
4 From Kirchhoff Prestack Depth Migra-

tion to Fresnel Volume Migration

With the rapid enhancement of computing power and the refinement of the algo-

rithms in the last three decades, migration of reflection seismic data became more

and more popular to image the subsurface. Thereby, the final goal is to obtain

detailed images of the geological and tectonic structures in the subsurface by repo-

sitioning the measured reflections and diffractions to their correct position at depth.

Two different approaches to implement migration are generally used: A kinematic

scheme based on ray theory or a dynamic migration procedure based on wave theory.

The latter consists of two steps. Firstly, a back propagation of the recorded wavefield

in time down into the subsurface has to be done. Secondly, as the actual imaging

step, the seismic energy has to be placed at the subsurface point at the travel time

from the source to this subsurface point.

For wavefield back propagation, three main techniques are differentiated and all of

them are commonly used in practice (e.g. Sheriff & Geldart, 1995). The genus

of frequency-wavenumber migration involves techniques such as Fourier transform

migration (e.g. Stolt, 1978) and phase-shift migration (Gazdag, 1978; Gazdag &

Squazzero, 1984) depending on whether they work in the frequency-offset domain or

in the f-k domain. The disadvantages of the latter methods are, that some of them

are either unable to handle lateral velocity variations or they are computationally

expensive (e.g. Guo & Fagin, 2002). Claerbout (1976) made the pioneer work with

numerical finite-difference (FD) solutions of the wave equation. This method is

commonly known as the finite-difference method of wave equation migration. In

this thesis the the Kirchhoff method, based on an integral solution of the wave

equation (Schneider, 1978), was used.

As an extention of Kirchhoff Prestack Depth Migration, a new approach was imple-

mented in order to improve the images. This so-called Fresnel Volume Migration

is based on the restriction of the migration operator to enhance that portion of

the signal which physically contributes to a reflection event within the migration

scheme.
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The idea to limit the operator in such a way is not new. Several methods to solve

this problem have been investigated in the past, especially with the aim to overcome

problems with migration artifacts due to a limited aperture. Most of these applica-

tions work with information about the wave direction when it reaches the receivers.

The slowness-weighted diffraction stack, firstly presented by Milkereit (1987a), was

only applied to wide-angle data by Van Avendonk (2004) until now. Another re-

striction method is given by the Gaussian beam migration (Hill, 1990; Gray, 2005)

where the amplitudes are summed within a downward propagated Gaussian beam

which broadens with increasing depth. A similar approach to the Fresnel Volume

Migration, the wavepath migration, was proposed by Sun & Schuster (2001, 2003).

In contrast to Fresnel Volume Migration, they worked with additional approxima-

tions which are: the use of a ray tracing algorithm which is part of a general seismic

inversion technique for travel time estimation and the application of a slant stack

to smear amplitudes of more than one trace along the same wavepath.

The first three sections of this chapter outline an overview of the Kirchhoff Prestack

Depth Migration procedure as well as a detailed discussion of the influence of the

velocity information to the migration results. A detailed insight into the Kirch-

hoff migration scheme and the integral solution of the wave equation is given by

Schneider (1978), Müller (1997) and Schleicher et al. (1993). The extension of

Kirchhoff Prestack Depth Migration to Fresnel Volume Migration including the cor-

responding preparatory work is described in the sections 4.4 - 4.6. A number of

modelling studies with respect to Fresnel Volume Migration can be found in Lüth

et al. (2005) and Heigel (2005).

4.1 Kirchhoff Prestack Depth Migration

In 1954, Hagedoorn developed the first version of diffraction stack migration by man-

ually constructing diffraction curves (curves of maximum convexity). His consider-

ations provide the basis for modern Kirchhoff Prestack Depth Migration schemes

assuming that reflectors are build up of closely spaced diffraction points.

A single diffraction point PD in the subsurface acts as a Huygen’s secondary source

which maps onto a diffraction hyperbola in the time section if it is placed in a

constant velocity medium. This hyperbola, generally called diffraction curve (2D)

or diffraction surface (3D) in inhomogeneous media, collects all data samples with

the respective travel time from source to diffractor and back to the ith receiver

(tS + tRi , i = 1, . . . , n). The summation of all amplitudes along the diffraction curve

yields a value which is then assigned to the respective subsurface point. At last,

this leads to an image of the diffraction point itself at the correct position within
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Figure 4.1: A single diffractor located in a medium with constant velocity illustrates the

principle of diffraction stack.

the resulting depth section. Figure 4.1 demonstrates this procedure. Here, the

diffraction curve is illustrated as a red line in the shot gather. The latter results

from a single shot (red star) where the signals were recorded by several equally

spaced receivers (blue triangles). The black circle marks the diffraction point PD.

For a reflector, consisting of closely spaced diffraction points (Figure 4.2 (a)), the

diffraction curves superimpose and diffractions within the time section are only vis-

ible at both ends of the reflection event (Figure 4.2 (b)). This illustration indicates

how the method works in principle. Firstly, diffraction curves for any given sub-

surface point (usually predefined as a dense grid) have to be calculated. Then, the

amplitudes have to be summed along these curves. Thereby, the summation of co-

herent signals results in high values (constructive interference), whereas the sum of

noise is very small (destructive interference). At last, the results have to be placed

to the corresponding depth points within the grid.

An enhancement of the above method is provided by the Kirchhoff Prestack Depth
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Figure 4.2: If the diffraction points are spaced closely enough, the corresponding diffraction

curves superimpose and diffractions are only evident at both ends of the reflection (from

Yilmaz, 2001).

Migration method which is in principle a weighted diffraction stack. It is based on

the Kirchhoff integral solution (Schneider, 1978) of the wave equation

∇2u =
1

v2

∂2u

∂t2
. (4.1)

where u is the wavefield and v denotes the wave velocity. Equation 4.1 represents

a scalar form of the wave equation. The solution of equation (4.1) in form of the

Kirchhoff integral describes the wavefield at any subsurface point within the medium.

This can be done by spatial integration of the weighted time derivatives of the wave-

field at the point of observation (usually the geophone location at the surface). The

migrated section V (~m) at any subsurface point ~m(x, y, z) can then be formulated

in the most general case as a surface integral over the aperture A (e.g. Schleicher

et al., 1993)

V (~m) =
−1

2π

∫

A

∫
w(~m, ~x) u̇(~x, tS + tR) d~x . (4.2)

The weight function w(~m, ~x) in equation (4.2) is used to account for the correct treat-

ment of amplitudes during the back propagation of the wavefield (Goertz, 2002), i.e.

it involves the adjustment of the amplitudes for obliquity and geometrical spreading.

In order to correctly recover the source pulse, the time derivative of the input wave-

field u̇(~x, tS + tR) is needed (Newman, 1975) where tS( ~xS , ~m) and tR(~m, ~xR) are the
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travel times from the source at position ~xS to the image point in the subsurface and

from the latter to the receiver at ~xR, respectively. The step by step evolution from

Hagedoorn’s principle to modern Kirchhoff methods is well explained in Bleistein

(1999) and Bleistein & Gray (2001).

