Table of contents

Summary English 1
Summary German 3

1. Introduction 5
1.1 Signal transduction 5
1.2 G protein-coupled receptors 5
1.3 Endothelins and endothelin receptors 12
1.4 The aim of this study 14

2. Materials and Experimental procedures 15
2.1 Materials 15
2.1.1 Chemicals, antibodies, cDNA's and receptor ligands 15
2.1.2 Apparatus and software 18
2.1.3 Cells 19
2.1.4 Commonly used buffers 19
2.1.5 Plasmids/constructs 21
2.2 Experimental procedures 23
2.2.1 Cell culture 23
2.2.2 Peptide synthesis and fluorescence labeling 23
2.2.3 Transient and stable transfection of HEK293 cells 24
2.2.4 Generation and affinity-purification of polyclonal antibodies 25
2.2.5 Immunoblots for the detection of ET$_B$.YFP and ET$_A$.myc.CFP 28
2.2.6 Immunoprecipitation experiments 28
2.2.7 Fluorescence resonance energy transfer (FRET) 29
2.2.8 Receptor sequestration assay 30
2.2.9 Fluorescence microscopy and image analysis 31
2.2.10 125I-ET-1 displacement binding experiments 31

3. Results 32
3.1 Generation of HEK293 cell clones stably expressing ET$_A$ and ET$_B$ receptors 32
3.2 Functional analyses of fluorescent endothelin receptor fusion proteins
 3.2.1 Saturation binding experiments
 3.2.2 LSM analysis of HEK293 cell lines expressing fluorescent endothelin receptor fusion proteins
 3.2.3 Characterisation of polyclonal ET_A and ET_B receptor antibodies
3.3 Immunoprecipitation
 3.3.1 Antibodies for immunoprecipitation studies
 3.3.2 Selection of HEK293 cell clones for immunoprecipitation studies
 3.3.3 Immunoprecipitation analysis reveals ET_A/ET_B heterodimers
3.4 Fluorescence resonance energy transfer analysis of protein-protein interactions in living cells
 3.4.1 The principle of FRET
 3.4.2 FRET analyses demonstrate homo- and heterodimerisation of endothelin receptor subtypes in living HEK293 cells
 3.4.3 Specificity of ET_A/ET_B receptor heterodimerisation
3.5 Endothelin receptor subtypes display similar ligand-binding affinities when expressed individually or in combination
3.6 Heterodimerisation results in a decreased rate of ET-1 mediated ET_B receptor sequestration
3.7 Intracellular trafficking of the ET_B receptor in HEK293 ET_Bflag.YFP/ET_Amyc.CFP cell clones
3.8 Influence of receptor ligands on ET_A/ET_B heterodimers
3.9 Dissociation of ET_A/ET_B heterodimers occurs along the endocytic pathway
4. Discussion
 4.1 Homo- and heterodimerisation of ET receptor subtypes
 4.2 Regulation of ET_A/ET_B dimerisation
 4.3 Dimerisation of GPCRs. A general phenomena among all GPCR families?
 4.4 Functional role of GPCR dimerisation
4.5 Outlook, enhancing and disrupting GPCR oligomerisation 85
5. References 87
6. Appendix 101
6.1 Publications 101
6.2 Abbreviations 101