CHROMATOMEMBRANE METHOD APPLIED IN PHARMACEUTICALS ANALYSIS

Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Ganden Supriyanto aus Indonesien 2005

1. Gutachter:Prof. Dr. Jürgen Simon2. Gutachter:Prof. Dr. Peter Surmann

Disputation am: 25. Januar 2005

ABBREVIATIONS

FIA	Flow Injection Analysis
CMC	ChromatoMembrane Cell
PAN	1-(2-pyridilazo-2-naphtol)
ETE	Ethinylestradiol
LEV	Levonorgestrel
US	United States
HPLC	High Performance Liguid Chromatography
FI	Flow Injection
RSD	Relative Standard Deviation
LC	Liquid Chromatography
ICP	Inductively Couple Plasma
AES	Atomic Emission Spectroscopy
MS	Mass Spectroscopy
NMR	Nuclear Magnetic Resonance
UV	Ultraviolet
LLE	Liquid Liquid Extraction
SPE	Solid Phase Extraction
SPME	Solid Phase Micro Extraction
LPME	Liquid Phase Micro Extraction
SBSE	Stir Bar Sorptive Extraction
GC	Gas Chromatography
PDMS	Polvdimethylsiloxane
PTFE	Polytetrafluoroethylene
Р	Pressure
MSTFA	N-methyl-N-(trimethylsilyl)-trifluoroacetamide
TMSI	Trimethylsilylimidazole
DTE	Dithioervtrol
DAD	Diode Array Detection
ESI	Electrospray Ionisation
DCM	Dichloromethane
PAH	Poly Aromatic Hydrocarbons
USP	United States Pharmacopeia
TEA	Triethanolamine
LED	Light Emitting Diode
NAA	Neutron Activation Analysis
AAS	Atomic Absorption Spectrometry
KR	Knotted Reactor
5-Br-PADAP	2-(5-bromo-2-pyridylazo)-5-diethylamino-phenol
PAR	4-(2-pyridylazo) resorcinol
MSFA	Monosegmented Flow Analysis
DDTC	Diethyldithiocarbamate
PC	Personal Computer
Μ	Molar
MC	Mixing Coil

SYMBOL

Co	the original concentration of the constituent in the solution
	before dispersion
C _{max}	the highest concentration of that fluid element of the
	dispersed fluid zone
D	dispersion coefficient
Pc	capillary pressure
σ	surface tension
θ	contact angle of the porous material
r	pore radius
Ui	the rate of the shift of the <i>i</i> th component zone
Uo	the rate of supply of the solution
K _{D1}	the distribution coefficient at the extraction stage
V_1/V_2	the ratio of the volumes occupied by the micro- and
macropores	
I .	the length of the rectangular biporous PTFE block
U _{ex}	the flow rate of the non polar phase
h	the height of the rectangular biporous PTFE block/ the
	direction of the non polar phase
М	divalent metal
R	recovery (%)
Ce	the peak of the analyte after extraction with CMC
Cs	the peak of standard solution with the same concentration
EF _{th}	theoretical enrichment factor
EF _{tr}	true enrichment factor
Vs	the volume of the sample before extraction
Ve	the volume of the sample after extraction/end volume

ACKNOWLEDGMENTS

The author is deeply indebted to his principal advisor, Prof. Dr. Jürgen Simon (Department of Inorganic and Analytical Chemistry, Free University of Berlin), who provided not only scientific and moral support, but also guidance and ideas that will positively influence the author's academic life. Special thanks go to Prof. Dr. Ulrich Abram (Department of Inorganic and Analytical Chemistry, Free University of Berlin) who wrote a strong reference for DAAD. Special thanks also go to Prof. Dr. Peter Surmann (Institute of Pharmacy, Free University of Berlin) for reviewing the dissertation.

Thanks is truly due to Mr. Hygo Behrens (Department of Inorganic and Analytical Chemistry, Free University of Berlin) for his technical assistance with computing.

Special thanks also to Mrs. Regina Reinke for providing tridest for this research in the analytical chemistry laboratory at the Free University of Berlin.

Thanks are also grateful to Mr. Nidhu lal Banik and Ms. Titin Muljati for their help in collecting experimental data in the laboratory.

The faculty staff and friends of the Department of Inorganic and Analytical Chemistry at the Free University of Berlin have been very cooperative. Their friendship and assistance are truly appreciated.

Appreciation is sincerely expressed to DAAD and the Indonesian Government for supporting this research financially.

Special appreciation goes to my wife, Masrutji Handajani, for her patience and willingness to accompany me to Berlin. Much love also to our children, Bagus Aryan Delftanto and Nimas Sekar Ayu Citraningsukma. To them, the author can only offer himself and his endless love.