4.2 Travel time estimation

Kirchhoff Prestack Depth Migration requires travel time information since it is im-

plemented as a weighted stack of the time derivatives of the recorded wavefield along

diffraction curves. For this purpose, a method has to be chosen which provides both,

an accurate solution valid for the frequency content of the recorded seismic signals

and a robust travel time determination taking into account the complexity of the

velocity model. Most of the proposed techniques are based on the solution of the

eikonal equation which describes wave propagation in a high frequency approxima-

tion of the scalar wave equation (e.g. Červený & Hron, 1980). Two different velocity

models for each area of interest were used in this work: the first one is generated by

westward extending a reliable model for the forearc region at 23.25◦S and the second

one is obtained using the velocity information from wide-angle investigations. In this

section these velocity models are presented and discussed and a brief introduction

of the travel time calculation procedure is given.

4.2.1 Modelling of the velocity fields

A reliable velocity model was provided for the eastern part of line SO104-13 including

the trench region as well as the subsurface below the lower and middle continental

slope (Caesar R. Ranero, IFM-Geomar, Kiel, pers. comm.). This model of the

velocity structure in the trench and forearc region enabled to build extended models

for both areas of interest. This is done by assuming that the overall velocity structure

does not change significantly from south to north. This assumption is also supported

by the observations from wide-angle measurements presented in Patzwahl (1998).

The exact depth of the ocean bottom seaward of the trench was determined by mi-

grating the data with a constant water velocity of approximately 1500 m/s. Then,

the ocean bottom was picked manually within the obtained depth images. At last,

the subsurface velocities were determined by extending the existent velocity infor-

mation using the same gradient. The resultant models (denoted IFM-model in the

following) for line SO104-07 and line SO104-13 are illustrated in Figures 4.3(a) and

(b), respectively. The maximum velocity (about 7500-8000 m/s) is found below the
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Figure 4.3: 2D velocity models used for Kirchhoff Prestack Depth Migration, where (a)

is the model for line SO104-07 and (b) for line SO104-13, respectively. The eastern part

of the lower model (line SO104-13) which included the trench and the forearc region was

kindly provided by Cesar Ranero (Geomar, Kiel).

continental slope at depths ranging from 10 km to 20 km. Unfortunately, the ve-

locities estimated for these models are not fully consistent with observations from

wide-angle seismics.

To overcome this problem, the western part of the above models was revised.

Thereby, the boundary velocities determined from wide-angle measurements were

taken into account (see Patzwahl et al., 1999 and references therein). A cross section

obtained from wide-angle seismics along 23.25◦S is illustrated in Figure 4.4. Here,

the seismic boundaries are shown as solid black lines. Between these seismic bound-

aries a constant velocity gradient was assumed. Another problem arose since the

resulting velocity field did not match the IFM-model near the trench. Combining

the new velocity field with the IFM-model was only possible if much higher velocities

are presumed in depth ranges between 10 km and 20 km than proposed within the

IFM-model. Nevertheless, this presumption coincides with the wide-angle results

(cf. Figure 4.4).

The construction of the new velocity field (denoted wide-angle model in the following)

was accomplished by assuming the Moho depth at about 7 km underneath the upper

boundary of the Nazca plate. Since the ocean bottom shows topography the interface

between oceanic crust and mantle has to be smoothed to avoid a mapping of this

roughness to the Moho within the model. This is done by using the quadratic

regression function

zsmooth(x) = p1x
2 + p2x + p3 , (4.3)
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Figure 4.4: Results from wide-angle seismics for line SO104-13 (Patzwahl, 1998) including

seismic boundaries estimated from refraction seismic data acquired during the PISCO ex-

periment (Lessel, 1998) and the hypocenters of the Antofagasta aftershock series recorded

by the CINCA network (Husen, 1999).

where p1, p2 and p3 are the respective fitting parameters, x denote the horizontal

distance from the origin of the model and zsmooth is the new Moho depth. Due to

the different curvature of the upper plate boundary west and east of the trench

this procedure had to be done separately for both parts. To complete the models,

the P-wave velocities of the overriding continental crust were taken from the IFM-

models and included into the wide-angle models. In contrast to the IFM-models,

the maximum velocities of the resultant fields (Figure 4.5) appear below the oceanic

Moho with values of approximately 8500 m/s to the west of the trench.

The accuracy of the wide-angle model strongly depends on the localisation of the

seismic boundaries. Furthermore, the velocity information between these boundaries

in Figure 4.4 is an averaged value which additionally complicates the construction

of a reliable model. A discussion whether the IFM-model is more accurate than the

wide-angle model or vice versa is given by means of some depth images in chapter

5 on page 61.

4.2.2 Travel time calculation

Audebert et al. (2001) made a coarse classification of the various travel time es-

timation techniques. They differentiate between limited bandwidth methods, i.e.

methods working with frequency dependent Green’s functions, and infinite frequency

methods. The latter comprise the classical ray based computation algorithms, which

are in particular the paraxial and dynamic ray tracing (Červený & Hron, 1980;
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Figure 4.5: Modified velocity models for (a) line SO104-07 and (b) line SO104-13 taking

wide-angle results into account. The Moho depth is assumed to be located at about 7 km

below the seafloor. Continental crust velocities are the same as in the models shown in

Figure 4.3.

Beydoun & Keho, 1987), but also the modern finite difference (FD) solutions to the

eikonal equation (Vidale, 1988; Van Trier & Symes, 1991; Podvin & Lecomte, 1991).

The main advantages of the FD schemes over ray tracing are the fast and robust

computation of the travel times. This is caused by the fact that during ray tracing

a large number of rays have to be computed for each subsurface point but, at last,

only one has to be picked that leads to the desired first arrival time. Also the ap-

pearance of shadow zones, where no ray reaches the considered region at depth, and

the approaches to circumvent this problem immensely increase the computational

cost for standard ray tracing techniques.

In contrast, finite difference travel time estimation techniques propagate wave fronts

rather then rays in the velocity (or slowness) model (so-called expanding wavefront

methods; Audebert et al., 2001 q.v.). In this thesis a FD algorithm proposed by

Podvin & Lecomte (1991) was used to calculate the required travel times. It is

a kind of improvement of a finite difference approach firstly presented by Vidale

(1988). Thereby, local travel times are computed at each grid-point by applying

successively Huygen’s principle in combination with a linear interpolation to cal-

culate incremental travel times for grid points which are not actually timed. This

linear interpolation is similar to a local plane wave approximation. The first ar-
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rivals are then obtained using a minimum-time criterion (Fermat’s principle). The

accuracy of this method mainly depends on the grid spacing of the velocity model.

Three propagation modes can be handled by this algorithm, i.e. diffractions, head

waves as well as plane waves. A comprehensive overview of some travel time com-

putation methods and a detailed discussion of the advantages and disadvantages of

these methods can be found in Leidenfrost et al. (1999) and Audebert et al. (2001).
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Figure 4.6: Isochrons plotted over the corresponding part of the velocity model. (a) Travel

times estimated for a shot point located 50 km along profile with the help of the IFM-

model. (b) Same as (a) but calculated with the wide-angle model. (c) and (d) Travel

times underneath the continental slope at 95 km calculated with the IFM-model and the

wide-angle model, respectively.
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Some examples for the resulting travel times from line SO104-13 are presented in

Figure 4.6. The isochrons were plotted over the corresponding part of the velocity

field. On the left hand side (Figures 4.6(a) and (c)), the results of travel time

calculation with the IFM-model are illustrated whereas on the right hand side the

respective travel times from the wide-angle models are shown. To the west of the

trench, at 50 km along profile, the maximum travel time reaches about 10.5 s at

the lower boundary of the IFM-model (Figures 4.6(a)) but only 8 s in the wide-

angle model (Figures 4.6(b)). To the east of the trench (Figures 4.6(c) and (d)) this

difference decreases due to the fact that the velocities in the overriding plate are

similar within both models.

