F7, and F8, but does

not have a diagram based on one of the facets F0, F1, F2, F10, and F11.

Proof. We construct partial chirotopes as explained at the beginning of the chapter.

The resulting partial chirotopes for the different facets as bases of a diagram give already
the signs of 348 to 402 elements out of

(12
4
)

= 495, which is the size of an oriented matroid for a
diagram of (122

40). With SCIP we can find coordinates for the diagrams with bases F4, F6, F7,
and F8 (see Figure 3.44), while in the cases F0, F1, F2, F10, and F11 the Grassmann–Plücker
relations fail.

Remark. We could not decide, whether the sphere (122
40) has a diagram based on F3, F5, or F9,

since in these cases oriented matroids without a bfp exist, but we could not find coordinates.
For the fan-like embedding, we checked via backtracking some of the partial chirotopes, they
all have a bfp. However, we could only check a tiny fraction of the entire search tree. Since
we could not find coordinates either, this case remains open.

3.3 Diagrams and Embeddability

Polytopes have a lot of structure and come together with several properties, for example they
are shellable, have a Schlegel diagram, and are star-shaped (see e.g. [35] or [76]). Trivially, all
polytopal spheres have these properties as well, but also non-polytopal spheres can have some
of these. In this section we will prove relations between these properties and give examples
for the failure of other properties. For a better visualisation, we will draw a chart that depicts
all implications from polytopes on the one side to spheres on the other side (see Figure 3.46).

A classical example of a non-polytopal sphere is the Barnette sphere. This sphere is also
a first example of a sphere that has some diagram, but not with every facet as base (see [31,
Sec. III.4] for the proof and Figure 3.45 for the facet list and a diagram).

At the beginning of this chapter we have seen that for simplicial spheres the notions of star-
shaped embedding and fan-like embedding are equivalent, but we have seen in Section 3.2 that
this does not hold in general (Proposition 3.2.11). Another connection between the properties
of Figure 3.46 that does not hold in general, but for simplicial spheres, is that the existence
of a diagram implies the existence of a star-shaped embedding.
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{1, 3, 5, 7}, {1, 2, 3, 4}, {3, 4, 5, 6},
{1, 2, 5, 6}, {1, 2, 4, 7}, {1, 3, 4, 7},
{3, 4, 6, 7}, {3, 5, 6, 7}, {1, 2, 5, 7},
{2, 5, 6, 7}, {2, 4, 6, 7}, {1, 2, 3, 8},
{2, 3, 4, 8}, {3, 4, 5, 8}, {4, 5, 6, 8},
{1, 2, 6, 8}, {1, 5, 6, 8}, {1, 3, 5, 8},
{2, 4, 6, 8}

Figure 3.45: The Barnette Sphere: on the left is a list with the facets, and on the right a
diagram is shown.

polytopal

all diagrams

star-shaped

some diagram

fan-like

embeddable

sphere

Figure 3.46: This diagram shows the implications that hold between polytopes, diagrams,
embeddability and spheres.

Proposition 3.3.1. Let S be a d-sphere with a diagram based on the facet F ∈ S and with
a vertex v ∈ F , such that every facet F ′ ∈ S that contains v is a pyramid with apex v. Then
S is also star-shaped. This holds in particular for simplicial spheres.

Proof. The proof is essentially the same as the one in [31, Sec. III.5] for the fact that the
Barnette sphere is star-shaped. The diagram with base F gives a polyhedral embedding of
S\F into Rd. If we now lift this onto a hyperplane in Rd+1 and move v out of this hyperplane,
then the facets containing v remain convex polytopes and do not change combinatorics, since
they are pyramids with apex v. In total, we obtain a pyramid with apex v and base S \ v,
which is star-shaped.

The known connections between all the properties introduced in this section are depicted in
Figure 3.46. For many of the “missing” implications of that chart there are counterexamples,
but not for all of them.

Conjecture 2. Figure 3.46 is complete in the sense that missing implications do not hold in
general.

Theorem 3.3.2 (Ewald [31, Thm. 5.7]). The Ewald sphere from Figure 3.47 is fan-like, but
not polyhedrally embeddable into any Rk.
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Proposition 3.3.3. None of the implications of Figure 3.46 holds in the other direction as
well. Furthermore, we have:

polyhedrally embeddable 6⇒ fan-like,
polyhedrally embeddable 6⇒ some diagram,

fan-like 6⇒ polyhedrally embeddable,
some diagram 6⇒ polyhedrally embeddable,
some diagram 6⇒ fan-like,

fan-like 6⇒ all diagrams,
star-shaped 6⇒ all diagrams.