4.3 Influence of the velocity field on travel time estimation

The velocity distribution in the subsurface significantly influences the travel time

calculation and thus the migration results. Higher velocities generally image re-

flection events at greater depths. Figure 4.7 illustrates the differences between the

respective models by means of two velocity-depth functions. The blue curves corre-

spond to velocities west of the trench at about 30 km along profile for line SO104-07

(Figure 4.7(a)) and respectively 25 km for line SO104-13 (Figure 4.7(b)). Directly
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(a) Velocity-depth plot of the models for
line SO104-07.
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line SO104-13.

Figure 4.7: Comparison of the used velocity models by means of two representative depth

functions from east (red and orange) and west of the trench (blue and cyan) for both

profiles, respectively. The velocities in the subsurface to the west of the trench show signif-

icant differences between the models. Further to the east underneath the continental slope

(red and orange lines) the IFM-model and the wide-angle model are quite similar down

to a depth of approximately 15 km. Below this depth, the difference between the curves

increases.
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below the ocean bottom between 5 km and 6 km, the IFM-models (blue curves)

exhibit a gradient from about 2000 m/s to 3500 m/s whereas the wide-angle models

(cyan curves) show near surface velocities of 4500 m/s as proposed by the wide-

angle investigations. Those values between 4000 m/s and 4500 m/s are typical for

the upper part of the oceanic crust but the actual location of the transition zone

from lower velocities to the above values is not well constrained.

In deeper regions especially for line SO104-13, the IFM-models contain a relatively

smooth gradient reaching maximum velocities of 4500 m/s and 5500 m/s, respec-

tively. Probably, these maxima are too low compared to the expected velocities at

depth ranges below the oceanic Moho. In contrast, velocities were obtained up to

8000 m/s at about 7 km below the seafloor in the wide-angle models which are with

respect to the wide-angle results and from global observations closer to reality. The

values within the upper and lower continental crust are similar for both models (red

and orange curves). At that depth range where the slab is suggested, the difference

between both velocity curves increases to about 3000 m/s for line SO104-13 (at

90 km along profile; Figure 4.7(b)) but only to less than 1000 m/s for line SO104-07

(at 95 km; Figure 4.7(a)). However, the difference in the south (line SO104-13)

decreases further to the east due to a lateral velocity gradient (cf. Figure 4.3) so

that the resulting images of this area are similar for both models (see chapter 5).

4.4 Principles of Fresnel Volume Migration

The Fresnel Volume Migration, as used for the investigations presented here, can

be seen as an extension of Kirchhoff Prestack Depth Migration (e.g. Goertz et al.,

2003; Lüth et al., 2005). The basic idea of this scheme is to restrict the migration

operator in a form that the resulting image of a recorded event is limited to the

volume in the subsurface that physically contributes to the reflected signal (Lüth

et al., 2005). This is, in fact, the first Fresnel volume (e.g. Kravtsov & Orlov,

1990; Kravtsov, 2005). To realize this limitation in practice, an additional weight

function is included into the diffraction stack integral (equation (4.2)). Since the

used Fresnel volume calculation is based on a ray tracing formalism, the knowledge

of the emergence angles of the waves arriving at the receivers is essential. This angle

information is needed as the starting direction for ray tracing.

4.4.1 Fresnel zones

The concept of the Fresnel zones originally stems from physical optics. In geophysics,

two slightly different definitions of the Fresnel zones size can be found (see Figure
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4.8). The most common one, presented by Sheriff (1980), characterizes it as that

part of a reflector in the subsurface from which the reflected energy can reach a

receiver within half the wavelength λ of the first reflected energy. He describes

the outer border of the first Fresnel zone as those points on the reflector where

constructive interference is completely disabled (magenta seismogram in Figure 4.8).

Berkhout (1984) defines the Fresnel zone as the zone from where the arriving energy

Figure 4.8: Left: Illustration of Fresnel zones of nth order on a horizontal reflector. Source

and receiver are situated at the same location (zero offset configuration). Around the

center, the first Fresnel zone (light red area) is circular whereas the outer Fresnel zones are

annular rings (dark red areas). Right: Simplified sketch of a reflection from the midpoint

of the first Fresnel Zone (black seismogram) and from the edge of it. The blue seismogram

corresponds to the Berkhout criterion and the magenta one to Sheriffs definition.

has a maximum difference of the phases not larger than one-quarter wavelength.

This criterion corresponds to the transition points from constructive to destructive

interference (blue seismogram in Figure 4.8). However, both definitions can be used

to study the resolution of a horizontal reflector (e.g. Hagedoorn, 1954; Sheriff, 1977;

Eaton et al., 1991) or, as it will be presented in the following, to improve seismic

images.

For a zero offset configuration, the Fresnel zones on a horizontal reflector are centered

perpendicular beneath the source/receiver location (Figure 4.8). Thereby, the first

Fresnel zone is circular, whereas Fresnel zones of higher order are annular rings with

successively larger radii. In this zero offset case, the radius of the first Fresnel zone for
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point sources can be estimated using the Pythagorean theorem r2
1 = λz0/2 + λ2/16

(Sheriff) or r2
1 = λz0/4 + λ2/64 (Berkhout). If the λ2 term is small, it can be

neglected and the radius can be written as (e.g. Sheriff, 1980; Eaton et al., 1991)

r1 ≈
√
λz0

2
=
V

2

√
t

ν
Sheriff , (4.4)

r1 ≈
√
λz0

4
=
V

2

√
t

2ν
Berkhout , (4.5)

for an interface depth of z0, where λ and ν are the wavelength and the frequency,

respectively. Thereby, the reflector depth z0 can be expressed in terms of the velocity

V and the two-way-travel time t using the relationship z0 = V t/2. The wavelength

and the frequency are connected via λ = V/ν.

4.4.2 Fresnel volume determination

Besides the frequency dependence of the radii (equation (4.5)), in a real experiment

the size of a Fresnel zone is also controlled by the source and receiver locations of the

seismic array. The most general formulae to evaluate Fresnel zones in complex media

are firstly determined by Gelchinsky (1985). More useful for the given problem is

the concept of Fresnel volume ray tracing as proposed by Červený & Soares (1992).

Based on the paraxial ray theory (Beydoun & Keho, 1987; Červený, 2001), the first

Fresnel zones are calculated for each point of a ray within a standard ray tracing

scheme. Červený & Soares (1992) used a travel time formulation (equation (4.6))

which redefines the Fresnel volume definition given by Kravtsov & Orlov (1990).

It defines a criterion if an arbitrary point P in the vicinity of a ray connecting the

source point S and the receiver R belongs to the corresponding Fresnel volume. This

is the case if

|t(S, P ) + t(P,R)− t(S,R)| ≤ 1

2
T , (4.6)

where t(S, P ) and t(P,R) are the travel times from the source to point P and from

the latter to the receiver, respectively. The travel time of the direct wave from the

source to the receiver is t(S,R) and T denotes the dominant period. For a constant

velocity model equation (4.6) can be rewritten as

|s+ r − l| ≤ 1

2
λ . (4.7)

Here, l is the length of the ray from source S to receiver R via the reflection point M ,

and s and r are the ray lengths from source via point P to the receiver, respectively

(see Figure 4.9). For a reflection at point M , equation (4.7) states that an arbitrary
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point P on the corresponding isochron (line of constant two-way-travel time) is

located inside the first Fresnel zone of the ray SMR, if the difference between the

length of the latter and the length of the ray SPR is less (or equal) than half the

wavelength λ. As reflection seismics usually works with band-limited waves, the

dominant wavelength should be used within this formula.

SOURCE RECEIVER

isochron

reflector

M

P

rs l
2l

1

g

l=l +l
1 2

Figure 4.9: Fresnel volume (blue area) of a reflected ray in a constant velocity medium. It

starts at the source point S, reaches the reflection point M and ends at the receiver R. The

ray length from the source point to the receiver via M is l (blue line) and it is r+ s for a

ray path via an arbitrary point P (dashed black line) located on the corresponding isochron

(curved dashed line). The difference between the measured and the expected polarization is

specified by the angle γ.

4.4.3 Fresnel weight

To make the Fresnel volume definition applicable within a standard migration proce-

dure, the criterion (equation (4.7)) has to be modified with respect to the emergence

angle at the receiver. Figure 4.9 shows the part of a Fresnel volume (blue area) on

the isochron that belongs to a reflection in a homogeneous medium at the reflection

point M . The difference between the measured propagation direction of a P-wave

from reflection point M and the expected direction from point P at the geophone

is expressed in terms of the angle γ. Goertz et al. (2003) derived that any arbitrary

point P on the isochron is located within the nth Fresnel volume if

cos γ ≥ 2r2 + 2rs− n(r + s)λ+ n2 λ2

4

2r2 + 2rs− nrλ = Hn [n = 1, 2, . . . ] . (4.8)

This formulation of a Fresnel criterion for homogeneous media enables to find a

weight function WF which can be inserted into the diffraction stack integral (equa-
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tion (4.2)) and which depends on the size of the Fresnel zone on the isochron. Lüth

et al. (2005) proposed a function that benefits summation within the first Fresnel

zone and that avoid summation for Fresnel zones of order higher than two by setting

the weighting factor to zero (equation (4.9)). To suppress migration artifacts due

to the limited aperture, they included the second Fresnel zone where WF is linearly

tapered with increasing angle γ:

WF =





1 : cos γ ≥ H1 ,
cos γ−H2

|H1−H2| : H1 > cos γ ≥ H2 ,

0 : cos γ < H2 .

(4.9)

Here, H1 and H2 are the right hand side terms of equation (4.8) for n = 1 and n = 2,

respectively. Inserting this definition of a weight function into equation (4.2), the

diffraction stack integral reads

V (~m) =
−1

2π

∫

A

∫
WFw(~m, ~x) u̇(~x, tS + tR) d~x. (4.10)

Again, V (~m) is the migrated image at the image point ~m(x, y, z) in the subsur-

face but now constructed as a restricted summation along the isochrons. The term

w(~m, ~x) is the true-amplitude weight function and u̇(~x, tS+tR) represents the deriva-

tive of the input wavefield whereas tS( ~xS, ~m) + tR(~m, ~xR) are the travel times from

the source location ~xS to the image point and respectively from the latter to the

receiver ~xR.

4.4.4 Fresnel volume ray tracing in heterogeneous media

In contrast to the above described homogeneous case, the rays in heterogeneous

media are no straight lines but they might be curved in a complex way which makes

the computation of the Fresnel volumes much more difficult. Travel time fields from

source and receiver can be used (Kvasnička & Červený, 1994) but if the travel times

from the reflector are not known the use of this approach is not helpful. Another

possibility is to calculate the paraxial Fresnel volumes as proposed by Červený &

Soares (1992) directly from the rays. In general, the location of a reflector at depth

is unknown and thus a ray tracing method was used which traces the direct ray

from the receiver to the corresponding virtual source point S ′ in the subsurface but

not the reflected ray, i.e. that ray from the receiver via point M to the source as

illustrated in Figure 4.10. The resulting direct Fresnel volume (red area in Figure

4.10) is used as an approximation of the Fresnel zone on the reflector. Thereby,
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Figure 4.10: Fresnel volume of two rays in a heterogeneous medium. The reflected ray from

the source to the receiver is colored blue with the corresponding Fresnel volume (light blue

area). A ray tracing scheme was used which produces the direct ray from R to S ′ (dashed

red line) since in general the location of the reflector is not known. The corresponding

Fresnel volume is illustrated by the light red area.

an error can occur if the velocity below a possible reflector increases (or decreases).

The case of increasing velocity with depth is discussed in detail in section 4.6.

Lüth et al. (2005) followed the strategy of Červený & Soares (1992) and used the

paraxial Fresnel volume estimation. They simplified the formulation by Červený

& Soares under the assumption that velocity models used for seismic imaging are

in general smooth. They derived a formulation for an approximate Fresnel volume

with a circular shape where the radius of the Fresnel zone is perpendicular to the

ray. Thus, the Fresnel radius rQ of any point Q of the ray can be described in the

form

rQ ≈
√

T
1

Π13(Q)
− 1

Π13(Q) Π13(S′)

. (4.11)

In equation (4.11) the terms Π13(Q) and Π13(S ′) give the expressions for the ray

propagator elements at ray point Q and at the virtual source point S ′, respectively.

A detailed description of the ray propagator matrix can be found in Červený (2001).

Here, the estimated radii belong to the first Fresnel volume of the ray. Thus, the
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weight function (equation (4.9)) can be modified for heterogeneous media as

WF (rI , rQ) =





1 : rI ≤ rQ ,

1− rI−rQ
rQ

: rQ < rI ≤ 2rQ ,

0 : rI > 2rQ ,

(4.12)

where rQ is the radius of the first Fresnel volume at ray point Q and rI is the

distance of the considered image point from the ray. In equation (4.12) the radius

of the second Fresnel volume is approximated by 2rQ.

4.5 Estimation of the emergence angle

One of the most important preconditions for Fresnel Volume Migration is a reliable

knowledge of the emergence angle used as the initial input for ray tracing. For three-

component data the polarization information can be used (Lüth et al., 2005) but the

CINCA profiles are 2D single component (marine) data sets so that other methods

had to be considered to obtain the emergence angles at the surface for each sample

within the shot gathers. An adequate procedure is the calculation of the apparent

velocity (horizontal slowness) of the wavefront along the acquisition surface.

So far, several techniques have been developed to extract slowness information from

seismic data, most of them based on plane-wave decomposition of seismograms (e.g.

Müller, 1971; Treitel et al., 1982). Based on the Radon transform (Radon, 1917,

section 3.2), the best-known technique to estimate the horizontal slowness might be

the slant stack method, where the data are transformed from the time-distance (t−x)

to the intercept time-ray parameter (τ − p) domain (e.g. McMechan & Ottolini,

1980; Chapman, 1981). Summing up the samples along lines of constant ∆t/∆x (or

similarly p), all crossing the sample of the center trace with the intercept time τ

within a predefined window, the instantaneous slowness px(x, t) can be derived by

weighting the slant stacks by coherence (e.g. McMechan, 1983; Milkereit, 1987b).

A disadvantage of this method is that the slant stack does not preserve phase and

amplitude information when the source is a point source (e.g. Wang & Houseman,

1997). To avoid problems with surface data excited by a point source a cylindrical

τ − p transform is required (e.g. Harding, 1985; Fokkema et al., 1992).