Proof. For this proof we use four examples: the Barnette Sphere (Figure 3.45), the Ewald
Sphere (Figure 3.47), the sphere obtained from gluing two copies of the Barnette Sphere along
a facet that does not serve as a base of a diagram (this construction is from [31, Thm. 5.5]),
and the sphere (100

32,33) from Figure 3.35.

The Barnette Sphere has some diagram, but not all, it is star-shaped, but not polytopal
(Proposition 3.3.1, see also [31, Sec. III.5]). Therefore, it shows:

star-shaped 6⇒ all diagrams,
star-shaped 6⇒ polytopal,

fan-like 6⇒ all diagrams,
some diagram 6⇒ all diagrams.

The Ewald Sphere has a diagram based on every facet (see Figure 3.47), it is fan-like, but not
polyhedrally embeddable, hence not star-shaped (Theorem 3.3.2). Therefore, it shows:

all diagrams 6⇒ polytopal,
all/some diagram(s) 6⇒ star-shaped,
all/some diagram(s) 6⇒ polyhedrally embeddable,

fan-like 6⇒ polyhedrally embeddable,
fan-like 6⇒ star-shaped,
sphere 6⇒ polyhedrally embeddable.

The gluing of the two copies of the Barnette Sphere is polyhedrally embeddable, but not fan-
like [31, Thm. 5.7]. Furthermore, it does not have any diagram, since every diagram would
include a diagram of one of the copies of the Barnette Sphere based on the facet along it was
glued to the other sphere, which does not exist by construction. Therefore, it shows:

polyhedrally embeddable 6⇒ fan-like,
polyhedrally embeddable 6⇒ star-shaped,
polyhedrally embeddable 6⇒ all/some diagram(s),

sphere 6⇒ fan-like,
sphere 6⇒ some diagram.
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The sphere (100
32,33) has some diagrams, but is not fan-like (Proposition 3.2.2). Therefore, it

shows:

some diagram 6⇒ fan-like.

Remark. To finish the proof of Conjecture 2 we would need to show the following:

all diagrams 6⇒ fan-like,
fan-like 6⇒ some diagram,

star-shaped 6⇒ some diagram.

However, at the moment we do not have any example or at least a candidate at hand that
would show one of these.
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Figure 3.47
Ewald Sphere
F0: {v1, v2, v3, v4}
F1: {v1, v2, v3, v8}
F2: {v1, v2, v4, v5, v6}
F3: {v1, v3, v4, v5, v7}
F4: {v2, v3, v4, v7}

F5: {v2, v4, v6, v7}
F6: {v1, v2, v5, v6, v8}
F7: {v1, v3, v5, v7, v8}
F8: {v2, v3, v6, v7, v8}
F9: {v4, v5, v6, v7, v8}

F0
v0 = (−160, 190, 70)
v1 = (−138, 1020,−120)
v2 = (−143011/595,

−79, 401)
v3 = (240,−40,−50)
v4 = (−280,−2, 18)
v5 = (−220, 210, 20)
v6 = (−230, 80, 160)
v7 = (−22258/4585, 1, 1)

F1
v0 = (−13, 13,−3)
v1 = (−8,−12,−24)
v2 = (−20.6046511627907,

−18, 0)
v3 = (334/21,−4, 7)
v4 = (−7,−11,−6)
v5 = (−10,−2,−11)
v6 = (−15,−5,−2)
v7 = (0, 0, 0)

F2
v0 = (−13,−1,−8)
v1 = (−18,−16,−10)
v2 = (−7,−12,−21)
v3 = (−93/13,−8.5,−5.5)
v4 = (8, 1, 7)
v5 = (−22,−1, 1)
v6 = (−2095/209, 8,−9)
v7 = (0, 0, 0)

F3
v0 = (11, 2, 12)
v1 = (13, 16, 36)
v2 = (15, 18, 15)
v3 = (−2, 19, 16)
v4 = (28, 20, 3)
v5 = (17,−8, 18)
v6 = (2177/135, 10, 11)
v7 = (2/89, 1, 1)

F4
v0 = (20, 25, 20)
v1 = (5, 50, 38)
v2 = (98,−2,−1)
v3 = (−135/52, 99, 0)
v4 = (−2,−2, 99)
v5 = (5, 31, 35)
v6 = (11639/195, 0, 12)
v7 = (0, 0, 0)

F5
v0 = (−1, 4, 42)
v1 = (24, 25, 6)
v2 = (44988/547,−11,−12)
v3 = (12800/557, 14,−4)
v4 = (−14, 88,−13)
v5 = (−2, 28, 29)
v6 = (−14,−12, 87)
v7 = (0, 0, 0)
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F6
v0 = (−11,−41, 103)
v1 = (−47, 60,−67)
v2 = (69, 17,−50)
v3 = (−7629/1946, 15,−9)
v4 = (16,−3,−27)
v5 = (−53,−16,−47)
v6 = (4093/36,−5,−42)
v7 = (0, 0, 0)

F7
v0 = (1, 14, 40)
v1 = (12,−21, 26)
v2 = (11,−4, 25)
v3 = (3722/169,−2, 11)
v4 = (0,−6, 11)
v5 = (−10,−17, 13)
v6 = (934/217,−1, 21)
v7 = (0, 0, 0)

F8
v0 = (11,−1, 90)
v1 = (6, 19, 6)
v2 = (7, 23,−1)
v3 = (21/59, 16, 3)
v4 = (20, 12, 6)
v5 = (18, 12, 10)
v6 = (22, 13, 6)
v7 = (0, 0, 0)

F9
v0 = (−3, 12, 31)
v1 = (−8, 19, 9)
v2 = (5, 22, 12)
v3 = (5/7, 11, 9)
v4 = (3, 24,−8)
v5 = (−18, 23, 5)
v6 = (37/3, 30, 12)
v7 = (0, 0, 0)

Figure 3.47: These are the facet list and diagrams based on every facet of the Ewald Sphere.
See also [31, Thm. 5.3].
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit den f -Vektoren von 4-dimensionalen Polytopen
und deren Verallgemeinerungen (3-Sphären/3-Mannigfaltigkeiten und Eulersche Verbände
von Rang 5). Die Beschreibung der Menge aller f -Vektoren von d-Polytopen, d ≥ 4 (der
Fall d = 3 wurde 1906 von Ernst Steinitz gelöst) ist eines der großen offenen Probleme der
Diskreten Geometrie. Damit eng verbunden ist die Frage, ob 4-Polytope und 3-Sphären
die gleichen Mengen von f -Vektoren haben, oder wo Unterschiede bestehen. Dies ist ins-
besondere deshalb spannend, da zwar schon lange bekannt ist, dass die Menge der kombina-
torischen Typen von 3-Sphären echt größer ist als die Menge von kombinatorischen Typen von
4-Polytopen (vgl. Introduction S. 5), und es auch einfach zu zeigen ist, dass in höheren Di-
mensionen Mannigfaltigkeiten f -Vektoren haben können, die nicht bei Polytopen auftauchen
(Theorem 1.1.11), es aber bisher noch kein Beispiel eines f -Vektors, der f -Vektor einer 3-
Sphäre aber nicht eines 4-Polytops ist, gibt.

Kapitel 1 beschäftigt sich mit Ungleichungen, die für die Menge der f -Vektoren (oder etwas
spezieller der Menge der Fahnenvektoren) von Polytopen, Sphären und Mannigfaltigkeiten
gelten. Dabei zeige ich, dass Mannigfaltigkeiten f -Vektoren haben können, die bei Polytopen
nicht auftauchen (Theorem 1.1.11), sowie einige neue Ungleichungen für die Mengen der f -
Vektoren, bzw. Fahnenvektoren, von speziellen Klassen von 3-Sphären (Propositions 1.2.3
und 1.2.7, Lemma 1.2.8, und Corollary 1.2.9).

Kapitel 2 und 3 verfolgen eine andere Strategie, um Unterschiede in den Mengen der f -
Vektoren von 4-Polytopen und 3-Sphären zu zeigen: ich stelle einen Algorithmus vor, mit dem
alle 3-Mannigfaltigkeiten mit gegebenem f -Vektor enumeriert werden können, und bei einigen
von ihnen zeige ich, dass alle Sphären mit diesem f -Vektor nichtpolytopal sind. Das heißt,
ich beweise, dass die Menge der f -Vektoren von 4-Polytopen eine echte Teilmenge derjenigen
von f -Vektoren von 3-Sphären ist (Theorem 3.2).
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