Other techniques, working with coherence measurements of waveforms over finite

distance-time windows, are the beamforming method, discussed e.g. by Dudgeon &

Mersereau (1984), semblance analysis (e.g. Neidell & Taner, 1971; Stoffa et al., 1981)

and the multichannel cross-correlation method (Haslinger, 1994). Heigel (2005) com-

pared the latter with the slant stack and the semblance analysis and concluded that
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the cross-correlation leads to the most stable results. In this work, his implementa-

tion was used to calculate the necessary horizontal (and vertical) slowness for the

CINCA data sets.

4.5.1 Slowness extraction from real data

In contrast to other techniques, the multichannel cross-correlation works with two

time windows of the same size. Thereby, one of them, called reference window, is

centered on a data sample S(x, t) at time t of a trace with offset x from the source.

The maxima of the cross-correlation between the samples in the reference window

and each segment of n adjacent traces, defined by the second time window, yield the

time shifts associated with the most coherent signals within the windows (Tillmanns

& Gebrande, 1999 q.v.). Plotting these time shifts against the distance from the

reference trace and calculating the slope of the best fit after a linear regression

directly leads to the local horizontal slowness because of the relation px(x, t) = ∆t
∆x

.

The z-component of the slowness vector (vertical slowness) is then related to px via

pz(x, t) =
√

1
v2
0
− p2

x(x, t), where v0 is the near surface velocity. In 2D, this usually

results in two additional input sections for Fresnel Volume Migration which have

the same size as the shot gather: a horizontal and a vertical slowness gather (see

Figure 4.11). The number of traces n used within this procedure has to be chosen

with respect to the spatial extent of linear signal coherence in the data (Haslinger,

1994; Tillmanns & Gebrande, 1999). A detailed description of the used technique

and a solution of the problems appearing at the edges of the shot gathers and zero

traces can be found in Heigel (2005).

The temporal and spatial extension of the used windows were estimated using the

dominant period 1/fdom and, respectively, the dominant wavelength λdom. There-

with, the number of traces n and the number of time samples m can be defined

by

n ≈ λdom
dx

m ≈ 1

fdomdt
, (4.13)

where dt is the sample rate of the data and dx is the geophone spacing. As seen

in equation (4.13), an increase of the dominant frequency results in a shorter time

window and in a decrease of n. However, Heigel (2005) proposed that the number

of traces on both sides of the reference trace should be at least n = 4 to suppress

possible errors during slowness computation.
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4.6 Implementation of Fresnel Volume Migration

Figure 4.11 describes the principal workflow of the Fresnel Volume Migration pro-

cedure. The blue boxes illustrate the necessary preprocessing steps such as filtering

and travel time calculation. Compared to Kirchhoff Prestack Depth Migration an

additional external slowness calculation has to be carried out which yields the re-

quired angle information as an initial parameter for the ray tracing procedure. The

main Fresnel Volume Migration routine (red box) requires a couple of additional

input parameters (green box) which are usually not needed for Kirchhoff Prestack

Depth Migration. The main processing includes ray tracing and the calculation of

the Fresnel radii as well as the estimation of the weighting factor. The last step

comprises the weighted summation of the amplitudes.

In this section, at first some of the results from the slowness calculation are presented

Summation
of

weighted amplitudes

ray propagator element Π13

Output:

− P−wave velocities and

− Emergence angles as
its derivatives

initial parameters

Ray trajectory and

Ray tracing using:

Fresnel radius estimation
using the dominant period

Calculation of the weight WF

each image point from the ray
with the corresponding Fresnel
radius

by comparing the distances of

Main processing routine

Fresnel migration

− Dominant period
− P−wave velocity

Additional input parameters

− Ray tracing parameters
at acquisition surface

Slowness estimation
from the

shot gathers

Travel time calculation

− Trace editing
− Bandpass filtering
− AGC
− Trace balancing
− F−K filtering
− Multiple supression

Preprocessing of the raw data
including e.g.:

Preprocessing steps

Figure 4.11: Workflow of the Fresnel Volume Migration. The colored blue boxes indicate

the pre-information needed. The main Fresnel Volume Migration routine needs several

input parameters stated in the green box. Within the red box, the particular subroutines of

the Fresnel Volume Migration are depicted.
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and discussed prior to the description of the ray tracing procedure and the resulting

Fresnel weight.

4.6.1 Slowness calculation for the CINCA data sets

Both, the slowness estimation algorithm by Heigel (2005) (equation (4.13)) and

the Fresnel routine require information about the dominant frequency (equation

(4.11)). Figure 4.12 illustrates the power spectra for two representative shot gath-

ers of line SO104-07 and line SO104-13, respectively. While the spectrum of line

(SO104-13) shows a clear dominant frequency around 30 Hz (Figure 4.12(b)), several

peaks were found in the spectrum of the shot gather from line SO104-07 (Figure

4.12(a)). For both profiles, the slowness was calculated with a dominant frequency of

fdom ≈ 27 Hz (in water λdom equals approximately 55 m) and 4 neighbouring traces

for cross-correlation with the respective reference trace. To test the influence of the

dominant frequency, the slowness was additionally calculated with fdom = 42 Hz for

line SO104-07 which results in approximately half the temporal window size. The

comparison of the horizontal slowness results for a shot gather of line SO104-07 is

illustrated in Figure 4.14.

The slowness sections from line SO104-07 (Figure 4.14) reflect the most prominent

(a) Power spectrum of shot 510 line
SO104-07.

(b) Power spectrum of shot 10 line
SO104-13.

Figure 4.12: Power spectra of two representative shots from (a) line SO104-07 and (b) line

SO104-13. The spectrum in Figure 4.12(b) exhibits an explicit peak at about 30 Hz while

that of the shot gather from line SO104-07 shows three different maxima at approximately

42 Hz, 51 Hz and 55 Hz.
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px=0

px>0 px<0

surface x
z

wavefront

receiver location

φ=0

φ<0 φ>0

Figure 4.13: Sketch of wavefronts arriving at a receiver with different emergence angles.

The color code is the same as used for the illustration of the horizontal slowness and

emergence angles in Figures 4.14- 4.16, respectively. The angle φ can be estimated using

equation (4.14).

events from the input shot gather (Figure 4.14(c)): Between 6 and 7 s the ocean

bottom can be identified with more or less the same slowness values for both fre-

quencies (marked by blue colors in Figures 4.14(a) and (b)). In the case of muted

data or null traces, the horizontal slowness were set to 999 since zeros within the

data did not yield reliable slowness values. Those slowness values map as red areas

above the ocean bottom reflections (trace muting) or as red vertical traces (null

traces). The complete color code for the following figures is: Red colored reflections

in the slowness sections are associated with wavefronts arriving with a negative angle

at the receiver and consequently the blue colors corresponds to positive emergence

angles (measured from the vertical (φ = 0◦) to the surface (φ = 90◦), see Figure

4.13). Due to the 999 values, the following figures show clipped slowness sections in

a range between −5 · 10−4 s/m and 5 · 10−4 s/m.

Between a two-way travel time (TWT) of 7 s and TWT 13 s several events are

visible. They appear somewhat more pronounced on the 27 Hz section (larger time

windows) but they seem to vanish in the corresponding Fresnel images (Figures

4.14(d) and (e)). At approximately 13 - 14 s a tail from the ocean bottom multiple

is visible also weakly appearing on the lowermost part of the depth sections. The

difference between the image obtained from the slowness sections for fdom ≈ 27 Hz

and fdom ≈ 42 Hz seem negligibly small. Also the zooms (Figure 4.14(f)) show

nearly identical depth sections.

A quantitative representation of the differences between the slowness sections

(Figures 4.14(a) and (a)) and between the corresponding images (Figures 4.14(d)
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(a) Slowness: fdom =27 Hz. (b) Slowness: fdom =42 Hz.

ocean bottom

multiple

?

(c) Shot gather.

ocean bottom

multiple

?

(d) Migrated shot gather:
fdom =27 Hz.

ocean bottom

multiple

?

(e) Migrated shot gather:
fdom =42 Hz.

Zoom in d)

Zoom in e)

(f) Zoom in (d) and (e).

Figure 4.14: Estimated horizontal slowness from shot no.1761 located at about 29 km

along profile for (a) 27 Hz and (b) 42 Hz, respectively. The corresponding shot gather is

displayed in Figure 4.14(c). Muted data and null traces map as red areas and respectively

red vertical traces in the slowness sections. The lower pictures illustrate the corresponding

Fresnel Volume Migration results of this shot. Figure 4.15.

and (e)) can be seen in Figure 4.15. Equal slowness values map as white samples

in the difference section (Figure 4.15(a)). Except from the white connected regions

below the seafloor almost no coherent event is visible. Also the depth section (Figure

4.15(b)) exhibits only small discrepancies in the vicinity of the ocean bottom images.

Thus, the overall impression from the difference sections is that the quality of the
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(a) Difference Figure 4.14(b)-
Figure 4.14(a).

ocean bottom

multiple

?

(b) Difference Figure 4.14(e)-
Figure 4.14(d).

Figure 4.15: (a) difference between slowness section Figure 4.14(b) (fdom ≈ 42 Hz) and

Figure 4.14(a) (fdom ≈ 27 Hz). Samples, where the sections are identical, are colored

white. (b) difference between the migrated shot sections Figures 4.14(e) and (d).

results is more or less independent of the choice of the dominant frequency. Never-

theless, the zooms in Figure 4.14(f) show a slightly better image for fdom ≈ 27Hz.

Thus, the latter frequency was used for the slowness calculation in the following.

For line SO104-13, a few examples for the slowness and the related emergence angles

are shown in Figures 4.16 and 4.17. The left columns exhibit the common shot

gathers (note that the first 3 s are removed) from three different locations: at 3 km

(Figure 4.16 top), at 55 km (Figure 4.16 bottom) and at 103 km (Figure 4.17) along

the profile. The middle columns contains the corresponding horizontal slowness

sections calculated with a dominant frequency of 27 Hz. On the right hand side in

both figures, the emergence angle φ is depicted. It was calculated with the help of

the components of the slowness vector (px, pz) which are connected to the emergence

angle in the following form

φ = arctan

(−px
pz

)
= arctan


 −px√

1
v2
0
− p2

x


 , (4.14)

where v0 is the near surface (water) velocity. The color code of the slowness and

angle sections is the same as used for the slowness and angle sections of line SO104-07
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multiple

ocean bottom

?

(a) Shot gather 7 (b) Shot 7: px. (c) Shot 7: φ.

ocean bottom

?

(d) Shot gather 1032 (e) Shot 1032: px. (f) Shot 1032: φ.

Figure 4.16: Shot gathers, slowness sections and corresponding emergence angle sections

from the start (at 3 km, Figures 4.16(a)-(c)) and the middle (at 55 km, Figures 4.16(d)-

(f)), respectively. The angles were calculated using the components of the slowness vectors

px and pz (equation (4.14)). Red vertical traces are related to null traces in the shot

gathers.

(Figure 4.13 q.v.).

Within the shot gathers as well as in the slowness and angle sections the seafloor

is clearly visible. Some remnants of the ocean bottom multiple can be observed at

3 km and 103 km along profile (Figures 4.16(a)- (c) and Figures 4.17(a)-(c)) although

Radon filtering was applied. Most of the events labelled by question marks appear

as strong migration smiles in the depth images obtained from Kirchhoff Prestack
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ocean bottom

multiple

(a) Shot gather 2001 (b) Shot 2001: px. (c) Shot 2001: φ.

Figure 4.17: Shot gather, slowness and angle section from the end of line SO104-13 at

about 103 km along profile.

Depth Migration which are presented in the next chapter. Especially the shot at

55 km (Figures 4.16(d)-(f)) shows events between 8 s and 10 s which also map

on the px- and φ-sections. This is the region where the ocean bottom exhibits a

distinct topography and where the depth images are strongly disturbed by migration

artifacts. The results from Fresnel Volume Migration will show that almost all

of them will disappear, especially after f-k filtering, except from those which are

physically reasonable. This indicates that the migration smiles, at least in this area,

are due to the rough ocean bottom topography.

4.6.2 Ray tracing and Fresnel radii estimation

The accomplishment of ray tracing within the migration algorithm is done using

a simplification of the paraxial ray approximation (e.g. Beydoun & Keho, 1987;

Červený & Soares, 1992 and references therein) for smooth velocity models as pro-

posed by Lüth et al. (2005). In general, the ray propagator matrix Π is a 4×4 matrix

which contains the second spatial derivatives of the velocity field v (Červený, 2001).

At the starting point of the ray the main initial condition is Π ≡ E, where E is

the unity matrix. To avoid numerical problems due to the second derivatives, Lüth

et al. (2005) supposed a locally constant velocity gradient and neglected the second

derivatives. This assumption is acceptable considering that velocity models used

for depth migration are in general relatively smooth. Thus, an ordinary differential
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equation remains for the required ray propagator element Π13:

dΠ13

dt
= v2 . (4.15)

Due to the symmetry within the propagator matrix Π13 = Π24, the Fresnel zone

perpendicular to the ray becomes circular. Besides equation (4.15), two other differ-

ential equations have to be solved during the kinematic ray tracing scheme (Červený,

2001). The position vector ~x, which describes the particular ray-point coordinates,

can be computed using
d~x

dt
= v2~p , (4.16)

and the corresponding slowness vector ~p by

d~p

dt
= −1

v
∇v , (4.17)

where v is the velocity.

A method to numerically integrate differential equations when the starting param-

eters are known is provided by the so-called Runge-Kutta method (Butcher, 1987;

Hairer et al., 1989). Here, the classical fourth order Runge-Kutta formula was used

to calculate the ray coordinates, slowness values as well as the propagator elements

at each nodal point Q of the ray

k1 = hf (xn, yn)

k2 = hf

(
xn +

1

2
h, yn +

1

2
k1

)

k3 = hf

(
xn +

1

2
h, yn +

1

2
k2

)

k4 = hf (xn + h, yn + k3)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 . (4.18)

For the ray propagator element (equation (4.15)) and the position vector (equation

(4.16)) all of the auxiliary functions ki , i = 1, . . . , 4 in equation (4.18) are coupled

with the square of the velocity while for the slowness vector these functions depend

on the inverse of the velocity and the spatial derivatives of the velocity field (cf.

equation (4.17)). Other terms within equation (4.18) are the ray tracing time step

h(≡ ∆t) and the total number of ray tracing steps n. With the help of this formula,

the required ray propagator element can be calculated. In this case y ≡ Π13, and the

term f(xn, yn) is only a function of the square of the velocity (as seen in equation



4.6. Implementation of Fresnel Volume Migration 47

(4.15)) with the initial condition Π13 = 0 at the starting point of the ray. This

means that also the Fresnel radius must be set to zero at the starting point to

prevent division by zero in equation (4.11).

However, equation (4.18) shows that the computation time is strongly related to

the number of ray tracing steps n and thus to the ray tracing time steps h since

they depend on each other. With the help of this numerical method, one ray for

each sample of each trace of the raw data was calculated. This implies a careful

choice of the parameter h, which equals the time increment for ray tracing (∆t),

or similarly of n. In fact, the most reasonable choice might be the sampling rate

and the number of samples of the input data but this will result in unacceptable

computing time as pictured in Figure 4.18(a). To obtain the correct ray length, the

condition ’n ·h ≡ n ·∆t = two-way-travel (TWT) time of the considered sample’ or

similarly n = TWT/∆t must be satisfied. Figure 4.18(a) shows the number of ray

tracing steps as a function of the sampling rate for a constant two-way-travel time.

This is done to find the most useful parameters for an adequate computing time.

For the application to real data it is reasonable to assume one of the ray tracing

parameters to be constant since the two-way-travel time of each sample of an input

trace is different. In the following, the time increment ∆t is assumed to be constant

while n differs for each sample.
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Figure 4.18: (a) Number of ray tracing steps needed for varying time increments ∆t for a

constant two-way-travel time (last sample of the input data). The points marked with the

red and blue arrow correspond to the sampling rates used in (b). Figure 4.18(b): Com-

parison of rays estimated with two different sampling rates. The blue rays were calculated

with ∆t = 30 ms which results in approximately 400 ray tracing steps for the last sample

(longest ray). A time increment of 20 ms was used for the red rays resulting in about 600

ray tracing steps. The black line marks the ocean bottom.
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An example for two time increments is presented in Figure 4.18(b). About 20 rays for

different samples of one trace were determined. Thereby, the red and the blue rays

were calculated with a time increment of ∆t = 20 ms and ∆t = 30 ms, respectively.

The black line illustrates the location of the ocean bottom where a change from

water velocity (∼1500 m/s) to about 2800 m/s takes place. This change in velocity

is responsible for the abrupt direction change of some rays below the seafloor. At

greater depths, it is obvious that the difference between the rays estimated with

different sampling rates (time increments) is negligible small compared to the gain

of time as the maximum number of ray tracing steps (for the last input sample)

increases from about 400 to 600 with decreasing sampling rate (Figure 4.18(a)).

Small differences between the rays also means slight variation of the associated

Fresnel radii.

Another interesting aspect is the influence of the velocity model roughness on the

ray tracing. As discussed above, the approximation by Lüth et al. (2005) is strictly

valid for smooth velocity models. The cross section of the IFM-model (blue line

in Figure 4.19(a)) shows several small steps directly below the seafloor. To avoid

large gradients, the model was smoothed (Figure 4.19(a) red line) by averaging the

velocity in z-direction by

v(x, z) =
v(x, z − 1) + v(x, z + 1)

2
. (4.19)

Figure 4.19 emphasizes the differences between the outcomes of both models by
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(a) Upper part of the cross section of the
IFM-model at about 85 km.
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(b) Rays calculated with the IFM-model and a
smoothed velocity model.

Figure 4.19: (a) original IFM-model (blue) and the smoothed model (red) in a depth range

between 4 km and 10 km. (b) ray tracing results for both models where the color code is the

same as in (a). The rays marked by ’I’, ’II’ and ’III’ are separately shown and discussed

in the next figure.
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means of a few rays. The smoothing procedure generates some distinctive features:

• The principal ray trajectories of nearly all rays are similar compared that oba

tined from the IFM-model.

• Due to smoothing, the change from water velocity to a velocity of about

2800m/s takes place at shallower depth (Figure 4.19(a)).

• Strong alterations in ray direction (e.g. green and magenta ray in Figure

4.19(b) marked by ’I’) result from the discretization (the time increment in

equation (4.18)) and from the different derivatives of the velocities after aver-

aging.

• This alterations can also be a result of different incidence angles (compared to

the IFM-model) at the seafloor or at a possible interface within the sedimentary

layers.

The impact of velocity smoothing to the Fresnel volumes is pictured in Figure 4.20.

Here, the gray curves represent parts of the isochrons which belong to the rays

calculated with the IFM-model (blue) and respectively with the smoothed model

(red) where rays, labelled with ’I’, ’II’ and ’III’, correspond to the rays with the

same label in Figure 4.19).
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Figure 4.20: Fresnel volumes estimated for three different rays (I, II and III; see also

Figure 4.19) with the IFM-model (blue) and the smoothed model (red), respectively. The

gray lines are parts of the corresponding isochrons.
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For early arriving data samples it is of no importance whether the velocity model

is smoothed or not since the isochrons are located above the ocean bottom where

the rays coincide. At greater depth, the discrepancy of some rays increases as well

as that of the respective Fresnel zones, and correspondingly on where the isochrons

intersect the rays.

To point out the effect of smoothing to the imaging results a part of line SO104-13

was migrated using both velocity fields. Figure 4.21(a) illustrates the resulting image

of the area between 47 km and 59 km along profile migrated with the IFM-model.

The upper right picture (Figure 4.21(b)) shows the result corresponding to the
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(b) Migrated with a five times smoothed
model.
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(c) Difference between (a) and (b).

Figure 4.21: Part of the image of line SO104-13 computed for two slightly different velocity

models. Figure 4.21(a) illustrates the results from 47 km to 59 km along profile in a depth

range between 4 km and 14 km migrated with the IFM-model. The upper right picture

shows the section migrated with the smoothed model. The numbered arrows mark that

parts of the images where the differences are most obvious. To point out the latter, a

difference section is separately shown in Figure 4.21(c).
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smoothed model. Numbered arrows mark those portions which comprise the most

significant differences between the images. These differences are separately displayed

in Figure 4.21(c). The most obvious and maybe the most important discrepancy for

interpretation is the vertical reflection event directly below the seafloor (1) which is

indeed only visible on the difference section (Figure 4.21(c)). The other two maxima

on this section correspond to artifacts resulting from head waves (2) and to an event

whose origin is not totally understood. However, only small errors due to smoothing

can be observed in Figure 4.21(c). A possible explanation for this relatively small

error might be given by the use of a migration operator which is tapered at the

boundary of the first Fresnel zone (equation (4.9)). Thus, the smoothed version of

the velocity models were used for the complete data sets. This is done to avoid

numerical problems during ray tracing.

As mentioned above, the used ray tracing formalism works with the help of the

virtual source point method and not with a two point ray tracing technique, since the

locations of possible reflectors at depth are unknown. Due to the increasing velocity

with depth (below the seafloor), the virtual source point method may lead to rays

which are too long. For a given two-way-travel time, the distances between the ray

nodes of the corresponding ray increase with increasing velocity. This leads to an

overestimation of the Fresnel volumes and thus of the required Fresnel zone. Thus,

the restriction of the migration operator in form of the weighting function is not quite

correct since additional signal from outside the actual Fresnel zones is included into

the summation process. As the vertical velocity gradient has no influence on the

location of the ray, the center of the Fresnel zones is correctly estimated. The use

of a linear taper at the boundaries of Fresnel volumes might compensate the effect

of overestimated Fresnel volumes. Even though the Fresnel zones were estimated

slightly wrong, a significant improvement of the images compared to the Kirchhoff

Prestack Depth Migration results indicate a negligible influence of the overestimation

of the Fresnel volumes on the migration results.

4.6.3 Fresnel Volume Migration

Apart from ray tracing, the key step of the Fresnel Volume Migration routine is the

computation of the Fresnel weight (equation (4.12)) and the exact use of it. If a

single trace of the data set is considered, the first step within the migration routine

is to extract the two-way-travel time for each image point in the subsurface from

the travel time tables. For each particular image point, that ray has to be found

which is associated with the corresponding isochron. Then, the closest ray node

of this image point has to be determined. The distance between these two points

is then compared with the Fresnel radius at the respective ray point. Figure 4.22
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Figure 4.22: (a) and (b) describe the process to determine the closest of the n ray nodes

Q for an arbitrary image point P . The weighting factor WF is zero if ri > 2rQ ((a)) and

WF = 1 for r1 ≤ rQ ((b)). For rQ < ri ≤ 2rQ, WF is linearly tapered. An example for

an extremely curved ray is shown in Figure 4.22(c). Here, r1 > r2 which may lead to an

error if P is located within the second Fresnel zone of Qr2 but outside of that of Qr1 when

the process stops at the first minimum (r1).

demonstrates this procedure. Consider an arbitrary subsurface point P and the

ray with the corresponding two-way-travel time. The first step is to calculate the

distances r to all n ray points Q, starting with r1 (dashed black lines). The value

of the weighting factor WF depends on whether the minimum distance ri is greater

than the second Fresnel radius 2rQ or not (the first Fresnel radius is depicted as a

solid magenta line in Figure 4.22). It is one if, and only if ri ≤ rQ (Figure 4.22(b))

and it becomes zero when ri > rQ (Figure 4.22(a)). In the case rQ < ri ≤ 2rQ the

weighting factor is linearly tapered (equation (4.12)). This weight is then applied

to the amplitude of the trace with the same two-way-travel time.

It is clear that both, searching for the minimum distances between image and ray

points and comparing it with the Fresnel radii are the most time-consuming processes

within the algorithm. To speed up the program, a criterion was integrated which

stops the searching process after the first local minimum has been found. This

minimum is defined as that distance between P and ray node Q (ri in Figures

4.22(a) and (b)) where the previous distance (ri−1) and the following distance (ri+1)

are greater but, however, there might be a value for a deeper ray node which is

smaller than the local minimum (global minimum). This can be done by assuming

that the rays are not extremely curved. Figure 4.22(c) shows an example for a ray

with a complex trajectory. Here, the first local minimum r1 is not equal to the global

minimum (r2). In this case, where r1 is assumed to be larger than the second Fresnel
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radius of ray point Qr1 but P is located inside the second Fresnel zone of point Qr2,

the amplitude value of the related sample is wrongly multiplied by zero during the

summation. For the CINCA data sets this case is extremely rare to absent so that

the limitation of the searching procedure did not lead to significant errors.

A complete insight into what is done during Fresnel Volume Migration is displayed in

Figure 4.11. The summary of the results from each step in form of four rays with the

corresponding Fresnel volumes, isochrons and image points within the Fresnel zones

as well as the illustration of the effect of reduction of the computational time due to

the local minimum approach is pictured in Figure 4.23. Thereby, light-colored red

areas correspond to the Fresnel volumes when the complete ray is scanned during

the searching algorithm whereas the blue colored areas represents the local minimum

approach. As in the further pictures, the isochrons are colored gray. Only the green

image points on the isochrons contribute to the resulting migrated images.
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Figure 4.23: The light-colored red areas correspond to the complete Fresnel volumes of the

rays. The here presented approximation only searches the blue part of the ray and it stops

when the first local minimum is reached. The green parts of the isochrons (gray lines)

depict the image points located inside the second Fresnel volumes.

For the complete data sets, all this is done for all traces (with approximately 3000

samples each), shot gather by shot gather, and at last all migrated single shot

sections were stacked to get a complete depth image along the profile.
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4.7 Summary and discussion

In this chapter the evolution of the Fresnel Volume Migration approach from the

Kirchhoff Prestack Depth Migration was introduced. The travel time calculation

was done using two different velocity models: The IFM-model as an extension of an

existing velocity field of the outer forearc and the wide-angle model constructed with

the information about the seismic boundaries from wide-angle seismics. Thereby,

the main differences between the models appear west of the trench where the IFM-

model contains maximum velocity values of about 5500 m/s and the wide-angle

model velocities up to 8500 m/s. These values indicate too low velocities within

the IFM-models as expected for the oceanic crust. To the east of the trench these

differences decrease. It is clear, that an inaccuracy of the location of the seismic

boundaries complicated an exact modelling of the velocity field. A discussion of the

influence of the different velocity fields to the migration results is given in the next

chapter.

Additionally to the introduction of the Fresnel Volume Migration, a study with

respect to some of the input parameter was accomplished. The cross-correlation

method was used to calculate the horizontal slowness sections. The most important

input parameters for these calculation scheme are the spatial and temporal window

size necessary to find the time shifts associated with the most coherent signal. While

temporal length is a function of the dominant frequency, the spatial extent depends

on the dominant wavelength. Heigel (2005) proposed the use of four traces around

the reference trace for the spatial window length.

A spectral analysis was performed to extract the dominant frequency for some rep-

resentative shot gathers of line SO104-07 as well as of line SO104-13. The power

spectrum of a shot of line SO104-13 showed a clear peak at about 27 Hz. In con-

trast, the spectrum obtained from line SO104-07 comprised at least two maxima.

A comparison of the migration results obtained with slowness sections calculated

with 27 Hz and respectively with 42 Hz indicated slightly better depth images for a

dominant frequency of 27 Hz.

The ray tracing algorithm requires several input parameters. Most important with

respect to the computing time are the sampling rate and the number steps during

the ray tracing. A sufficient condition for the choice of these parameters is that

their product equals the two-way-travel time of the respective sample of the input

data to obtain the exact ray length. This implies, that the most reasonable values

might be the sampling rate and the number of samples of the input data but it has

been shown that this choice would result in unacceptable computing time. It has to

be considered, that these input parameters are also sensitive to the roughness of the
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used velocity model since abrupt velocity changes can lead to problems with the ray

directions along the interfaces. A test of several different sampling rates resulted in

rays which showed negligible small differences. Thus a sampling rate of dt = 30 ms

were chosen resulting in a maximum of 400 ray tracing steps.

The influence of velocity smoothing was demonstrated and discussed. Obvious

changes of the ray trajectories below the seafloor have been observed after smooth-

ing. Consequently, this change in direction led to slightly different Fresnel volumes.

Fresnel Volume Migration were carried out with both, the original IFM-model and

a fife times smoothed version of the IFM-model. The resulting depth sections of-

fered quite similar images. This indicated that the tapering at the boundaries of the

first Fresnel volumes compensated for the effects due to smoothing so that slightly

different estimates of the Fresnel zones did not significantly influence the migration

results.

A method was proposed to decrease the computing time which stops the searching

process within the Fresnel Volume Migration when the first local minimum distance

between image point and ray node is reached. The assumption that no extremely

curved rays appear is supported by the fact that the velocity models are build up

of only smooth velocity gradients in each direction. The application of this local

minimum criterion resulted in a significant decrease of computing time.




